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ABSTRACT

Usual inference methods for stable distributions are typically based on limit distributions. But
asymptotic approximations can easily be unreliable in such cases, for standard regularity conditions
may not apply or may hold only weakly. This paper proposes finite-sample tests and confidence sets
for tail thickness and asymmetry parameters (α andβ ) of stable distributions. The confidence sets
are built by inverting exact goodness-of-fit tests for hypotheses which assign specific values to these
parameters. We propose extensions of the Kolmogorov-Smirnov, Shapiro-Wilk and Filliben criteria,
as well as the quantile-based statistics proposed by McCulloch (1986) in order to better capture tail
behavior. The suggested criteria compare empirical goodness-of-fit or quantile-based measures with
their hypothesized values. Since the distributions involved are quite complex and non-standard, the
relevant hypothetical measures are approximated by simulation, andp-values are obtained using
Monte Carlo (MC) test techniques. The properties of the proposed procedures are investigated by
simulation. In contrast with conventional wisdom, we find reliable results with samples sizes as
small as 25. The proposed methodology is applied to daily electricity price data inthe U.S. over
the period 2001-2006. The results show clearly that heavy kurtosis andasymmetry are prevalent in
these series.

Key words: stable distribution; skewness; asymmetry; exact test; Monte Carlo test; specification
test; goodness-of-fit; tail parameter; electricity price.
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1. Introduction

Drawing inference on the parameters of stable distributions is an enduring statistical problem. Such
distributions appear in general central limit theorems, and thus provide an attractive alternative to the
Gaussian distribution. So they are commonly considered in various fields of statistics, econometrics
and finance; see Mandelbrot (1963), Ibragimov and Linnik (1975), Zolotarev (1986), Samorod-
nitsky and Taqqu (1994), Embrechts, Klüppelberg and Mikosch (1997), Rachev, Kim and Mittnik
(1999a, 1999b), Rachev and Mittnik (2000), and Dufour, Kurz-Kim and Palm (2010).

In finance, stable distributions are often considered to account for heavy tails and asymmetries
typically observed in financial returns and speculative price data. Furthermore, the family of stable
distributions is consistent with optimization arguments underlying fundamental financial models
such as the Capital Asset Pricing Model (CAPM); see, for example, Mandelbrot (1963), Samuelson
(1967), and our own reviews and applications in Dufour, Khalaf and Beaulieu (2003) and Beaulieu,
Dufour and Khalaf (2005).

In the latter papers, we consider asset pricing models based on multivariatelinear regressions
with stable error distributions, and we derive tests for the efficiency of themarket portfolio (zero
intercepts), allowing for stable error distributions with unknown tail thickness and asymmetry pa-
rameters (α andβ ). To estimate these parameters, we “inverted” goodness-of-fit (GF) tests based
on multivariate kurtosis and skewness coefficients computed from model residuals. By test “in-
version”, we mean the operation of finding the set of parameter values which are not rejected by
the test. We found that abnormal returns are less prevalent when skewness is allowed, so allowing
for skewness has crucial implications for testing asset pricing models. These results also indicate
that inference on the asymmetry parameter tends to be much less precise than inference on the tail
parameter. Indeed, the distribution is fundamentally determined by the vector(α, β ), and there is
generally no reason why the values of its components could be separately determined in a precise
way. This suggests that inference should focus on the pair(α, β ), so a joint approach may be more
informative.

In this paper, we reconsider the problem of buildingjoint confidence sets for the tail and skew-
ness parameters of a stable distribution, with the view of improving inference on the skewness
parameter. Almost invariably, tests and confidence sets which have been proposed for inference on
models with stable distributions are based on asymptotic approximations. The lattercan easily be
unreliable, since standard regularity conditions and asymptotic distributional theory may easily not
apply [or apply only weakly] to such distributions. Consequently, it is important from an inference
viewpoint that we approach this problem from a finite-sample perspective.

Stable distributions, despite their analytical complexities, can be easily simulated;see Cham-
bers, Mallows and Stuck (1976), and Weron (1996). To get reliable inference, we thus use the
technique of Monte Carlo (MC) tests. This method [originally proposed by Dwass (1957) and
Barnard (1963)] is an exact simulation-based test procedure related tothe parametric bootstrap in
the sense that the distribution of the test statistic is simulated under the null hypothesis.1 While

1See, for example, Dufour (2006), Dufour and Khalaf (2001, 2002a, 2002b, 2003), Dufour and Kiviet (1996, 1998),
Kiviet and Dufour (1997), Dufour, Farhat, Gardiol and Khalaf (1998), Dufour, Khalaf, Bernard and Genest (2004),
Dufour et al. (2003).
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typical bootstrap methods are justified only asymptotically, the level of a MC testcan be controlled
in finite samples as soon as the distribution of the test statistic under the null hypothesis can be
simulated once parameter values are set. Test statistics with very complicated distributions may
thus be considered; the existence of a limiting distribution is not even required, which is particularly
relevant for stable distributions.

As illustrated in Dufour et al. (1998), Dufour and Khalaf (2001) and Dufour et al. (2003), MC
test methods are especially suited for testing goodness-of-fit. In this paper, we exploit our earlier
research into such problems for inference on the parameters of stable distributions. To be more
specific, we derive exact joint confidence sets for the tail and asymmetryparameters by inverting
exact GF tests. The tests we propose to invert are new and provide useful model diagnostics.

