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Abstract

We consider the problem of assessing the uncertainty of calibrated parameters in computable gen-
eral equilibrium (CGE) models through the construction of confidence sets (or intervals) for these
parameters. We study two different setups under which this can be done. The first one extends
earlier work from Abdelkhalek and Dufour (1998) and is based on a projection technique which
allows the construction of confidence sets for calibrated parameters from confidence sets on the free
parameters of a (deterministic) CGE model. We discuss in detail how this approach can be applied
to CES (Armington-type) function parameters frequently used in CGE models and illustrate it on
models of the Moroccan economy. The second method allows one to extend the usual deterministic
specification of CGE models by adding stochastic disturbances to equations of the model and then
to construct corresponding confidence sets for calibrated parameters using simulation techniques.
This method uses the classical concept of a pivotal function for a parameter. We discuss in detail
how this method can be applied to the calibrated parameters of a Cobb-Douglas production function.
Applications to CGE models of the Moroccan economy are presented.

Keywords: computable general equilibrium model; calibration; sensitivity analysis; confidence set;
confidence interval; projection; Morocco.
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Résumé

Nous considérons le problème de la prise en compte de l’incertitude sur les paramètres calibrés de
modèles calculables d’équilibre général (MCEG) en construisant des régions (ou des intervalles) de
confiance pour ces paramètres. Nous étudions en détail deux méthodes qui permettent de ce faire. La
première est une extension des travaux de Abdelkhalek et Dufour (1998) et repose sur une technique
de projection qui permet de construire des régions de confiance pour les paramètres calibrés à partir
de régions de confiance pour les paramètres libres d’un MCEG déterministe. Nous discutons en
détail comment cette approche peut être appliquée aux paramètres d’une fonction CES (de type
Armington) d’usage fréquent dans les MCEG et nous l’illustrons sur des modèles de l’économie
marocaine. La seconde méthode permet de dépasser le cadre déterministe usuel des MCEG en
ajoutant des perturbations aléatoires à certaines équations du modèle pour construire des régions
de confiance pour les paramètres calibrés en utilisant des techniques de simulation. Cette méthode
utilise aussi le concept classique de fonction pivotale d’un paramètre. Nous discutons en détail
comment cette méthode peut être appliquée aux paramètres calibrés d’une fonction de production
de type Cobb-Douglas. Des applications à des MCEG de l’économie marocaine sont présentées.

Mots clés: modèle calculables d’équilibre général; calibration; région de confiance; intervalle de
confiance; projection; analyse de sensibilité; Maroc.

Classification du Journal of Economic Literature: C100, C190, C500, C510, C520, O210.
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1. Introduction

Computable general equilibrium (CGE) models are extensively used for analyzing and simulating
the effects of economic policy changes in developing and industrialized countries. Presentations and
overviews of this policy analysis tool may be found in Shoven and Whalley (1984, 1992), Manne
(1985), Devarajan, Lewis and Robinson (1986, 1994), Martens (1993), Decaluwé and Martens
(1988) as well as Gunning and Keyzer (1995). These models are generally non-stochastic and
strongly nonlinear. Results obtained by simulating these models rely on several assumptions, per-
taining both to the behavior of agents and to the choice of exogenous variables (the “closure” of the
model). The nature and quality of the available data also affect the results, whether these are base-
year data in static models (e.g., the reference year in the social-accounting matrix) or the stationary
equilibrium in dynamic models. The values assigned to the parameters of the behavioral functions,
which underlie the “calibration” of the model, are also crucial. In fact, since the work of Mansur and
Whalley (1984) and even before, CGE model designers have widely relied on calibration methods;
for a review, see Dawkins, Srinivasan and Whalley (2001). These generally require a good deal
less time and effort than econometric estimation. Calibration relies on a largely arbitrary distinc-
tion between “free parameters”, which can be obtained from external sources or simply assigned on
the basis of subjective judgements, and “calibrated parameters” which are derived (“estimated”)
from the former so as to reproduce the reference data (e.g., base-year data). In these methods there
clearly is a level of uncertainty associated with the selection of free parameters, since the calibration
process depends on them.

The issue of the choice of values for the parameters of CGE models often gives rise to a natural
scepticism among those who need to build, analyze, or use such models. In general, these values
may be econometric estimates drawn from other studies, figures based on international comparisons,
or simply arbitrary values imputed with no supporting data. Elasticities available in the literature
are often contradictory and inconsistent. Frequently, they are obtained using sectorial classifications
different from those of the model, and pertain to other time periods or countries. The varying degrees
of uncertainty affecting these models transfers to the results of the simulations [see Abdelkhalek and
Dufour (1998)]. Since CGE models are rarely estimated using econometric methods [except in the
notable work of Jorgenson (1984) and his associates], it is difficult to perform tests on the data or
build confidence regions for the calibrated parameters and the endogenous variables of the model.
Even if the general specification of the model is not questioned, the credibility of the conclusions
suffers from the uncertainty associated with reference-year data and parameter values.

On the latter source of uncertainty, Mansur and Whalley (1984, pp. 100 and 103) – among
others – emphasize the crucial nature of the latter step in the model building process: “The choice
of elasticity values critically affects results obtained with these models” and “The set of elastic-
ity values used are critical parameters in determining the general equilibrium impacts of policy
changes generated by these models”. Shoven and Whalley (1984) in an article summarizing the
main studies realized up to 1984 recognize the key role played by the selection of these parameters
in determining economic policy simulations as well as the difficulties encountered by researchers
during calibration. They indicate that the method generally used is based upon an arbitrary choice of
point estimate around which sensitivity analysis may be performed. In particular, they write: “The
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procedure generally employed is to choose a central case specification, around which sensitivity
analysis can be performed” [Shoven and Whalley (1984, pp. 1030–1031)]. On these issues, see
also the review of Dawkins et al. (2001).

Recognizing the seriousness of this problem, a number of authors have proposed an assortment
of approaches in order to translate parameter uncertainty into a measure of uncertainty for the sim-
ulated endogenous variables of the model (although not for calibrated parameters); see Pagan and
Shannon (1985, 1989), Harrison (1986, 1989), Bernheim, Scholz and Shoven (1989), Wigle (1986,
1991), Harrison and Vinod (1992), Harrison, Jones, Kimbell and Wigle (1993). These methods are
fundamentally descriptive and do not resort to a rigorous statistical framework. More recently, how-
ever, we proposed a more systematic approach, which allows the construction of confidence regions
for the endogenous variables of CGE models in order to account for free-parameter uncertainty; see
Abdelkhalek and Dufour (1998).

Calibration may be viewed as a two-stage estimation procedure by which, starting from the
values of the free parameters and reference-year data, values are assigned to the calibrated para-
meters. This method, which is widely used in studies based on CGE models, has the advantage of
being much less demanding than traditional econometric methods, both from the perspective of data
requirements and numerical procedures.

Like free parameters, calibrated parameters may be interesting from an economic perspec-
tive. As mentioned above, the distinction between “free parameters” and “calibrated parameters” is
largely conventional and depends on data availability as well as which parameters can be fixed on
a priori grounds at “reasonable values”; see Dawkins et al. (2001). Further, the values of calibrated
parameters can play a direct role in the conclusions drawn from a CGE analysis. For example, in Ab-
delkhalek and Dufour (1998), key parameters of the aggregate demand (Armington-type) function
(such the share parameter between imported and domestic goods) appear as calibrated parameters.
Similarly, in Abrego and Whalley (2000), calibrated parameters play a crucial role in decomposing
wage inequality changes between contributing factors. So it appears it would be quite useful to have
methods that can provide the investigator information on the accuracy and reliability of calibrated
parameter estimates. But, essentially all the work on inference in CGE models has focused on the
endogenous variables of the model, and is not directly applicable to calibrated parameters.

