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ABSTRACT

We propose exact simulation-based procedures for testing mean-variance efficiency when the zero-
beta rate (gamma) is unknown and for building confidence intervals on gamma. On observing that
gamma may be weakly identified – even though, stricto sensu, the problem is not a weak instrument
problem – we propose LR-type procedures which are robust to weak identification and allow for
non-Gaussian distributions. A multivariate extension of the classic Fieller method is proposed in
order to build confidence sets for gamma. The exact distribution of LR-type statistics for testing
efficiency is studied under both the null and alternative hypotheses. The relevant nuisance para-
meter structure is established and finite-sample bound procedures are proposed, which extend and
improve earlier Gaussian-specific bounds. Empirical results on NYSE returns show that exact confi-
dence sets are very different from the asymptotic ones, and allowing for non-Gaussian distributions
substantially decreases the number of efficiency rejections.

Key words: capital asset pricing model; CAPM; Black; mean-variance efficiency; non-normality;
weak identification; Fieller; multivariate linear regression; uniform linear hypothesis; exact test;
Monte Carlo test; bootstrap; nuisance parameters; specification test; diagnostics; GARCH; variance
ratio test.
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RÉSUMÉ

Nous proposons une procédure exacte, basée sur la simulation, afin de tester l’efficience moyenne-
variance d’un portefeuille lorsque le taux d’intérêt sans risque n’est pas observable. De plus, cette
procédure permet de construire des intervalles de confiance pour le rendement zéro-beta qui peut
êtret faiblement identifié dans le cadre de ce modèle. Les méthodes développées sont basées sur
des statistiques de type ratio de vraisemblance et permettent l’utilisation d’une large classe de dis-
tributions des erreurs en plus d’être robustes à l’identification faible du zéro-beta. Une technique
basée sur la méthode classique de Fieller nous sert à construire des intervalles de confiance cor-
rigés pour la présence d’échantillons finis. Nous étudions la distribtion exacte de statistiques de
type quotient de vraisemblance pour tester l’hypothèse d’efficience tant sous l’hypothèse nulle que
sous la contre-hypothèse. Nous établissons la structure pertinente des paramètres de nuisance et
proposons des extensions des bornes développées par Shanken pour un cadre de distributions des
erreurs qui dépassent la normalité en plus que de développer une méthode plus générale menant à
des bornes plus serrées que celles proposées initialement par Shanken. Les résultats empriques sur
des rendements du New York Stock Exchange montrent que les intervalles de confiance exacts sont
très différents des intervalles asymptotiques et que le nombre des rejets de l’hypothèse d’efficience
du portefeuille de marché diminue sensiblement lorsque la possiblité d’erreurs non-gaussiennes est
prise en compte.

Mots-clefs: modèle d’évaluation d’actifs financiers; CAPM; Black; efficience de portefeuille; non-
normalité; identification faible; Fieller; modèle de régression multivarié; hypothèse linéaire uni-
forme; test exact; test de Monte Carlo; bootstrap; paramètres de nuisance; test de spécification; tests
diagnostiques; GARCH; test de ratio des variances.

Classification du Journal of Economic Literature: C3; C12; C33; C15; G1; G12; G14.
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SUMMARY

We consider the problem of testing portfolio efficiency when the zero-beta rate is unknown [Black
Capital Asset Pricing Model (BCAPM)]. Despite the apparently simple structure of the underlying
statistical framework [a multivariate linear regression (MLR)], it is well known that standard as-
ymptotically justified tests and confidence intervals are quite unreliable in this setup. We point out
that this feature is associated with the fact that the zero-beta rate may be interpreted as a structural
parameter that may be weakly identified, leading to a breakdown of standard asymptotic procedures
based on estimated standard errors, heavy dependence on unknown nuisance parameters, and the
need to use statistical methods with substantially improved finite-sample properties. This also en-
tails that bound procedures may be required in this setup and provides a strong general motivation
for developing finite-sample bounds as originally suggested by Shanken (1986, Journal of Financial
Economics). The available exact procedures for the BCAPM, however, rely heavily on the assump-
tion that model disturbances follow a Gaussian distribution, which does not appear to be satisfied
by many financial return series. In this paper, we propose exact simulation-based procedures for
testing mean-variance efficiency of the market portfolio and building confidence intervals for the
unknown zero-beta rate. The proposed methods are based on likelihood-ratio-type statistics, allow
for a wide class of error distributions (possibly heavy-tailed) and are robust to weak identification
of the zero-beta rate. The exact distribution of LR-type statistics for CAPM restrictions is derived
and extensions of Shanken’s bounds are provided, which remain provably valid for non-Gaussian
disturbance distributions. Further, we suggest a general method which yields tighter bounds in
both Gaussian and non-Gaussian cases. In order to build confidence intervals for the zero-beta rate
in finite samples, a technique based on generalizations (applicable in MLR models) of the classic
Fieller method (for the ratio of two parameters) is proposed. The methodology described allows
one to cast evidence on whether the normality assumption is too restrictive for testing the mean-
variance efficiency of the benchmark portfolio when the riskless rate is unobservable. The methods
suggested are applied to monthly returns on 12 portfolios of the New York Stock Exchange (NYSE)
firms over the period 1925-1995 divided in five-year subperiods. The results obtained show the
following: (i) multivariate normality is rejected in most subperiods, (ii) multivariate residual checks
reveal no significant departures from the i.i.d. assumption, (iii) the exact confidence sets for the
zero-beta rate are very different from the asymptotic one, and (iv) using finite-sample corrections
and allowing for non-normal distributions substantially increases the proportion of cases where effi-
ciency is accepted (more than two-thirds of the subperiods considered), as opposed to results based
on asymptotic approximations or a Gaussian distributional assumption.
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1. Introduction

One of the most important extensions of the Capital Asset Pricing Model (CAPM) consists in allow-
ing for the absence of a risk-free asset. From a theoretical viewpoint, this can be due to restrictions
on borrowing [Black (1972)] or an investor’s riskless borrowing rate that exceeds the Treasury bill
rate [Brennan (1971)]. In this case, portfolio mean-variance efficiency is defined using the expected
return in excess of the zero-beta portfolio. The latter is unobservable and must be estimated in
empirical applications. This leads to considerable empirical difficulties, for example in the impor-
tant problem of testing mean-variance efficiency. In particular, as emphasized in the early work of
Shanken (1985, 1986), large-sample approximations to the distributions of test statistics can be very
unreliable in this setup, which provides a strong motivation for using econometric methods with a
finite-sample distributional theory.

There are two basic approaches to estimating and assessing this version of the CAPM [denoted
below as BCAPM]. The first one uses a “two-pass” approach: the alphas and betas are first estimated
from time series regressions for each security, and then the zero-beta rate is estimated by a cross-
sectional regression on the first-stage parameter estimates; see Black, Jensen and Scholes (1972),
Fama and MacBeth (1973), and Shanken (1992). This is computationally simple but raises errors-in-
variables or “generated regressors” problems [see Pagan (1984)] that can make statistical inference
complex or unreliable in both finite and large samples.1 The second approach consists in dealing
jointly with the unobservable zero-beta rate, using as statistical framework a multivariate linear
regression (MLR). The MLR is one of the most basic model of multivariate statistical theory and
has given rise to an extensive literature, especially when errors follow a Gaussian distribution.2

Following the seminal contributions of MacBeth (1979) and Gibbons (1982), this literature has
been applied and adapted to the BCAPM by several authors; see Jobson and Korkie (1982), Kandel
(1984, 1986), Amsler and Schmidt (1985), Shanken (1985, 1986), Zhou (1991), Shanken (1992),
Stewart (1997), Velu and Zhou (1999), and Chou (2000).3

In principle, the MLR-based approach allows one to avoid the errors in variables associated
with two-pass regressions. For that reason, we shall focus here on this approach and consider
two basic problems: (1) testing portfolio efficiency; (2) making reliable statistical inference on the
unobservable zero-beta rate, such as building a confidence interval for the zero-beta rate.

Within the BCAPM framework, testing mean-variance efficiency involves nonlinear constraints
on regression coefficients. Despite these nonlinearities, the test problem is computationally sim-
ple because non-iterative analytical formulae for Gaussian likelihood-ratio (LR) test statistics are
available; see Kandel (1984), Shanken (1986, 1992), Velu and Zhou (1999), and Chou (2000). It
is however difficult to find reliable critical points in this context. While Gibbons (1982) used an
asymptotic chi-square critical value, subsequent authors found this could lead to very serious over-
rejection rates in significance tests with sample sizes commonly encountered in empirical applica-
tions [see Jobson and Korkie (1982), Shanken (1985, 1996), Campbell et al. (1997)], and various

1For further discussion of the related statistical problems, see Litzenberger and Ramaswamy (1979), Banz (1981),
Roll (1985), Chen, Roll and Ross (1986), Shanken (1992), and Kim (1995).

2See, for example, Rao (1973, Chapter 8), Krishnaiah (1980), Kariya (1985), Seber (1984) and Anderson (2003).
3For reviews and related references, see also Kandel and Stambaugh (1989), Jagannathan and McGrattan (1995),

Shanken (1996), Campbell, Lo and MacKinlay (1997), Fama and French (2004) and Perold (2004).
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finite-sample corrections – such as bounds – were suggested [see Shanken (1985, 1986), Zhou
(1991) and Velu and Zhou (1999)]. The finite-sample results presented by these authors depend
crucially on a normality assumption, and it is not clear how they can be extended to non-Gaussian
distributions. Of course, the normality assumption may be quite inappropriate in financial data used
to assess the CAPM [see Richardson and Smith (1993) and Dufour, Khalaf and Beaulieu (2003)].
Besides, from the empirical viewpoint, the literature on testing efficiency within the BCAPM setup
remains scarce and has produced conflicting results.4

In general MLR-based tests, discrepancies between asymptotic and finite sample distributions
are associated with dimensionality problems: as the numbers of equations and parameters increase,
the number of observations required for large-sample approximations to be reliable grows rapidly;
see Shanken (1996), Campbell et al. (1997), and Dufour and Khalaf (2002). In particular, even
though the asymptotic null distributions of the test statistics may be free of nuisance parameters,
error cross-correlations – whose number may be quite large in systems with many portfolios –
can still affect the distributions in finite samples, leading to reductions in degrees of freedom and
to size distortions. Further, in the BCAPM case, the model involves nonlinear restrictions, and
dimensionality problems compound with identification issues – a feature which has not apparently
been discussed in the earlier literature on the BCAPM. The latter relate to the unobserved zero-
beta rate, which is defined as the ratio of each alpha (intercept) to one minus beta. Obviously,
this involves a discontinuous transformation of MLR coefficients, which becomes ill-behaved as
the betas approach one. More precisely, the zero-beta rate is a parameter which is not identified
over the whole parameter space: it is locally almost unidentified or (equivalently) weakly identified
over a subset of the parameter space. Further, it is well known that such situations can strongly
affect the distributions of estimators and test statistics, leading to the failure of standard asymptotic
approximations, especially for Wald-type statistics [such as those used by Chou (2000)]; see, for
example, Dufour (1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz and
Nelson (1998), Dufour and Jasiak (2001), Kleibergen (2002), Stock, Wright and Yogo (2002) and
Moreira (2003). These results should not be taken lightly in BCAPM contexts, since estimated betas
are typically close to one (the discontinuity boundary); see Fama and MacBeth (1973).

To overcome weak identification, the theory and practice of econometrics has recently evolved
in two main directions: (i) refinements in asymptotic analysis which formally account for lo-
cal under-identification; examples include the local-to-zero or local-to-unity frameworks; (ii)
identification-robust methods which control statistical error regardless of identification.5 In particu-
lar, the second approach has the interesting feature of being able to yield exact tests and confidence
sets (CS’s) for structural models – which does not appear to be the case for the first approach. For
this reason we shall focus here on identification-robust methods for which it is possible to derive a
usable finite-sample distributional theory.

For the basic problem of testing efficiency of the market portfolio, at least three exact bound
procedures have been proposed for the Gaussian case. The first one is due to Shanken (1986) and

4For a summary of these results, see Section 8 below.
5See the reviews of Stock et al. (2002) and Dufour (2003). These authors use the term “robust to weak instruments”

to designate procedures whose validity is not affected by a set of instruments that does not allow one to identify structural
parameters. Since we consider here a setup where instrumental variables are not explicitly required, we shall employ the
term “identification-robust” which appears sufficiently general to cover the kind of situation studied in this paper.
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has recently been the subject of renewed attention; see Campbell et al. (1997, chapter 5) and Chou
(2000). The second bound which is developed in Stewart (1997) is directly based on a MLR exten-
sion of a general bound procedure proposed in Dufour (1989). The third one by Zhou (1991, 1995)
and Velu and Zhou (1999) provides improvements in tightness by exploiting statistical results on
dimensionality tests in Gaussian multivariate regressions. However, empirical evidence of multivari-
ate non-normality of financial returns leads one to question the usefulness of such Gaussian-based
exact tests.6 In Beaulieu, Dufour and Khalaf (2006), we studied this problem for mean-variance
efficiency tests in the context of the CAPM assuming observable risk-free rates. To do this, we
extended Gibbons, Ross and Shanken’s (1989) exact test to non-normal settings consistent with
the financial theory of the CAPM and showed that allowing for elliptical non-Gaussian distribu-
tions yields a better fit in the sense that mean-variance efficiency is rejected less often than under
normality.