MC test methods are used in two ways in our analysis. Typically, GF test criteria compare
sample measures,e.g. moments, order statistics or the empirical distribution function (EDF), with
hypothesized values, and discrepancies between theobservedandhypothesized(or expected) mea-
sures suggest that the null hypothesis should be rejected. Two difficulties must be addressed in
this process.First, computing the hypothesized measure may not be straightforward. In the case
of stable laws, a simple closed-form expression is not even available for the density or distribution
function.Second, GF test statistics often have complex null distributions. In many cases, evenlim-
iting null distributions are not pivotal. As a matter of fact, both difficulties remainpresent even in
the Gaussian case; see Thode (2002), Dufour et al. (1998) and the references therein.

Here we approach both problems via atwo-stageMC test procedure. In the first stage, we obtain
simulation-based estimatesof the hypothesized (or expected) measures considered; in thesecond
stage, we obtain testp-values by the MC test technique. The parameter pairs for which thep-values
are greater than the levelα∗ constitute a confidence set with level 1−α∗.

Our methodology considerably expands the class of statistics which can be used for building
confidence sets. We use extensions of the Kolmogorov-Smirnov [Kolmogorov (1933), Smirnov
(1939)], Shapiro-Wilk [Shapiro and Wilk (1965)] and Filliben (1975) criteria, as well as the
quantile-based statistics proposed by McCulloch (1986), which we consider to capture tail behavior.
Our results provide further avenues for development in general GF testing problems.

The properties of the proposed procedures are investigated in a large-scale Monte Carlo study.
Since the size of the tests we invert is controlled by construction, our simulationstudy allows us to
precisely assess their effective power advantages. This experiment reveals notable power differences
in testing the skewness parameter.

We also apply the proposed methodology to electricity price data. This empiricalanalysis il-
lustrates the usefulness of our joint estimation approach. We study the on-peak (daily) electricity
spot price initially provided by ICAP US, over the period from January 3,2001 to May 15, 2006.
We assess the fit of a stable distribution to this series and derive joint confidence regions for both
skewness and tail index parameters. Results may differ depending on the tests considered. Overall,
however, our confidence sets reveal heavy kurtosis and asymmetries inthe series analyzed.

The paper is organized as follows. Section 2 specifies the statistical framework under consider-
ation. In section 3, we present the proposed inference methods. In section 4, we report the results of
an illustrative MC study. The empirical application is discussed in section 5. Section 6 concludes.
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2. Framework

If a random variableY follows a stable distributionS(µ, σ , α, β ), whereµ, σ , α andβ represent
location, scale, tail and skewness parameters, then its characteristic function φ(t) takes the form:

φ(t) = E
[

exp(itY)
]

=

{

exp
{

−σα |t|α
[

1− iβ sgn(t)tan(πα/2)
]

+ iµt
}

, for α 6= 1,
exp

{

−σ |t|
[

1+ iβ (2/π)sgn(t) ln |t|
]

+ iµt
}

, for α = 1,

where 0< α ≤ 2 and−1≤ β ≤ 1, and sgn(t) is the sign function,i.e.

sgn(t) =







1, if t > 0
0, if t = 0

−1, if t < 0
.

For inference onα andβ , location and scale parameterizations raise difficult issues. For ex-
ample, the above parametrization for the location parameter inφ(t) implies a discontinuity in the
distribution aroundα = 1 whenβ 6= 0. The scale parameter in the expression forφ(t) also in-
volves an irregularity atα = 1, which calls for caution in interpreting usual standardizations; see
McCulloch (1996). We thus consider the following location-scale representation:

Yi = µ +σyi , (2.1)

yi
i.i.d.∼ S (0, 1, α , β ) , i = 1, . . . , n, (2.2)

whereYi is a set ofn i.i.d. observations, in which case we propose inference methods onα and
β that are invariant toµ andσ . Invariance, which we prove analytically in finite samples, ensures
adequate size despite such irregularities.

As it is well known, a simple closed-form expression is not available for stable distributions
(except in special cases); for a review of the properties of these distributions, see Samorodnitsky
and Taqqu (1994, Chapter 1) and Rachev and Mittnik (2000, Chapter 2). Here we exploit the
following limit result which characterizes the tail of a stable random variableY ∼ S(µ, σ , α, β ): for
0 < α < 2,

lim
λ→∞

λ αP[Y > λ ] = Cα

(

1+β
2

)

σα , (2.3)

lim
λ→∞

λ αP[Y < −λ ] = Cα

(

1−β
2

)

σα , (2.4)

Cα =

(

∫ ∞

0
x−α sinxdx

)−1

=

{

1/[Γ (2−α)cos(πα/2)] , for α 6= 1,
2/π, for α = 1;

(2.5)

see see Samorodnitsky and Taqqu (1994, pages 16-17). We use this expression for one class of
statistics we introduce, to approximate the tail distribution of a standardized stable distribution as
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follows:

F∞(x;α, β ) = 1−G∞(x;α, β ) =







Cα

(

1+β
2

)

/ |xα | , x > 0

Cα

(

1−β
2

)

/ |xα | , x < 0
. (2.6)

Alternative expressions are available and may be considered for special cases, includingβ = 1;
see Samorodnitsky and Taqqu (1994, Chapter 1). Results in this paper rely on (2.6); our method-
ology [subject to some conditions discussed in section 3] can however be extended to alternative
approximations for the tail probabilities.

