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Abstract —We study the problem of measuring the uncertainty of comput-
able general equilibrium (CGE) (or RBC)-type model simulations associ-
ated with parameter uncertainty. We describe two approaches for building
con� dence sets on model endogenous variables. The � rst uses a standard
Wald-type statistic. The second approach assumes that a con� dence set
(sampling or Baycsian) is available for the free parameters, from which
con� dence sets are derived by a projection technique. The latter has two
advantages: � rst, con� dence set validity is not affected by model nonlineari-
ties; second, we can easily build simultaneous con� dence intervals for an
unlimited number of variables. We study conditions under which these
con� dence sets take the form of intervals and show how they can be
implemented using standard methods for solving CGE models. We present
an application to a CGE model of the Moroccan economy to study the
effects of policy-induced increases of transfers from Moroccan expatriates.

I. Introduction

COMPUTABLE general equilibrium (CGE) models are
now widely used to simulate alternative economic

policies in both developed and developing countries. For
example, Martens (1993) has surveyed at least 120 models
on more than 30 developing countries. For other reviews of
the subject, see Shoven and Whalley (1984), Ballard et al.
(1985), Manne (1985), Devarajan et al. (1986), Decaluwé
and Martens (1988), and Gunning and Keyzer (1995). Such
models are usually nonstochastic and nonlinear. They rely
on various assumptions, such as agent behavior and the
choice of exogenous variables (the ‘‘closure’’ of the model).
The nature and quality of the data used also in� uence the
results. These usually focus on the reference year of a social
accounting matrix (in static models) or on a stationary
equilibrium (in dynamic models), and the parameter values
of behavioral functions. Available data do not typically
allow one to estimate CGE models econometrically, and so
‘‘calibration’’ procedures are used to obtain models that can
be simulated (see Mansur and Whalley (1984)).

As emphasized by Wigle (1986), the selection of the
parameter values in CGE models may be highly subjective
and thus raises a natural skepticism with regard to the
reliability of the resulting simulations. Parameter values are
usually obtained from other studies, possibly on different
countries, and may even be entirely subjective. The ‘‘elastici-
ties’’ available from the literature are often only distantly
related to the case studied, coming from different countries

or time periods than those we are interested in. Consequently
there is a large uncertainty about these basic ingredients,
which gets transmitted to simulation results. As CGE models
are almost never estimated by econometric methods (for a
rare and notable exception see, however, the work of
Jorgenson (1984) and his associates), it is difficult to test the
assumptions made. Even if model speci� cation is not
questioned, the credibility of the simulation results is
affected by the uncertainty about the parameter values used.
Indeed, Mansur and Whalley (1984, pp. 100, 103) have
underscored the crucial character of this stage of the
modelization: ‘‘The choice of elasticity values critically
affects results obtained with these models’’ and ‘‘the set of
elasticity values used are critical parameters in determining
the general equilibrium impacts of policy changes generated
by these models.’’ Furthermore the elasticities or parameters
which are most crucial may depend on the experiment
conducted (see Pagan and Shannon (1987)). The critical role
of parameter selection and the difficulties associated with the
calibration of CGE models are also discussed in the survey
of Shoven and Whalley (1984), who point out that the most
widely used procedure for assessing the reliability of the
simulations (when an attempt of this sort is made) consists in
performing a few alternative simulations with different
parameter values: ‘‘The procedure generally employed is to
choose a central case speci� cation, around which sensitivity
analysis can be performed’’ (Shoven and Whalley (1984, pp.
1030–1031)).

The importance of this problem has been recognized by
several authors, and various approaches have been proposed
for assessing the simulation uncertainty induced by param-
eter uncertainty (see Pagan and Shannon (1985), Harrison
(1986, 1989), Bernheim et al. (1989), Harrison and Vinod
(1992), Wigle (1991), and Harrison et al. (1993)). The
different methods proposed are fundamentally descriptive.
They may be classi� ed into � ve groups: limited sensitivity
analysis (Bernheim et al. (1989), Wigle (1991)), conditional
systematic sensitivity analysis (Harrison and Kimbell (1985),
Harrison (1986), Harrison et al. (1993)), unconditional
systematic sensitivity analysis (Bernheim et al. (1989),
Harrison and Vinod (1992), Harrison et al. (1993)), the
‘‘Bayesian’’ approach of Harrison and Vinod (1992), and the
extremal approach of Pagan and Shannon (1985). Limited
sensitivity analysis is recommended by Shoven and Whalley
(1984) and has been largely used in various applications of
CGE models. It simply consists in looking at the sensitivity
of the results when a few alternative parameter vectors are
considered. Because of the discretionary character of the
values selected, this procedure is of course quite unsatisfac-
tory from the point of view of ensuring statistical ‘‘objectiv-
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ity.’’ Conditional systematic sensitivity analysis examines
the effect of perturbating one parameter at a time on the
solution of the model. It so ignores possible interactions due
to simultaneous perturbations and does not provide a
criterion for determining the appropriate size of parameter
perturbations. Unconditional systematic sensitivity analysis
attempts to remedy this situation by considering a parameter
grid. Although more satisfactory than previous approaches,
this procedure has no statistical foundations and can easily
be numerically expensive. The Bayesian approach of Harri-
son and Vinod relies on a ‘‘discretization’’ of the parameter
space on which an a priori distribution is imposed. The latter
is then used to compute a distribution, and in particular a
measure of central tendency, on the solutions of the model.
Finally the extremal approach of Pagan and Shannon is
based on a linearization of the model based on the � rst and
second derivatives of the endogenous variables with respect
to the uncertain parameters. It is clearly the most rigorous
procedure from a statistical viewpoint. In this paper, we shall
largely rely on the setup considered by Pagan and Shannon
(1985). The reader will � nd a more detailed description of
these different approaches in Abdelkhalek (1994). Note also
that Byron (1978) derived standard errors for the coefficients
of large social accounting matrices (which are widely used
to calibrate CGE models), but those have not apparently
been exploited to assess simulation uncertainty in the
context of CGE models.

In all these studies calibration is not explicitly studied.
This procedure, largely used in CGE models, is considerably
less demanding than econometric analysis, especially be-
cause only scant data are required. Mansur and Whalley
(1984) and Lau (comment on Mansur and Whalley (1984,
pp. 127–135)) simply point out that calibration also raises
difficulties for the reliability of simulation results. Note
� nally that a somewhat different form of calibration has
been used and discussed in the ‘‘real business cycle’’ (RBC)
literature (see Gregory and Smith (1990, 1991, 1993),
Canova (1994), Canova et al. (1992), Fève and Langot
(1994), and Kim and Pagan (1995)). In this context,
alternatives to calibration are usually based on the general-
ized method of moments and require considerable amounts
of data. They are not appropriate for many situations where
CGE models are applied, such as in developing countries.
The distinction between the type of calibration in RBC
models and that in CGE models is really one of de� nition. In
CGE models one tries to � nd an equilibrium data set, ideally
a particular year, to replicate. In RBC and stochastic CGE
models one emulates the expected values, especially their
� rst- and second-order moments. The methods developed
here may clearly be adapted to measure uncertainty in RBC
models. However, the peculiarities of such models (e.g., the
fact that they are stochastic) require developments that go
beyond the scope (and space limitations) of the present
paper.

In this paper we study the problem of measuring the
uncertainty of CGE model simulations in relation to param-

eter uncertainty. In section II we describe the general setup
considered, which is similar to that of Pagan and Shannon
(1985), and we show � rst that calibration can easily be
covered by this setup. Then in two following sections, we
describe two systematic approaches for assessing simulation
uncertainty, both of which are based on the classical
statistical notion of con� dence set. More precisely, we deal
with the problem of measuring simulation uncertainty in
CGE models by building con� dence sets for the endogenous
variables of the model, given minimal information on
parameter uncertainty in the sense that only one con� dence
set for the uncertain parameters (not a complete sampling
distribution for a parameter estimate or a complete Bayesian
prior or posterior distribution) may be sufficient. We study
two methods for building such con� dence sets. The � rst one
(section III) is a direct extension of the approach proposed
by Pagan and Shannon (1985). It is based on a standard Wald
statistic and assumes that consistent asymptotically normal
estimators are available for the free parameters of the model.
We describe this method mainly because it is a natural
follow-up under the assumptions considered by Pagan and
Shannon (1985), although it has not apparently been dis-
cussed by previous authors in the context of CGE models.
Instead we shall emphasize a second technique, which is
both more reliable from a statistical viewpoint and (some-
what surprisingly) easier to implement in the context of
CGE models. This second method (section IV) assumes that
a con� dence set (sampling or Bayesian) is available for the
free parameters. Given this con� dence set, we can then
obtain valid con� dence sets for the variables of interest by a
projection technique. This approach has two important
advantages. First, the validity of the con� dence sets is not
affected by the nonlinear character of the model. Second, it
allows one to easily build simultaneous con� dence intervals
for an unlimited number of variables of interest (or transfor-
mations of these). Further, we study general conditions
under which these con� dence sets are connected (not a
union of disjoint sets) or take the form of intervals, or both.
Numerical procedures required to apply these methods are
discussed in section V. In particular, we show that valid
projection-based con� dence sets can be obtained easily by
using standard methods for solving CGE models, such as
routines available in GAMS (Brooke et al. (1988)), which
makes them both conceptually and numerically simple to
implement in this context, indeed appreciably more than
Wald-type con� dence sets. Section VI presents an applica-
tion of these procedures to a CGE model of the Moroccan
economy built to study the economic effects of policy-
induced increases of transfers from Moroccans working
abroad. In particular, we found that the projection technique
both was simple to implement in the case studied and
yielded remarkably short and informative con� dence inter-
vals for the endogenous variables of interest. We conclude in
section VII.
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II. Framework