This paper develops a general finite-sample framework for inference on the BCAPM. First, we
propose finite-sample tests and CS’s for the zero-beta rate. To emphasize the need for improved
statistical procedures, we conduct a small simulation study on the confidence interval proposed in
Campbell et al. (1997), which shows very serious level distortions. In contrast, we propose an exact
CS based on “inverting” exact tests for specific values of the zero-beta rate, i.e. it corresponds to
the set of values not rejected by this exact test. This method, which guarantees level control by
construction, is a generalization of the classical confidence procedure proposed by Fieller (1954);
see Dufour (1997, section 5.1). Its validity follows from the fact that the test statistic used is a
proper pivotal function, i.e. its null distribution does not depend on nuisance parameters. In view of
the recent literature on statistical inference in the presence of weak identification, this type of pro-
cedure constitutes the correct substitute to (typically unreliable) asymptotic Wald-type confidence
intervals; see Dufour (1997), Staiger and Stock (1997) and Wang and Zivot (1998). In particu-
lar, in the Gaussian case, we show that the CS for the zero-beta rate can be obtained by solving a
quadratic inequation – yielding a multivariate extension of the classical Fieller method – while for
non-Gaussian distributions we propose a simulation-based extension of the latter procedure which
can be implemented by numerical methods. Further, we show that the confidence intervals so ob-
tained provide relevant information on whether efficiency is supported by the data, a property not
shared by standard confidence intervals. This is due to the fact the CS may turn out to be empty,
which takes place when all possible values of the zero-beta are rejected, i.e., no parameter con-
figuration is consistent with the data. In the normal error case, an empty CS for the zero-beta rate
occurs when Shanken’s bound test rejects efficiency. This property is interesting since the efficiency
hypothesis actually defines the zero-beta rate. Furthermore, we can also use the exact confidence
intervals to infer whether the estimated zero-beta rate is significantly different from the average real
risk-free rate over each subperiod.

Second, we study the exact distribution of the Gaussian LR-type statistic for testing Black’s
CAPM under both the null and alternative hypotheses, again with possibly non-Gaussian distribu-

6For discussions of the class of return distributions compatible with the CAPM, the reader may consult Ross (1978),
Chamberlain (1983), Ingersoll (1987, Chapter 4), Nielsen (1990), Allingham (1991), Berk (1997), and Dachraoui and
Dionne (2003). Another possibility would consist in considering stable Paretian laws; see Samuelson (1967). However,
since stable distributions other than the normal distribution do not have finite second moments, this requires replacing the
variance of a portfolio by another measure of risk.
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tions. We provide a general representation of this distribution as a function of model disturbances
and nuisance parameters, which allows the latter to be easily simulated. By an invariance argument,
we show that the latter depends on a reduced set of nuisance parameters, which are functions of re-
gression and covariance coefficients. In particular, in the one factor case under the null hypothesis,
the number of nuisance parameters does not exceed the number of equations (portfolios) plus one.
In the standard Gaussian case, the number of nuisance parameters reduces to one.

Third, in view of the presence of nuisance parameters, we generalize Shanken’s (1986) exact
bound test beyond the Gaussian model. Both single and multi-factor models and a wide range
of non-Gaussian distributions are allowed by our framework, including the family of elliptically
symmetric distributions. The latter is relevant since it is theoretically compatible with BCAPM; see
Ingersoll (1987). Empirically, we focus on multivariate Student-t and normal mixture distributions.
Our results show that the Shanken and Stewart bounds obtain as a special case of our non-Gaussian
bound. They also reveal that Shanken’s and Stewart’s bounds are in fact equivalent. We next propose
a tighter bound, which involves a numerical simulation-based search for the tightest cut-off point.
This is implemented using a maximized Monte Carlo (MMC) test procedure [Dufour (2006)]. This
procedure is based on the following fundamental property: when the distribution of a test statistic
depends on nuisance parameters, the desired level α is achieved by comparing the largest p-value
(over all nuisance parameters consistent with the null hypothesis) with the level α of the test: a
(simulated) p-value function conditional on relevant nuisance parameters is numerically maximized
(with respect to these parameters), and the test is significant if the largest p-value is not larger than
α.

Fourth, we formally deal with unknown distributional parameters (e.g. the degrees-of-freedom
for the Student-t distribution, and the mixing probability and scale-ratio parameters for normal
mixtures). To do this, we apply the MMC technique with the following modification [based on
extending the two-step procedures proposed in Dufour (1990) and Dufour and Kiviet (1996)]: the
maximization is restricted to an exact CS estimate for the relevant nuisance parameters. The latter
set is obtained by inverting a distributional goodness-of-fit (GF) test. This approach allows to for-
mally take into consideration the fact that the null hypothesis jointly restricts the error distribution
in addition to regression coefficients. We also run exact multivariate misspecification tests (mul-
tivariate GARCH and variance ratio tests) which provide level-correct checks of the residuals for
departures from the maintained i.i.d. hypothesis.

Fifth, the methodology developed is used to examine efficiency of the market portfolio for
monthly returns on New York Stock Exchange (NYSE) portfolios, built from the University of
Chicago Center for Research in Security Prices (CRSP) 1926-1995 data base. Results based on as-
ymptotic distributional theory, exact tests under normality as well as exact p-values for non-normal
elliptical distributions are presented. We find that mean-variance efficiency of the market portfolio
in the context of BCAPM is rejected over a smaller number of subperiods under the Student and the
normal mixture distributions than under the normal. Finally, using exact CS’s for γ, we observe that
they do not lead to the same decision as the asymptotic confidence intervals when checking whether
the average risk-free rate is covered by the CS for γ.

The paper is organized as follows. Section 2 sets the framework and the basic test statistics that
will be considered. In Section 3, we discuss the identification issues associated with the unobserv-
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able zero-beta rate and present a small simulation study illustrating the statistical difficulties entailed
by this feature. In Section 4, we propose finite-sample tests for specific values of the zero-beta rate,
and the corresponding exact CS are derived in Section 5. The exact distribution of a LR-type statistic
for testing mean-variance efficiency is established in Section 6, and bound procedures are proposed
in Section 7. In Section 8, we report the empirical results. We conclude in Section 9.

2. Framework and motivation for exact inference

Let Rit, i = 1, . . . , n, be the returns on n securities in period t, and R̃Mt the return on a market
benchmark (t = 1, ... , T ). Our analysis of the BCAPM model is based on the following standard
MLR setup [Gibbons (1982), Shanken (1986), MacKinlay (1987)]:

Rit = ai + βiR̃Mt + uit , i = 1, . . . , n, t = 1, . . . , T, (2.1)

where the uit are random disturbances. We assume we can condition on R̃M =
(
R̃M1, ... , R̃MT

)′,
i.e. we can take R̃M as fixed for statistical inference. Furthermore, the vectors Vt = (u1t, . . . , unt)′

have the form:
Vt = K ′Wt , t = 1, . . . , T , (2.2)

where K ′ is an unknown non-singular matrix and the distribution of W = [W1, . . . , WT ]′ is: either
(i) fully specified, or (ii) specified up to an unknown distributional shape parameter ν. Although
we present general results which require no further regularity assumptions on the error terms, the
CAPM imposes distributional restrictions, which entail that the distribution of W belongs to a spe-
cific distributional family HW (D, ν), where D represents a distribution type and ν ∈ ΩD any
(eventual) nuisance parameter characterizing the distribution. Below, we focus on multivariate nor-
mal (DN ), Student-t (Dt) and normal mixture (Dm) distributions for W :

HW (DN ) : Wt
i.i.d∼ N

[
0, In

]
, (2.3)

HW (Dt, κ) : Wt = Z1t/(Z2t/κ)1/2 , Z1t
i.i.d∼ N

[
0, In

]
, Z2t

i.i.d∼ χ2(κ) , (2.4)

HW (Dm, π, ω) : Wt = It(π)Z1t + [1− It(π)]Z3t , Z3t
i.i.d∼ N

[
0 , ωIn

]
, 0 < π < 1 , (2.5)

where Z2t and Z3t are independent of Z1t, and It(π) is an indicator variable independent of(
Z1t, Z3t

)
such that P[It(π) = 0] = 1 − P[It(π) = 1] = π. So, in (2.2), ν = κ under (2.4),

and ν = (π, ω) under (2.5). Clearly, if E(WtW
′
t) = In, the covariance matrix of Wt is Σ = K

′
K.

These distribution families are consistent with the theoretical foundations of the CAPM [see Inger-
soll (1987)] and are also empirically relevant since they allow for the “fat tails” typically observed in
financial returns [see Fama (1965)]. Note that Σ is positive definite and is not otherwise restricted,
but further constraints on K may be needed in order to determine K uniquely. For example, if Wt is
Gaussian, we may assume that K is upper triangular so that Σ = K ′K corresponds to the Cholesky
factorization of Σ. So we assume that:

K ∈ J (2.6)
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where J is a multiplicative group of n × n matrices. For example, J may be the set of all n × n
non-singular matrices or the subgroup of non-singular lower-triangular matrices.

The testable implication of the BCAPM on (2.1) is the following one: there is a scalar γ, the
return on the zero-beta portfolio, such that

HB : ai − γ0(1− βi) = 0 , i = 1, . . . , n, for some γ0 ∈ Γ , (2.7)

where Γ is some set of “admissible” values for γ, such as Γ = R (unrestricted), Γ = [0,∞) or
Γ = [−1, 1]. Since γ is unknown, HB is nonlinear. However, the more restrictive hypothesis

H(γ0) : ai − γ0(1− βi) = 0 , i = 1, . . . , n, (where γ0 is specified) (2.8)

is linear. This observation underlies our exact bound CAPM test and CS for γ.
The above model is a special case of the following MLR:

Y = XB + U , U = WK , (2.9)

where Y = [Y1, ... , Yn] is a T × n matrix, X is T × k matrix of rank k, U = [U1, . . . , Un] =
[V1, . . . , VT ]′ is a T × n matrix of error terms which are independent of X. For model (2.1), we
have: Y = [R1, ... , Rn] , X =

[
ιT , R̃M

]
, Ri = (Ri1, ... , RiT )′ , R̃M =

(
R̃M1, ... , R̃MT

)′
,

B = [a, β]′, a = (a1, . . . , an)′ and β = (β1, . . . , βn)′. In this context, one of the most common
way of testing HB consists in maximizing the Gaussian log-likelihood

ln[L(Y, B , Σ)] = −nT

2
(2π)− T

2
ln(|Σ|)− 1

2
tr[Σ−1(Y −XB)′(Y −XB)] (2.10)

under the null and the alternative hypotheses, and computing the corresponding likelihood ratio
(LR) test criterion

LRB = T ln(ΛB) with ΛB = |Σ̂B|/|Σ̂| , (2.11)

where Σ̂B is the maximum likelihood (ML) estimator of Σ underHB, Σ̂ = Û ′Û/T, Û = Y −XB̂,
B̂ = (X ′X)−1X ′Y . Similarly, the LR statistic to test H(γ0) is

LR(γ0) = T ln[Λ(γ0)] with Λ(γ0) = |Σ̂(γ0)|/|Σ̂| (2.12)

where Σ̂(γ0) is the restricted ML estimator of Σ underH(γ0). It is easy to see that the two statistics
are related as follows:

|Σ̂B| = inf {|Σ̂(γ0)| : γ0 ∈ Γ} , LRB = inf {LR(γ0) : γ0 ∈ Γ} = LR(γ̂) , (2.13)

where γ̂ is the QML estimator of γ; see Shanken (1986).
Because the errors may not follow Gaussian distributions in our setup, we shall call LRB and

LR(γ0) quasi likelihood ratio (QLR) criteria and the ML estimators on which they are based
Gaussian quasi maximum likelihood (QML) estimators. Note also that the condition γ0 ∈ Γ
may involve inequality or nonlinear constraints that can lead to non-regular distributions. The
simulation-based approach we propose below deals in a transparent way with such difficulties. For
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further reference, we will denote the observed value of these statistics (calculated from the available
sample) as LR

(0)
B and LR(0)(γ0), respectively. P(B, K) represents the distribution of Y when the

parameters are (B, K), while for any matrix A, the symbol M(A) denotes the projection matrix
M(A) = I −A(A′A)−A′.

3. The zero-beta rate as a weakly identified parameter

Although several computationally simple procedures have been developed to obtain constrained
QML estimates [see Gibbons (1982), Shanken (1986), Zhou (1991), and Chou (2000)], CS estimates
of the key parameter γ appear to be lacking. A Wald-type QML formula for an asymptotic standard
error is provided by Campbell et al. (1997, Chapter 5, equation 5.3.81) for the single beta case:

Var(γ̂) =
1
T

(
1 +

(R̄M − γ̂)2

∆2
M

)
[(ιn − β̂)′Σ̂−1(ιn − β̂)]−1 (3.1)

where β̂ is an n × 1 vector which includes the unconstrained OLS estimates of βi , i = 1, . . . ,
n, ιn = (1, . . . , 1)′, R̄M and ∆2

M are respectively the sample mean and variance of the bench-
mark returns (on the right-hand-side), and γ̂ is the QML estimator of γ (see Section 7.1 for further
discussion). It seems however that this expression has not often been used in practice.

A central difficulty with model (2.1) jointly with (2.7) stems from the fact that, even though ai

and βi are well identified (because they can be interpreted as regression coefficients), the zero-beta
rate γ is defined through a nonlinear transformation that may fail to be well-defined. Namely, the
ratio γ = ai/(1−βi) is not defined when βi = 1 or, equivalently, the equation ai = γ(1−βi) does
not have a unique solution when βi = 1. In other words, γ is not identifiable when βi = 1 , i =
1, . . . , n. So γ may be quite difficult to estimate with reasonable precision if the coefficients βi

are close to one. γ is a locally almost unidentified (LAU) parameter [Dufour (1997)] or, following
the weak-instrument literature, γ is a weakly identified parameter on some subset of the parameter
space.