In this paper, we start by formalizing the calibration problem for CGE models, in a way that will
allow the application of rigorous statistically-based methods (section 2). Two alternative forms of a
CGE model are considered, which lead to different ways of specifying the way calibrated parameters
appear in the model and how their uncertainty should be assessed. The first one retains a standard
completely deterministic specification – like the vast majority of CGE models – while the second
one gets closer to an econometric specification by allowing the introduction of random disturbances
in the equations used for calibrating the model. In the first approach, calibrated parameters are
functions of reference-period data as well as free parameters, and calibrated parameter uncertainty
is induced by the free parameters. Drawing on the work of Abdelkhalek and Dufour (1998) on
assessing endogenous variable uncertainty in CGE models, we then show how projection techniques
can be used to build confidence regions for calibrated parameters (section 3). This enables the
model builder to account for the uncertainty associated with calibrated parameters by constructing
confidence regions for them using those of the free parameters. In sections 4 and 5, we illustrate this
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approach for the calibrated parameters of constant elasticity of substitution (CES) or transformation
(CET) functions (the Armington form), frequently used in CGE models. In the second approach
we consider (sections 6 to 8), we attempt to move beyond the deterministic framework typical of
CGE models by allowing stochastic disturbances to appear in some of the equations. This induces
calibrated parameter uncertainty even if the latter parameters do not depend on free parameters.
We begin by discussing inference on the parameters of Cobb-Douglas type production functions
(section 6) – a case where calibrated parameters are affected by disturbances but do not depend
on free parameters – and we present an illustration based on a large disaggregate model of the
Moroccan economy (section 7). The general case where calibrated parameters depend on both
disturbances and free parameters is then discussed (section 8). We conclude in section 9.

2. Theoretical framework

In its most general form, a CGE model may be represented by a function M such that

Y = M (X, β, γ) (2.1)

where Y is an m-dimensional vector of endogenous variables, M is a (generally nonlinear) function
which may be analytically quite complicated but remains computable, X is a vector of exogenous
or economic policy variables, β is a p-dimensional vector of free parameters belonging to a subset
Ω of Rp, and γ is a vector with k elements containing the parameters to be calibrated. Note that the
above equation obtains provided the model considered has a unique solution. Applied CGE models
are typically constructed so that this condition holds; see Kehoe (1983), Mansur and Whalley (1984)
and Dawkins et al. (2001).1 Indeed, if the model did not have a solution, this would simply mean
that the proposed structure is ill-conceived and should be modified. Similarly, multiple solutions
indicate model incompleteness: since there is only one state of the world, some extra condition is
needed to “pick” one. So again, this suggests that the model should be modified.

From a theoretical viewpoint, β and γ are not fundamentally different. However, they play
different roles. While the elements of β are parameters (e.g., elasticities) of the behavioral equations
of the model (utility/demand, production/supply, imports, exports, etc.), those of γ are generally
scale or share parameters. The calibration procedure consists in setting the vector of parameters γ
to exactly reproduce the data of a reference year, given a point estimate of the free parameters β of
the model. Thus, it is not surprising that the choice of these parameters has a large influence on the
simulation results.

More formally, consider the equation:

Y0 = M (X0, β, γ) (2.2)

where Y0 and X0 are vectors of endogenous and exogenous variables respectively for a given base
1The special form of the model from which (2.1) is derived does not matter for the methods described in this paper

to apply. All we need is being able to solve the model. In particular, the latter may involve any functional form and
market structure consistent with the existence of a solution, liquidity constraints, irreversibilities, “min”-type functions,
production functions with complementary factors, rationing, etc.
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year. Assuming that the solution for γ exists and is unique, we can write:2

γ = H (Y0, X0, β) = h (β) . (2.3)

When an estimate β̂ of β is available, the vector γ is estimated by replacing β with its estimate in
equations (2.2) and (2.3).

Furthermore, we can usually decompose γ into two subvectors γ1 and γ2, say γ = (γ′1, γ′2)
′,

where γ1 (of dimension k1 ≥ 0) is independent of β. We can then write

γ1 = h1 (Y0, X0) . (2.4)

The second subvector γ2 (of dimension k2 = k − k1) is, on the other hand, a function of β as well
as of X0 and Y0, hence

γ2 = h̄2 (Y0, X0, β) = h2 (β) . (2.5)

To the extent that the vector of exogenous variables (X) is known and taking into account the
deterministic nature of the model, we can simplify the notation and write the model in the compact
form

Y = ḡ (X, β) = g (β) (2.6)

where the functions ḡ and g are defined for a given base year (after calibration), while g also treats
the vector X as given. This formalization and qualifications on the calibrated parameters will prove
to be very useful in theoretical developments and even indispensable for the numerical derivations
associated with some approaches presented in this paper.

Generally, we will be interested in the effects of one or several economic policies which modify
the elements of the vector X. Solutions to the model M , obtained for different values of exogenous
variables X but a single estimate value of β may be compared and incorporated into a decision-
making process. In principle, β must be estimated econometrically, and it is possible to associate
measures of uncertainty (standard deviations, confidence regions) with it. However, this type of
information is generally ignored in appraisals of the reliability of the results.

We also note that the difficulties associated with the calibration of CGE models are not explicitly
considered by usual methods for sensitivity analysis. These methods only deal with the estimation
of the vector β, not γ. Notice that, in CGE models, the dimension of the joint vector

(
β′, γ′

)′
may be very large and econometric estimation difficult, if not impossible. In fact, the number of
parameters of a CGE model increases rapidly with the number of sectors and consumers. Statistical
data for high levels of disaggregation are frequently not available. The number of parameters to
estimate may easily surpass the size of the sample. Thus, calibration may be viewed as an estimation
procedure for γ; on this issue, see also Mansur and Whalley (1984, pp. 127–135) and Dawkins
et al. (2001). It is clear that this procedure only yields point estimates and does not account for

2The assumption that the solution for γ exists is, of course, essential to the possibility of calibrating the model.
Otherwise, such methods cannot be used. Typical CGE model specifications, however, ensure that the solution exists and
is unique; see Kehoe (1983), Mansur and Whalley (1984), Dawkins et al. (2001). On that issue, it is of interest to note
that the methods proposed in this paper can in principle be applied even if multiple solutions can occur. We will discuss
this possibility at the end of this section.
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the uncertainty inherent in the estimation of the free parameters β, nor for that associated with the
social-accounting matrix for the reference year [see Byron (1978)].

Even though typical specifications of CGE models have unique solutions and do allow a
uniquely determined calibration, building CGE models is a complicated exercise and, in certain
circumstances, we may end up with a model with multiple solutions. On that issue, it is of interest
to note that the above setup can easily be modified to allow for multiple solutions of both the model
and the calibration process, provided the set of possible solutions can be determined. In such a case,
equation (2.1) is replaced by the set Ȳ (X, β, γ) of all model solutions consistent with (X, β, γ) ,
i.e.

Ȳ (X, β, γ) = {Y ∈ Rm : M̄ (Y, X, β, γ) = 0} (2.7)

where M̄ (Y, X, β, γ) = 0 represents the restrictions imposed by the model, while Y and γ2 in
(2.3) and (2.5) are replaced by the sets

γ̄ (Y0, X0, β) = {γ ∈ Rk : Y0 ∈ Ȳ (X0, β, γ)} , (2.8)

γ̄2 (Y0, X0, β) = {γ2 ∈ Rk2 : γ = (γ′1, γ′2)
′ and Y0 ∈ Ȳ (X0, β, γ)} . (2.9)

When there is unique model solution, the set Ȳ (X, β, γ) contains only one point, in which case
we can write:

γ̄ (Y0, X0, β) = {γ ∈ Rk : Y0 = M (X0, β, γ)} , (2.10)

γ̄2 (Y0, X0, β) = {γ2 ∈ Rk2 : γ = (γ′1, γ′2)
′ and Y0 = M (X0, β, γ)} . (2.11)

If the calibration process has a unique solution, these two sets reduce to single points. We will see
in the next section that the projection method we suggest remains applicable to such solution sets
(as opposed to unique solutions).