In general, a CGE model can be represented by a function
M such that

Y 5 M(X, b , g ) (1)

where Y is a vector of m endogenous variables, M is a
(typically nonlinear) function which can be analytically
complex but remains computable, X is a vector of exogenous
(or policy) variables, b is a vector of p free parameters in a
subset G of RR p, and g is a vector of k calibration parameters.

From a theoretical viewpoint, b and g are not fundamen-
tally different. However, they are treated quite differently in
CGE models. While the components of b are parameters
(such as elasticities) of the behavioral functions of the model
(representing utility and demand, production and supply,
imports, exports, etc.), the elements of g are usually scale or
share parameters. The calibration process determines a value
of g that allows the model to reproduce exactly the data or a
reference year (possibly adjusted to take into account special
circumstances), given the value of the free parameter b .
Consequently it is not surprising that the selection of these
parameters may strongly in� uence simulation results. In
other words, when calibrating a model, we consider the
equation Y0 5 M(X0, b , g ), where Y0, and X0 are the vectors
of endogenous and exogenous variales for a reference year,
and solve it for g (assuming there is a unique solution),

g 5 H(Y0, X0, b ) ; h( b ). (2)

When an estimate b ˆ of b is available, g is estimated on
replacing b by b ˆ in equation (2). Moreover, g can usually be
decomposed into subvectors g 1 and g 2, where g 1 does not
depend on b while the subvector g 2 is a function of b , X0,
and Y0. We can then write

g 1 5 h1(Y0, X0), g 2 5 h2(Y0, X0, b ). (3)

Provided X is known and the deterministic character of the
model is not questioned, we can simplify notations and write
the model in the more compact form

Y 5 g(X, b ) ; g(b ) (4)

where the functions g and g are de� ned for a particular
reference year (after calibration) while g also treats X as
given. This formalization of the calibration process will be
useful for both the theoretical developments and the imple-
mentation of the methods proposed in this paper.

Usually the investigator is interested by the effects of
alternative policies, which are represented by elements of X.
The solutions of model M, simulated with different values of
X, are then compared and used for decision making. All
these solutions depend on the estimate employed for b .
Theoretically this vector should be estimated by economet-

ric methods that would yield a covariance matrix for b ˆ .
Unfortunately this is not the case in most CGE-based
studies. Usually no measure of uncertainty is provided, and
the only method used to assess this uncertainty consists in
looking at the sensitivity of the results to a few parameter
con� gurations.

Note also that the difficulties associated with the calibra-
tion of CGE models are not directly taken into account by
the procedures of sensitivity analysis brie� y discussed in the
previous section. These procedures only consider the estima-
tion of b , not g . In CGE models the dimension of (b 8, g 8)8
can be quite large and its econometric estimation difficult, if
not impossible. Indeed, the number of parameters of CGE
model increases rapidly with the number of sectors and
consumers considered. Statistical series at high levels of
dissaggregation are usually not available, so the number of
unknown parameters may easily exceed the number of
observations. Calibration may be interpreted as an estima-
tion of g based on data for a single year. It is clear that this is
only pointwise estimation and the uncertainty of the estimate
of b is not taken into account. We will now propose more
systematic approaches for assessing simulation uncertainty.

III. Wald-Type Con� dence Sets

In this section we consider a setup identical to the one
studied by Pagan and Shannon (1985). In particular, let us
suppose that an estimate b ˆ T of b is available; b ˆ T is based on a
sample of size T with an asymptotically normal distribution,

Î T(b ˆ T 2 b ) ®
T ® `

N[0, V( b )] (5)

where det [V( b )] Þ 0, with a consistent estimator V̂T(b ˆ T) of
V(b ): plimT ® ` V̂T( b ˆ T) 5 V(b ). Under usual regularity
conditions (see Gouriéroux and Monfort (1989, vol. 2,
R.245, p. 556) or Ser� ing (1980, chap. 3)), we then have

Î T [g( b ˆ T) 2 g(b )] ®
T ® `

N[0, G( b )V( b )G( b )8]

where G( b ) is the (m, p) matrix G( b ) 5  g( b )/ b 8. If

rank [G( b )] 5 m (6)

and setting V ˆ T 5 G( b ˆ T)V̂T (b ˆ T)G( b ˆ T)8, the variable

WT (Y) 5 T[g( b ˆ T) 2 Y]8V ˆ T
2 1[g( b ˆ T) 2 Y] (7)

is asymptotically distributed like a x 2(m) variable when Y 5

g(b ). Consequently the set

CY( a ) 5 {Y: WT (Y) # x
a
2(m)}

5 {Y: T[g( b ˆ T) 2 Y]8V ˆ T
2 1[g( b ˆ T) 2 Y] (8)

# x a
2(m)}
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where P[ x 2(m) $ x a
2(m)] 5 a , is a con� dence set for Y 5

g( b ) with level 1 2 a asymptotically. As special cases of
CY( a ), we can also obtain con� dence intervals for each
element of Y.

Since the rank condition (6) is not satis� ed when m . p,
that is, when there are more endogenous variables than
unknown parameters in b , one can build ellipsoidal con� -
dence sets only if the number of endogenous variables is not
larger than the dimension of b . Nevertheless, even if m . p,
we can still build simultaneous rectangular con� dence sets
for any number of endogenous variables. Indeed, an indi-
vidual con� dence interval with level 1 2 a i (asymptotically)
for the ith endogenous variable Yi 5 gi(b ) is given by

Ci( a i) 5 {Yi: T [gi( b
ˆ

T) 2 Yi]2/ v ˆ iT # x a i

2 (1)} (9)

where v ˆ iT is the ith diagonal element of V ˆ T and g( b ) 5

[g1(b ), g2(b ), . . . , gm(b )]8. We then have for T sufficiently large,

P[gi(b ) [ Ci( a i)] 5 1 2 a i, i 5 1, . . . , m. (10)

Each set Ci( a i) is thus a valid con� dence interval with level
1 2 a i for Yi. It would also be interesting to combine these to
obtain a simultaneous con� dence set. Unfortunately, indi-
vidual intervals are not typically independent and the
stochastic relationship between the former is difficult to
establish. Nevertheless, on using the Boole–Bonferroni
inequality, we see that

1 2 o
i5 1

k

P[gi(b ) Ó Ci( a i)]

# P[gi(b ) [ Ci( a i), i 5 1, . . . , k]

# min
1# i # k

P[gi(b ) [ Ci( a i)]

(11)

for any 1 # k # m. Hence

1 2 o
i5 1

k

a i

# P[gi(b ) [ Ci( a i), i 5 1, . . . , k]

# min
l # i # k

(1 2 a i).

(12)

Moreover, if the marginal con� dence sets Ci( a i) all have the
same level 1 2 a 1, we have 1 2 k a 1 # P[gi( b ) [ Ci( a i),
i 5 1, . . . , k] # 1 2 a 1, so that the simultaneous con� dence
set {Y [ RR k: Yi [ Ci( a i), i 5 1, . . . , k} has level not smaller
than 1 2 k a 1. If we wish to obtain a simultaneous con� dence
set whose level is not smaller than 1 2 a , it is then sufficient
to build marginal con� dence sets with levels 1 2 a i, i 5 1,
. . . , k, where S k

i5 1 a i 5 a . In particular, we can take a i 5

a /k, i 5 1, . . . , k.