In such situations, many standard test statistics, such as Wald-type statistics, cannot be pivotal
irrespective of the sample size (i.e., their distributions depend on unknown nuisance parameters), so
that the corresponding tests can be arbitrarily unreliable and CS’s based on such statistics become
invalid in a fundamental way (e.g., the true size of a CS with nominal level 0.95 is in fact equal to
zero). In particular, asymptotic standard errors become extremely unreliable and standard asymp-
totically justified t-type tests and confidence intervals have sizes that may deviate arbitrarily from
their nominal levels. Both the finite and large-sample distributional theory of most test statistics can
be heavily affected, so that important adjustments are typically required. These issues have been
explored in the recent literature on weak instruments; see, for example, Staiger and Stock (1997),
Wang and Zivot (1998), Zivot et al. (1998), Dufour and Jasiak (2001), Stock and Wright (2000),
Kleibergen (2002), Moreira (2003), and the reviews of Stock et al. (2002) and Dufour (2003).

Even though this work focuses on inference in simultaneous equations models (or IV regres-
sions), it is important to note that the problem we consider here is fundamentally the same. To see
that the issue can matter in the context of inference on γ that may be weakly identified, it will be
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Table 1. Asymptotic confidence interval for the zero-beta rate: coverage probabilities

Parameters of (2) (3) (4) (5)

Sample T = 60 T = 100 T = 500 T = 1000
1927-30 0.083 0.117 0.304 0.411
1931-35 0.036 0.054 0.114 0.209
1926-40 0.062 0.078 0.158 0.296
1941-45 0.071 0.124 0.335 0.432
1946-50 0.111 0.177 0.445 0.589
1951-55 0.157 0.236 0.543 0.669
1956-60 0.138 0.267 0.546 0.652
1961-65 0.075 0.127 0.272 0.426
1966-70 0.085 0.139 0.392 0.546
1971-75 0.064 0.090 0.242 0.312
1976-80 0.072 0.121 0.390 0.508
1981-85 0.099 0.139 0.376 0.525
1986-90 0.101 0.125 0.301 0.421
1991-95 0.162 0.187 0.302 0.360

Note – Numbers shown are estimated coverage probabilities for an asymptotic confidence interval for γ based on (3.1)
with nominal level 0.95, using 1000 simulated samples conformable with (2.1). These are drawn using estimated para-
meters (including error covariances), from the empirical model analyzed in Section 8, imposing efficiency. The regressor
matrix includes, in addition to a constant, a simulated variate drawn as uniformly distributed over the observed range of
benchmark returns. Empirical coverage probabilities are the proportion of cases where the true value of γ falls within the
estimated confidence interval.

useful to look at the results of a small simulation experiment. Using estimated parameters from
the empirical model estimated in Section 8, including the error covariances, we generated 1000
realizations of the MLR (2.1) under test, imposing efficiency. For each simulated sample, a Wald-
type confidence interval with nominal level of 95% was computed using (3.1) as the standard error,
and the empirical proportion of cases where the true value of γ fell in the confidence interval was
evaluated. The regressor matrix includes, in addition to a constant, a simulated variate drawn as
uniformly distributed over the observed range of benchmark returns, to allow the analysis of sev-
eral sample sizes. The results are reported in Table 1. The coverage probabilities obtained can be
severely low: instead of being around 95%, they range from 3.6% to just 16% with observed sample
sizes, from 5.6% to just 18% with T = 100, and from 20% to 67% when T = 1000. These results
motivate the finite-sample approach we propose in what follows.

4. Exact identification-robust tests for the zero-beta rate

We will first derive the exact null distribution of the QLR statistic LR(γ0) under H(γ0), where γ0

is known. This will allow us to build a CS for γ and yield a way of testing efficiency. The basic
distributional result for that purpose is given by the following theorem.

8



Theorem 4.1 DISTRIBUTION OF THE MEAN-VARIANCE CAPM TEST FOR A KNOWN ZERO-
BETA RATE. Under (2.1), (2.2) and (2.8), the statistic LR(γ0) in (2.12) is distributed like

LR(γ0, W ) = T ln(
∣∣W ′M̄(γ0)W

∣∣ /
∣∣W ′MW

∣∣) (4.1)

where M̄(γ0) = M + X(X ′X)−1H(γ0)′[H(γ0)(X ′X)−1H(γ0)′]−1H(γ0)(X ′X)−1X ′ and
H(γ0) is the row vector (1, γ0).

Proofs are given in the Appendix. In the Gaussian case (2.3), we have:

[(T − 1− n)/n][Λ(γ0)− 1] ∼ F (n, T − 1− n) ; (4.2)

see Dufour and Khalaf (2002, Appendix, Theorem A.1).7 This result was exploited by Gibbons
et al. (1989) in studying mean-variance efficiency with observable risk-free rate. Indeed, testing
H(γ0) is equivalent to testing whether the regression intercepts are jointly zero in a market model
where returns are in excess of γ0: H(γ0) ⇔ āi = 0 , i = 1, . . . , n, in the context of Rit − γ0 =
āi + βi(R̃Mt − γ0) + uit , i = 1, . . . , n, t = 1, . . . , T.

For non-Gaussian distributions compatible with (2.2), Theorem 4.1 shows that the exact dis-
tribution of LR(γ0), although non-standard, may easily be simulated once the matrix X, the dis-
tribution of W and the value γ0 [given by H(γ0)] are set. So the MC test method can be easily
applied [see Dufour (2006)]. In general, the MC test method assesses the rank of the observed
value of a test statistic

[
denoted S(0)

]
, relative to a finite number N of simulated statistics [de-

noted S(1) , . . . , S(N)] drawn under the null hypothesis. Conforming with (2.2), we assume that
S(1) , . . . , S(N) can be simulated given: (i) a value of ν, (ii) N draws W (1), . . . , W (N), from the
distribution of W [which under (2.2) can be simulated once ν is specified], (iii) a vector of parame-
ters (denoted η) which affect the distribution of the test statistic, and (iv) the test function S̄(η, W )
which depends on η, W and X.8 In other words, on drawing N samples from the distribution of
W (which depends on ν) and computing S̄(η, W ) for each simulated sample, we get the vector
S̄N (η, ν) =

[
S̄

(
η, W (1)

)
, . . . , S̄

(
η, W (N)

)]′
. Then a MC p-value is defined as:

pN [S(0)
∣∣S̄N (η, ν)] =

NGN

[
S(0) ; S̄N (η, ν)

]
+ 1

N + 1
, (4.3)

GN

[
S(0) ; S̄N (η, ν)

]
=

1
N

N∑

j=1

I[0,∞)

[
S̄(W (j), η)− S(0)

]
, (4.4)

where IA[x] = 1, if x ∈ A , and IA[x] = 0, if x /∈ A . In the case of LR(γ0), we have S(0) ≡
LR(0)(γ0), η ≡ γ0, S̄

(
η, W (i)

)
= LR

(
γ0, W (i)

)
, i = 1, . . . , N, hence

p̂N (γ0, ν) ≡ pN

[
LR(0)(γ0)

∣∣LRN (γ0, ν)
]

(4.5)

7A summary of these results appears in Appendix A.
8For notational simplicity – in view of the fact that X is taken as fixed – the dependence upon X is implicit through

the definition of the S̄ mapping.
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where LRN (γ0, ν) =
[
LR

(
γ0, W (1)

)
, . . . , LR

(
γ0, W (N)

)]′
. As a result of Theorem 4.1, we

have, under the null hypothesis H(γ0) in conjunction with HW (D, ν) :

P
[
p̂N (γ0, ν0) ≤ α

]
= α , when ν = ν0, (4.6)

P
[
sup{p̂N (γ0, ν0) : ν0 ∈ ΩD} ≤ α

] ≤ α , when ν may be unknown. (4.7)

For further reference, we will call p̂N (γ0, ν) a pivotal MC (PMC) p-value, to emphasize that it is
based on the null distribution of a pivotal (in the sense of invariance to B and K) statistic. These
results provide the basis for the CS procedure we propose in what follows for inference on the
zero-beta rate.9

5. Exact confidence sets for the zero-beta rate

The problem of building a CS for γ (given the definition of this parameter) can be viewed as an
extension of the classical “Fieller problem” which focuses on estimating the ratio of the means of
two normal samples with the same variance (and no regressors). Fieller (1940, 1954) gave a finite-
sample solution to this problem, which can be interpreted as the inversion of a LR test and avoids the
non-regularities associated with the fact that the denominator could be equal or close to zero. While
it is relatively straightforward to extend Fieller’s solution to univariate linear regressions [see Zerbe
(1978) and Dufour (1997)], the MLR model here is much more complex. In this section, we provide
the required extension, which is based on “inverting” finite-sample simulation-based LR-type tests.
Specifically, we consider “inverting” the LR test defined in Theorem 4.1, rather than standard t or
F tests in a single regression - as one in the earlier literature on this topic.10 Our analysis reveals
crucial differences between the Gaussian and non-Gaussian cases.

5.1. Fieller-type confidence sets for zero-beta rate: Gaussian case

Consider the Gaussian one-factor model (2.1) - (2.3). Let us denote by â = (â1, ... , ân)′ and β̂ =
(β̂1, ... , β̂n)′ the unrestricted least squares estimators, and set δ̂ = ιn − β̂, µ̂M = 1

T

∑T
t=1 R̃Mt ,

σ̂2
M = 1

T

∑T
t=1(R̃Mt − µ̂M )2. Under HB, the ratios ai/(1− βi) , 1, . . . , n, are equal. We wish to

build a CS for the coefficient γ such that γ = ai/(1 − βi) , 1, . . . , n. To do so, we consider first
the problem of testing whether γ has a given value γ0, i.e. H(γ0) as defined in (2.8). In this case,
the LR statistic is a monotonic transformation of the Wald-type (or Hotelling) statistic

W(γ0) =
T − n− 1

n

(
â− δ̂γ0

)′
Σ̂−1

(
â− δ̂γ0

)

1 +
[
(µ̂M − γ0)2/σ̂2

M

] , (5.1)

whose null distribution does not depend on γ0, so that the same critical point can be used to test
any value γ0. Indeed, under H0(γ0), W(γ0) follows a Fisher distribution F (n, T − n− 1) ; see

9Further discussion of exact MC p-values is provided in Appendix C.
10See Fieller (1940, 1954), Koschat (1987), Zerbe (1978), Buonaccorsi and Iyer (1984) and Dufour (1997, Section

5.1).
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Campbell et al. (1997, equation 5.3.80, page 202). Let Fα denote the cut-off point for a test with
level α based on the F (n, T − n− 1) distribution, i.e., P[F (n, T − n− 1) ≥ Fα] = α. Then the
set

CFγ(α) = {γ0 ∈ Γ : W(γ0) ≤ Fα} (5.2)

has level 1 − α for γ. In other words, the probability that γ be covered by CFγ(α) is not smaller
than 1− α : P[γ ∈ CFγ(α)] ≥ 1− α .

Indeed, the equality P[γ ∈ CFγ(α)] = 1−α holds here. On noting that the inequalityW(γ0) ≤
Fα can be rewritten as

MF (γ0)−
nFα

T − n− 1
NF (γ0) ≤ 0 , (5.3)

MF (γ0) =
(
â− δ̂γ0

)′
Σ̂−1

(
â− δ̂γ0

)
=

(
δ̂
′
Σ̂−1δ̂

)
γ2

0 −
(
2δ̂
′
Σ̂−1â

)
γ0 + â′Σ̂−1â , (5.4)

NF (γ0) = 1 +
(µ̂M − γ0)2

σ̂2
M

=
1

σ̂2
M

γ2
0 −

2µ̂m

σ̂2
M

γ0 + 1 +
µ̂2

M

σ̂2
M

, (5.5)

we see, after a few manipulations, that CFγ(α) reduces to a simple quadratic inequation:

CFγ(α) = {γ0 ∈ Γ : Aγ2
0 + Bγ0 + C ≤ 0} , (5.6)

A = δ̂
′
Σ̂−1δ̂ −

(
nFα

T − n− 1

)
1

σ̂2
M

, B = 2
[(

nFα

T − n− 1

)
µ̂M

σ̂2
M

− δ̂
′
Σ̂−1â

]
, (5.7)

C = â′Σ̂−1â−
(

nFα

T − n− 1

)[
1 +

µ̂2
M

σ̂2
M

]
. (5.8)

For Γ = R, the resulting CS can take several forms depending on the roots of the polynomial
Aγ2

0 + Bγ0 + C : (a) a closed interval; (b) the union of two unbounded intervals; (c) the entire
real line; (d) an empty set.11 Case (a) corresponds to a situation where γ is well identified, while
(b) and (c) correspond to unbounded CS’s and indicate (partial or complete) non-identification. The
possibility of getting an empty CS may appear surprising. But, on hindsight, this is quite natural:
it means that no value of γ0 does allow H(γ0) to be acceptable. Since the efficiency hypothesis
HB states that there exists a real scalar γ such that ai = (1 − βi)γ , i = 1, . . . , n, this can be
interpreted as a rejection of HB. Further, under HB, the probability that CFγ(α) covers the true
value γ is 1 − α, and an empty set obviously does not cover γ. Consequently, the probability that
CFγ(α) be empty [CFγ(α) = ∅] cannot be greater than α under HB : P[CFγ(α) = ∅] ≤ α. The
event CFγ(α) = ∅, is a test with level α for HB under normality.

5.2. Fieller-type confidence sets for zero-beta rate: non-Gaussian case

The quadratic CS described above relies heavily on the fact that the same critical point Fα can
be used to test all values of γ0. This occurs under the Gaussian distributional assumption, but not
necessarily if errors are not Gaussian. Although the quadratic CS will remain “asymptotically valid”

11Further discussion of such quadratic confidence sets is available in Dufour (1997, Section 5.1), Dufour and Jasiak
(2001), Zivot et al. (1998), and Dufour and Taamouti (2005).
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as long as W(γ) converges to a χ2(n) distribution (which does not depend on nuisance parameters
nor on the true parameter value of γ), this cannot provide an exact CS. So we now study how
the Fieller-type procedure described above can be extended to allow for possibly non-Gaussian
disturbances.