Random variables with stable distributions can easily be simulated; see Chambers et al. (1976)
and Weron (1996). All simulations performed in this paper apply Weron (1996), which we repro-
duce here for completeness. Generate, independently, a random variable V , uniformly distributed
over(−π/2, π/2), and an exponential random variableW with mean 1, and set

Bα,β =
arctan

(

β tan
(πα

2

))

α
, Sα,β =

[

1+β 2 tan2
(πα

2

)]1/(2α)
.

Then,

Y =











Sα,β × sin(α(V +Bα,β))
(cos(V ))1/α ×

(

cos(V −α(V +Bα,β))
W

)(1−α)/α
, for α 6= 1,

2
π

[

(π
2 +βV

)

tanV −β log
(

W cos(V )
π
2 +βV

)]

, for α = 1,

provides a draw from theS(0, 1, α, β ) distribution.

3. Inference methods

We develop a comprehensive approach for joint estimation and GF. Formally, we build confidence
sets byinvertinga test for the null hypothesis (2.2) where

H0(α0, β 0) : α = α0 , β = β 0 (3.1)

whereα0 andβ 0 are given. The joint confidence set forα andβ involves the pairs(α0, β 0) which
are not rejected by the test applied.

The tests we introduce for this purpose are modifications of GF tests. Procedures based on
moments are studied in Dufour et al. (2003) and Beaulieu et al. (2005), where we noticed the
difficulty of making inference on the asymmetry parameterβ . To improve inference, we exploit here
different GF, quantile and EDF-based approaches. Even though the location and scale parameters (µ
andσ ) are also unknown, it turns out these can be eliminated. This is done by replacing the original
data by appropriately normalized observations. More precisely, we consider a standardization based
on the sample median and interquartile range:

ŷi =
Yi −Y [50]

Y [75]−Y [25]
, i = 1, . . . , n, (3.2)
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whereY [x] refers to thexth quantile ofYi , i = 1, . . . , n.

Theorem 3.1 LOCATION AND SCALE INVARIANCE. In the context of(2.1)-(2.2), the joint distri-
bution of the standardized observationsŷi , i = 1, . . . , n, defined in(3.2) does not depend onµ and
σ .

PROOF. If we denote byy[x] the xth quantile ofyi , i = 1, . . . , n where, as defined by(2.1), yi =
(Yi −µ)/σ , then clearlyy[x] = (Y [x]−µ)/σ , so

ŷi =
(Yi −µ)/σ − (Y [50]−µ)/σ

(Y [75]−µ)/σ − (Y [25]−µ)/σ
=

yi −y[50]
y[75]−y[25]

, i = 1, . . . , n. (3.3)

By (2.2), yi
i.i.d.∼ S (0, 1, α, β ), and(3.3) implies that the distribution of ˆyi , i = 1, . . . , n, does not

depend onµ andσ .

For testingH0(α0, β 0), Theorem3.1 entails that any statistic which depends on the data only
throughŷi , i = 1, . . . , n, does not depend on nuisance parameters, since its distribution is completely

determined by the distribution ofyi
i.i.d.∼ S (0, 1, α , β ), i = 1, . . . , n. For a similar invariance results

with stable distribution, see Proposition 1 in Dufour and Kurz-Kim (2010). Clearly, the sample
mean and standard deviation lead to a similar result. We rely on the median and interquartile range
for power considerations, as will be illustrated in section 4. Let ˆy(i), i = 1, . . . , n, denote the order
statistics corresponding to ˆyi , i = 1, . . . , n, andŷ[x] refer toxth quantile of ˆyi , i = 1, . . . , n.

3.1. Goodness-of-fit test inversion

We consider here three classes of tests. First, we extend the order-statistic based normality tests of
Shapiro and Wilk (1965) and Filliben (1975) to stable distributions. Second,we define GF measures
using the estimators of McCulloch (1986). Finally, we propose EDF-basedmethods. Besides global
EDF procedures, we consider criteria focusing on the tail of the distribution. All criteria compare
sample measures, defined below, with their hypothesized (population) values underH0(α0, β 0), and
exactp-values are obtained via the MC test method. Hypothesized measures are approximated via
a preliminary simulation. This feature is fully taken into account by the MC method,so the level of
the tests remains controlled. , but using the latter does not affect the exactness of MCp-values.

Formally, given a testSwith observed valueS0 and setting the number of MC simulations toN
so thatα∗(N + 1) is an integer, we obtain MCp-values denoted ˆpN(S0) or p̃N(S0) depending on
whether the distribution ofS is continuous or not, such that for finiten and finiteN,

P
[

p̂N(S0) ≤ α∗
]

= α∗ or P
[

p̃N(S0) ≤ α∗
]

= α∗.