3. Projection-based confidence sets

In this section, we develop an approach that allows one to evaluate the uncertainty associated with
the subvector of calibrated parameters, γ2, deriving a confidence region from that of the vector of
free parameters β. As in Abdelkhalek and Dufour (1998), we assume that we have a confidence
region C with level 1− α for the parameter β. In other words, C is a subset of Rp such that

P [β ∈ C] ≥ 1− α (3.1)

where 0 ≤ α < 1. Two different interpretations may be put forward for the set C. First, we can
assume that C is a sampling (frequentist) confidence region based on previous statistical studies
and observations, i.e. C = C (Z) is a random subset of Rp generated by a sample Z such that
the probability that a given vector β is contained within C (Z) is greater than or equal to 1 − α.
Second, in other situations we may treat the parameter β as stochastic and consider that β ∈ C is a
Bayesian confidence region for β. It is important to note here a complete prior distribution on the
vector β need not be specified: all we require is the set C and the probability 1 − α assigned to
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it. For example, it is sufficient to have a set of prior (confidence) intervals on each element of β,
whose joint probability is 1−α. We view this “partial information” feature as important: in practice,
the investigator may find it relatively easy to assign a probability to an interval of possible values,
but formulating a complete distribution on the parameter (especially, if is multidimensional) is a
much more demanding exercise that may have unintended effects. So, in the sequel, we shall not
assume that a complete distribution on β is available (even though this is not precluded).3 Similarly,
if we use an estimator β̂ to build the sampling confidence set (or interval) C, the distribution of
the estimator need not be completely known: only what is needed to build the confidence set C is
required.

The arguments developed below are applicable under either of the above interpretations (fre-
quentist or Bayesian). The region C of Rp may be discrete, compact, connected or continuous.
Under the assumption that (2.2) has a unique solution for γ, let h2 (C) represent the image of C
over a calibration function h2 defined in equation (2.5):

h2 (C) =
{
γ2 ∈ Rk2 : γ2 = h2 (β0) for at least one β0 ∈ C

}
. (3.2)

If the assumption that the calibration process has a unique solution does not hold (provided a solu-
tion does exist), the image set can be defined in a more general way as follows:

h2 (C) =
{
γ2 ∈ Rk2 : γ2 ∈ γ̄2 (Y0, X0, β) for at least one β0 ∈ C

}
(3.3)

where γ̄2 (Y0, X0, β) is given by (2.9). It is easy to see that the latter reduces to (3.2) when the
solution of the calibration process is unique.

Clearly, we have the implication:

β ∈ C ⇒ h2 (β) ∈ h2 (C) , (3.4)

hence
P [γ2 ∈ h2 (C)] ≥ P[β ∈ C] ≥ 1− α . (3.5)

We see that h2 (C) is a conservative confidence region for γ2, with level greater than or equal to
1 − α [see Rao (1973, Section 7b.3, p. 473) or Gouriéroux and Monfort (1989, volume 2, pp.
243-250)].4 In particular, when C is a sampling confidence region for β, we have:

P [h2 (β) ∈ h2 (C)] ≥ P[β ∈ C] ≥ 1− α , ∀β ∈ Ω . (3.6)

We can also obtain individual confidence intervals for the elements γ2i = h2i (β) of the vector
h2 (β) = (h21(β), . . . , h2k2 (β))′ . In fact, since

h2 (β) ∈ h2 (C) ⇒ [h2i (β) ∈ h2i (C) , for i = 1, . . . , k2] , (3.7)

3Our partial information setup entails that the distribution of β cannot be simulated because it is not completely
specified. Similarly, a distribution for γ is not available. On may wish to study what could be done once such extra
assumptions are introduced, but this would go beyond the scope of the present paper.

4For further examples of the projection technique in econometrics, see Dufour (1989, 1990, 1997), Dufour and Kiviet
(1996, 1998), Kiviet and Dufour (1997), and Dufour and Jasiak (2001).
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we have:

P
[
γ2j ∈ h2j (C)

] ≥ P [γ2i ∈ h2i (C) , i = 1, . . . , k2]
≥ P [γ2 ∈ h2 (C)]
≥ 1− α , j = 1, . . . , k2 . (3.8)

Since the function h2 is generally nonlinear, the set h2 (C) may be difficult to determine or
visualize. In particular, it is not usually an interval or an ellipse. Nonetheless, as shown in Ab-
delkhalek and Dufour (1998), relatively simple forms may be derived from fairly weak assumptions
on the function h2 and on the set C representing the confidence region of β.5 In fact, if we as-
sume that h2 is continuous and that C is compact in Rp, the confidence region h2 (C) for γ2 is
also compact in Rk2 , and the univariate confidence regions for the elements of γ2 are compact
in R. If h2 is continuous and C is connected in Rp, the confidence region h2 (C) for γ2 is also
connected in Rk2 and the confidence regions for the elements of γ2 are connected in R, and thus
take the form of intervals. Finally, if h2 is continuous and if C is also continuous (i.e. connected,
closed and bounded) in Rp, then the confidence region h2 (C) for γ2 is also continuous in Rk2 ,
and the univariate confidence intervals are continuous in R. In particular, in this case the individ-
ual confidence regions h2i (C) , i = 1, . . . , k2, take the shape of closed and bounded intervals:
h2i (C) =

[
γL

2i, γU
2i

]
, where γL

2i > −∞ and γU
2i < +∞, i = 1, . . . , k2.

In general, we can always construct simultaneous confidence intervals for the different elements
of h2 (β) . We simply consider the extreme values:

hL
2i (C) = inf {h2i (β) : β ∈ C} , hU

2i (C) = sup {h2i (β) : β ∈ C} (3.9)

where −∞ ≤ γL
2i < ∞ and −∞ < γU

2i ≤ ∞, i = 1, . . . , k2. Since [h2i (β) ∈ h2i (C) , i =
1, . . . , k2] ⇒ [hL

2i (C) ≤ h2i (β) ≤ hU
2i (C) , i = 1, . . . k2], we have:

P
[
hL

2j (C) ≤ γ2j ≤ hU
2j (C)

] ≥ P
[
hL

2i (C) ≤ γ2i ≤ hU
2i (C) , i = 1, . . . , k2

]

≥ P [γ2i ∈ h2i (C) , i = 1, . . . , k2]
≥ 1− α , for j = 1, . . . , k2. (3.10)

It is thus sufficient to minimize and maximize each element of γ2 = h2 (β) subject to the constraint
β ∈ C to obtain (simultaneous) level 1− α confidence intervals for all of them.

Using these results we can construct confidence regions for the endogenous variables of CGE
models from the confidence regions of the two parameter vectors β and γ2 (free, and calibrated
dependent on the free) or simply from those of the vector β of free parameters, having eliminated
the calibrated parameters depending on the free parameters, while accounting for the uncertainty
associated with them. This result allows us to substantially simplify the numerical procedures,
especially when the dimension of vector γ2 is large. We illustrate the process of building these
confidence regions of type γ2 (C) with an example in the following sections.