Again, the problem we face can be tackled by inverting an α-level test based on LR(γ0). How-
ever, the test is now performed by simulation (as a Monte Carlo test) and there is no reason to expect
that the null distribution of the test statistic is the same for all values of γ0. Consider the MC p-
value p̂N (γ0, ν) function associated with this statistic, as defined in (4.5). Since the critical region
p̂N (γ0, ν) ≤ α has level α for testing γ = γ0 when ν is known, the set of γ0 values for which
p̂N (γ0, ν) exceeds α, i.e.

Cγ(α; ν) =
{
γ0 ∈ Γ : p̂N (γ0, ν) > α

}
, (5.9)

is a CS with level 1 − α for γ. Similarly, when ν is not specified, the test sup{pN (γ0, ν0) : ν0 ∈
ΩD} ≤ α yields the CS:

Cγ(α; D) =
{
γ0 ∈ Γ : sup{p̂N (γ0, ν0) : ν0 ∈ ΩD} > α

}
, (5.10)

whose level is also 1 − α.12 This holds for any sample size and regressor design. In contrast with
the Gaussian case, there is no closed form in this case, and the set of acceptable values Cγ(α; ν) or
Cγ(α; D) must be drawn by numerical methods, such as a grid search. Note also that the identity
LR(γ̂) = inf {LR(γ0) : γ0 ∈ Γ} entails that γ̂ must belong to the CS, provided its level is larger
than zero.

It is not clear, however, that these confidence sets can only take four general shapes as oc-
curs for CFγ(α) in (5.2). We have no closed-form description of the structure of Cγ(α; ν) or
Cγ(α; D). While these can be bounded intervals (this is showed numerically in Section 8), Cγ(α; ν)
or Cγ(α; D) must be unbounded with a high probability if γ is not identifiable or weakly identified
[see Dufour (1997)]. An empty CS is also possible and provides evidence that the efficiency hy-
pothesis HB is not compatible with the data. The event Cγ(α; ν) = ∅ [or Cγ(α; D) = ∅] is a test
with level α for HB under assumption (2.2).

6. Invariance and exact distribution of Black QLR

In this section, we study the exact distribution of the test statistic LRB = T ln(ΛB) for Black’s
CAPM under the null hypothesis HB and the alternative MLR model. We provide a general rep-
resentation of this distribution as a function W and nuisance parameters. In particular, by an in-
variance argument, we show that the latter depends on B and K only through a lower-dimensional
function of B and K, even when the null hypothesis HB does not hold. Further, under HB, the
number of such free parameters is at most n + 1.

12In view of this asymptotic validity of the quadratic confidence set CFγ(α) described in Section 5.1, the latter may
be used as a reasonable approximation to the exact confidence set.
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To do this, we consider first the following equivalent representation of model (2.1):

Rit − R̃Mt = ai + δiR̃Mt + uit , i = 1, . . . , n, t = 1, . . . , T, (6.1)

where δi = βi − 1, or in matrix form

Ỹ = XC + U (6.2)

where Ỹ = Y − R̃Mι′n, R̃M =
(
R̃M1, . . . , R̃MT

)′
, C = B −∆ = [a, β − ιn]′, ∆ = [0, ιn]′, and

X =
[
ιT , R̃M

]
. Then the null hypotheses H(γ0) and HB can be rewritten as:

H̃(γ0) : H(γ0)C = 0 , (where γ0 is specified) (6.3)

H̃B : H(γ0)C = 0 , for some γ0 ∈ Γ, (6.4)

where H(γ0) = (1, γ0). Since the Jacobian of the transformation from vec(Ỹ ) to vec(Y ) is a unit
matrix, the Gaussian log-likelihood function for model (6.2) is

ln[L̃(Ỹ , C , Σ)] = ln[L(Y − R̃Mι′n, B −∆, Σ)] = ln[L(Y, B , Σ)] (6.5)

and the corresponding Gaussian QLR statistics for testing H̃(γ0) and H̃B numerically coincide with
LR(γ0) and LRB as given in (2.11) - (2.12); see Dagenais and Dufour (1991).

In order to establish the distribution of LRB, it will be useful to first show that LRB is invariant
to data transformations of the form Ỹ∗ = Ỹ A, where A is any non-singular fixed matrix of order n.
Such transformations can also be viewed as affine transformations on Y with the following specific
form:

Y∗ = Y A + R̃Mι′n(In −A). (6.6)

Lemma 6.1 MULTIVARIATE SCALE INVARIANCE. The LR statistics LR(γ0) and LRB defined in
(2.11) and (2.12) are invariant to replacing Ỹ by Ỹ∗ = Ỹ A, where A is an arbitrary nonsingular
n× n matrix.

We can now establish the following theorem which characterizes the distribution of the test
statistics LR(γ0) and LRB, under both the null hypothesis HB and the corresponding unrestricted
MLR alternative model.

Theorem 6.2 EXACT DISTRIBUTION OF BCAPM LR TESTS. Under (2.1) and (2.2), the dis-
tributions of the statistics LR(γ0) and LRB depend on the model parameters (B, K) only through
B̄ = (B −∆)K−1 where ∆ = [0, ιn]′, and

LR(γ0) = T ln
(|Ŵ (γ0)

′Ŵ (γ0)|/|Ŵ ′Ŵ |) , LRB = inf {LR(γ0) : γ0 ∈ Γ} , (6.7)

where Ŵ (γ0) = M̄(γ0)(XB̄+W ) = M̄(γ0){ιT [a+γ0(β−ιn)]′K−1+W }, Ŵ = M(X)W, and
M̄(γ0) is defined as in (4.1). If, furthermore, the null hypothesis HB holds, then

Ŵ (γ0) = (γ0 − γ)M̄(γ0)ιT (β − ιn)′K−1 + M̄(γ0)W (6.8)
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and the distribution of LRB depends on (B, K) only through γ and (β − ιn)′K−1.

Even though the matrices B and K may involve up to 2n+ n2 different parameters [or 2n +
n(n + 1)/2 parameters, if K is a triangular matrix], the latter theorem shows that the number
of free parameters in the distributions of LR(γ0) and LRB does not exceed 2n, the number of
parameters in B̄. Indeed, when HB holds, the number of free parameters is at most n + 1. Further,
under H(γ0), it follows from (6.8) that B̄ completely disappears from the distribution, entailing
Theorem 4.1. However, Theorem 6.2 also provides the power function. The characterizations given
by (6.7) and (6.8) are sufficiently explicit to allow simulating the distributions LR(γ0) and LRB

once B̄ is specified.
Further information on the structure of the nuisance parameters can be drawn from considering

the singular value decomposition of B̄. Let r be the rank of B̄. Since B̄ is a 2× n matrix, we have
0 ≤ r ≤ 2 and we can write:

B̄ = PDQ′ , D = [D̄, 0] , D̄ = diag
(
λ

1/2
1 , λ

1/2
2

)
, (6.9)

where D is a 2×n matrix, λ1 and λ2 are the two largest eigenvalues of B̄′B̄ (where λ1 ≥ λ2 ≥ 0),
Q = [Q1, Q2] is an orthogonal n×n matrix whose columns are eigenvectors of B̄′B̄, Q1 is a 2× r
matrix which contains eigenvectors associated with the non-zero eigenvalues of B̄′B̄, P = [P1, P2]
is a 2× 2 orthogonal matrix such that P1 = B̄Q1D

−1
1 and D1 is a diagonal matrix which contains

the non-zero eigenvalues of B̄′B̄, setting P = P1 and D1 = D̄ if r = 2, and P = P2 if r = 0; see
Harville (1997, Theorem 21.12.1).

Using Lemma 6.1 and Theorem 6.2, LR(γ0) and LRB may then be reexpressed as:

LR(γ0) = T ln
(|W̃ (γ0)

′W̃ (γ0)|/|W̃ ′W̃ |) , LRB = inf {LR(γ0) : γ0 ∈ Γ} , (6.10)

where W̃ (γ0) = Ŵ (γ0)Q = M̄(γ0)(XPD + W̄ ), PD = [PD̄, 0], W̃ = ŴQ = M(X)W̄ and
W̄ = WQ. In view of the orthogonality of the P matrix, it is easy to see that the 2× 2 matrix PD̄
contains at most 3 free coefficients. Further, underHB, the rank of B̄ is at most one (so that λ2 = 0)
and PD̄ involves at most one free coefficient.13 When W follows a non-Gaussian distribution, the
distributions of LR(γ0) and LRB may be influenced by the parameters of B̄ through the matrix Q in
W̄ . However, under the Gaussian assumption HW (DN ) in (2.3), the rows of W̄ are i.i.d. N(0, In),
so that the statistics LR(γ0) and LRB follow distributions which depend on (B,K) only through
PD̄. In particular, under HB, this distribution involves only one nuisance parameter, in accordance
with the result derived by Zhou (1991, Theorem 1) through a different method.

Even though the above observations can be useful – as we will see below – Theorem 6.2 leaves
us with a distribution that depends on nuisance parameters under the null hypothesis HB, possibly
in a complex way. So bounds may be needed to test HB. In the next section, we study the problem
of testing HB despite the presence of nuisance parameters which may be difficult to evacuate.

13If r = 1, the eigenvector associated with λ1 is uniquely defined once its first non-zero element is normalized to be
positive (which is always possible).
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7. Exact bound procedures for testing Black’s CAPM

In this section, we propose procedures for testing HB despite the presence of nuisance parame-
ters induced by the nonlinearity of HB and non-Gaussian error distributions. We study first global
bounds based on tests of H(γ0) discussed in Section 4, where we outline important differences
between the Gaussian and non-Gaussian cases. Second, we describe a more general but computa-
tionally more expensive method based on the technique of MMC tests [Dufour (2006)] in order to
obtain tighter bounds. Thirdly, for the case when the error distribution involves nuisance parameters
which are difficult to eliminate, we propose variants of these approaches which involves building a
confidence set for the nuisance parameters in the error distribution and may lead to tighter bounds.

7.1. Global bound induced by tests of H(γ0)

The results of Section 4 on testing γ = γ0 can be used to derive a global bound on the distribution
of the statistic LRB. This is done in the following theorem.

Theorem 7.1 GLOBAL BOUND ON THE NULL DISTRIBUTION OF THE BCAPM TEST. Under
the assumptions (2.1), (2.2) and (2.7), the distribution of the statistic LRB in (2.11) satisfies the
following inequality for any given ν ∈ ΩD :

P
[
LRB ≥ x

] ≤ sup
γ0∈Γ

P
[
LR(γ0, W ) ≥ x

]
, ∀x , (7.1)

where LR(γ0, W ) is defined as in (4.1). Further, in the Gaussian case where W1, . . . , WT
i.i.d∼ N

(0, In), we have:

P
[
(T − 1− n) (ΛB − 1) /n ≥ x

] ≤ P[F (n, T − 1− n) ≥ x] , ∀x . (7.2)

To relate this result to the bounds proposed by Shanken (1986) and Stewart (1997), first observe
that (7.1) and (7.2) easily extend to the following multi-beta setups:

Rit = ai +
s∑

j=1

βijR̃jt + uit , i = 1, . . . , n, t = 1, . . . , T,

where R̃jt, j = 1, ... , s are returns on s benchmarks and the null hypothesis is

HB : ai = γ
(
1−

s∑

j=1

βij

)
, i = 1, . . . , n. (7.3)

In this case, the bounding distribution of the LRB statistic obtains as in Theorems 7.1 where X =
[ιT , R̃1, ... , R̃s] , R̃j = (R̃j1, ... , R̃jT )′, j = 1, . . . , s, and H is the k-dimensional row vector
(1, γ0, . . . , γ0). In the Gaussian case, the probabilities P

[
LR(γ0, W ) ≥ x

]
do not depend on

γ0, and the bounding distribution under normality is F (n, T − s − n). For this problem, Shanken
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(1986) suggested the statistic

Q̃ = min
γ

{
T

[
â− γ(ιn − β̂ιs)

]′[(
T/(T − 2)

)
Σ̂

]−1[
â− γ(ιn − β̂ιs)

]

1 + (R̄M − γιs)′∆̂−1
M (R̄M − γιs)

}
(7.4)

where â is an n-dimensional vector which includes the (unconstrained) intercepts estimates, β̂ is
an (n × s) matrix whose rows includes the unconstrained OLS estimates of (βi1, . . . , βis), i =
1, . . . , n, R̄M and ∆̂M include respectively the time-series means and sample covariance matrix
corresponding to the right-hand-side total portfolio returns. Further, the minimum in (7.4) occurs at
the constrained ML estimator γ̂ of γ, and LRB is a transformation of Q̂ :

LRB = T ln
(
1 +

Q̂

T − s− 1

)
. (7.5)

On assuming normal errors, the null distribution of Q̂ may be bounded by the Hotelling distribution,
i.e. (T − s− n)Q̂/[n(T − s− 1)] can be bounded by the F (n, T − n− s) distribution. The latter
obtains from Gibbons et al. (1989)’s joint test for the significance of the intercepts, where returns
are expressed in excess of a known γ.

Independently, Stewart (1997) showed that the statistic (T−s−n)
[(|Σ̂(γ)|/|Σ̂|)−1

]
/n can be

bounded, under normal errors, by the F (n, T − n− s) distribution. This result may also be viewed
as an instance of the bounding technique described in Dufour (1989). Now, from (2.11) and (7.5),
we see easily that: (i) Shanken and Stewart’s bounds are equivalent, and (ii) both results obtain from
Theorem 7.1 in the special case of normal errors.