The con� dence sets developed in this section are remark-
ably simple. They suppose, however, that the function g(b )
can be approximated reasonably well by linear functions (at
least locally) and that the distribution of Î T( b ˆ T 2 b ) is
approximately normal. These limitations are identical with
those of the approach of Pagan and Shannon (1985).

IV. Projection-Based Con� dence Sets

Suppose now that we have a con� dence set C with level
1 2 a for b . In other words, C is a subset of RR p such that

P[b [ C] $ 1 2 a (13)

with 0 # a , 1. The region C can be interpreted in two
different ways. First, C may be a sampling con� dence set
obtained by statistical methods (typically, an earlier study),
that is, C 5 C(Z) is a random subset of RR p, based on a
sample Z, such that the probability that the � xed vector b be
covered by C(Z) is at least 1 2 a . Second, in other cases b

itself may be viewed as a random vector and C is a Bayesian
con� dence set for b . The arguments that follow are appli-
cable irrespective of the interpretation adopted.

Denote by g(C) the image of the set C by function g,

g(C) 5 {Y [ RR m: Y 5 g(b 0)

for at least one b 0 [ C}.
(14)

It is then clear that b [ C Þ g(b ) [ g(C). Hence

P[g(b ) [ g(C)] $ P[b [ C] $ 1 2 a , for all b [ G . (15)

This means g(C) is a con� dence set for g( b ) with level at
least 1 2 a (see Rao (1973, sec. 7b.3, p. 473)).1 As the
function g is usually nonlinear, the set g(C) may not be easy
to determine or visualize. It is not generally an interval or an
ellipse. So we may � nd interesting to simplify its structure.
To do this, write

gi(C) 5 {Yi [ RR : Yi 5 gi(b 0) for some b 0 [ C},
i 5 1, . . . , m.

(16)

It is then clear that g( b ) [ g(C) Þ gi( b ) [ gi(C) for i 5 1,
. . . , m. Hence by equation (15),

P[gi(b ) [ gi(C), i 5 1, . . . , m] $ 1 2 a (17)

P[gi(b ) [ gi(C)] $ 1 2 a , i 5 1, . . . , m. (18)

The inequality (17) shows the sets gi(C), i 5 1, . . . , m,
constitute simultaneous con� dence sets with level 1 2 a for
the components of Y, whereas equation (18) gives marginal

1 For other examples of similar projection techniques in econometrics,
see Dufour (1989, 1990), Dufour and Kiviet (1996, 1998), Campbell and
Dufour (1997), and Kiviet and Dufour (1997).
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con� dence sets with level 1 2 a for each component of Y.2

These marginal con� dence sets gi(C) are subsets of the real
numbers, which are simpler to apprehend than the multidi-
mensional set g(C). However, without further assumptions,
they do not generally take the form of intervals.

To obtain con� dence regions that take the form of
intervals, consider the values g i

L(C) and g i
U(C) de� ned as

follows:

gi
L(C) 5 inf {gi( b 0): b 0 [ C}, i 5 1, . . . , m

gi
U(C) 5 sup {gi( b 0): b 0 [ C}, i 5 1, . . . , m

(19)

where g i
L(C) and g i

U(C) take their values in the extended real
numbers RR 5 RR < {2 ` , 1 ` }. Then, for all b [ C,

gi(b ) [ gi(C), i 5 1, . . . , m

Þ g i
L(C) # gi(b ) # g i

U(C), i 5 1, . . . , m.

Hence

P[g i
L(C) # gi(b ) # g i

U(C), 1 # i # m]

$ P[gi( b ) [ gi(C), 1 # i # m]

$ 1 2 a .

(20)

The intervals [g i
L(C), g i

U(C)], i 5 1, . . . , m, are thus valid
simultaneous con� dence intervals (with level 1 2 a ) for
Yi 5 gi(b ), i 5 1, . . . , m. It is also clear that

P[g i
L(C) # gi(b ) # g i

U(C)] $ 1 2 a ,

i 5 1, . . . , m.
(21)

We should note here two important points. First, the interval
[g i

L(C), g i
U(C)] is generally larger than gi(C), in the sense

that gi(C) # [g i
L(C), g i

U(C)]. Second, this interval is not
necessarily bounded, that is, we may have g i

L(C) 5 2 ` or
g i

U(C) 5 1 ` . It would be interesting to determine condi-
tions under which gi(C) 5 [g i

L(C), g i
U(C)], where the

interval [g i
L(C), g i

U(C)] is closed and bounded. We give such
conditions in the three following propositions.

If we suppose the function g is continuous (as did Pagan
and Shannon (1985), Wigle (1991), and Bernheim et al.
(1989)) and the con� dence set C is compact and/or con-
nected in RR p, some interesting properties can be derived.3

More precisely, if we suppose g is continuous and the
con� dence set C is compact (i.e., C is closed and bounded in
R R p), then the con� dence set g(C) for g(b ) is also compact.
Similarly, each function gi is bounded in C and reaches both
a maximum and a minimum at points in C. In this case, we
can � nd vectors b i

L and b i
U in RR p such that gi( b i

L) 5 g i
L(C)

and gi(b i
U) 5 g i

U(C), i 5 1, . . . , m. This result is
summarized in the following proposition.

Proposition 1: If the function g(? ) is continuous and the
con� dence set C is compact in RR p, then the simultaneous
con� dence set g(C) in RR m and the univariate con� dence sets
gi(C), i 5 1, . . . , m, in RR are compact.

The proofs of the propositions are given in appendix A.
Thus when the region C is compact and g is continuous, the
values g i

L(C) and g i
U(C) yield a closed con� dence interval

for the endogenous variable Yi, for any i 5 1, . . . , m.
However, if we add a connexity assumption on C, further
re� nements are possible. Indeed if, in addition to the
continuity of g, we assume the con� dence set C for b is
connected (i.e., one cannot � nd two open subsets O1 and O2

of RR p, both meeting C, such that C # O1 < O2 and
C > O1 > O2 5 B), the con� dence region g(C) for g(b ) is
also connected in RR m. Clearly this is the case when C is an
ellipsoid. Similarly, the marginal con� dence sets gi(C), i 5

1, . . . , m, are connected in RR . A subset of RR is connected
only if it is an interval. Thus under these two conditions, we
get con� dence sets of the form ( 2 ` , g i

U(C)), ( 2 ` , g i
U(C)],

(g i
L(C), ` ), [g i

L(C), ` ), ( 2 ` , ` ), (g i
L(C), g i

U(C)), [g i
L(C),

g i
U(C)), g i

L(C), g i
U(C)] or [g i

L(C), g i
U(C)]. This result is in

turn summarized by the following proposition.

Proposition 2: If the function g(? ) is continuous and the
con� dence set C is connected in RR p, then the con� dence set
g(C) in RR m and the univariate con� dence sets gi(C), i 5 1,
. . . , m, in RR are connected. In particular, the sets gi(C), i 5

1, . . . , m, are intervals in RR .

Finally, if in addition to the continuity of g, the region C is
both compact and connected in RR p, we can see that gi(C) 5

[g i
L(C), g i

U(C)].

Proposition 3: If the function g(? ) is continuous and the
con� dence set C is compact and connected in RR p, then each
one of the univariate con� dence intervals gi(C), i 5 1, . . . ,
m, is compact and connected in RR , so that gi(C) 5 [g i

L(C),
g i

U(C)], with g i
L . 2 ` and g i

U , 1 ` .

To illustrate how one can build the intervals [g i
L(C),

g i
U(C)] in practice, consider the special case studied by

Pagan and Shannon (1985) when the con� dence set C is an
ellipsoid:

C 5 {b 0 [ RR p: ( b ˆ 2 b 0)8A(b ˆ 2 b o) # c( a )} (22)

where b ˆ is an estimate of b and A is the inverse of the
covariance matrix of b ˆ . Or again, according to a Bayesian
interpretation, b ˆ is the a priori (or a posteriori) mean of b

and A is the inverse of the a priori (or a posteriori)
covariance matrix of b ˆ . In this case, the con� dence set C is

2 For a more detailed discussion of simultaneous and marginal con� -
dence sets, see Miller (1981) and Dufour (1989).

3 For conditions ensuring that g( ? ) is continuous, see Kehoe (1983).
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both compact and connected. Since g is differentiable by
assumption, the con� dence sets (14) and (16) are necessarily
compact and connected by propositions 1 and 2. In particu-
lar, marginal con� dence sets for the endogenous variables Yi

of the model are closed bounded intervals. The bounds
g i

L(C) and g i
U(C) can be obtained by respectively minimiz-

ing and maximizing gi(b ) on the set C. Under usual
regularity conditions, g i

L(C) and g i
U(C) may be computed by

the Lagrange multiplier method. Setting

L 5 gi( b 0) 1
l

2
[( b ˆ 2 b 0)8A(b ˆ 2 b 0) 2 c( a )] (23)

the values of b 0 that minimize and maximize gi( b 0) under
the restriction b [ C must satisfy

 L

 b 0

5
 gi

 b 0
2 l A(b ˆ 2 b 0) 5 0,

( b ˆ 2 b 0)8A(b ˆ 2 b 0) 5 c( a ).