5These assumptions are satisfied by the functional forms typically used in CGE models.
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4. Calibrated parameters for CES and CET functions

To illustrate the approach proposed above, we will now perform a detailed analysis of the case of an
Armington-type import function commonly used in CGE models. This general constant elasticity of
substitution (CES) form, which can be subject to various interpretations, is used to model sectorial
production, exports, portfolio composition (models with financial flows), etc. In other words, this
example covers a large number of cases of calibration in the presence of free parameters (elastici-
ties) in CGE models. This function is linearly homogenous in its arguments, the number of which
depends upon the model (inputs or factors of production, origin of imports, markets for exports,
substitutable financial assets). In our example we consider an import model in which a consumer
derives utility from consuming a composite good denoted Q. This good is comprised of imported
goods M and domestic goods D. The consumer’s problem is to choose a combination of quantities
M and D which minimizes overall expenditure, given the two prices pM and pD and the level Q.
The Armington form of this CES function is given by

Q = B
[
δM−ρ + (1− δ) D−ρ

]−1/ρ
. (4.1)

To find a more direct interpretation, we let σ = 1/(1 + ρ), i.e. ρ = (1 − σ)/σ. Equation (4.1)
may then be rewritten:

Q = B
[
δM (σ−1)/σ + (1− δ) D(σ−1)/σ

]σ/(σ−1) (4.2)

where B is a constant, δ a share parameter, and σ a (constant) elasticity of substitution between
imported and domestic goods. In our terminology, given the deterministic calibration procedures
applied to this type of function in CGE models [see Mansur and Whalley (1984)], B and δ are
calibrated parameters while σ (or ρ) is a free parameter estimated or borrowed from outside the
model, independent of the data from the social-accounting matrix for the reference year. The first-
order condition associated with this problem is given by the equality between the price ratio for the
two types of good and the marginal rate of substitution between imported and domestic goods:

pD

pM
=

[
(1− δ)

δ

](
D

M

)−ρ−1

(4.3)

or
M

D
=

[
δpD

(1− δ) pM

]1/(ρ+1)

=
(

δ

1− δ

)σ (
pD

pM

)σ

. (4.4)

This method of modelling imports, examined in detail by de Melo and Robinson (1989) and
by Devarajan, Lewis and Robinson (1990), is extensively used in CGE models.6 This seems more
realistic than the classic formulation with perfect substitutability between goods. The CES function
is sufficiently tractable for the analytical derivations and the calibration of parameters, despite the
fact that it introduces a free parameter.

To calibrate the parameters of this type of function in CGE models, different techniques have
6For a review of general equilibrium studies having used these forms, see Decaluwé and Martens (1988).
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been used (estimates, literature reviews, international comparisons, or arbitrary fixing) to assign a
value (σ̂) to the free parameter — the elasticity of substitution (σ) in this case. This value is crucial
and constitutes the first step of the calibration process. From the first order condition [equation
(4.4)], from the data for Q0, M0 and D0, and from a normalization assumption imposed on the
base-year prices, we derive:7 (

M0

D0

)1/σ̂

=
δ

1− δ

(
pD0

pM0

)
(4.5)

yielding a unique estimate for δ given by

δ̂ =

pM0
pD0

(
M0
D0

)1/σ̂

1 + pM0
pD0

(
M0
D0

)1/σ̂
= h21 (σ̂) . (4.6)

Now it remains to calibrate the scale parameter B. From equation (4.2) and from the base-year
data, we find:

B̂ = Q0/
[
δ̂M

(σ̂−1)/σ̂
0 +

(
1− δ̂

)
D

(σ̂−1)/σ̂
0

]σ̂/(σ̂−1) = h22 (σ̂) . (4.7)

In equations (4.6) and (4.7) the essential role played by the free parameter in determining the values
of the other parameters appears clearly. From this deterministic approach to calibration, we seek
to construct confidence intervals for the two calibrated parameters, δ and B, given that of the free
parameter σ. To achieve this, we work not with a point estimate for σ, σ̂, but rather with a set
estimate.

Moving from the definition for a continuous function of a confidence interval C ⊂ R for σ
given in expression (4.6) towards a subset h21 (C) ⊂ R, we analytically illustrate the construction
of what is to become a confidence interval for δ. To simplify notation, we write:

N (σ) =
pM0

pD0

(
M0

D0

)1/σ

=
(

pM0

pD0

)
e

1
σ

ln
(

M0
D0

)
, (4.8)

hence

δ = h21 (σ) =
N (σ)

1 + N (σ)
. (4.9)

We now wish to examine the behavior of the function h21, particularly within the confidence
interval C. From equation (4.9) we see that

dδ

dσ
=

N ′ (σ) [1 + N (σ)]−N ′ (σ)N (σ)
[1 + N (σ)]2

=
N ′ (σ)

[1 + N (σ)]2
(4.10)

7An assumption concerning the base-year prices is usually made in CGE models. All prices, except those which
include taxes or subsidies, are normalized to one for the base year (i.e. are treated as indices).
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where

N ′ (σ) =
dN

dσ
=

pM0

pD0

[
− 1

σ2
ln

(
M0

D0

)](
M0

D0

)1/σ

. (4.11)

So it is clear that the sign of dδ/dσ is the same as that of dN/dσ, i.e.

sgn

(
dδ

dσ

)
= sgn

(
dN

dσ

)
= sgn

[
− ln

(
M0

D0

)]
= sgn

[
ln

(
D0

M0

)]
(4.12)

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0. If D0 > M0,
then (dδ/dσ) > 0 and vice versa. This result, which we have never encountered in the literature on
CGE models, is quite surprising and, depending on the context, it may have interesting economic
interpretations. We see that the function h21 is continuous and strictly monotonic. If we assume that
the confidence interval for σ (C) is a closed bounded set of the form [σ, σ] , with level 1− α, then
one of the two intervals [h21 (σ) , h21 (σ)] and [h21 (σ) , h21 (σ)] is a level 1−α confidence interval
for the calibrated parameter δ.8 In other words, one of the following implications must hold:

P (σ ∈ [σ, σ]) ≥ 1− α ⇒ P (δ ∈ [h21 (σ) , h21 (σ)]) ≥ 1− α , (4.13)

P (σ ∈ [σ, σ]) ≥ 1− α ⇒ P (δ ∈ [h21 (σ) , h21 (σ)]) ≥ 1− α . (4.14)

In addition to the share parameter δ, a similar analysis may be performed on the scale parameter B.
This work is analytically not as simple as that on δ, but remains feasible numerically (see section
5).

Since the calibration procedure is usually performed in a pre-defined order, accounting for the
uncertainty associated with the calibrated parameters depending on the free parameters is tanta-
mount to clearly specifying the confidence regions for the free parameters of the model.

5. Application to aggregate CGE models of Morocco

In this section, we apply the projection method described in section 3 to the construction of con-
fidence sets for the calibrated parameters (which depend on free parameters) in the context of two
different models for Morocco. The first one is a submodel of a type 1-2-3 CGE model [Devara-
jan et al. (1990)] studied in Abdelkhalek and Dufour (1998). The second one is a submodel of a
two-sector model (agriculture and industry) used by Abdelkhalek and Martens (1996). Both mod-
els include imported goods (M) and locally produced goods (D), which are aggregated through
an Armington-type CES function. The Moroccan reference year data come from 1985 for the first
model and from 1990 for the second model. Calculations and optimizations were performed using
the GAMS-MINOS program [see Brooke, Kendrick and Meeraus (1988)].9

Given the reference-year values Q0, M0, D0, pM0 and pD0 and a level 1− α confidence region
C for the free parameter σ, the confidence intervals are obtained by minimizing and maximizing the

8A study by Reinert and Roland-Holst (1992) of 163 sectors of the U.S. economy reveals that this elasticity σ falls
between 0.14 and 3.49.

9The program is supplied in Appendix B.
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functions which define the calibrated parameters subject to the restriction that the free parameter
remains in its confidence region. Note the confidence set C for σ may be truncated to only contain
values in a set C0 of economically admissible values; the resulting smaller confidence set C ∩ C0

has the same level as the original set C [see Abdelkhalek and Dufour (1998)]. The set C ∩ C0 to
which σ is restricted is usually specified through a set of nonlinear inequalities. More precisely, we
solve the following problems :

minimize and maximize δ = h21 (σ) ≡ (pM0/pD0) (M0/D0)
1/σ

1 + (pM0/pD0) (M0/D0)
1/σ

,

subject to σ ∈ C ∩ C0 ; (5.1)

minimize and maximize B = h22 (σ) = Q0/
[
δM

(σ−1)/σ
0 + (1− δ) D

(σ−1)/σ
0

]σ/(σ−1)

subject to δ = h21 (σ) and σ ∈ C ∩ C0 . (5.2)

It is also useful to remember that the price of the imported good is given by the equation

pM0 = pwm0(1 + tm)E0 (5.3)

where pwm0 is the international price of imports, tm is the tariff on imports and E0 is the nominal
exchange rate, evaluated at the reference year.