When disturbances are non-Gaussian, Theorem 7.1 entails that the bounding distribution can
easily be simulated, as follows. Given a value of ν, generate N i.i.d. draws from the distribution
of W1, . . . , WT ; then, for any given γ0, these yield a vector LRN (γ0, ν) of N simulated values
of the test statistic LR(γ0, W ), as defined in (4.1). A MC p-value may then be computed from
the rank of the observed statistic LRB relative to the simulated values. Following the notation of
Section 4, denote this MC p-value by

p̂U
N (γ0, ν) ≡ pN [LR

(0)
B

∣∣LRN (γ0, ν)] (7.6)

where LR
(0)
B represents the value of the test statistic LRB based on the observed data; we will call

p̂U
N (γ0, ν) the bound MC (BMC) p-value. Since LRB ≤ LR(γ0), for any γ0, we have LRB ≤

LR(γ) and p̂N (γ, ν) ≤ p̂U
N (γ, ν), hence by (4.6),

P
[
p̂U

N (γ, ν) ≤ α
] ≤ P

[
p̂N (γ, ν) ≤ α

]
= α. (7.7)

For any subsets A ⊆ Γ and E ⊆ ΩD, set:

p̂U
N (γ0, E) = sup {p̂U

N (γ0, ν0) : ν0 ∈ E}, p̂U
N (A, ν0) = sup {p̂U

N (γ0, ν0) : γ0 ∈ A},

p̂U
N (A, E) = sup {p̂U

N (γ0, ν0) : γ0 ∈ A, ν0 ∈ E} (7.8)
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where, by convention, p̂U
N (A, · ) = 0 if A is empty, and p̂U

N ( · , E) = 0 if E is empty. In contrast
with the Gaussian case where the bounding distribution is F (n, T−n−p) for all γ0, the distribution
of p̂U

N [γ0, ν] may depend on γ0. Then a critical region that provably satisfies the level constraint
can be obtained by maximizing p̂U

N (γ0, ν) over the relevant nuisance parameters, as shown in the
following theorem.

Theorem 7.2 GLOBAL SIMULATION-BASED BOUND ON THE NULL DISTRIBUTION OF THE

BCAPM TEST STATISTIC. Under (2.1), (2.2) and (2.7),

P
[
p̂U

N (Γ, ν) ≤ α
] ≤ α (7.9)

where ν represents the true distributional shape of W, and

P
[
p̂U

N (Γ, ΩD) ≤ α
] ≤ α . (7.10)

In the above theorem, the critical region in (7.9) is applicable when the distributional shape
parameter ν is specified (or known), while (7.10) holds even if ν is unknown. These bound tests are
closely related to the CS-based test proposed in Section 5: the null hypothesis is rejected when the
CS for γ is empty, i.e. if no value of γ0 can deemed acceptable (at level α), either with ν specified
or ν taken as a nuisance parameter. This may be seen on comparing (5.10) with (7.10). On recalling
that LRB = inf {LR(γ0) : γ0 ∈ Γ} , the latter also suggests a relatively easy way of showing
that Cγ(α; ν) or Cγ(α; D) is not empty, through the specific p-value p̂U

N (γ̂, ν) obtained by taking
γ0 = γ̂ in (7.6). We shall call p̂U

N (γ̂, ν) the QML-BMC p-value.

Theorem 7.3 RELATION BETWEEN EFFICIENCY TESTS AND ZERO BETA CONFIDENCE SETS.
Under (2.1), (2.2) and (2.7), let γ̂ be the QML estimator of γ in (2.13). Then,

p̂U
N (γ̂, ν) > α ⇒ sup {p̂N (γ0, ν) : γ0 ∈ Γ} > α ⇒ Cγ(α; ν) 6= ∅ , ∀ν ∈ ΩD, (7.11)

p̂U
N (γ̂, ΩD) > α ⇒ sup{p̂N (γ0, ν0) : γ0 ∈ Γ, ν0 ∈ ΩD} > α ⇒ Cγ(α; D) 6= ∅ , (7.12)

where Cγ(α, ν) and Cγ(α; D) are the sets defined in (5.9) and (5.10).

It is of interest to note here that, for the Gaussian special case where HW (DN ) holds, Zhou
(1991) and Velu and Zhou (1999) proposed a bound based on a statistical result from Schott (1984,
Theorem 3). Although potentially tighter than the bound proposed above, this result is applicable to
statistics which can be written as ratios of independent Wishart variables and do not seem to extend
easily to other classes of distributions. In the next section, we propose an approach which yields
similarly tighter bounds for non-Gaussian distributions as well.

7.2. Maximized Monte Carlo procedures

We will now describe a tighter bound based on the MMC technique [Dufour (2006)]. To conform
with our earlier notation for MC p-values, let us define the function LRB(θ, W ) , θ = ψ(B, K),
which assigns to each value of model parameters B and K and the noise matrix W the following
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outcome: using θ and a draw from the distribution of W (which may depend on a nuisance parameter
ν), generate a sample from model (2.1)-(2.7), and compute LRB in (2.11) from this sample. The
function θ = ψ(B, K) does represent the effective vector of nuisance parameters. For example,
by Theorem 6.2, the distribution of LRB under the null hypothesis HB depends on the model
parameters (B, K) only through γ and (β − ιn)′K−1, where γ is the solution of the equation
a = γ(ιn − β). Denote by ΩB the set of admissible values for θ under HB.

On applying LRB(θ, W ), we can get simulated values from the null distribution of LRB for
any value of θ. If N independent replications W (1), . . . , W (N) of W are generated, we can then
compute the corresponding vector of LRB statistics and the p-value function

p̂BN (θ, ν) = pN

[
LR

(0)
B

∣∣LRBN (θ, ν)
]
, (7.13)

where LRBN (θ, ν) =
[
LRB

(
θ, W (1)

)
, . . . , LRB

(
θ, W (N)

)]′
. For any given value of ν, the

MMC p-value associated with LR
(0)
B is obtained by maximizing p̂BN (θ, ν) with respect to θ over

the set of admissible values ΩB under HB :

p̂M
BN (ΩB, ν) = sup {p̂BN (θ, ν) : θ ∈ ΩB} . (7.14)

From the results in Dufour (2006), we have under HB and the error distribution associated with ν :

P
[
p̂M
BN (ΩB, ν) ≤ α

] ≤ α ; (7.15)

in other words, p̂M
BN (ΩB, ν) ≤ α is a critical region with level α.

To allow for an unknown ν, we can maximize p̂BN (θ, ν) with respect to ν ∈ ΓD. Set:

p̂M
BN (θ, ΩD) = sup {p̂BN (θ, ν) : ν ∈ ΩD} , p̂M

BN (ΩB, ΩD) = sup {p̂M
BN (θ, ΩD) : θ ∈ ΩB} .

(7.16)
Then, under HB, if

P
[
p̂M
BN (ΩB, ΩD) ≤ α

] ≤ α . (7.17)

Of course, the above p-values may be more costly to compute than those proposed in Section
7.1, but they are tighter by construction. Nevertheless, Theorem 7.3 guarantees that

p̂U
N (Γ, ν) ≤ α ⇒ p̂M

BN (ΩB, ν) ≤ α

for any given ν. So it may be useful to check the global bound for significance before turning to
the MMC one. Furthermore, it is not always necessary to run the numerical p-value maximization
underlying the MMC p-value to convergence: if p̂BN (θ, ν) > α given any relevant θ (or ν), then a
non-rejection is confirmed. So one may exit whenever a value larger than α is reached. We suggest
to use the QML estimate θ̂ of θ as start-up value, because this provides parametric bootstrap-type
[or a local MC (LMC)] p-values:

pb
N (ν) = p̂BN (θ̂, ν) , pb

N ( ΩD) = p̂BN (θ̂, ΩD) . (7.18)
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Then pb
N (ν) > α entails p̂M

BN (ΩB, ν) > α, and pb
N ( ΩD) > α entails p̂M

BN (ΩB, ΩD) > α.

7.3. Bound two-stage confidence procedures

To deal with the fact that the distribution of W may involve an unknown parameter ν ∈ ΩD, we
suggested above to maximize the relevant p-values over the nuisance parameter space ΩD. Since
this process may lead to power losses, we suggest to restrict the maximization over ν to a set which
is empirically relevant. A way to do this consists in using an approach similar to the one proposed in
Dufour (1990) and Dufour and Kiviet (1996). This method consists in two basic steps: (i) an exact
CS with level 1−α1 is built for ν, and (ii) the MC p-values (presented above) are maximized over all
values of ν in the latter CS and are referred to the level α2. This yields a test with level α = α1+α2.
In our empirical application, we used α/2. Empirically, maximizing over a set estimator for ν
(rather than over all the nuisance parameter set) ensures that the error distributions retained are
consistent with our data. Recall that the null hypothesis imposes distributional constraints jointly
with the restrictions on the regression coefficients. In view of this, retaining empirically relevant
values for ν helps to interpret BCAPM test rejections.

Let Cν(α1) = Cν(α1; Y ) be a CS with level 1 − α1 for ν. Then, under the null hypothesis
H(γ0), we have

P
[
p̂U

N [γ0, Cν(α1)] ≤ α2

] ≤ α1 + α2 (7.19)

while, under HB,
P
[
p̂U

N [Γ, Cν(α1)] ≤ α2

] ≤ α1 + α2 , (7.20)

P
[
p̂M
BN [ΩB, Cν(α1)] ≤ α2

] ≤ α1 + α2 . (7.21)

Note also that
p̂M
BN (θ̂, Cν(α1)) > α2 (7.22)

is sufficient for p̂M
BN [ΩB, Cν(α1)] ≤ α2 not to hold.

Let us now present the set estimation method we propose to build CS’s for ν. Again, this will
be done by “inverting” a test (of level α1) for the specification underlying (2.2) where ν = ν0 for
known ν0, an approach which avoids the need to use regularity assumptions on ν. The test we invert
is the three-stage MC GF test introduced in Dufour et al. (2003):

CSK = 1−min {p̂ [ESK(ν0)] , p̂ [EKU(ν0)]} (7.23)

ESK(ν0) =
∣∣SK−SK(ν0)

∣∣ , SK =
1
T 2

T∑

t=1

T∑

i=1

d̂3
ii , (7.24)

EKU(ν0) =
∣∣KU−KU(ν0)

∣∣ , KU =
1
T

T∑

t=1

d̂2
tt , (7.25)

where d̂it are the elements of the matrix Û(Û ′Û/T )−1Û ′, SK(ν0) and KU(ν0) are simulation-based
estimates of the expected SK and KU given (2.2) and p̂ [ESK(ν0)] and p̂ [EKU(ν0)] are p-values,
obtained by MC methods under (2.2). The MC test technique is also applied to obtain a size correct
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p-value for CSK. The CS for ν corresponds to the values of ν0 which are not rejected at level α1,
using the latter p-value.14

8. Empirical analysis

From the empirical viewpoint, the literature on testing efficiency within the BCAPM setup remains
scarce and has produced mixed results. While Gibbons (1982) rejected efficiency restrictions using
an asymptotic critical value, Jobson and Korkie (1982), Shanken (1985, 1986) and Stewart (1997)
found much higher p-values on applying finite-sample corrections (based respectively on a Bartlett
correction and a small-sample Gaussian-based lower bound), which overall support the efficiency
hypothesis.15 This can be contrasted with the results of Zhou (1991) who provided empirical ev-
idence on the efficiency of a portfolio using optimal upper and lower bounds computed with an
eigenvalue-based test (under the Gaussian assumption). His evidence shows that efficiency is re-
jected in most subperiods. Velu and Zhou (1999) derived the exact distribution of the likelihood
ratio test for the Gaussian multibeta pricing models in the absence of a risk-free rate and considered
a GMM-based asymptotic test. These procedures were applied to size portfolios to test the efficiency
of CRSP value-weighted and equally weighted indices and to the Fama and French (1993) multibeta
model. Their results show that the efficiency of CRSP value-weighted and equally weighted indices
cannot be rejected for all of the 10-year subperiods, except for the first one, while the single index
efficiency is rejected in all subperiods. Furthermore, the tests are not favorable to the Fama and
French (1993) multibeta model. Finally, Chou (2000) showed that the comparison of a Wald test, a
GMM test, the CRST test of Shanken (1985) and a likelihood ratio test leads to the rejection of the
Fama and French three-factor model. The results for the one factor model are mixed. It cannot be
rejected for size portfolios but it is rejected for Fama and French portfolios. For industry portfolios,
the one-factor model is rejected by the likelihood ratio test but not by the Wald and GMM tests.
Given that no test outperforms the others no conclusions could be reached regarding the efficiency
of CRSP index with respect to industry portfolios.

From a statistical viewpoint, there are at least three important observations one can draw from
the theoretical and empirical literature on the BCAPM (and related models). First, due to the cross-
sectional nature of the efficiency restrictions, there is no theoretical reason why coefficients should
be constant over time: this feature must be taken into account in the empirical analysis, for example
by considering relatively short subperiods.16 Of course, this can easily lead to short samples. Sec-
ond, the possibility of non-Gaussian – possibly heavy-tailed – error distributions must be modelled.
Third, due to the multivariate nonlinear nature of the model, it is crucial that a good finite-sample
distributional theory be supplied for the test statistics. In this section, we present an empirical
analysis which takes these points into account.