Details and algorithms are given in section 3.2.
The tests are inverted to build confidence set as follows. We assemble, numerically, the pairs

(α, β ) which are not rejected by each of the proposed tests at levelα∗. We used a grid search and
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α∗ = 5%. Formally, for each test we invert, we obtain a subset ofR
2, denoted CS(α , β ;α∗), such

that
P
[

(α, β ) ∈ CS(α , β ;α∗)
]

≥ 1−α∗ for finite n. (3.4)

The shape of confidence regions so obtained is non-standard and there is no reason to expect con-
vexity; e.g., the union of two disjoint sets cannot be ruled out. Because the parameter spaces for
α and β are bounded, the confidence regions will not be unbounded; this is worth noting since
confidence sets obtained by test inversion are not bounded by construction. Ex ante, there are no
theoretical grounds to describe the resulting regions in any further specific way.

Moving from CS(α, β ;α∗) to individual confidence sets for each ofα andβ is achieved by
projecting this region. By definition, a projection-based confidence set can be obtained for any
function g(α , β ) by minimizing and maximizing the functiong(α , β ) over theα and β values
included in CS(α , β ;α∗). Confidence intervals so obtained are simultaneous, in the sense that
valid inference on any arbitrary number of transformations of the(α, β ) pair is feasible ensuring
overall level control; see Miller (1981), Dufour (1989), Abdelkhalekand Dufour (1998) or Bolduc,
Khalaf and Yelou (2010). Formally, for any set ofm continuous real valued functions of the(α, β )
pair, gi (α, β ) ∈ R, i = 1, ..., m, let gi

(

CS(α, β ;α∗)
)

denote the image of CS(α, β ;α∗) by the
functiongi . Clearly,

(α , β ) ∈ CS(α, β ;α∗) ⇒ gi (α, β ) ∈ gi
(

CS(α, β ;α∗)
)

, i = 1, . . . , m

hence

P
[

gi (α , β ) ∈ gi
(

CS(α , β ;α∗)
)

, i = 1, . . . , m
]

≥ P
[

α, β ∈ CS(α , β ;α∗)
]

. (3.5)

Then equation (3.4) implies that

P
[

gi (α, β ) ∈ gi
(

CS(α, β ;α∗)
)

, i = 1, . . . , m
]

≥ 1−α∗ , ∀(α, β ) . (3.6)

It also follows that if CS(α , β ;α∗) is empty, then (2.1)-(2.2), can be rejected at the considered test
level, that isα∗.

3.1.1. Regression-based Shapiro-Wilks type criteria

The regression-based GF approach may be traced back to Shapiro andWilk (1965) for the problem
of testing normality. It consists in regressing the observed (sample) orderstatistics on a constant
and the series of their means under the normality null hypothesis; tests for thesignificance of the
regression slope serve to assess GF. Filliben (1975), again restricting focus to normality tests, sug-
gested to replace, in the latter regression, the population means of order statistics by their population
medians. These tests are left-tailed, for large values support the hypothesized distribution.

The (population) means or medians of order statistics for stable distributions are not available.2

2Beyond few special cases, for example, the Gaussian distribution for which Shapiro and Wilks provided specialized
tables for given sample sizes, expected values and population medians of order statistics are unavailable. This literature
acknowledges difficulties with various approximations even with Gaussian distributions.
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We thus rely on simulation-based approximations, under the null hypothesis (3.1) which fixesα and
β to given valuesα0 andβ 0. This is done as follows.

A1. DrawN0 i.i.d. samples of sizen from a stable distribution imposing (3.1);

A2. For each sample drawn, construct the order statistics; these yieldN0 realizations of each of the
order statistics.

A3. The vector of empirical means (averages), denoted

s̄(α0, β 0) = [s̄1(α0, β 0), . . . , s̄n(α0, β 0)]
′ ,

and the vector of empirical medians

s̃(α0, β 0) = [s̃1(α0, β 0), . . . , s̃n(α0, β 0)]
′ ,

of theN0 simulated values for each order statistic yield the desired approximation.

Comparing ¯s(α0, β 0) or s̃(α0, β 0) which impose (3.1) to the vector of observed order statistics
ŷ(i), i = 1, . . . , n, allows one to assess the acceptability of (3.1). For this purpose, we propose to
use the coefficient of determination [R2], denotedρ

[

ŷ(i), s̄i(α0, β 0)
]

, associated with regressing
ŷ(1), ... , ŷ(n) on a constant and ¯s1(α0, β 0), . . . , s̄n(α0, β 0). Alternatively, we consider theR2,
denotedρ

[

ŷ(i), s̃i(α0, β 0)
]

, from the regression of ˆy(1), ... , ŷ(n) on a constant and ˜s1(α0, β 0), . . . ,
s̃n(α0, β 0). For convenience, we subtract the coefficients of determination from one, to obtain the
right-tailed tests:

SW(α0, β 0) = 1−ρ
[

ŷ(i), s̄i(α0, β 0)
]

, (3.7)

FB(α0, β 0) = 1−ρ
[

ŷ(i), s̃i(α0, β 0)
]

. (3.8)

3.1.2. Quantile-based criteria

We next consider two test statistics based on the estimators of McCulloch (1986):

φ̂1(α0, β 0) =
∣

∣φ1− φ̄1(α0, β 0)
∣

∣ , φ1 =
ŷ[95]− ŷ[5]

ŷ[75]− ŷ[25]
, (3.9)

φ̂2(α0, β 0) =
∣

∣φ2− φ̄2(α0, β 0)
∣

∣ , φ2 =
ŷ[95]+ ŷ[5]−2ŷ[50]

ŷ[95]− ŷ[5]
, (3.10)

whereφ̄1(α0, β 0) and φ̄2(α0, β 0) are the hypothesized values forφ1 andφ2 imposing (3.1). We
estimateφ̄1(α0, β 0) and φ̄2(α0, β 0) by simulation, so we do not need any specialized tables to
conduct these tests. The algorithm we use may be summarized as follows.