The Moroccan data used in our calculations are summarized in Table 1, while the confidence
intervals for calibrated parameters δ and B appear in Table 2. For the one-sector model calibrated
on the reference year 1985, we used for the free parameter σ the 95% confidence interval [0.7838,
2.0809], which is based on the estimations presented in Abdelkhalek and Dufour (1998). The results
in Table 2 indicate that this interval on σ gets translated into the intervals [0.137, 0.361] and [1.568,
1.862] for δ and B respectively. These intervals show there is a non-negligible uncertainty on the
calibrated parameters even though the confidence intervals remain remarkably tight and informative.
For the two-sector model (calibrated on 1990 data), we used the wider interval [0.5, 4.5]. The
latter was a subjectively determined, although quite consistent with the range of values reported by
Reinert and Roland-Holst (1992) for similar elasticities. Not surprisingly, we find in this case wider
(although still informative) intervals for the sectorial parameters δ and B associated with agriculture
and industry: δ ∈ [0.004, 0.331] and B ∈ [1.010, 1.658] for the agricultural sector, δ ∈ [0.058,
0.458] and B ∈ [1.470, 1.988] for the industrial sector.

6. Confidence regions based on equations with disturbances

In this section, we present an approach for constructing confidence regions for the calibrated para-
meters of the model, which goes beyond the deterministic calibration process which is typical of
CGE models. This method introduces randomness, and thus uncertainty, into some of the model
equations – namely those which are used in the calibration process – used for the deterministic
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TABLE 1: Moroccan data used in the calibrationsa

Variables SAM 1985 SAM 1990 SAM 1990
Agriculture Industry

Q0 252653 69589.32 317195.92

M0 42806 4248 59327.9

D0 209847 65341.32 257868.02

TAXM0 9046.7 -391.79 10048.1

tm 0.211 -0.0922 0.16936

PD0 1 1 1

PWM0 1 1 1

E0 1 1 1

PM0 1.211 0.9078 1.16936

σ [0.7838, 2.0809] [0.5, 4.5] [0.5, 4.5]

aSAM: social accounting matrix. Data for Q0, M0, D0, TAXM0 are in millions of dirhams and
were obtained from Groupe de recherche en économie internationale (G.R.E.I.) (1992) for 1985 and
from Abdelkhalek and Martens (1996) for 1990. The confidence intervals for σ are econometric
estimates for 1985 from Abdelkhalek and Dufour (1998), while those for 1990 are subjectively
determined although consistent with the elasticity values reported by Reinert and Roland-Holst
(1992).

TABLE 2: Confidence intervals for δ and B

Parameter δ B

Confidence bounds Lower Upper Range Lower Upper Range

1985 0.137 0.361 0.224 1.568 1.862 0.294

Agriculture 1990 0.004 0.331 0.327 1.010 1.658 0.648

Industry 1990 0.058 0.458 0.400 1.470 1.988 0.518
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calibration, in order to construct simultaneous confidence regions for the calibrated parameters.
Random disturbances will be introduced in a way similar to what is usually done routinely in econo-
metric models, in view of allowing for “perturbations” to equilibrium conditions, associated with
measurement errors or approximation errors. In particular, we will allow for perturbations only in
the equations used in the calibration exercise, an important simplifying feature. The method can
also be applied to study the reliability of calibrated parameters even if free parameters do not appear
in the equations considered.

The “random errors” we consider here are not meant to transform a fundamentally non-
stochastic model into a stochastic model where agents would maximize expected utility taking
account a stochastic environment. The non-stochastic nature of the underlying behavioral is not
modified (although this would certainly be of interest). The exercise we perform here is meant to
be a first step in the direction of allowing for the presence of random disturbances in the model. 10

Before generalizing the proposed approach (section 8), we shall discuss the important case of a
Cobb-Douglas production function with constant returns to scale for the factors labor and capital.
Since primary inputs are required in the production process, “production” is defined as value added.
This type of modelling and these functional forms are frequently used in CGE models because of the
simplicity, of the resulting expressions and calibration. The general form of this type of production
function in the presence of several categories of the labor input and a single factor capital per sector
is given by:

Xi = Ai

∏

l

L
δi,l

i,l K
(1−∑

l δi,l)
i . (6.1)

where Xi is production (or value added) in sector i, Ai is a scale parameter, Li,l is the quantity of
the type l labor used in sector i, Ki is the quantity of capital used in sector i, and δi,l the elasticity
of production of type l labor in sector i. All of the following presentation may be derived from
equation (6.1). In order to simplify the notation, we shall ignore the index i representing the sector
and consider only one type of labor. Thus, production function (6.1) assumes the following simpler
form:

X = ALδK(1−δ) . (6.2)

In standard CGE models certain assumptions are made concerning the structure of markets.
These assumptions facilitate accounting for the behavior of agents, particularly of firms, in each
sector of the economy. This information is used to derive factor demands from profit maximization
programs. Since our concern here is primarily econometric, we shall assume that the sector is
perfectly competitive. One of the first-order conditions is:

pXδ = wL, (6.3)

where p is the price of good X (or the price of the value added), and w is the wage rate of labor.
To calibrate the parameters of this type of function, model builders only require reference data for
the base year from a social-accounting matrix. No information on the free parameters is required.

10As we will see, even this simple first step, introduces non-negligible extra complications. A potentially useful extra
step would consist in considering a fully stochastic behavioural model, but this would require important modifications to
our basic setup and would go beyond the purpose of this paper.
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The necessary data for the reference year comprise: the sectorial value of production (or the value
added, p0X0) and the corresponding total wage bill (w0L0) . Equation (6.3) then yields a unique
estimate for δ, based on a single observation (the base year), owing to the deterministic nature of
the model:

δ̂ =
w0L0

p0X0
. (6.4)

From this estimate for δ and from equation (6.2), we can derive an estimate for the scale coefficient
of the production function (A) :11

Â =
X0

Lδ̂
0K

(1−δ̂)
0

. (6.5)

Given the aforementioned assumptions, it is obvious that this calibration procedure may be applied
to production functions of this type for all sectors and factors of production.

We now consider a production function (6.2) incorporating a stochastic disturbance term —
applicable to this example as well as similar ones. The notion of introducing random shocks into
some of the equations of a CGE model (those used in the deterministic calibration) is not entirely
new. Mansur and Whalley (1984) proposed stochastic forms for CGE models which allow the
estimation of the parameters, provided there is a sufficient number of observations. However, this is
generally not possible (e.g., when the data only pertains to a single base year). This is the case we
are concerned with here.

The random perturbations introduced have the same interpretation as the error terms in econo-
metric models: they represent the effect of observation errors, specification errors, random devia-
tions from optimal behavior among economic agents, etc. Of course, introducing such perturbations
requires one to specify the error distribution and complicates the model.

Assume that the production function (6.2) and the first-order condition (6.3) are stochastic, as
follows:

X = ALδK(1−δ)eu , (6.6)

pXδ = wLev , (6.7)

where (u, v) is a vector of random variables with a known distribution that can be simulated. Here
the error term u in the first equation is a (fairly standard) perturbation of the production function,
while v may capture a temporary deviation from first-order profit maximization condition due to
market imperfections, measurement errors, agent errors, etc.