(24)

Assuming A is nonsingular, it follows from equation (24)
that the values of b 0 which yield gi

L(C ) and gi
U(C ), denoted

by b (i)
L and b i

U, solve the equation

b (i)
x 5 b ˆ 6 [( gi/  b 0)8A2 1(  gi/  b 0)

c( a ) ]2 1/2

A 2 1 (  gi

 b 0
). (25)

Note that the bounding values b i
L and b i

U were also
considered by Pagan and Shannon (1985), but without
reference to the fact that [gi

L(C ), gi
U(C )] can be interpreted as

a con� dence interval.
This method of building con� dence intervals for the

endogenous variables of a CGE model is valid in � nite
samples, in contrast to the Wald-type procedure discussed
previously, which only has an asymptotic justi� cation. No
linear approximation to the (generally nonlinear) relation-
ship between the endogenous variables and b is made. Of
course, the projection technique does not solve by itself the
problem of � nding a con� dence set for b , which in a
sampling framework should be obtained by inverting ‘‘piv-
otal’’ functions (see Dufour (1997)). But it clearly eliminates
possible level distortions associated with the nonlinearity of
the function g( b ). Further, as we will see, its numerical
implementation is considerably less demanding than one
would expect at � rst sight.

V. Algor ithms and Numerical Procedures

In this section we discuss algorithms for applying the
procedures proposed in sections III and IV. They can be
implemented with various software. The one we used is
GAMS-MINOS (see Brooke et al. (1988)), which is by far
the one most widely utilized by CGE model builders.

A. Wald-Type Procedure

To implement the Wald-type procedure, we need esti-
mates b ˆ T and V̂T 5 V̂T (b ˆ T) of b and V(b ), respectively.
Under appropriate differentiability assumptions, we can then
compute V ˆ T 5 G(b ˆ T)V̂T( b ˆ T)G( b ˆ T)8. In general the deriva-
tives G(b ˆ T) must be evaluated by standard numerical
methods. Provided V ˆ T is invertible, we get from equation (8)
that the set

C( a ) 5 {g( b ): WT(g( b )) # x
a
2(m)}

5 {g(b ): T[g(b ˆ T) 2 g(b )]8

3 V ˆ T
2 1[g( b ˆ T) 2 g( b )] # x a

2(m)}
(26)

is a con� dence set with level 1 2 a asymptotically for the
vector g(b ). Depending on the value of m, the set C( a ) can
be an interval, an ellipsoid, or a hyperellipsoid. When m . p,
we can still build simultaneous con� dence intervals for the
components of Y. For further details on the implementation
of this procedure, see appendix B.

B. ProjectionProcedure

Although the theory of the projection technique is fairly
simple, numerical methods for applying it to CGE models
may be less so. The procedure requires a con� dence set C
(sampling or Bayesian) in RR P such that P[b [ C] $ 1 2 a ,
with 0 # a , 1. Since the set C may sometimes cover
economically or numerically inadmissible values (e.g., nega-
tive values or values for which the model does not admit a
solution), the con� dence set C can be restricted only to its
admissible values. In a Bayesian setup, this simply involves
restricting the support of the prior distribution. For sampling
(frequentist) con� dence sets, it is easy to see that eliminating
(truncating) inadmissible values from a con� dence set does
not modify its level. If P[b [ C ] $ 1 2 a and b [ C0,
where C0 is a set of admissible values for b representing a
priori information, we have b [ C Û b [ C > C0. Hence

P[b [ C] 5 P[b [ C > C0] $ 1 2 a . (27)

We will now show how one can build valid con� dence
regions by projection while taking into account the ‘‘calibra-
tion’’ of the model. Typically the numerical solution of a
CGE model is obtained in two steps. First, the model is
‘‘calibrated,’’ that is, a number of unknown parameters g are
� xed to reproduce the data of the reference year given an
estimate of the free parameter vector b and the values of the
endogenous and exogenous variables of this year. Second,
the model is solved with different values of the exogenous
variables (e.g., policy variables), given the values of all
parameters obtained at the end of the � rst step. In general,
one must solve a set of nonlinear equations. This leads to the
following algorithm:
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1. Compute g ˆ 1 5 h1(Y0, X0), g ˆ 2 5 h2(Y0, X0, b ˆ ).
2. Given b ˆ , X0, X1, Y0, g ˆ 1, and g ˆ 2, compute Y 5 M(X1,

g ˆ 1, g ˆ 2, b ˆ ).

In practice, to compute Y, we must solve a potentially
complex nonlinear equation system. Using the GAMS-
MINOS program, this can be done by maximizing a constant
function under the constraints that represent the model.

Projection-based con� dence sets may be obtained by a
modi� cation of this procedure. To do this, the free param-
eters and the associated calibrated parameters g 2 are treated
as endogenous ‘‘variables’’ just like the other endogenous
variables Y of the model. More formally, given X0, X1, and Y0

and a con� dence set with level 1 2 a for b (possibly
speci� ed by inequalities), we consider the following proce-
dure:

1. Compute g ˆ 1 5 h1(Y0, X0).
2. For each i 5 1, . . . , m, both maximize and minimize

Yi 5 gi(X1, b ) 5 gi(b ) subject to the restrictions Y 5

M(X1, gˆ 1, g 2, b ), g 2 5 h2 (Y0, X0, b ), and b [ C > C0.

This nonlinear program must be solved at most 2m times
to determine the lower and upper bounds of the con� dence
intervals for each endogenous variable of interest. A good
initialization usually accelerates convergence. In particular,
good initial estimates of the calibrated parameters and the
endogenous variables may be good starting points. The � rst
step of this revised algorithm determines, from data of the
social accounting matrix of the reference year (or its
equivalent), the values of the calibrated parameters that do
not depend on free parameters. Then given X1, the second
step treats the free parameters in b and the associated
calibrated parameters g 2 as additional variables, while the
calibration equations are treated as additional relationships
of the model. The inequalities that de� ne the con� dence set
on b are also added to the model. The basic structure of the
latter is preserved by this program, but the parameters (b 8,
g 82)8 are speci� ed as variables. The optimization problem is
then solved by minimizing and maximizing each variable of
interest. Note that the number of times the model is solved
depends on the number of variables for which we wish to
build con� dence intervals, not the number of parameters p
subject to uncertainty (as happens for the Wald-type proce-
dure). Depending on the values m and p, one may prefer one
procedure over the other. Again, this approach can be
applied to any endogenous variable of the model. Simulta-
neous con� dence sets based on Boole–Bonferroni inequali-
ties can also be built for several endogenous variables at a
time.

VI. Application to a CGE Model of the
Moroccan Economy

To illustrate the procedures proposed in the previous
sections, we have built a simple CGE model of the

Moroccan economy.4 This model has a fairly standard
structure close to the one of models developed by Devarajan
et al. (1990), de Melo and Robinson (1989), Condon et al.
(1987), and Martin et al. (1993). We will use it to study the
economic impact of a 25% increase of transfers from
Moroccans working abroad (or workers’ remittances), an
important source of currency for Morocco. Although this
question has intrinsic interest, our � rst objective here will be
to illustrate the methodology proposed. Consequently we
have adopted the most simpli� ed structure that will make
clear the procedures. The latter may of course be applied to
more complex models. Although simpli� ed, our model will
illustrate the methods suggested for assessing the uncer-
tainty associated with the free parameters of the model,
which in our case will be foreign trade elasticities.