B1. DrawN0 i.i.d. samples of sizen from a stable distribution imposing (3.1).

B2. For each sample drawn, construct the quantiles which appear in the formulas forφ1 andφ2;
these yieldN0 realizations of the measures under consideration.

7



B3. The average across theN0 simulated values of each measure yieldφ̄1(α0, β 0) andφ̄2(α0, β 0).

3.1.3. Empirical distribution function measures

Tests based on the EDF are naturally described as GF tests. Here we extend to the case of (3.1),
three of the most popular EDF criteria of the Kolmogorov-Smirnov and Anderson-Darling type
form, which we adapt to target the tail behavior of the distribution as follows.

Let F̂n(x) refer to the EDF of the sample ˆy1, ... , ŷn, that is, F̂n(x) equals the proportion of
observations ˆy1, ... , ŷn that are less than or equal tox. We consider the following three statistics,
which differ regarding the weights attributed to the observed and hypothesized distributions:

KSA1(α0, β 0) = max
x

{√
n
∣

∣F̂n(x)− F̄0(x;α0, β 0)
∣

∣

}

, (3.11)

KSA2(α0, β 0) = max
x

{√
n

∣

∣

∣

∣

F̂n(x)− F̄0(x;α0, β 0)

F̄0(x;α0, β 0) [1− F̄0(x;α0, β 0)+1/n]

∣

∣

∣

∣

}

, (3.12)

KSA3(α0, β 0) = max
x

{

√
n

∣

∣

∣

∣

∣

F̂n(x)− F̄0(x;α0, β 0)

F̂n(x)
[

1− F̂n(x)
]

+1/n

∣

∣

∣

∣

∣

}

, (3.13)

whereF̄0(x;α0, β 0) is a simulation based estimate of the hypothesized distribution, derived as fol-
lows.

C1. Draw onei.i.d. sample of sizen, denotedy1(α0, β 0), ... , yn̄(α0, β 0), from a standard stable
distribution imposing (3.1).3

C2. For any x, define F̄0(x;α0, β 0) as the proportion of the simulated observations
y1(α0, β 0), ... , yn̄(α0, β 0) that are less than or equal tox.

Given our interest on heavy tailed distributions, we also consider variantsof the latter EDF
statistics which focus on the tail of the distribution:

KSC1(α0, β 0) = max
x∈Λ(x)

{√
n
∣

∣F̂n(x)− F̄0(x;α0, β 0)
∣

∣

}

, (3.14)

KSC2(α0, β 0) = max
x∈Λ(x)

{√
n

∣

∣

∣

∣

F̂n(x)− F̄0(x;α0, β 0)

F̄0(x;α0, β 0) [1− F̄0(x;α0, β 0)+1/n]

∣

∣

∣

∣

}

, (3.15)

KSC3(α0, β 0) = max
x∈Λ(x)

{

√
n

∣

∣

∣

∣

∣

F̂n(x)− F̄0(x;α0, β 0)

F̂n(x)
[

1− F̂n(x)
]

+1/n

∣

∣

∣

∣

∣

}

, (3.16)

where
Λ(x) =

{

x≤ λ̄ 1 or x≥ λ̄ 2
}

3The size of the simulated sample,n, is not necessarily equal to the size of the observed sample,n. A large n̄ is
recommended. Our simulation study uses ¯n = 1000 for all considered values ofn. Our empirical analysis uses ¯n = 2000.
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andλ̄ 1 andλ̄ 2 correspond to a cut-off points which allow us to focus on a specific region(here, in
the tail) of the hypothesized distribution. In our simulation and empirical illustrations, we use the
5th and 95th percentiles of thesimulatedsampley1(α0, β 0), ... , yn̄(α0, β 0).

Alternative approximations for the tail distribution function which underlie (3.14)–(3.16) may
be also used. We consider theF∞(x;α0, β 0) approximation as defined in (2.6), which leads to:

KST1(α0, β 0) = max
x∈Λ(x)

{√
n
∣

∣F̂n(x)−F∞(x;α0, β 0)
∣

∣

}

, (3.17)

KST2(α0, β 0) = max
x∈Λ(x)

{√
n

∣

∣

∣

∣

F̂n(x)−F∞(x;α0, β 0)

F∞(x;α0, β 0) [1−F∞(x;α0, β 0)]+1/n

∣

∣

∣

∣

}

, (3.18)

KST3(α0, β 0) = max
x∈Λ(x)

{

√
n

∣

∣

∣

∣

∣

F̂n(x)−F∞(x;α0, β 0)

F̂n(x)
[

1− F̂n(x)
]

+1/n

∣

∣

∣

∣

∣

}

. (3.19)

Statistics so obtained would be less costly and do not call for a first-stage simulation. Interestingly,
the MC technique [described below] allows us to obtain exactp-values for the latter statistics, even
though limiting distributions are used in their formulation. For further reference on the unconven-
tional use of asymptoticp-values to derive exact tests, see Dufour, Khalaf and Beaulieu (2010).