Two equations can be written for the base-year data:

X0 = ALδ
0K

(1−δ)
0 eu0 , (6.8)

p0X0δ = w0L0e
v0 , (6.9)

11Notice that we have again normalized the prices, allowing us to impute the value p0X0 to the volume X0.
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where A and δ are the two unknown parameters. We then deduce:

δ =
w0L0

p0X0
ev0 , (6.10)

A =
X0

Lδ
0K

(1−δ)
0 eu0

. (6.11)

The equations for the deterministic framework derived in (6.4) and (6.5) no longer obtain, because
they only hold true when the random errors u and v are identically zero. In the stochastic model
these two equations yield estimators for δ and A respectively. Thus, by definition,

δ̂0 =
w0L0

p0X0
(6.12)

irrespective of A. Let

A0 ≡ A0 (δ) =
X0

Lδ
0K

(1−δ)
0

. (6.13)

In particular, for δ̂0 we obtain:

Â0 = Â0

(
δ̂0

)
=

X0

Lδ̂0
0 K

(1−δ̂0)
0

. (6.14)

From equations (6.11) and (6.14) we find

Â0

A
=

Lδ
0K

(1−δ)
0 eu0

Lδ̂0
0 K

(1−δ̂o)
0

(6.15)

or, equivalently,
Â0

A
=

(
K0

L0

)(δ̂0−δ)

eu0 (6.16)

which, upon taking logs, yields

ln
(
Â0

)− ln (A) =
(
δ̂0 − δ

)
ln (K0/L0) + u0 . (6.17)

Furthermore, from equations (6.10) and (6.12) we derive:

δ̂0

δ
=

1
ev0

(6.18)

or
ln (δ)− ln

(
δ̂0

)
= v0 . (6.19)

From either equation (6.18) or (6.19), we see that δ̂0/δ or ln
(
δ̂0

)− ln (δ) are pivotal functions
for the parameter δ. A pivotal function for δ is any stochastic function Z defined on the observations
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and on the parameter δ such that the distribution of Z does not depend on δ despite the fact that
this parameter appears in the arguments [see Gouriéroux and Monfort (1989, volume 2, p. 24),
for example]. When we have a pivotal function which can be inverted to isolate the parameter of
interest, we can construct confidence intervals for that parameter. This is the procedure we shall
use here. Given any known distribution of the vector (u0, v0) , simulated confidence intervals may
be constructed for the parameters δ and A or for functions of these parameters. Notice that, unlike
Mansur and Whalley (1984), we require neither that (u0, v0) be normally distributed nor that u0

and v0 be independent. However, by making these assumptions we benefit from significant practical
simplifications.

In the case we are about to examine, notice that δ̂0/δ only depends upon v0 (and not on u0). We
can write

P
[
δ̂0/δ > cα

]
= P

[
e−v0 > cα

]
= α (6.20)

where α is a constant fixed a priori and cα is the corresponding critical value, which can be derived
from the theoretical or simulated distribution of v0. Thus we have

P
[
δ̂0/δ ≤ cα

]
= 1− α , (6.21)

and

Γδ =
{
δ ∈ R : δ̂0/δ ≤ cα

}
=

{
δ ∈ R : cαδ ≥ w0L0

p0X0

}
(6.22)

is a level 1− α confidence interval for the parameter δ.
Similarly, we can construct a confidence interval for the parameter A. In a first instance, if

we assume that δ is known and that the unknown parameter is the scale parameter A, we can use
equations (6.11) and (6.13) to derive:

eu0 = A0/A (6.23)

which, as before, yields a pivotal function for A and allows the construction of a confidence interval
for this parameter. Nonetheless, as δ is generally unknown, this procedure may not be very useful.
The two equations (6.16) and (6.17) cannot yield a pivotal function for A. Even if we use equations
(6.17) and (6.18) to eliminate δ, the ensuing expression

u0 = ln
(
Â0

)− ln (A) + δ̂0 (ev0 − 1) ln (K0/L0) (6.24)

does not constitute a pivotal function for A.
When δ is unknown it is thus difficult (if not impossible) to construct a similar confidence

interval for A. Nonetheless, it is possible to find a two-dimensional pivotal function for the two-
dimensional parameter (A, δ) . Using equations (6.17) and (6.19) we may write:

W =
(

u0

v0

)
=

(
ln

(
Â0

)− ln (A) +
(
δ − δ̂0

)
ln (K0/L0)

ln (δ)− ln
(
δ̂0

)
)

. (6.25)

Since the distribution of the vector (u0, v0) is fixed and known by assumption, we indeed have a
pivotal function for the pair [ln (A) , ln δ] . Since the covariance matrix, Ω, of this vector is known,
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we can calculate the following statistic:

T (u0, v0) = W ′Ω−1W . (6.26)

By assumption, this distribution can be simulated. In particular, if we assume that the distribution
of vector (u0, v0) is multivariate normal, this distribution will be χ2 (2) . Consequently, we can find
the point cα such that

P [T (u0, v0) ≤ cα] = P
[
W ′Ω−1W ≤ cα

]
= 1− α , (6.27)

where α is a level fixed a priori. Finally, a level 1− α confidence region for the pair (A, δ) is given
by

Γ(δ,A) =
{
(δ, A) ∈ R2 : W ′Ω−1W ≤ cα

}
. (6.28)

Once the simultaneous confidence set has been obtained, we can build individual confidence inter-
vals for δ and A by projection, which can be done by finding the minimal and maximal values δ and
A over the set Γ(δ, A).

The procedure described in this section for Cobb-Douglas production functions covers a num-
ber of cases used in CGE models. Similar cases may be dealt with using the same techniques to
construct confidence regions for all the calibrated parameters of a model.

7. Application to a disaggregate model of the Moroccan economy

We have applied the method described in section 6 to a fairly large model of the Moroccan economy
aimed at studying the effect of trade liberalization on poverty [Abdelkhalek (2003)].12 The model
has 34 production sectors whose value-added (VA) are determined by two-factor Cobb-Douglas
production functions, where the parameters (the scale parameter A and the elasticity δ) can differ
across sectors. There is no econometric information on these important parameters, so they were
determined by calibration, using the 1998 input-output table of the Moroccan economy. Further, it
is of interest to have an idea how reliable these calibration-based estimates are.

The calibrated parameters were obtained using the equations (6.4) - (6.5). In order to evaluate
the sensitivity of these results to “perturbations” of the equations, we considered the modified equa-
tions (6.8) - (6.9). For that purpose, we shall assume that the errors u0 and v0 are normal with mean
zero and variance σ2

0. The assumption on the value of σ0 controls the tightness of the intervals.
Standard non-stochastic calibration corresponds to the special case where σ0 = 0. For this exercise,
we considered the values σ0 = 0.25 and 0.5. Given the normal range of the variables involved,
these standard errors are quite “large” (especially for 0.5). Values below 0.25 are clearly the most
reasonable. Of course, other distributions could be considered: the present example is mainly meant
to be illustrative.13

12This study was supported by a World Bank contract.
13We should also note here that the normality assumption is strictly speaking incompatible with the fact the VA share

of any sector with respect to any total value added (s0 ≡ w0L0/p0X0) must be smaller than one [negative values are
precluded by equation (6.9)]. In principle, the distribution of v0 should be truncated so that s0 cannot be larger than one.
Given the values of σ0 used, the probability of getting an value of s0 larher than one is essentially zero, so that results
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TABLE 3: Confidence intervals for δ and B with stochastically disturbed equations (0.95 level)

Sector VA δ A

share
Point Lower Upper Range Point Lower Upper Range
est. bound bound est. bound bound

σ0 = 0.25
AGRI 17.63 0.0272 0.0166 0.0444 0.0278 1.1329 0.6940 1.8492 1.1552

COREP 14.12 0.1782 0.1092 0.2908 0.1816 1.5978 0.9788 2.6081 1.6293
IMLSRE 11.38 0.0816 0.05 0.1331 0.0831 1.3265 0.8127 2.1653 1.3526
σ0 = 0.50

AGRI 0.0102 0.0724 0.0622 0.4252 3.0186 2.5934
COREP 0.0669 0.4747 0.4078 0.5997 4.2572 3.6575
IMLSRE 0.0306 0.2173 0.1867 0.4979 3.5345 3.0366

We report in Table 3 the results of this exercise for three most sectors (in terms of share of
total value added) in the model: agriculture, forestry and fishing (AGRI), trade and repair services
(COREP) and real estate renting and services to forms (IMLSRE). We consider again intervals with
level 0.95. We see from these results that the intervals for δ are reasonably tight with σ0 = 0.25,
although appreciably wider with σ0 = 0.5. Further details are available in Abdelkhalek (2003).