A. Simpli� ed CGE Model of the Moroccan Economy

The model studied here is of the ‘‘1–2–3’’ type, represent-
ing the economy of a single country, Morocco in this case,
with two sectors and three goods. Each one of the two
sectors produces one good. The � rst one EX is deemed for
export and not sold on the domestic market. The second
good D is produced and sold on the domestic market. The
third good M is imported and not produced domestically.
The assumption that Morocco is a small country is preserved
so that the prices of exports and imports are exogenous.
More precisely, to model foreign trade, we have used a
formalization based on recent theories of product differentia-
tion as described by de Melo and Robinson (1989, 1992). It
is clear that this modelization can have an important
in� uence on the results of policy simulations, especially
when the latter affect the foreign sector directly. In this
theory, an imperfect substitutability between goods is as-
sumed (Armington hypothesis), in contrast to the classical
assumption of perfect substitutability between local and
imported goods. More precisely, we have a composite good
Q consumed on the domestic market, which is a function of
imports M and the domestically produced good D with
constant elasticity of substitution (CES) between M and D.
The representative consumer selects a combination of M and
D that minimizes total expenditure given the two correspond-
ing prices pM and pD and the level Q. The Armington
formulation of this CES function is given by

Q 5 B( d M2 r 1 (1 2 d )D 2 r )2 1/ r

5 B( d M( s 2 1)/ s 1 (1 2 d )D ( s 2 1)/ s ) s /( s 2 1)
(28)

where s 5 1/(1 1 r ) is the CES between imported and
domestic goods, B is a constant that depends on measure-
ment units, and d is a weighting parameter. In our terminol-
ogy, following usual calibration procedures for this type of
function in CGE models (see Mansur and Whalley (1984)),

4 A detailed description of this model appears in Abdelkhalek (1994).
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B and d are calibrated parameters, whereas s (or r ) is a free
parameter that needs to be estimated before calibration.

The � rst-order equilibrium condition for this problem is
given by the equality of the price ratio between the two
goods and the marginal rate of substitution between im-
ported and domestic goods, or equivalently,

M

D
5 ( d

1 2 d )s (pD

pM
)s . (29)

The prices pM and pD are endogenous. The price pc of the
composite good is determined by the equations

pCQ 5 pMM 1 pDD, pM 5 pwm(1 1 tm)E (30)

where pwm is the international price of imports, tm the duty
rate on imports, and E the nominal exchange rate, which can
be � xed in some formulations of the model.

Exports are modeled in a comparable way. Again, in
contrast with the standard small economy hypothesis, we
suppose that there is product and market differentiation. It is
still assumed that Morocco is a ‘‘pricetaker’’ on the interna-
tional market, but domestic producers can choose to direct
their supply, denoted Xs, either toward the domestic market
or toward exports, depending on relative prices. Since there
is a quality difference between products sold locally and
exported products, a constant elasticity of transformation
(CET) function between these two products is speci� ed.
Exports come from local production (not the composite
good), so the direct content in import of exports is taken to
be zero. However, their indirect content through intermedi-
ate consumption may not be void. Producers maximize their
income given the technological constraint represented by the
transformation function, that is, they maximize

pXs 5 pDD 1 pEEX (31)

subject to the constraint

Xs 5 BE[g EX c 1 (1 2 g )D c ]1/ c . (32)

The price of exports pE, the price of the domestic good pD, as
well as the composite supply price p are endogenous. pE is
evaluated in national currency and de� ned by the expression

pE(1 1 te) 5 pweE (33)

where pwe is the international price of exports, E the nominal
exchange rate, and te the duty rate on exports. Again, to help
interpretation, we de� ne V 5 1/( c 2 1), or c 5 (1 1 V )/V .
As before, BE is a scale parameter, g a weight coefficient,
and V a CET between exports and the domestic good. BE and
g are calibrated parameters, whereas V (or c ) is a free
parameter for which an estimate is required. The maximiza-

tion of equation (31) subject to equation (32) yields the
condition

EX

D
5 (1 2 g

g )V (pE

pD
)V . (34)

This way of modeling foreign trade, studied in detail by
de Melo and Robinson (1989) and Devarajan et al. (1990), is
widely used in CGE models.5 It appears more realistic than
the classical assumption of perfect substitutability between
goods. The two functions CES and CET are sufficiently easy
to manipulate in analytic derivations and calibration, even
though a free parameter is introduced by each function. The
function are homogenous of degree 1 with respect to their
arguments. Given a hypothesis of factor full employment,
the CET function de� nes a concave production possibility
frontier between exports and sales on the domestic market.

Equations (28)–(34) all belong to the model. Overall, the
model has 30 equations (including Walras’ law), 42 vari-
ables, 2 free parameters, 10 calibration parameters, and 5 tax
parameters. To solve it, we need to treat as exogenous 13 of
the 42 variables. By the small-country assumption it is
natural to take the prices of exports and imports as exog-
enous. Six categories of transfers between agents (govern-
ment to � rms, government to households, government to the
rest of the world, rest of the world to households, rest of the
world to government, � rms to the rest of the world),
government expenditures, total labor, and capital are also
taken as exogenous. This corresponds to a classical ‘‘clo-
sure’’ of the model, in the sense that investment adjusts itself
to total available saving (see Decaluwé et al. (1988)), which
could be contrasted with Keynesian, Kaldorian, and Johansen-
type closures. To complete the closure, the balance of the
current account is treated as exogenous (the nominal ex-
change rate remains endogenous), and the price pc of the
composite good is taken as numeraire (� xed by de� nition).

B. Deterministic Calibrationof Model

To calibrate the model described, we used a social
accounting matrix of the Moroccan economy constructed by
G.R.E.I. (1992) and econometric estimates of the two free
parameters (the foreign trade elasticities s and V ). To show
how this is done, consider the Armington-type model for
imports described earlier. To calibrate the parameters that
appear in this function, we � rst need an estimate of the
substitution elasticity s . Then, using the � rst-order condition
(29), the data on the values Q0, M0, D0, pD0

, and pM0
of the

reference year, and a normalization convention on the prices
of the same year,6 we can write

(M0

D0
)1/ sˆ

5 ( d

1 2 d )(pD

pM0
) (35)

5 For a review, see Decaluwé and Martens (1988).
6 As done usually in CGE models, all pretax (or presubsidy) prices are

nomalized to 1 for the reference year.
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from which we get an estimate of d

dˆ 5
(pM0

/pD0
)(M0/D0)1/ sˆ

1 1 (pM0
/pD0

)(M0/D0)1/ sˆ
; h21( sˆ ). (36)

An estimate of the scale parameter B follows on using
equation (28),

B̂ ; h22( sˆ ) 5
Q0

( dˆM0
( sˆ 2 1)/ sˆ

1 (1 2 d )̂D0
( sˆ 2 1)/ sˆ ) sˆ /( sˆ 2 1)

. (37)

In equations (36) and (37) the crucial role played by the
free parameter for determining the other parameters is clear.
In this case we usually have D0 . M0, which entails that
h21( sˆ ) is an increasing function of sˆ . When the elasticity of
substitution is small, which is the case for developing
countries like Morocco, dˆ tends to zero and numerical
problems show up in solving the model. We can proceed in a
similar way for the parameters of the export function which
depend on the free parameter V . Further details are given in
Abdelkhalek (1994).

To calibrate and simulate this model, we need estimates of
the foreign trade elasticities s and V . No earlier estimates of
such parameters for Morocco appear to be available in the
literature. The closest work is that of Khan (1975) and Stern
et al. (1976), who estimated import and export elasticities
with respect to their relative price, as opposed to the
substitution and transformation elasticities which appear in
our model. Further, the work of Khan (1975) leads to
elasticities which are essentially zero for Morocco over the
period of 1951–1969, so we estimated the needed elasticities
from Moroccan data over a more recent period.

The two required elasticities were estimated simulta-
neously from Moroccan data covering the period of 1962–
1992. An econometric analysis of structural change in the
two estimated equations (relating the logarithms of the ratios
D/M and E/D to the logarithms of the corresponding price
ratios and a measure of overall economic activity) led us to
divide the sample into two more homogeneous subperiods,
1962–1972 and 1973–1992. The two estimated equations
are given in appendix C. Without going into the details of
this econometric analysis, which is not the purpose of this
paper, note that the two equations have contemporaneously
correlated disturbances, so the latter were estimated as a set
if seemingly unrelated regressions (SURE). Shocks that
affect exports may also affect imports, and vice versa, hence
the correlation between the disturbances. In this way we obtained
the following estimates for (V , s ) for the subperiod 1962–1972,
with the corresponding asymptotic covariance matrix:

V ˆ T 5 0.392957, sˆT 5 1.432371;

S ˆ 5 ( 0.185303

2 0.017096
2 0.017096

0.024113). (38)

Of course, given the very small sample size on which these
estimates are based, the usual large sample distributional
theory may not be very reliable here, and the resulting
con� dence sets should be interpreted with caution. Given
the available data, these appeared to be the best that could be
obtained. Using these estimates of the free parameters of the
model, we can then calibrate the other parameters on the
basis of the reference year and simulate the model. The latter
were performed with the GAMS-MINOS program.