3.2. Finite samplep-values

Clearly, the test criteria introduced above complex null distributions which maybe difficult to es-
tablish analytically in both finite and large samples. Yet these distributions can beeasily simulated
which justifies the application of Monte Carlo tests [Dufour (2006)]. The general MC test method-
ology proceeds as follows.

Let S0 denote the test statistic calculated from the observed data set; generateN replications
S1, . . . , SN of the test statisticS so thatS0, S1, . . . , SN areexchangeable. Given the latter series,
compute ˆpN (S0) where

p̂N(x) =
NĜN(x)+1

N+1
, ĜN(x) = ĜN [x;S(N)] =

1
N

N

∑
i=1

1(Si ≥ x) , (3.20)

S(N) = (S1, . . . , SN)′ and1(C) is the indicator function associated with conditionC:

1(C) = 1, if conditionC holds

= 0, otherwise.

In other words,NĜN(S0) is the number of simulated values greater than or equal toS0. The MC
critical region is: ˆpN(S0) ≤ α∗ , 0< α∗ < 1.

If the distribution ofS is continuous andα∗(N+1) is an integer, then

P
[

p̂N(S0) ≤ α∗
]

= α∗.

Some of the statistics we consider, particularly the truncated EDF-based ones, have possibly dis-
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continuous distributions. The technique of MC tests can be adapted for discrete distributions using
the following randomized tie-breaking procedure [for proofs and further references, see Dufour
(2006)].

DrawN+1 uniformly distributed variatesZ0, Z1, . . . , ZN independently ofS(N) and arrange the
pairs(Sj , Z j) following the lexicographic order:

(Si , Zi) ≥ (Sj , Z j) ⇔ [Si > Sj or (Si = Sj and Zi ≥ Z j)] . (3.21)

This leads to the MCp-value p̃N (S0) where

p̃N(x) =
NG̃N(x)+1

N+1
, (3.22)

G̃N(x) = G̃N [x;Z0, S(N), Z(N)] (3.23)

= 1− 1
N

N

∑
i=1

1(Si ≤ x)+
1
N

N

∑
i∈EN(x)

1(Zi ≤ Z0)

andZ(N) = (Z1, . . . , ZN)′, EN(x) = {i : Si = x, 1≤ x≤ N}. The resulting critical region is ˜pN(S0)≤
α∗ , 0< α∗ < 1. If α∗(N+1) is an integer, then

P
[

p̂N(S0) ≤ α∗
]

≤ P
[

p̃N(S0) ≤ α∗
]

= α∗.

When applied to the above GF criteria, the MC test technique can be summarizedas follows.
Note that step D1 is not needed for the statistics (3.17) - (3.18) - (3.19).

D1. We obtain the above described approximations for the population measures underlying all
considered statistics. Specifically, we implement algorithm A1-A3 to derive ¯s(α0, β 0)
or s̃(α0, β 0), algorithm B1-B3 to deriveφ̄1(α0, β 0) and φ̄2(α0, β 0), and algorithm C1-
C2 which serves to construct the function̄F0(x;α0, β 0), using the reference sample
y1(α0, β 0), ... , yn̄(α0, β 0). All these population measures are generatedonly once, so the
next steps are conditional on these estimates.

D2. Applying (3.7)-(3.8), (3.9)-(3.10) and (3.11)-(3.19) to the data, we find the observed value of
each test statistic.

D3. Independently of the step D1, we drawN i.i.d. samples of sizen from a stable distribution
under (3.1), and standardize the simulated observations for each draw,using the median and
interquartile range of each simulated samples.

D4. Using the same population measures derived in D1, and applying (3.7)-(3.8), (3.9)-(3.10) and
(3.11) - (3.19) to the simulated data, we obtainN simulated values for each test statistic con-
sidered.

D5. We can then compute a simulatedp-value, for any one of the test statistics, using the rank
of the observed statistic, relative to its simulated counterpart; see (3.20) or (3.22). The null
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hypothesis is rejected at levelα∗ by each of the test considered if the MCp-value so obtained
is less than or equal toα∗.

Because the above MC test procedure involves two levels of simulations (a first one to approx-
imate the population measures, and a second one to get the test statistics) for all statistics except
(3.17) - (3.18) - (3.19), we call it atwo-stage MC test. It is important to emphasize a key step in the
above algorithm: the observed and simulated statistics must rely on thesameapproximated popula-
tion measures; in this way, the observed and simulated statistics are (by construction) exchangeable
under the null hypothesis, which yields size control; see Dufour (2006)and Dufour et al. (2003)
or Beaulieu, Dufour and Khalaf (2007). The underlying simulations are non-independent but re-
main exchangeable, which is sufficient to ensure exactness as shown byDufour (2006). In addition
to minimizing noise which may affect power, using the same approximated population measures
implies important execution cost savings. The fact that exchangeability is sufficient from a finite-
sample perspective is worth pointing out here since all statistics we proposerely on just one prelim-
inary simulation.