8. Confidence regions from equations with disturbances: general ap-
proach

In this section, we generalize the approach based on simulations to construct confidence regions,
compatible with an underlying deterministic calibration, for all the calibrated parameters of a CGE
model. To accomplish this, we revert to the first three equations describing the basic structure of the
problem, given in section 2:

Y = M (X, β, γ) , (8.1)

Y0 = M (X0, β, γ) , (8.2)

γ = H (Y0, X0, β) = h (β) . (8.3)

To begin, assume that there are no free parameters in the model, i.e. that all parameter values
can be derived from the reference-year data (such as a social-accounting matrix). We shall return to
examine the case with free parameters. Equations (8.1), (8.2) and (8.3) can thus be simplified to:

Y = M̄ (X, γ) , (8.4)

based on a truncated normal distribution would be the same for all prectical purposes.
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Y0 = M̄ (X0, γ) , (8.5)

γ = H̄ (Y0, X0) . (8.6)

Contrary to what is suggested by the general formulation of the model as expressed above, the cali-
bration process usually only uses some of the equations of the model. Generally, these are the equa-
tions which specify the behavior of agents, the corresponding first-order conditions, and sometimes
certain equilibrium conditions. The remaining equilibrium conditions, the accounting identities, and
the definitions are not used in the calibration. For this reason, and because it is the econometric as-
pect of calibration that we are interested in, we may rewrite the calibration sub-system as

Y S = S
(
XS , γ

)
, (8.7)

hence
γ = H̄S

(
Y S

0 , XS
0

)
(8.8)

where Y S
0 and XS

0 respectively represent the model’s subvectors of endogenous and exogenous
variables used for calibration. So far we have only been working within the deterministic framework
of CGE models.

The stochastic extension to the model which we are about to consider consists of associating
additive error terms (for the demand functions) and multiplicative error terms (for the production or
similar functions) with the subsystem of equations in (8.7), as proposed by Mansur and Whalley
(1984). Let the relation in (8.7) include a vector of additive disturbances U :14

Y S = S
(
XS , γ

)
+ U (8.9)

where U is a vector of random terms of the same dimension as Y S , with any distribution which is
known and can be simulated. In particular, the distribution of U need not be normal.15 With no loss
of generality, we may assume that the expectation of U is zero, and that the covariance is known
and equal to Σ. It is thus clear that the deterministic framework has been abandoned, albeit within
the context of calibration.

As in equation (8.7), but now including the random term, we can write:

Y S
0 = S

(
XS

0 , γ
)

+ U0 (8.10)

where U0 has the same distribution as U. As in the case of deterministic calibration, we derive:

γ = H̄S

(
Y S

0 − U0, XS
0

)
. (8.11)

Consequently, equation (8.8) no longer obtains. It is only true when U0 is a vector of zeros. Thus,
14Letting this vector enter the equation multiplicatively does not affect our results; see the formulation in Appendix A.
15The elements of U may be degenerate at zero if, by their economic nature, the equations used in the deterministic

calibration do not contain random disturbances.
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in this stochastic context, the function H̄S

(
Y S

0 , XS
0

)
yields an estimator γ̂0 for γ :

γ̂0 = H̄S

(
Y S

0 , XS
0

)
. (8.12)

This, combined with the definition of this estimator (8.7) yields:

Y S
0 = S

(
XS

0 , γ̂0

)
. (8.13)

The goal of this step in the proposed procedure is to derive the scalar or vector relationships from
equations (8.10) and (8.13) possibly after performing some algebraic transformations as required by
certain equation structures), allowing us to solve for some or all of the elements of U (or for some
algebraic transformation of the vector U or its elements). Since the distribution of U is known,
these transformations allow us to derive a pivotal function for γ. Using equations (8.10) and (8.13)
we easily find the following:

W
(
XS

0 , γ̂0, γ
)

= S
(
XS

0 , γ̂0

)− S
(
XS

0 , γ
)

= U0 . (8.14)

Since the distribution of U0 is known (by assumption), the left-hand side of expression (8.14) defines
a pivotal function for the parameter γ. Moreover, in a calibration system like the one defined in
equations (8.7) and (8.8) the number of calibrated parameters contained in γ (k in our case) is
always equal to the number of equations. In other words, k is the dimension of γ, Y S , and U. Lau,
commenting on Mansur and Whalley (1984), makes a similar remark. If Σ is the covariance matrix
of U, we may simulate the pivotal function T (γ) as follows:

T (γ) = W
(
XS

0 , γ̂0, γ
)′

Σ−1W
(
XS

0 , γ̂0, γ
)

= U ′Σ−1U . (8.15)

We find cα such that:

P [T (γ) ≤ cα] = P
[
U ′Σ−1U ≤ cα

]
= 1− α . (8.16)

Finally, the confidence region we seek for γ is defined as:

Γγ =
{
γ ∈ Rk : T (γ) ≤ cα

}
. (8.17)

In practice, the appropriate critical point cα may not be analytically computable. To obtain an
exact confidence region, we may fall back on Monte-Carlo tests [Dwass (1957), Barnard (1963),
Dufour and Kiviet (1996, 1998), Dufour and Khalaf (2001)]. By assumption, it is possible to
generate N independent and identically distributed representations, U1, . . . , UN , of the vector U
using Monte-Carlo techniques and, by extension, N independent and identically distributed rep-
resentations, Ti = U ′

iΣ
−1Ui, i = 1, . . . , N, of the pivotal function, T (γ) . Thus, the variables

T (γ) , T1, . . . , TN , are independent and identically distributed.
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Now consider the functions

F̂N (x) =
1
N

N∑

i=1

s (x− Ti) , q̂N (x) =
NF̂N (x) + 1

N + 1
, (8.18)

where s (x) = 1 if x ≥ 0 and s (x) = 0 if x < 0. If we assume that the distribution of T (γ) is
continuous, we easily see that

P {q̂N [T (γ)] ≤ 1− α} =
I [(1− α) (N + 1)]

N + 1
, for α ∈ (0, 1) , (8.19)

where I[x] is the largest integer less than or equal to x. In particular, if (1− α) (N + 1) is an integer,
we have:

P {q̂N [T (γ)] ≤ 1− α} = 1− α , α ∈ (0, 1) . (8.20)

It follows that the set
Γγ (N) =

{
γ : q̂N [T (γ)] ≤ 1− α

}
, (8.21)

is a level 1− α confidence region for γ.
So far we have assumed that the model contains calibrated, but not free, parameters. Now

we shall consider the case in which both parameter types appear in the model. This amounts to
combining a priori information on the free parameters with the distributions of random variables
used to construct confidence intervals for the calibrated parameters. If we can condition on a point
estimate of the free parameters, we revert to the case discussed earlier in this section since the
conditioning eliminates the extrinsic uncertainty. However, if the two sources of uncertainty are
jointly accounted for, the approach proposed for the case with no free parameter changes, but not
fundamentally. In fact, alongside the equations used in the deterministic calibration, and which are
now considered to contain disturbances which are either additive or multiplicative, we now add not
a point estimate of the vector of free parameters nor a confidence region for this vector, but rather an
estimator with a distribution that is known a priori. Such hypotheses are often made in sensitivity
analysis of CGE models [see, for example, Harrison and Vinod (1992)].

For example, consider the case of constant elasticity of substitution or transformation functions,
like the Armington function we examined in section 4. We let the function and its associated first-
order condition contain two multiplicative errors in the following manner:

Q = B
[
δM (σ−1)/σ + (1− δ) D(σ−1)/σ

](σ−1)/σ
eu , (8.22)

M

D
=

(
δ

1− δ

)σ (
pD

pM

)σ

ev , (8.23)

where u and v are random variables. The vector (u, v) need not have a normal distribution, nor
is it required that u and v be independent. Moreover, we assume a distribution for the estimator
σ̂ of the free parameter σ. If we have reasons to suspect that the distribution of this parameter is
not independent of the vector (u, v) , we need to consider the joint distribution of (σ̂, u, v) , and
its covariance matrix must be estimated before we can perform simulations. It remains to find the
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pivotal function for δ and B — not a negligible task from an analytical perspective. The distribution
of this pivotal function will be related to that of the vector (σ̂, u, v) .