C. A Simulation

In general, CGE models are built to study the effects of
various economic policies or changes in other exogenous
variables X of the model. Given a change in X, the model is
solved for a new equilibrium. We will study here the effect
of a 25% increase in transfers from the rest of the world to
households in Morocco. These transfers consist mainly of
repatriations by Moroccan workers abroad, an important
source of foreign currency for Morocco. Indeed, the latter
country receives more currency from this source than from
phosphate exports and tourism. These transfers of income
have increased during the 1980s due to returns of emigrants
and to various public policies encouraging fund repatria-
tions. As these transfers may take several channels, they are
difficult to measure statistically. In particular they can go
through formal channels or take the form of liquidities
brought during holidays, settlements between compatriots,
or even purchases of imported goods. The � rst of these
elements is the only one measured by official balance of
payments statistics, which shows a regular progression at an
annual rate of 22% between 1970 and 1990.7 This evolution
appears to corroborate a positive reaction to various incen-
tives put forward by public authorities. Because of the
importance of these repatriations, it is of interest to study
their economic impact on the Moroccan economy. Although
our � rst objective here will be to illustrate the methods
proposed, our general equilibrium simulations will also
provide useful information for economic policy. The trans-
fers have direct effects on household income, and indirect
effects on consumption, saving, investment, and government
revenue. The simulation which follows studies these aggre-
gate effects.

The results of the simulation are displayed in table 1.
They show that the increased in� ux of currency raises
household income YM and saving SM, consumption CM,
and thus the total demand originating from households, both
for the composite good Q and the domestic good D. Since
the structure of the model, and especially its closure, does
not allow an increase in supply (added value VA or
intermediate consumption CI), the price pD of domestic
goods increases, leading to an increase of imports M
(because of their substitutability with domestic goods). The
currency in� ux decreases the nominal exchange rate E, that
is, it leads to an appreciation of the national currency, which

7 See Centre Marocain de Conjoncture (1991).
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in turn decreases exports EX and increases imports M. As
imports increase more in value than exports decrease and
duty rates are higher on imports, government receipts
increase. Furthermore, due to the raise of household income,
direct taxes increase, government saving SG follows, and the
government de� cit decreases. The current balance account
(saving from the rest of the world) is exogenous in this
model and thus remains unchanged. All savings increase or
remain � xed. Aggregate investment IT, given the closure of
the model, increases and puts additional pressure on internal
demand and imports. All these trends are symptoms of what
is known as the ‘‘Dutch disease.’’

The reactions of the endogenous variables of the model,
especially imports, exports, and internal demand for the
domestic good, depend on the substitutability between the
different goods represented by the elasticities V and s .
Indeed the smaller these elasticities the larger the effects of
the shocks simulated here. The results in table 1 only give
point estimates of the endogenous variables associated with
given elasticity estimates and exogenous variables. Any

serious analysis should look at the robustness of the results
to parameter uncertainty. The procedures proposed here
allow one to build con� dence sets for the endogenous
variables of the model, and we will now give such con� -
dence sets for the endogenous variables of most interest.

Wald-Type Con� dence Sets: As there are only two free
parameters in this model, con� dence sets of the ellipsoidal
type may be built only for two variables at a time. We can
however obtain Wald-type con� dence intervals for all the
variables of the model. We shall concentrate on six of these
variables: exports EX, imports M, government saving SG,
aggregate investment IT, internal demand for the domestic
good D, and nominal exchange rate E.

Table 2 gives the partial derivatives of these six endog-
enous variables with respect to the two free parameters,
which are the source of the uncertainty. These derivatives
were evaluated by numerical methods (as described in
appendix B) using symmetric parameter perturbations with
h 5 b ˆ T

k /1000. Given these, we can build marginal con� -
dence intervals for the endogenous variables of interest.
Table 3 presents such intervals (with level 95%) for the
endogenous variables under the new vector of exogenous
variables, the difference with respect to the reference year
value and the difference in percentage. We see from these
that the effect of the 25% increase in transfers is clearly
positive (at the 5% level) for three variables (M, SG, IT) and
negative for another one (E), while the intervals for EX and
D include zero, indicating that these effects are not statisti-
cally signi� cant (although these intervals also cover values
that may be economically sizable). All the intervals are fairly
precise in the sense that the difference between the upper and

TABLE 1.—SIMULATION RESULTS FOR A 25% INCREASE OF TRANSFERS FROM

THE REST OF THE WORLD TO HOUSEHOLDS IN MOROCCO

Variable
Reference Year Value

(SAM 1985)
Value After
Simulation

Variable Change

In Value In %

VA 116858.000 116858.000 0.0000 0.0000
CI 121584.800 121584.800 0.0000 0.0000
PD 1.000 1.00602 0.00602 0.60200
pc 1.000 1.000 0.0000 0.0000
pM 1.21134 1.18247 2 0.02887 2 2.38331
pE 0.98966 0.96607 2 0.02359 2 2.38365
E 1.000 0.97617 2 0.02383 2 2.38300
CM 83829.100 85948.75722 2119.65722 2.52855
IT 35122.800 35666.55332 543.75332 1.54815
M 42806.000 44761.86308 1955.86308 4.56913
EX 32198.000 31867.92374 2 330.07626 2 1.02515
D 209847.000 210168.7960 321.79600 0.15335
Q 261699.700 264363.111 2663.41100 1.01774
YM 102093.100 104674.571 2581.47100 2.52855
YG 23402.700 23709.12414 306.42414 1.30935
TAXM 9046.700 9234.58631 187.88631 2.07685
TAXE 333.000 321.73096 2 11.26904 2 3.38410
SM 14116.000 14472.92953 356.92953 2.52855
SG 2 4677.600 2 4371.17586 306.42414 6.55088

Notes: VA—value added in volume; CI—intermediate consumption in volume; pD—price of domestic
good; pC—price of composite good; pM—domestic price of imported good price; pE—price; of exported
good; E—nominal exchange rate (price of foreign currency in dirhams); CM—household consumption in
value; IT—aggregate investment in value; M—imports in volume; EX—exports in volume; D—internal
demand for domestic good; Q—demand for composite good in volume; YM—household income;
YG—government income; TAXM—taxes on imports; TAX—taxes on exports; SM—household savings;
SG—government savings.

TABLE 2.—PARTIAL DERIVATIVES OF ENDOGENOUS VARIABLES OF INTEREST

WITH RESPECT TO FREE PARAMETERS

Variable

Reference
Value

(SAM 1985)
Value after
Simulationa

Partial Derivative

With Respect
to V

With Respect
to s

EX 32198.00 31867.92374 2 704.70814873 175.60394618
M 42806.00 44761.86308 2 625.08111575 282.41984793
SG 2 4677.60 2 4371.17586 2 55.51498001 168.39212746
IT 35122.80 35666.55332 2 13.84375390 224.97662966
D 209847.00 210168.7960 688.37048328 2 168.60157041
E 1.00 0.97617 0.01272404 0.01047215

Note: a After a 25% increase of transfers from the rest of the world to Moroccan households.

TABLE 3.—MARGINAL WALD-TYPE CONFIDENCE INTERVALSa

Variable

Con� dence Interval
Difference with Respect to

Reference Year (1985) Value Difference in %

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound Range

EX 31257.500 32478.347 2 940.4999 280.3474 2 2.9210 0.8707 3.7917
M 44206.248 45317.478 1400.2481 2511.4780 3.2711 5.8671 2.5960
SG 2 4448.946 2 4293.405 228.6535 384.1947 4.8883 8.2135 3.3252
IT 35594.208 35738.899 471.4077 616.0989 1.3422 1.7541 0.4119
D 209572.824 210764.768 2 274.1761 917.7681 2 0.1307 0.4374 0.5681
E 0.9657824 0.9865576 2 0.0342176 2 0.013442 2 3.4218 2 1.3442 2.0776

Note: a At the 95% levels.
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lower bounds (the range) is always less than 4% of the
corresponding level, even less than 1% for IT and D.

Tables 2 and 3 also give the con� dence interval construc-
tion for variables taken individually. In the case of this
model, ellipsoidal simultaneous con� dence sets can be
obtained for pairs of endogenous variables. For the sake of
illustration, we show in � gure 1 a 95% con� dence ellipsoid
for the changes of public saving SG and aggregate invest-
ment IT. We see from the shape of this ellipse that the
changes in SG and IT are positively associated, which is not
surprising. We also report on the same � gure Boole-
Bonferroni 95% simultaneous con� dence intervals (central
square), which are easier to understand but yield a somewhat
wider con� dence set.