14For additional discussion of the goodness-of-fit tests used for inference on ν, see Appendix D.
15In Shanken (1986), efficiency is accepted for two out of three six-year subperiods, using both an approximate and

an upper bound on the p-value associated with likelihood ratio test.
16The importance of considering subperiods in empirical work has also been documented; see Black (1993), Fama and

French (2004) and Beaulieu et al. (2006). See also the literature on conditional CAPM, e.g. MacKinlay and Richardson
(1991), Jagannathan and Wang (1996) and Ferson and Harvey (1999).
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We study the mean-variance efficiency tests of the market portfolio when the risk-free rate is not
available [formally, tests of (2.7) in the context of the market model (2.1)] under error distributional
assumptions (2.4)-(2.5). We use real monthly returns over the period going from January 1926
to December 1995, obtained from the University of Chicago’s Center for Research in Security
Prices (CRSP). As in Breeden, Gibbons and Litzenberger (1989), the data studied here involve 12
portfolios of New York Stock Exchange (NYSE) firms grouped by standard two-digit industrial
classification (SIC). The sectors studied include: (1) petroleum; (2) finance and real estate; (3)
consumer durables; (4) basic industries; (5) food and tobacco; (6) construction; (7) capital goods;
(8) transportation; (9) utilities; (10) textile and trade; (11) services; (12) leisure; for details on the
SIC codes, see Beaulieu et al. (2006). For each month the industry portfolios include the firms
for which the return, price per common share and number of shares outstanding are recorded by
CRSP. Furthermore, portfolios are value-weighted in each month. We measure the market return by
the value-weighted NYSE returns, also available from CRSP. The real risk-free rate is proxied by
the one month Treasury bill rate also from CRSP net of inflation. All MC tests were applied with
999 replications. All maximized MC p-values are obtained using the simulated annealing algorithm
[Goffe, Ferrier and Rogers (1994)].17 As is usual in this literature, given documented temporal
instabilities, we estimate and test the model over 5 year subperiods.

Our BCAPM test results are summarized in Table 2. Non-Gaussian p-values are the largest MC
p-values over the error distribution parameters [respectively: κ and (π, ω)] within the specified CS
(with level 95%); the latter are reported in Table 2. A few useful guidelines are worth emphasizing:
(i) given a 5% level test, the benchmark is .05 for p∞ and pN , while for the Student t and normal
mixture results the benchmark is .025; (ii) non-rejections using the LMC MC p-values [reported in
columns (3) and (6), and (9)] are conclusive (though rejections are not); (iii) rejections based on
the F -based conservative bound reported in column (5) are conclusive under normality; (iv) non-
rejections based on the QML BMC p-value in the non-Gaussian case [reported in columns (8) and
(11)] signal that the CS for γ is not empty; however, since the MMC p-value is based on the tightest
bound, this evidence does not necessarily imply acceptance of HB.

The empirical results presented here show that the asymptotic test and the Gaussian based bound
test yield the same decision at 5% level, although the former p-values are much lower. Furthermore,
the non-normal p-values exceed the Gaussian-based p-value, enough to change the test decision. It
is relatively “easy” to reject the testable implications under normality. For instance, at the 5% sig-
nificance level, we find seven rejections of the null hypothesis for the asymptotic χ2(11) test, seven
for the MC p-values under normality, and five (relying on the MMC p-value) under the Student-t
and normal mixture distributions. We see that, focusing on t and normal mixture distributions with
parameters not rejected by proper GF tests, mean-variance efficiency test results can change rela-
tive to the available F -based bound. The power advantages of the MMC procedure are illustrated
by the results of the 1966-70 subperiod where the QML p-value exceeds 2.5% for the Student-t
distribution, whereas the MMC p-value signals a rejection.

The CS’s for distributional parameters are reported in Table 3. In the mixtures case, the confi-
17This search algorithm does not require a gradient function and sweeps the parameter space according to a randomized

scheme. To escape local minima, a downhill step is always accepted while an uphill step may be accepted; the direction
of all moves is determined by probabilistic criteria.

21



Table 2. Asymptotic and exact tests of BCAPM

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Sample LR p∞ Normal Student t Normal mixture

LMC MMC BND LMC MMC BND LMC MMC BND

1927-30 16.10 .137 .269 .308 .366 .272 .316 .360 .279 .313 .381
1931-35 14.09 .228 .344 .381 .432 .359 .399 .468 .342 .387 .452
1936-40 15.36 .167 .257 .284 .345 .282 .308 .372 .265 .302 .357
1941-45 18.62 .068 .148 .163 .203 .147 .169 .210 .150 .165 .211
1946-50 32.69 .001 .005 .006 .007 .007 .007 .010 .007 .007 .008
1951-55 37.04 .000 .003 .004 .004 .003 .005 .005 .003 .003 .003
1956-60 26.10 .006 .027 .031 .042 .030 .040 .052 .028 .035 .045
1961-65 29.21 .002 .011 .016 .020 .013 .017 .023 .014 .021 .024
1966-70 27.45 .004 .016 .018 .026 .020 .025 .032 .018 .023 .028
1971-75 16.81 .113 .213 .224 .292 .217 .248 .300 .206 .238 .292
1976-80 25.76 .007 .027 .031 .040 .026 .035 .039 .026 .034 .042
1981-85 14.98 .183 .316 .335 .387 .323 .399 .405 .318 .339 .406
1986-90 35.41 .000 .003 .004 .004 .004 .005 .005 .004 .004 .005
1991-95 16.41 .127 .219 .253 .310 .226 .263 .325 .226 .261 .319

Note – Column (1) presents the quasi-LR statistic defined in (2.11) to test HB [see (2.7)]; the remaining columns report

the associated p-values using, respectively, the asymptotic χ2(n − 1) distribution, the Gaussian based MC p-values

[columns (3)–(5)] and the MC p-values imposing multivariate t(κ) errors [columns (6)–(8)] and mixture-of-normals

(π, ω) errors [columns (9)–(11)]. Numbers in columns (6)-(11) are the largest MC p-values over the error distribution

parameters [respectively: κ and (π, ω)] within the specified CS’s; the latter are reported in Table 3. In particular, the

LMC p-values [columns (3), (6) and (9)] correspond to p̂M
BN (θ̂, Cν(α1)) in (7.22). The MMC p-values [columns (4),

(7) and (10)] correspond to p̂M
BN [ΩB, Cν(α1)] in (7.21). Columns (5) report the Gaussian bound p-value corresponds

based on (7.2); columns (8) and (11) report the QML-BMC p-values p̂U
N [γ̂, Cν(α1)] in (7.22). Returns for the month of

January and October 1987 are excluded from the data set. Given a 5% level test, the benchmark is .05 for p∞ and pN ,

while for the Student-t and normal mixture results the benchmark is .025. p-values which lead to significant tests with

this benchmark are marked in bold.
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Table 3. Confidence sets for intervening parameters

Mixture (π, ω), confidence set for ω t(κ)

(1) (2) (3) (4) (5) (6)

Sample π = 0.1 π = 0.2 π = 0.3 π = 0.4 π = 0.5 κ

1927-30 ≥1.8 1.6-2.8 1.6-2.5 1.6-2.5 1.6-2.6 3-12
1931-35 2.1-10.0 1.9-3.0 1.9-2.7 1.9-2.7 2.1-3.0 3-8
1966-40 1.5-3.5 1.5-2.3 1.4-2.1 1.4-2.0 1.4-2.1 4-25
1941-45 1.3-3.5 1.3-2.1 1.3-1.9 1.3-1.8 1.3-1.9 ≥ 5
1946-50 1.4-3.5 1.3-2.2 1.3-2.0 1.3-1.9 1.3-1.9 5-37
1951-55 1.4-3.5 1.4-2.2 1.3-2.0 1.3-1.9 1.3-2.0 5-34
1956-60 1.3-2.8 1.2-2.0 1.2-1.9 1.2-1.8 1.2-1.8 ≥ 5
1961-65 1.0-2.2 1.0-1.6 1.0-1.5 1.0-1.5 1.0-1.5 ≥ 7
1966-70 1.3-3.0 1.3-2.0 1.3-1.9 1.3-1.8 1.2-1.9 ≥ 5
1971-75 1.5-3.5 1.5-2.2 1.4-2.0 1.4-1.9 1.4-2.0 4-24
1976-80 1.6-4.0 1.5-2.5 1.5-2.2 1.5-2.2 1.5-2.3 4-19
1981-85 1.4-3.5 1.4-2.1 1.3-2.0 1.3-1.9 1.4-2.0 5-33
1986-90 1.1-3.0 1.1-2.0 1.1-1.8 1.0-1.7 1.1-1.8 ≥ 5
1991-95 1.0-1.9 1.0-1.5 1.0-1.4 1.0-1.3 1.0-1.3 ≥ 19

Note – Numbers in columns (1)-(5) represent a CS for the parameters (π, ω) [respectively, the probability of mixing

and the ratio of scales] of the multivariate mixtures-of-normal error distribution. Column (6) presents the CS for κ, the

degrees-of-freedom parameter of the multivariate Student-t error distribution. See Section 7 for details on the construction

of these CS’s: the values of (π, ω) or κ (respectively) in this set are not rejected by the CSK test (7.23) [see Dufour

et al. (2003)] under multivariate mixtures or Student-t errors (respectively). Note that the maximum of the p-value occurs

in the closed interval for ω. Returns for the month of January and October 1987 are excluded from the data set.

dence region is summarized as follows for presentation ease: we give the CS for ω corresponding
to five different values of π namely 0.1, 0.2, 0.3, 0.4 and 0.5.

In Table 4, we present the average real market return as well as the average real risk-free rate over
each subperiod, the QML estimate of γ and 95% CS’s for this parameter, using, respectively, the
asymptotic standard errors (3.1) [column (3)], the MC Gaussian based Fieller method [column (4)],
and the MMC Fieller method imposing t(κ) errors and normal mixture (π, ω) errors [columns (5)–
(6)]. Note that some values of γ̂ are high. Nonetheless, comparing the average real market return for
those subperiods with our estimate of γ reveal that these high occurrences of γ are consistent with
subperiods during which the estimated zero-beta rate is higher than the market portfolio return. This
is an illustration of finding, ex post, a linear relationship between risk and return with a negative
slope. Furthermore, rerunning our analysis using 10-year subperiods leads to γ estimates below
the benchmark average return. The values of γ in the Fieller-based set are not rejected by the test
defined in Theorem 4.1 to test H (γ0). Rejection decision are based on the largest MC p-values
over all κ and (π, ω) respectively; we did not restrict maximization to the CS for these parameters
here. As expected in view of the HB test results, the exact CS’s are empty for several subperiods.
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The usefulness of the asymptotic confidence intervals is obviously questionable here, since our tests
have led to the conclusion that no value of γ as defined by the model is consistent with our data.
Other results which deserve notice are the empty sets for 1956-60 subperiod. These sets correspond
to the case where the efficiency bound test is significant (at 5%).18

To further illustrate the differences between the asymptotic and our CS, we next check whether
the average real risk-free rate is contained in these CS’s (respectively). We clearly see that for
many subperiods like 1966-70 the evidence is consistent between the asymptotic and MC Fieller-
type confidence intervals. There are nonetheless cases where the set estimates do not lead to the
same decision. For instance, in the 1941-45 and 1971-75 subperiods, the average risk-free rate is
not included in the asymptotic confidence interval while it is covered by our MMC based Fieller
type confidence intervals. These are cases where, using the asymptotic confidence interval, the
hypothesis γ = rf is rejected, whereas exact confidence intervals indicate that it should not be
rejected. Conversely, in 1986-90, the asymptotic confidence interval includes the average risk-
free rate, whereas our CS’s are empty (which provides exactly non-spurious evidence against our
hypothesis).

We next perform multivariate misspecification tests: exact tests of multivariate normality [Du-
four et al. (2003)], tests for GARCH effects [generalized Engle and Lee-King tests, based on exten-
sions of the univariate tests proposed by Engle (1982) and Lee and King (1993))] and multivariate
variance ratio tests [based on the univariate tests of Lo and MacKinlay (1988), Lo and MacKinlay
(1989)] proposed in Dufour, Khalaf and Beaulieu (2005) and Beaulieu et al. (2006). The normal-
ity tests [see (7.23)] allow one to evaluate whether observed residuals exhibit non-normal behavior
through excess skewness (ESK) and excess kurtosis (EKU), as well as jointly using our proposed
combined test (CSK). p-values are reported in columns (1)-(3) of Table 5. The GARCH and variance
ratio tests can be summarized as follows. We first obtain a standardized residuals matrix by multiply-
ing the OLS residuals with a Cholesky type decomposition of Σ̂. Using these modified residuals, we
calculate individual-equation GARCH and variance ratio statistics then combine across-equations
applying the same minimum p-value criterion used for the multi-normality test.19The MC test proce-
dure here allows one to avoid using the Bonferroni-Boole bound [as done, for example, by Shanken
(1990)], hence eliminating a potential power loss (without loosing the exactness of the test). To
account for an unknown ν (given non-normal errors), we use the same approach as in the BCAPM
test: we obtain the largest MC p-value overall relevant ν; the same CS for ν we applied for BCAPM
is used. We consider 12 lags for all tests. The results of these tests are reported in columns 4-12 of
Table 5.

For most subperiods, multivariate normality is rejected. These results confirm the results of
Richardson and Smith (1993) who provide (asymptotic) evidence against multivariate normality in
monthly returns. Of course, this evidence further justifies our approach to test the mean-variance
efficiency of the market portfolio in BCAPM context under non-Gaussian errors. The results of the
GARCH and variance ratio tests show very few rejections of the null hypothesis both at the 1%

18This can be checked by referring to Table 2: although the reported maximal p-values [QU ] in this table are performed
over the confidence set for κ and (π, ω), we have checked that the global maximal p-value leads to the same decision
here. Actually, it is a fact that the global maxima were observed to be very close to those obtained over the confidence
set for the BMC test. It is not so for the diagnostic tests where the p-values were more variable.