9. Conclusion

In this paper we have formalized the concept of calibration in CGE models and developed two sta-
tistical methods for constructing confidence intervals for the calibrated parameters of these models.
One is based on a projection technique which allows the construction of confidence sets for cali-
brated parameters. It greatly facilitates the construction of confidence regions for the endogenous
variables of the model. After discussing numerical methods for implementing the approach devel-
oped, the latter was illustrated on a CES function (the Armington function) frequently used in CGE
models.

The second method allows one to extend the usual deterministic calibration of CGE models by
adding stochastic disturbances to the equations of the model used in the calibration process and then
to construct corresponding confidence sets for calibrated parameters using simulation techniques.
This method uses the classical concept of a pivotal function for a parameter. The general nature of
this procedure allows it to apply to several cases that frequently occur in CGE models. We used a
Cobb-Douglas production function to illustrate it. These two new methods of statistical inference in
CGE models go part way to solving one of the most serious econometric problems associated with
the calibrated parameters of the models and provide a way to manage the issue of uncertainty in the
calibration of CGE models.
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A. Apppendix: Multiplicative disturbances

Generally in economics, equations are assigned multiplicative stochastic terms to assure non-
negativity of the endogenous variables. We use this assertion in the proof. Let equation (8.7)
contain multiplicative errors disturbances as follows:

Y s = U S
(
Xs, γ

)
, (A.1)

or
Y s′ = S (Xs, γ)′ U ′ (A.2)

where U is a square diagonal matrix whose dimension equals the number of elements of Y s. The
distribution of the elements of U is known and can be simulated, it does not need to be normal.16

With no loss of generality, we may assume that the expectation of the elements of U is unity, and
the known covariance matrix is denoted Σ. Considering our comment on the non-negativity of the
endogenous variables, and thus of the random terms associated with the equations, (A.1) may be
written:

ln (Y s
i ) = ln (Ui) + ln [Si (Xs, γ)] , i = 1, . . . , k. (A.3)

With this form, if the disturbance terms were additive the logarithmic transformation would not
be performed. With the appropriate changes in variables we revert to the additive disturbances dealt
with in the text.

16An element of U is set to 1 when the corresponding equation does not involve a random disturbance.
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B. Apppendix: GAMS-MINOS program for the applications

$TITLE PROJECTION METHOD APPLICATION
$TITLE ARMINGTON-TYPE CES FUNCTION
OPTION NLP = MINOS5;
* A MODEL OF TYPE 1-2-3 AND A TWO SECTOR MODEL
* PARAMETERS DECLARATION
* THE REFERENCE-YEAR VALUES FOR THE CALIBRATION
* (OBTAINED FROM MOROCCAN SAM 1985 AND 1990)
PARAMETERS
PDO PRICE OF DOMESTIC GOOD IN THE REFERENCE-YEAR
PWMO INTERNATIONAL PRICE OF IMPORT IN THE REFERENCE-YEAR
EO NOMINAL EXCHANGE RATE IN THE REFERENCE-YEAR (FOR CONVERSION)
PMO DOMESTIC PRICE OF IMPORTED GOOD IN THE REFERENCE-YEAR
QO DEMAND FOR THE COMPOSITE GOOD IN VOLUME IN THE REFERENCE-YEAR
MO IMPORTS IN VOLUME IN THE REFERENCE-YEAR
DO INTERNAL DEMAND FOR DOMESTIC GOOD IN THE REFERENCE-YEAR
TMO TARIFF ON IMPORTS IN THE REFERENCE-YEAR
TAXMO TAX ON IMPORTS IN THE REFERENCE-YEAR
;
VARIABLES
* IN THE PROJECTION APPROACH TO CONSTRUCT CONFIDENCE SETS FOR THE CALIBRATED
* PARAMETERS, SIGMA, DELTA AND BM ARE VARIABLES
* THEY ARE A PARAMETER IN STANDARD CGE MODEL
SIGMA ELASTICITY OF SUBSTITUTION BETWEEN IMPORTED AND DOMESTIC GOODS
BM SCALE PARAMETER IN THE CES FUNCTION.
DELTA SHARE PARAMETER IN THE CES FUNCTION
OBJ OBJECT VARIABLE IN THE OPTIMIZATION PROGRAM
;
* DATA AND CALCULUS
SCALAR
PDO /1/
EO /1/
PWMO /1/
$ONTEXT
* REFERENCE-YEAR DATA FOR 1985
DO /209847/
MO /42806/
TAXMO /9046.7/
$OFFTEXT
$ONTEXT
* REFERENCE-YEAR DATA FOR THE AGRICULTURAL SECTOR 1990
DO /65341.32/
MO /4248.00/
TAXMO /-391.79/
$OFFTEXT
$ONTEXT
* REFERENCE-YEAR DATA FOR THE INDUSTRIAL SECTOR 1990
DO /257868.02/
MO /59327.9/
TAXMO /10048.10/
$OFFTEXT
;
QO = MO + DO;
TMO = TAXMO / MO;
PMO = PWMO*(1+TMO)*EO;
DISPLAY DO, MO, QO, PWMO, EO, PDO, PMO, TMO, TAXMO;
* INITIALIZATION OF VARIABLES
$ONTEXT
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* INITIALIZATION FOR ALL CASES EXCEPT MINIMIZING BM IN AGRICULTURE
SIGMA.L = 1.432371;
BM.L = 1.826;
DELTA.L = 0.285;
OBJ.L = 1.43;
$OFTEXT
$ONTEXT
*INITIALIZATION FOR MINIMIZING BM IN AGRICULTURE
SIGMA.L = 0.5;
BM.L = 1.001;
DELTA.L = 0.04;
OBJ.L = 1.470;
$OFTEXT
* BOUNDS ON VARIABLES
$ONTEXT
* FOR 1985
SIGMA.LO = 0.78381698;
SIGMA.UP = 2.080925014;
$OFFTEXT
$ONTEXT
* FOR AGRICULTURAL AND INDUSTRIAL SECTOR IN 1990
SIGMA.LO = 0.5;
SIGMA.UP = 4.5;
*$OFFTEXT
* EQUATIONS FOR MINIMIZING AND MAXIMIZING DELTA AND BM
EQUATIONS
UPSIGEQ UPPER BOUND FOR SIGMA
LOSIGEQ LOWER BOUND FOR SIGMA
DELTAEQ CALCUL OF THE SHARE PARAMETER
BMEQ CALCUL OF THE SCALE PARAMETER
OBJEQ OBJECT FUNCTION
;
$ONTEXT
* FOR 1985
UPSIGEQ.. SIGMA =L= 2.080925014;
LOSIGEQ.. SIGMA =G= 0.783816986;
$OFFTEXT
$ONTEXT
* FOR AGRICULTURAL AND INDUSTRIAL SECTOR IN 1990
UPSIGEQ.. SIGMA =L= 4.5;
LOSIGEQ.. SIGMA =G= 0.5;
*$OFFTEXT
BMEQ.. QO =E= BM*(DELTA*MO**(-((1-SIGMA)/SIGMA))+

(1-DELTA)*DO**(-((1-SIGMA)/SIGMA)))**(SIGMA/(SIGMA-1));
DELTAEQ.. MO =E=(((DELTA/(1-DELTA))**(SIGMA))*((PDO/PMO)**SIGMA))*DO;
OBJEQ.. OBJ =E= DELTA;
OBJEQ.. OBJ =E= BM;
OPTIONS LIMROW = 0, LIMCOL = 0 ;
MODEL ARMIG /DELTAEQ, UPSIGEQ, LOSIGEQ, OBJEQ/;
MODEL ARMIG /DELTAEQ, BMEQ, UPSIGEQ, LOSIGEQ, OBJEQ/;
SOLVE ARMIG USING NLP MAXIMIZING OBJ;
SOLVE ARMIG USING NLP MINIMIZING OBJ;
DISPLAY SIGMA.L, DELTA.L;
DISPLAY SIGMA.L, DELTA.L, BM.L;
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