Projection-Based Con� dence Sets: The simultaneous
estimations of the two foreign trade elasticities V and s by
the SURE procedure yield a covariance matrix which can be
used to build a con� dence set for the vector b 5 (V , s )8.
This con� dence set can be rectangular if we ignore the
covariance between the estimators of the two foreign trade
elasticities. Interestingly, this approach also allows one to
use estimates that are not based on the same data or for
which a covariance matrix is not available. In the case
considered here, we have a covariance matrix, and so we can
build an ellipsoidal con� dence set for V and s . For
illustrative purposes, we present here results based on
rectangular and ellipsoidal con� dence sets for b . Through-
out the con� dence level is 95%.

The rectangular con� dence set is obtained by simply
estimating V and s separately (through two regressions) and
then building con� dence intervals C V and C s for V and s

from these regressions. To ensure that the resulting rectangle
has the desired coverage probability, we build con� dence
intervals C V and C s with levels 1 2 a 1 and 1 2 a 2,

respectively, where a 5 a 1 1 a 2. In contrast with the SURE
approach considered below, this method does not make any
assumption on the form of the dependence between the
errors in the two equations. This is due to the fact that the
level a 5 a 1 1 a 2 is obtained through the Boole–Bonferroni
inequality, which holds irrespective of the nature of the
dependence between the two separate regressions used. For
further discussion of such methods, see Dufour and Torrès
(1998). More precisely, we take a 1 5 a 2 5 a /2 5 0.025 and
� nd the intervals

C V 5 [ V ˆ 2 t( a 1; 8)s V
ˆ , V ˆ 1 t( a 1; 8s V

ˆ ]

C s 5 [ sˆ 2 t( a 1; 6)s sˆ , sˆ 1 t( a 1; 6)s sˆ ]
(39)

where s V ˆ and s sˆ are the usual standard error estimates for V ˆ

and sˆ , t( a 1; t ) is such that P[t(t ) $ t( a 1; t )] 5 a 1, and t(t ) is
a Student’s t random variable with t degrees of freedom.
Here we take a 1 5 0.025; hence t( a 1; 8) 5 2.75152 and
t( a 1; 6) 5 2.96869. Furthermore the intervals may cover
negative values of the elasticities, which are viewed as
inadmissible by economic theory, or values for which the model
has no numerical solution (which we also take as inadmissible).
So the con� dence set was also truncated to exclude such values.
This turned out to matter only for the V interval, which had to be
truncated to the left at the smallest value for which a numerical
solution does exist: this value is 0.3633. The � nal simultaneous
con� dence intervals so obtained are

0.3633 # V # 2.7319, 0.4762 # s # 2.0513. (40)

In other words, the rectangle represented by equation (40) is
a con� dence set for (V , s )8, whose level is not inferior to
0.95. By maximizing and minimizing the endogenous vari-
ables subject to equation (40), we can then � nd 95%
con� dence intervals for the latter. The results are reported in
table 4, panel A.

The results based on this method yield wider intervals
than the Wald-type method. Since the basic estimates are
different and are based on weaker assumptions (a possible
dependence between the two equations estimated is not
modeled), this is not surprising. Nevertheless these results
still show that the effect of the fund transfer increase is
clearly positive (at the 5% level) for M and IT and negative
for E. Furthermore the effect on EX is now clearly negative
and that on D clearly positive. The effect on SG is not
statistically different from zero, but this interval is quite
wide and covers mostly positive values.

Consider now an ellipsoidal con� dence set for V and s .
Such a con� dence set takes into account the correlation
between the estimators of the two parameters. Let b ˆ be the
SURE estimator of b 5 (V , s )8 and S ˆ its estimated
covariance matrix. Then, under the assumptions of the
SURE model, the quadratic form

Q 5 (b ˆ 2 b )8 S ˆ 2 1 ( b ˆ 2 b )/p (41)

FIGURE 1.—SIMULTANEOUS CONFIDENCE SETS FOR VSG AND VIT
(LEVEL 5 95%)
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follows approximately an F(p, T 2 K) distribution with p 5

2 and T 2 K 5 12. Then by choosing F0.05 5 F0.05(p, T 2
K) 5 3.88529, where P[F(p, T 2 K) $ Fa (p, T 2 K)] 5 a ,
the set

C 5 {b [ RR 2: ( b ˆ 2 b )8 S ˆ 2 1( b ˆ 2 b )/p # F0.05} (42)

is a con� dence set for b whose level is approximately 0.95.
Since this con� dence set can cover negative values of V and
s or values for which the model has no solution, it was
further restricted as in equation (40), which yields the
con� dence set

(0.392957 2 V

1.432371 2 s )8 ( 0.185303

2 0.017096
2 0.017096

0.024113 )2 1

3 (0.392957 2 V

1.432371 2 s ) # 7.77058, V $ 0.3633.

(43)

As for the rectangular con� dence set, the con� dence inter-
vals for the endogenous variables of the model are obtained
on maximizing and minimizing each of them subject to in
equation (43). They are reported in table 4, panel B.

The con� dence intervals obtained by the latter method are
much shorter than those based on projecting from the
conservative rectangular con� dence set (see table 4A). This
is not surprising since the SURE method uses stronger
statistical assumptions on the dependence between the two
equations (which are the same as in the Wald-type method)
and yields more efficient estimators under these assump-
tions. More surprisingly, despite the fact that projection-
based intervals are ‘‘conservative,’’ the con� dence intervals
in table 4B are shorter than the Wald-type intervals for three
variables (EX, M, D) out of six. Furthermore, none of the
intervals covers zero, and so all effects are statistically
signi� cant (at the 5% level): positive for M, SG, IT, and D,
and negative for EX and E. More precisely according to this
simulation, the 25% increase in fund repatriations leads to an

appreciation of the dirham (decrease in E between 1.41%
and 3.52%), to a decrease of exports (between 0.73% and
3.42%), and to increases of imports (2.89% to 4.90%),
savings (3.47% to 8.22%), investment (0.99% to 1.84%),
and aggregate demand (0.11% to 0.51%). Even if the
projection technique is computationally more demanding, it
is more reliable (in the sense that levels are better controlled)
and more powerful (in the sense that con� dence intervals
may be shorter).

VII. Conclusion

During recent years CGE models have become important
tools of policy analysis. However, parameter uncertainty
throws doubt on the reliability of simulation results. In this
paper, we have proposed formal methods for assessing this
type of uncertainty. These rely on building con� dence sets,
of which two variants were considered. The � rst approach is
based on a Wald-type statistic and can be applied easily
whenever an estimator with an approximately normal distri-
bution and an estimate of its covariance matrix are available.
The second approach applies a projection technique from a
(sampling or Bayesian) con� dence set on the free param-
eters of the model. The latter requires considerably less
regularity conditions than the former (especially on the
nonlinear structure of the model) and allows great � exibility
in the nature of the information used on the uncertain free
parameters. Furthermore, it can be implemented with stan-
dard numerical procedures usually applied to solve CGE
models.

We then considered a simple model of the Moroccan
economy and studied the effect of a 25% increase of fund
repatriations by Moroccans working abroad. We showed that
the methods proposed for assessing the uncertainty of the
simulations could be implemented easily in the context of a
CGE model and yielded quite reasonable results. For the six
variables studied, we found using the projection technique
that all the changes predicted by the simulations were

TABLE 4.—CONFIDENCE INTERVALSa FOR SIX ENDOGENOUS VARIABLES

Variable

Con� dence Interval
Difference with Respect to

Reference Year (1985) Value Difference in %

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound Range

A. Projection from a Rectangular Con�dence Set for the Parameters
EX 30609.184 31966.332 2 1588.8164 2 231.6680 2 4.9345 2 0.71951 4.21501
M 43561.513 44908.459 755.5117 2102.4609 1.7650 4.91160 3.14664
SG 2 4699.347 2 4290.609 2 21.7466 386.9907 2 0.4649 8.2733 8.73818
IT 35223.041 35772.746 100.2383 649.9453 0.28539 1.85049 1.56510
D 210073.700 211402.950 226.7031 1555.9063 0.10803 0.74145 0.63342
E 0.9506900 0.9893900 2 0.04931 2 0.010610 2 4.93100 2 1.06100 3.87000

B. Projection from an Ellipsoidal Con�dence Set for the Parameters
EX 31095.856 31963.886 2 1102.1445 2 234.1133 2 3.42302 2 0.72711 2.69592
M 44044.210 44904.419 1238.2110 2098.4180 2.8926 4.90217 2.00955
SG 2 4515.478 2 4293.113 162.1221 384.48730 3.46592 8.21976 4.75383
IT 35470.860 35769.392 348.0586 646.5898 0.99098 1.84094 0.84996
D 210076.000 210926.200 229.0000 1079.2031 0.10913 0.51428 0.40515
E 0.9647500 0.9858600 2 0.035250 2 0.014140 2 3.52500 2 1.41400 2.11100