19For further details on these tests, see Appendix E.
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Table 5. Multivariate diagnostics

Normality test Multivariate GARCH and variance ratio test

Error distribution Gaussian Student t Normal mixture

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sample SK KU CSK Ẽ L̃K Ṽ R Ẽ L̃K Ṽ R Ẽ L̃K Ṽ R

1927-30 .001 .001 .001 .001 .276 .004 .015 .228 .004 .159 .254 .004
1931-35 .001 .001 .001 .022 .697 .070 .082 .613 .065 .167 .624 .083
1926-40 .001 .001 .001 .064 .637 .853 .107 .616 .864 .136 .620 .867
1941-45 .004 .002 .004 .834 .984 .174 .847 .986 .184 .837 .983 .182
1946-50 .002 .002 .002 .166 .831 .096 .209 .810 .117 .245 .817 .112
1951-55 .002 .001 .001 .141 .344 .128 .179 .336 .146 .200 .320 .145
1956-60 .027 .003 .005 .986 .628 .092 .994 .626 .093 .991 .626 .094
1961-65 .613 .476 .625 .343 .174 .578 .382 .169 .586 .356 .180 .590
1966-70 .012 .002 .005 .026 .293 .826 .043 .302 .848 .073 .302 .850
1971-75 .001 .002 .001 .295 .215 .208 .337 .204 .219 .336 .202 .212
1976-80 .001 .002 .001 .003 .011 .167 .011 .013 .185 .042 .010 .184
1981-85 .001 .002 .001 .035 .100 .217 .060 .104 .225 .091 .094 .229
1986-90 .027 .018 .025 .026 .455 .311 .072 .450 .331 .081 .457 .323
1991-95 .167 .299 .226 .797 .244 .088 .823 .238 .093 .814 .250 .095

Note – Numbers in columns (1)-(3) represent p-values for multinormality tests: numbers in (1)-(2) pertain to the null

hypothesis of respectively no excess skewness and no excess kurtosis in the residuals of each subperiod. The p-values in

column (3) correspond to the combined statistic CSK designed for joint tests of the presence of skewness and kurtosis, for

multivariate normal errors. p-values are MC pivotal statistics based. Numbers shown in columns (4)–(12) are p-values

associated with the combined tests Ẽ, L̃K, and Ṽ R, described in Dufour et al. (2003). Ẽ and L̃K are multivariate

versions of Engle’s and Lee and King’s GARCH tests; Ṽ R is a multivariate version of Lo and MacKinlay’s variance ratio

tests. All p-values in columns (4)-(12) are the largest MC p-values over all intervening parameters [respectively: κ and

(π, ω)] within the specified CS’s. The relevant 2.5% CS’s for the nuisance parameters are reported in Table 3. Returns

for the month of January and October 1987 are excluded from the data set.
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and 5% level of significance. This implies that, in our statistical framework, i.i.d. errors provide an
acceptable working assumption.

9. Conclusion

In this paper, we have shown that, in both Gaussian or non-Gaussian contexts, exact tests may be
developed and used to assess the mean-variance efficiency of the market portfolio when the risk-
free rate is not observable. After observing that Black’s CAPM raises identification difficulties
similar to the ones studied in the recent literature on weak identification, we proposed econometric
methods which are robust to identification problems and allow for possibly heavy-tailed return dis-
tributions, such as the Student-t or normal mixtures. The approach described combines bound and
MC test methods, and guarantees significance level control. Two earlier Gaussian based bound tests
[Shanken (1986), Stewart (1997)] can also be viewed as special cases of our procedure.

As a complement to efficiency tests, we proposed exact Fieller-type CS’s for zero-beta rate γ,
which differ in a fundamental way from standard Wald-type confidence intervals. While Wald-type
intervals can be highly unreliable and lead to substantially different inference concerning γ, e.g., on
whether γ is equal to the average real risk-free rate – a feature entailed by both econometric theory
and simulation results – the Fieller-type intervals are provably valid in finite samples irrespective
of the presence of identification problems. Interestingly, the latter are associated with a specific
BCAPM test, which entails an empty CS for γ if the BCAPM efficiency restriction is not compatible
with the data. Indeed, efficiency implies the existence of a scalar γ which equates the ratio of each
alpha coefficient to the corresponding (1 − beta) coefficient. If the CS is empty, no value of γ
is consistent with the data, which means that the BCAPM should be rejected. Apart from their
usual interpretations, the proposed CS’s may be used as an alternative efficiency test or to assess
parameter stability over time. Of course, this is quite relevant for financial applications which use
the BCAPM and require reliable estimates of γ.

The methods proposed were applied to monthly returns on 12 portfolios of the New York Stock
Exchange (NYSE) firms over the period 1925-1995 divided in five-year subperiods. The results
obtained include the following findings: (i) multivariate normality is rejected in most subperiods, so
that results based on the Gaussian distributional assumption are highly questionable; (ii) multivariate
residual checks reveal no significant departures from the i.i.d. assumption; (iii) the exact CS’s for
the zero-beta rate are very different from the asymptotic ones; (iv) mean-variance efficiency of the
benchmark portfolio cannot be rejected over most subperiods (10 among 14 subperiods) once we
allow for the possibility of non-normal errors and use finite-sample p-values; by contrast, Gaussian-
based tests lead to rejections over 7 subperiods. Although there is evidence that further improvement
of the model is warranted – for example through better modelling of the disturbance distribution
and the use of conditioning information – these findings suggest that a statistically satisfactory
specification of the Black’s CAPM may be developed.
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Appendix

A. Exact tests of uniform linear hypotheses

In this Appendix, we summarize general exact results from Dufour and Khalaf (2002) regarding hy-
potheses tests for any market model which may be cast in terms of the model (2.9) under assumption
(2.2). Two classes of hypotheses are considered: (i) a general possibly nonlinear hypothesis

HNL : Ř [vec(B)] ∈ Ω (A.1)

where Ř is a ř× (nk) matrix of rank ř, and Ω is a non-empty subset of <ř, and (ii) a uniform linear
[UL] special case

HUL : HB = D , (A.2)

where H is an h × k matrix of rank h. These hypotheses are relevant for BCAPM tests since the
CAPM hypothesis HBCAPM in (2.7) can be rewritten as:

(1, γ)B = γι′n for some (unknown) γ , (A.3)

which means it is of the form (A.1). Further, the special case (2.8) which corresponds to

(1, γ0)B = γ0ι
′
n (A.4)

where γ0 is known, takes the UL form (A.2) with h = 1. In this context, the (Gaussian) QLR
criteria associated with HNL and HUL are, respectively,

LRNL = T ln(ΛNL) , ΛNL = |Σ̂NL|/|Σ̂| , (A.5)

LRUL = T ln(ΛUL) , ΛUL = |Σ̂UL|/|Σ̂| , (A.6)

where Σ̂NL and Σ̂UL are the QML estimators of Σ imposing (A.1) and (A.2) respectively, and Σ̂
is the unconstrained QMLE.

Theorem A.1 DISTRIBUTION OF THE QUASI-LR UNIFORM LINEAR HYPOTHESIS TEST STA-
TISTIC. Under (2.2), (2.9) and (A.2), the Gaussian QML statistic (A.6) is distributed like

LR = T ln
(∣∣W ′MULW

∣∣ /
∣∣W ′MW

∣∣) (A.7)

where MUL = M +X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′, M = I−X(X ′X)−1X and
W = [W1, . . . , Wn] is defined by (2.2).

For certain values of h and normal errors, the null distribution in question reduces to the F -
distribution. For instance, if h = 1, then

(T − (k − 1)− n)
n

(ΛUL − 1) ∼ F (n, T − (k − 1)− n) . (A.8)
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In this case, the Hotelling’s T 2 criterion is a monotonic function of ΛUL.

Theorem A.2 GENERAL SIMULATION BASED BOUND ON THE NULL DISTRIBUTION OF THE

QUASI-LR TEST STATISTIC. Under (2.9), (2.2) and (A.1), the null distribution of the Gaussian
QML statistic (A.5) may be bounded as follows:

P[LRNL ≥ x] ≤ P

[
T ln

( |W ′MULW |
|W ′MW |

)
≥ x

]
, ∀x , (A.9)

where M = I−X(X ′X)−1X ′, MUL = M +X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′ , H
is an h× k matrix of rank h which satisfies

HULBOUND : {HB = D} ⊂ HNL , (A.10)

and W = [W1, . . . , Wp] is defined by (2.2).

This result obtains using the following arguments. Let LRULBOUND refer to the QLR statistic
to test (A.10), which is UL [i.e. of the form (A.2)]. By construction,

HULBOUND ⊂ HNL ⇒ LRNL ≤ LRULBOUND. (A.11)

This implies that P [LRNL ≥ x] ≤P [LRULBOUND ≥ x] , for all x, and establishes the desired
bound using Theorem A.1.

B. Proofs

PROOF OF THEOREM 4.1 Under (2.2) and H(γ0), we have:

TΣ̂ = Û ′Û = K
′
W ′MWK , TΣ̂(γ0) = K

′
W ′M̄(γ0)WK .

Then, under H(γ0),

Λ(γ0) =
|Σ̂(γ0)|
|Σ̂| =

|K ′
W ′M̄(γ0)WK|
|K ′W ′MWK| =

|K ′ | ∣∣W ′M̄(γ0)W
∣∣ |K|

|K ′ | |W ′MW | |K| =

∣∣W ′M̄(γ0)W
∣∣

|W ′MW | ,

hence P [LR(γ0) ≥ x] =P [T ln(
∣∣W ′M̄(γ0)W

∣∣ / |W ′MW |) ≥ x] , ∀x.

PROOF OF LEMMA 6.1 The Gaussian log-likelihood function for model (6.2) is

ln[L̃(Ỹ , C , Σ)] = −T

2
[n(2π) + ln(|Σ|)]− 1

2
tr[Σ−1(Ỹ −XC)′(Ỹ −XC)] = ln[L(Y, B , Σ)] .

Setting Σ̃(C) ≡ 1
T (Ỹ −XC)′(Ỹ −XC), for any given value of C, ln[L̃(Ỹ , C , Σ)] is maximized
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by taking Σ = Σ̃(C) yielding the concentrated log-likelihood

ln[L̃(Ỹ , C , Σ)c = −nT

2
[(2π) + 1]− T

2
ln(|Σ̃(C)|) . (B.1)

The Gaussian ML estimator of C thus minimizes |Σ̃(C)| with respect to C. Let us denote by Ĉ(Y )
the unrestricted ML estimator of C so obtained, and by Ĉ(Y ; γ0) and ĈB(Y ) the restricted estima-
tors subject to H̃(γ0) and H̃B respectively.

Suppose that Ỹ is replaced by Ỹ∗ = Ỹ A where A is a non-singular n × n matrix. We need
to show that LR∗(γ0) = LR(γ0) and LRB∗ = LRB, where LR∗(γ0) and LRB∗ represent the
corresponding test statistics based on the transformed data. Following this transformation, |Σ̃(C)|
becomes:

|Σ̃∗(C∗)| =
∣∣ 1
T

(Ỹ∗ −XC∗)′(Ỹ∗ −XC∗)
∣∣ =

∣∣ 1
T

A′(Ỹ −XC∗A−1)′(Ỹ −XC∗A−1)A
∣∣

= |A′A| ∣∣ 1
T

(Ỹ −XC)′(Ỹ −XC)
∣∣ = |A′A| |Σ̃(C)| (B.2)

where C = C∗A−1. Then |Σ̃(C∗)| is minimized by Ĉ∗(Y∗) = Ĉ(Y )A and |Σ̃∗
(
Ĉ∗(Y∗)

)| =
|A′A||Σ̃(

Ĉ(Y )
)
. Similarly, on observing that

H(γ0)C = 0 ⇐⇒ H(γ0)CA = 0 ⇐⇒ H(γ0)C∗ = 0 (B.3)

for any γ0, it follows that the restricted estimators of C under H̃(γ0) and H̃B are transformed
in the same way: Ĉ∗(Y∗; γ0) = Ĉ(Y ; γ0)A and Ĉ∗B(Y∗) = ĈB(Y )A. This entails that
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)| = |A′A| |Σ̃(
Ĉ(Y ; γ0)

)| and |Σ̃∗
(
Ĉ∗B(Y∗)

)| = |A′A| |Σ̃(
ĈB(Y )

)|, so that the
generalized variance ratios are invariant to the transformation Ỹ∗ = Ỹ A :

Λ̃∗(γ0) =
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)|
|Σ̃∗

(
Ĉ∗(Y∗)

)| =
|Σ̃(

Ĉ(Y ; γ0)
)|

|Σ̃∗
(
Ĉ∗(Y∗)

)| = Λ̃(γ0) , (B.4)

Λ̃B∗ =
|Σ̃∗

(
Ĉ∗B(Y∗)

)|
|Σ̃∗

(
Ĉ∗(Y∗)

)| =
|Σ̃(

ĈB(Y )
)|

|Σ̃∗
(
Ĉ(Y )

)| = Λ̃B . (B.5)

Finally, in view of (2.12) and (6.5), we have

LR∗(γ0) = T ln[Λ̃∗(γ0)] = T ln[Λ̃(γ0)] = LR(γ0) , (B.6)

LRB∗ = T ln(Λ̃B∗) = T ln(Λ̃) = LRB . (B.7)

PROOF OF THEOREM 6.2 Consider a transformation of the form Ỹ∗ = Ỹ K−1 or, equivalently,
Y∗ = Y K−1 + R̃Mι′n(I −K−1). Using (2.1) and (2.2), we then have:

Y∗ = (XB + WK)K−1 + R̃Mι′n(I −K−1) = XBK−1 + R̃Mι′n(I −K−1) + W
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= (ιT a′ + R̃Mβ′)K−1 + R̃Mι′n(I −K−1) + W

= R̃Mι′n + [ιT a′ + R̃M(β − ιn)′]K−1 + W

= R̃Mι′n + X(B −∆)K−1 + W = R̃Mι′n + XB̄ + W (B.8)

where B̄ = (B−∆)K−1 and ∆ = [0, ιn]′. In view of the invariance established in Lemma 6.1, the
statistics LR(γ0) and LRB can be viewed as functions of Y∗, which entails that depend on the model
parameters (B,K) only through the lower dimensional vector B̄ = (B − ∆)K−1. Furthermore,
under the null hypothesis, the nuisance parameter only involves γ and (β − ιn)′K−1.