3.3. Combined statistics

The MC test technique can also be applied to combine the above statistics; see Dufour et al. (2003),
Dufour and Khalaf (2002a), Dufour et al. (2004), Dufour, Khalaf and Beaulieu (2010), Beaulieu,
Dufour and Khalaf (2013). Combining our modified version of McCulloch’s (1986) statistics
φ̂1(α0, β 0) and φ̂2(α0, β 0) is the most relevant question, since the former is originally designed
to focus onα0 and the latter onβ 0. To avoid relying on Boole-Bonferroni rules for this purpose, we
use the following combined statistics:

φ̂(α0, β 0) = 1−min
{

p̂N
(

φ̂1(α0, β 0)
)

, p̂N
(

φ̂2(α0, β 0)
)}

, (3.24)

φ̃(α0, β 0) = 1−min
{

p̃N
(

φ̂1(α0, β 0)
)

, p̃N
(

φ̂2(α0, β 0)
)}

. (3.25)

Such a combination method allows us to reject the null hypothesis if at least oneof the individual
tests is significant; for convenience, we subtract the minimump-value from one to obtain a right-
sided test. The MC test technique may once again be applied to obtain a test based on the combined
statistic; details of the algorithm can be summarized as follows, for the case ofφ̂(α0, β 0). The
algorithm can be easily adapted to the case ofφ̃(α0, β 0) replacing the survival function̂GN [x;S(N)]
by G̃N [x;S(N)] in what follows.

E1. According to steps B1-B3, generateφ̄1(α0, β 0) andφ̄2(α0, β 0); conformably, calculate the ob-

served value of̂φ1(α0, β 0) andφ̂2(α0, β 0) [denotedφ̂0
1(α0, β 0) andφ̂0

2(α0, β 0) respectively],
and theN corresponding simulated statistics using the sameφ̄1(α0, β 0) andφ̄2(α0, β 0).

E2. For each test statistic, obtain the “survival function”ĜN [x;S(N)] defined in (3.20) determined
by the simulated statistics.

E3. Independently of the previous simulations and the data, generateN additionali.i.d. realizations
from a stable distribution under (3.1) each of sizen, and standardize the simulated observations
for each draw, using the median and interquartile range of the simulated samples.
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E4. Usingφ̄1(α0, β 0) and φ̄2(α0, β 0), and theN draws generated at step E3, compute the corre-

sponding simulated statistics:φ̂ l
1(α0, β 0) andφ̂ l

2(α0, β 0) l = 1, . . . , N .

E5. Using the survival functions obtained at step E2, evaluate the simulatedp-values for the ob-

served and theN additional simulated statistics; specifically, obtainĜN

[

φ̂ l
1(α0, β 0);S(N)

]

,

l = 0, 1, . . . , N, andĜN

[

φ̂ l
2(α0, β 0);S(N)

]

l = 0, 1, . . . , N, using forS(N) the same simulated

series described in step E1; these lead to thep-values ˆpN[φ̂ l
1(α0, β 0)] and p̂N[φ̂ l

2(α0, β 0)] ,
l = 0, 1, . . . , N.

E6. From the latter, compute the corresponding values of the combined test statistics:

φ̂ l
(α0, β 0) = 1−min

{

p̂N[φ̂ l
1(α0, β 0)], p̂N[φ̂ l

2(α0, β 0)]
}

, l = 0, 1, . . . , N . (3.26)

It is easy to see that the vectorsφ̂ l
(α0, β 0), l = 0, 1, . . . , N , are exchangeable.

E7. ApplyingĜN

[

φ̂ l
(α0, β 0);

(

φ̂1
(α0, β 0), . . . , φ̂N

(α0, β 0)
)′]

leads to the desired combinedp-

value.

The test based on the combinedp-value described in steps E1-E7 has the correct level because

the variableŝφ l
(α0, β 0), l = 0, 1, . . . , N, are exchangeable under the null hypothesis. We call this

three nested simulation procedure a triple or three stage MC test. Here again,maintaining thesame
approximated population measures throughout ensures exchangeability,hence exactness.

4. Monte Carlo study

We conduct a MC study to assess the performance of the above proposed tests. We design the
experiment as follows. Simulated samples withn = 25, 100, 250 and 1000 are drawn from model
(2.1)-(2.2) withµ = 0 andσ = 1. For inference onβ , samples are generated withβ = 0 and two
choices forα: 1.5 and 1.9. For inference onα, samples are generated withα = 1.75 and two
choices forβ : 0 and.5.

Size results associated in turn withβ = 0 andα = 1.75 are reported in Table 1. The power study
for inference onβ is reported in Table 2 forα = 1.5 and 3 forα = 1.9. In each of these tables,
the hypothesized value forα is set to the value which was used to generate the samples (1.5 or 1.9,
respectively) while the hypothesized value forβ varies from.1 to 1. The power study for inference
on α is reported in Table 4 forβ = 0 and 5 forβ = .5. In each of these tables, the hypothesized
value forβ is set to the value which was used to generate the samples (0 or.5, respectively) while
the hypothesized value forα varies from.5 to 1.99.