Note: a At the 95% level.
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signi� cantly different from zero (at a level of 5%) and could
be ascertained by tight con� dence intervals. In particular,
using the projection technique (from a SURE-based ellipsoi-
dal con� dence set on the parameters), we found remarkably
short con� dence intervals on the six variables considered,
which all indicated statistically signi� cant effects: apprecia-
tion of the dirham, export reduction, and increases in
imports, savings, investment, and aggregate demand. Even
though this model does not involve a large number of free
parameters estimated by econometric methods, it is clear
that GAMS and the methods proposed in this paper can
accommodate much larger models and parameter numbers.
In applications of CGE models to developing countries,
however, the main limitation will remain the availability of
good data for estimating the relevant parameters.
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APPENDIX A

Proofs of Propositions

Proof of Proposition 1: By assumption, the function g is continuous
on C # RR p, where C is a compact set. Consequently, from any cover of C
we can extract a � nite subcover. Let {Va }a [ I be a cover of g(C), where all
sets Va are open subsets of R R m. Since g is continuous, {g2 1(Va )}a [ I is an
open cover of C. And since C is compact, one can extract a � nite cover J of
C, that is, we can � nd a � nite subset J of I such that J # I and C #
< a [ Jg 2 1(Va ). Since g[g 2 1(Va )] # Va , then g(C) # < a [ JVa . Thus {Va }a [ I is a
� nite cover of g(C), that is, g(C) is compact. The proof for the marginal
con� dence regions is similar when R R m is replaced by RR and g(·) by gi(·).

Q.E.D.

Proof of Proposition 2: By assumption, the function g is continuous
from C # R R p to g(C) # RR m, and C is connected. Suppose the set g(C) is not
connected. This entails that there are two open nonempty sets O1 and O2 in
R R m such that

i. g(C) > O1 Þ B, g(C) > O2 Þ B
ii. g(C) # O1 < O2

iii. g(C) > O1 > O2 5 B

(see Royden (1968, p 152)). Since the function g is continuous, it follows
that g2 1(O1) and g2 1(O2) are two open sets in R R p. Moreover, we have

i. g(C) > O1 Þ B Þ ’ y [ R R m such that y [ g(C) > O1 Þ ’ b [ R R p

such that b [ C > g 2 1(O1) Þ C > g 2 1(O1) Þ B; we can see that
C > g 2 1(O2) Þ B in the same way

ii. C # g 2 1[g(C)] # g 2 1(O1 < O2) 5 g 2 1(O1) < g 2 1(O2)
iii. C > g 2 1(O1) > g 2 1(O2) 5 g 2 1(C > O1 > O2) 5 g 2 1(B) 5 B.

Consequently, the set C is not connected, in contradiction with our
assumption. The proof for marginal con� dence regions gi(C), i 5 1, . . ., m,
is analogous.

Q.E.D.

Proof of Proposition 3: By assumption, the function g is continuous
from C # RR p to g(C) # R R m, and C is compact and connected. By
propositions 1 and 2, the image gi(C) of C is compact and connected in RR .
But the only compact connected subsets of R R are intervals of the form
[gi

L(C), gi
U(C)], where gi

L(C)] . 2 ` and gi
U(C) , 1 ` .

Q.E.D.

APPENDIX B:

Wald-Type Procedur e Algor ithm

The main difficulty in the implementation of the Wald-type procedure is
to compute the derivatives G( b ˆ T). This can be done as follows. After a � rst
solution of the model has been obtained for the reference year with b 5 b ˆ T
and the initial values of the exogenous variables, we solve the model a
second time (base solution) with a new set of exogenous variables (which
may represent a different policy), but keeping the same coefficient vector
b ˆ T. We then need to evaluate the matrix G( b ˆ T) of the derivatives of Y at the
base solution. This can be done by considering small perturbations,
symmetrical or not, of each component of b ˆ T. In the case of symmetrical
perturbations, we need to solve the model 2p times (in addition to the two
basic simulations), while only p solutions are required for asymmetrical
perturbations. The relative precision of the two procedures depends on the
shape of the function g(·). In both methods, parameter perturbations should
be very small and applied to one parameter at a time. For each perturbed
parameter vector, the model is then solved (with the same set of exogenous
variables). The difference between two corresponding perturbed solutions
(in the symmetrical case) or between each perturbed solution and the base
solution is then used to evaluate each partial derivative. More precisely,
G( b ˆ T) is evaluated as follows (in the case of symmetrical perturbations).

1. Solve the model with b 5 b ˆ T and calibrate it to reproduce the
reference year according to equations Y0 5 M(X0, b , g ) and equation
(2).

2. Compute the new equilibrium under the new exogenous variables
vector X1, which yields the base solution Y 5 g(X1, b ˆ T).

3. For each k 5 1, . . ., p, consider two modi� ed b vectors, the � rst
obtained by changing component b ˆ T

k of b ˆ T to b ˆ T
k 1 h (the other

components remaining the same), and the second by changing b ˆ T
k to

b ˆ T
k

2 h, where h is small. The value of h may be a � xed fraction of
b ˆ T

k or of its standard deviation.
4. Solve the model with these modi� ed parameter vectors (and the new

exogenous variables vector). Calibrated parameters which are
functions of free parameters are of course modi� ed after each
perturbation of a free parameter.

5. For k 5 1, . . ., p, evaluate the partial derivatives with the formula

 g

 b 8k
(X1, b ˆ T)

5
g(X1, b ˆ T

1, . . . , b ˆT
k 1 h, . . . , b ˆ T

p) 2 g(X1, b ˆ T
1, . . . , b ˆ T

k
2 h, . . . , b ˆ T

p)

2h
. (B.1)

The latter algorithm permits evaluating the matrix G( b ˆ T) for any values
of p and m. Since V̂T is known, we can then compute the matrix V ˆ T easily.
However, because of the rank condition (6), which cannot be satis� ed
when m . p (i.e., when there are more endogenous variables than free
parameters). Simultaneous con� dence sets of the ellipsoidal type can be
constructed only when the number of endogenous variables is at most
equal to the number of free parameters. When p 5 2, for example,
simultaneous con� dence sets for pairs of endogenous variables may be so
obtained.
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APPENDIX C

Estimation of Foreign Trade Elasticities

To obtain the free parameters V and s , we estimated the following pair
of equations from annual Moroccan data:

ln (MD ) 5 a 0 1 s ln (PD

PM
) 1 a 1 ln (PIB) 1 u1 (C.1)

ln (ED) 5 g 0 1 V ln (PE

PD
) 1 g 1 ln (PIBW) 1 u2. (C.2)

The data come from the International Monetary Fund (International
Financial Statistics (IFS), 1992 and Jan. 1994) and the variables are
de� ned as follows:

M Index of imports, IFS line 73 (1985 5 100)
D Index of domestic consumption (1985 5 100)
PD Wholesale price index, IFS line 63 (1985 5 100)
PM Price index of imports, IFS line 75 (1985 5 100)
PIB Real gross domestic product in billions of 1985 dirhams, IFS

line 99b
E Index of exports, IFS line 72 (1985 5 100)
PE Price index of exports, IFS line 74d (1985 5 100)
PIBW Index of gross domestic product of industralized countries, IFS

line 110 (1985 5 100)

The parameters of equations (C.1) and (C.2) were estimated � rst
equation by equation (by least squares) and then as a SURE system, using

Micro TSP (version 6.0). The results of the estimations are displayed in
table C.1.

TABLE C.1—ESTIMATION OF FOREIGN ELASTICITIES

Independent
Variables

OLS SURE

ln (M/D) ln (E/D) ln (M/D) ln (E/D)

Constant 1.80681 1.54106 1.81084 3.00096
(0.7172) (1.0832) (0.5329) (0.8615)

ln (PD)/PM ) 1.26371 — 1.43237 —
(0.2653) (0.1553)

ln (PIB) 2 0.47815 — 2 0.45754 —
(0.1649) (0.1272)

ln (PE/PD) — 0.69138 — 0.39296
(0.7417) (0.4305)

ln (PIBW) — 2 0.47823 — 2 0.78371
(0.19844) (0.1821)

Sample sizea 9 11 9 9

R2 0.8132 0.6260 0.7983 0.7390

s (SE of reg.) 0.0578 0.0768 0.0601 0.0711

D–W 2.5010 1.4767 2.2939 1.2114

Notes: Standard errors are given in parentheses.
a Because of missing data, the numbers of observations differ across equations (9 observations for

1964–1972; 11 observations for 1962–1972).
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