Now the distribution of LR(γ0) and LRB can be explicitly characterized by using (B.4) - (B.5)
and observing that

Λ̃(γ0) =
|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)|
|Σ̃∗

(
Ĉ∗(Y∗)

)| =
|Ŵ (γ0)′Ŵ (γ0)|

|Ŵ ′Ŵ | ,

Λ̃B =
|Σ̃∗

(
Ĉ∗B(Y∗)

)|
|Σ̃∗

(
Ĉ∗(Y∗)

)| =
inf {|Σ̃∗

(
Ĉ∗(Y∗; γ0)

)| : γ0 ∈ Γ}
|Σ̃∗

(
Ĉ∗(Y∗)

)| = inf {Λ̃(γ0) : γ0 ∈ Γ} ,

where Ŵ = M(X)W and

Ŵ (γ0) = M̄(γ0)(Y∗ − R̃Mι′n) = M̄(γ0)(XB̄ + W )
= M̄(γ0){[ιT a′ + R̃M(β − ιn)′]K−1 + W}
= M̄(γ0){

[
ιT

(
a′ + γ0(β − ιn)′

)
+ (R̃M − γ0ιT )(β − ιn)′

]
K−1 + W}

= M̄(γ0){ιT
(
a + γ0(β − ιn)′

)
K−1 + W} .

Further, when HB holds, we have a = −γ(β − ιn), hence

Ŵ (γ0) = (γ0 − γ)M̄(γ0)ιT (β − ιn)′K−1 + M̄(γ0)W .

The theorem then follows on observing that LR(γ0) = T ln[Λ̃(γ0)] and LRB = T ln(Λ̃B).

PROOF OF THEOREM 7.1 It is clear thatHB = ∪
γ0

H(γ0) . Since LRB = inf {LR(γ0) : γ0 ∈ Γ},
we have LRB ≤ LR(γ0), for any γ0, hence

P[LRB ≥ x] ≤ P(B, K)

[
LR(γ0) ≥ x

]
, ∀x. (B.9)

for each γ0 and for any (B, K) compatible withH(γ0). Furthermore, underHB, there is a value of
γ0 such that the distribution of LR(γ0) is given by Theorem 4.1, which entails (7.1). The result for
the Gaussian special case then follows upon using (4.2).

PROOF OF THEOREM 7.2 The result follows from (7.7) and the inequalities p̂U
N (γ, ν) ≤

p̂U
N (Γ, ν) and p̂U

N (γ, ν) ≤ p̂U
N (γ, ΩD) ≤ p̂U

N (Γ, ΩD).

PROOF OF THEOREM 7.3 Consider first the case where ν is specified. By (7.6), (2.13) and (4.5),
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we have:

p̂U
N (γ̂, ν) ≡ pN [LR

(0)
B

∣∣LRN (γ̂, ν)] = pN [LR(0)(γ̂)
∣∣LRN (γ̂, ν)] = p̂N (γ̂, ν) ,

hence
sup {p̂N (γ0, ν) : γ0 ∈ Γ} ≤ α ⇒ p̂N (γ̂, ν) ≤ α ⇒ p̂U

N (γ̂, ν) ≤ α

and, on noting that sup {p̂N (γ0, ν) : γ0 ∈ Γ} ≤ α means that Cγ(α, ν) is empty,

p̂U
N (γ̂, ν) > α ⇒ sup {p̂N (γ0, ν) : γ0 ∈ Γ} > α ⇒ Cγ(α, ν) 6= ∅ ,

which establishes (7.11). Similarly, for ν ∈ ΩD unknown,

p̂U
N (γ̂, ΩD) = sup {p̂U

N (γ̂, ν0) : ν0 ∈ ΩD} = sup {pN [LR
(0)
B

∣∣LRN (γ̂, ν0)] : ν0 ∈ ΩD}

= sup {pN [LR(0)(γ̂)
∣∣LRN (γ̂, ν0)] : ν0 ∈ ΩD} = sup {p̂N (γ̂, ν) : ν0 ∈ ΩD} ,

hence

sup {p̂N (γ0, ν0) : γ0 ∈ Γ, ν0 ∈ ΩD} ≤ α ⇒ sup {p̂N (γ̂, ν0) : ν0 ∈ ΩD} ≤ α

⇒ p̂U
N (γ̂, ΩD) ≤ α ,

and

p̂U
N (γ̂, ΩD) > α ⇒ sup {p̂N (γ0, ν0) : γ0 ∈ Γ, ν0 ∈ ΩD} > α ⇒ Cγ(α; D) 6= ∅ ,

so that (7.12) is established.

C. Monte Carlo tests

The Monte Carlo (MC) test procedure goes back to Dwass (1957) and Barnard (1963). Extensions to
the nuisance-parameter-dependent case are from Dufour (2006). Here we summarize the underlying
methodology (given a right tailed test with a continuous distribution under the null hypothesis), as
it applies to the test statistics we consider in this paper. For presentation ease, we introduce the
following notation. Given a series of N + 1 variates S(0), S(1), . . . , S(N), let

GN

[
S(0) ; S(1), . . . , S(N)

]
=

1
N

N∑

j=1

I[0,∞)[S
(j) − S(0)] , IA[x] =

{
1 , if x ∈ A ,
0, if x /∈ A .

(C.1)

In what follows, we will use the function GN ( S(0); S(1), . . . , S(N)) to define empirical type I
error probabilities associated with a an observed statistic S(0), given a series of simulated statistics
S(1), . . . , S(N).
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First, consider the case:
S(y, X) = Ŝ (W, X) ,

where W is defined by (2.2), and the distribution of the rows of W is known. Then the conditional
distribution of S(y, X), given X, is completely determined by the matrix X and the conditional
distribution of W given X: the test statistic S(y, X) is pivotal.

1. Let S(0) be the observed test statistic (based on data).

2. By Monte Carlo methods, draw N i.i.d. replications of W :

W(j) = [W (j)
1 , . . . , W (j)

n ] , j = 1, . . . , N .

3. From each simulated error matrix W(j), compute the statistics

Ŝ(W(j), X) , j = 1 , . . . , N .

For instance, in the case of the QLR statistic underlying Theorem 4.1, calculate
T ln

(|W ′
(j)M̄(γ0)W(j)|/|W ′

(j)MW(j)|
)
, j = 1 , . . . , N .

4. Compute the MC p-value

p̂N

(
S(0)

)
=

NGN

[
S(0) ; Ŝ(W(1), X) , . . . , Ŝ(W(N), X)

]
+ 1

N + 1
, (C.2)

where the function GN (·) is as defined in (4.4). Here
NGN

[
S(0) ; Ŝ(W(1), X), . . . , Ŝ(W(N), X)

]
is the number of simulated values which

are greater than or equal to S(0).

5. The MC critical region is
p̂N

[
S(0)

] ≤ α , 0 < α < 1 . (C.3)

If α(N + 1) is an integer, then under the null hypothesis

P
[
p̂N

[
S(0)

] ≤ α
]

= α . (C.4)

Secondly, suppose that S(y, X) is not pivotal but is bounded by a pivotal quantity. Formally,
let

S(y, X) ≤ S̃ (W , X)

where W is defined by (2.2), and the distribution of the rows of W is known. Repeat steps 1-4
above, except that at step 3, obtain draws from the bounding distribution

S̃(W(j) , X) , j = 1 , . . . , N .

To emphasize this distinction (relative to the pivotal statistics case), we refer to the bounds based

33



p-value in step 3 as p̃N [S]

p̃N [S(0)] =
NGN

[
S(0) ; S̃(W(N) , X), . . . , S̃(W(N), X)

]
+ 1

N + 1
, (C.5)

where the function GN (·) is as defined in (4.4). The corresponding bound critical region (C.3) is
level correct, in these sense that under the null hypothesis

P
[
p̂N

[
S(0)

] ≤ α
] ≤ α .

Finally, consider the case where the distribution of W depends on unknown parameters, such
as in (2.2) with unknown ν. In this case, given ν, (C.2) and (C.5) yield MC p-values which we will
denote respectively p̂N [S|ν] and p̃N [S|ν] where the conditioning on ν is emphasized for further
reference. Treating ν as a nuisance parameter, the MMC (Dufour (2006)) level-correct critical
regions corresponds to

sup
ν ∈ Φ0

p̂N [S|ν] ≤ α and sup
ν ∈ Φ0

p̃N [S|ν] ≤ α (C.6)

where Φ0 is a nuisance parameter set consistent with the null hypothesis.

D. Goodness-of-fit tests

The test we propose to invert here is the goodness-of-fit (GF) test introduced in Dufour et al. (2003).
Here we summarize the test procedure and refer the reader to Dufour et al. (2003) for proofs, formal
algorithms and further references. Consider

ESK(ν0) =
∣∣SK−SK(ν0)

∣∣ , SK =
1
T 2

T∑

t=1

T∑

i=1

d̂3
ii , (D.1)

EKU(ν0) =
∣∣KU−KU(ν0)

∣∣ , KU =
1
T

T∑

t=1

d̂2
tt , (D.2)

where d̂it are the elements of the matrix Û(Û ′Û/T )−1Û ′ and SK(ν0) and KU(ν0) are simulation-
based estimates of the expected SK and KU given (2.2). SK and KU are the multivariate skewness
and kurtosis criteria introduced by Mardia (1970) in models where the regressor matrix reduces to
a vector of ones and considered by Zhou (1993).

ESK(ν0) and EKU(ν0) can be shown to be pivotal under (2.2); thus the MC test technique
can be applied to obtain exact p-values [denoted p̂[ESK(ν0)|ν0), p̂[EKU(ν0)|ν0)], conditional on
the same SK(ν0) and KU(ν0). To obtain a joint test based on these two statistics, we consider the
following joint test statistic:

CSK = 1−min {p̂[ESK(ν0)|ν0), p̂[EKU(ν0)|ν0)} . (D.3)

34



The underlying intuition is to reject the null hypothesis if at least one of the individual tests is
significant; for convenience, we subtract the minimum p-value from one to obtain a right-sided test.
The MC test technique is again be applied to obtain a size correct p-value for the combined test.

E. Exact diagnostic tests

We consider the tests originally proposed in Dufour, Khalaf and Beaulieu (2002), which consist
in applying standard univariate GARCH and variance ratio tests to standardized residuals, namely
W̃it, the elements of the standardized residual matrix

W̃ = Û S−1

Û
(E.1)

where SÛ is the Cholesky factor of Û ′Û , i.e. SÛ is the (unique) upper triangular matrix such that
Û ′Û = S′

Û
SÛ . In particular, we consider: the standard LM-GARCH test statistic [Engle (1982)],

its modified version which exploits the one sided nature of the (G)ARCH hypothesis [Lee and King
(1993)], and the variance ratio statistic [ Lo and MacKinlay (1988, 1989)]. When applied to the
standardized residuals of equation i, these statistics can be obtained as follows. Engle’s GARCH test
statistic, which we will denote Ei is given by TR2

i , where T is the sample size, R2
i is the coefficient

of determination in the regression of the equation’s squared OLS residuals û2
it on a constant and

û2
(t−j),i (j = 1, . . . , q). The modified Lee-King statistic is

LKi =

{
(T − q)

T∑
t=q+1

[
(W̃ 2

it/σ̂2
i − 1)

] q∑
j=1

W̃ 2
i,t−j

}
/

{
T∑

t=q+1
(W̃ 2

it/σ̂2
i − 1)2

}1/2



(T − q)

T∑
t=q+1

(
q∑

j=1
W̃ 2

i,t−j

)2

−
(

T∑
t=q+1

(
q∑

j=1
W̃ 2

i,t−j

))2




1/2
(E.2)

where σ̂2
i = 1

T

∑T
t=1 W̃ 2

it, and the modified variance ratio may be obtained as:

V Ri = 1 + 2
κ∑

j=1

(
1− j

κ

)
ρ̂ij , ρ̂ij =

T∑

t=j+1

W̃itW̃i,t−j /
T∑

t=1

W̃ 2
ti . (E.3)

In Dufour et al. (2003), we show that under (2.2), W̃ has a distribution which is completely deter-
mined by the distribution of W given X, provided K is restricted to be upper triangular. Hence any
statistic which depends on the data only through W̃ has a distribution which is invariant to B and
Σ, under (2.2). To obtain combined inference across equation, consider the combined statistics:

Ẽ = 1− min
1≤i≤n

[
p(Ẽi)

]
, (E.4)

L̃K = 1− min
1≤i≤n

[
p(L̃Ki)

]
, (E.5)
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Ṽ R = 1− min
1≤i≤n

[
p(Ṽ Ri)

]
, (E.6)

where p(Ẽi), p(L̃Ki) and p(Ṽ Ri) refer to p-values; these may be obtained applying a MC test
method, or (to cut execution time) using asymptotic null distributions, respectively, χ2(q), the stan-
dard normal and N

[
1, 2(2κ− 1)(κ−1)/(3κ)

]
. Then apply an MMC test procedure (see Appendix

C) to the combined statistic imposing (2.2).
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