N = 199 replications are considered for the MC tests.N0 = 1000 and ¯n = 1000 is consid-
ered for all values ofn. We setλ̄ 1 and λ̄ 2 at 5th and 95th percentiles of the simulated samples
y1(α0, β 0), ... , yn̄(α0, β 0) defined in algorithm C1-C2. All tables report empirical rejections asso-
ciated with a nominal size of 5% and 1000 replications. Results can be summarized as follows.
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TABLE 1: Size of GF tests

Tests onβ α = 1.5;β = 0 α = 1.9;β = 0

n 25 100 250 1000 25 100 250 1000
SW .056 .052 .050 .044 .060 .050 .046 .046
FB .059 .042 .044 .044 .058 .049 .050 .045

KSA1 .047 .045 .058 .047 .064 .043 .050 .056
KSA2 .045 .052 .056 .052 .039 .051 .049 .036
KSA3 .055 .045 .053 .061 .052 .047 .047 .048
KSC1 .040 .059 .061 .047 .044 .051 .057 .050
KSC2 .043 .053 .056 .052 .039 .051 .049 .036
KSC3 .045 .045 .052 .061 .056 .053 .048 .048
KST1 .055 .050 .043 .039 .064 .058 .052 .040
KST2 .055 .050 .043 .039 .064 .058 .052 .040
KST3 .055 .050 .043 .039 .064 .058 .052 .040

φ̂1 .058 .055 .039 .054 .056 .049 .047 .440
φ̂2 .053 .042 .059 .054 .049 .058 .052 .062

Tests onα α = 1.75;β = 0 α = 1.75;β = .5

n 25 100 250 1000 25 100 250 1000
SW .064 .048 .047 .046 .064 .046 .047 .045
FB .059 .047 .047 .043 .054 .045 .043 .045

KSA1 .054 .045 .060 .053 .056 .038 .054 .059
KSA2 .043 .055 .045 .042 .039 .057 .052 .038
KSA3 .052 .055 .049 .057 .054 .060 .052 .057
KSC1 .042 .050 .064 .047 .039 .045 .057 .046
KSC2 .041 .055 .045 .042 .040 .058 .052 .038
KSC3 .045 .054 .050 .057 .044 .057 .051 .057
KST1 .061 .052 .048 .035 .061 .051 .050 .046
KST2 .061 .052 .048 .035 .061 .051 .050 .038
KST3 .061 .052 .048 .035 .061 .051 .050 .057

φ̂1 .056 .068 .045 .046 .053 .065 .040 .048
φ̂2 .053 .043 .055 .038 .061 .038 .055 .045

Notes –SW andFB are our extensions of the Shapiro and Wilk (1965) and Filliben (1975) tests defined in
section 3.1.1, which involve regressing the observed orderstatistics on a constant and the series of their pop-
ulation means (SW) or medians (FB) imposing the null hypothesis (3.1).KSAi , i = 1, ..., 3 are our full sample
weighted [KSA2 andKSA3] and standard [KSA1] Kolmogorov-Smirnov type tests defined in section 3.1.3.
KSCi , i = 1, ..., 3 are their tail-based counterparts, for which the population tail distribution is simulation-
based.KSTi , i = 1, ..., 3 rely on the asymptotic tail approximation (2.3) instead.φ̂1 andφ̂2 defined in section
3.1.2 assess the distance between the estimators of McCulloch (1986) and their hypothesized values imposing
the null hypothesis (3.1), the latter approximated by simulation.
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TABLE 2: Power, GF tests onβ

α = 1.5;β = .3 α = 1.5;β = .5 α = 1.5;β = .7

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .082 .073 .081 .072 .127 .135 .149 .150 .219 .278 .286 .281
FB .076 .066 .060 .054 .094 .092 .087 .086 .128 .156 .155 .172

KSA1 .065 .072 .117 .277 .074 .135 .225 .623 .079 .191 .425 .886
KSA2 .080 .124 .135 .113 .131 .302 .389 .377 .203 .581 .783 .759
KSA3 .090 .103 .108 .112 .114 .151 .159 .164 .135 .179 .189 .209
KSC1 .072 .143 .201 .496 .106 .295 .225 .896 .148 .488 .817 .992
KSC2 .080 .123 .135 .113 .128 .301 .389 .377 .201 .582 .783 .759
KSC3 .066 .096 .107 .112 .074 .129 .159 .164 .086 .148 .188 .209
KST1 .077 .085 .067 .059 .103 .120 .101 .088 .160 .179 .174 .152
KST2 .077 .085 .067 .059 .103 .120 .101 .088 .160 .179 .174 .152
KST3 .077 .085 .067 .059 .103 .120 .101 .088 .160 .179 .174 .152

φ̂1 .073 .071 .044 .049 .086 .080 .049 .050 .113 .085 .052 .049
φ̂2 .067 .149 .314 .809 .114 .377 .669 .992 .188 .642 .906 1.00

α = 1.5;β = .9 α = 1.5;β = .99 α = 1.5;β = 1.0

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .362 .467 .477 .496 .419 .546 .573 .613 .423 .558 .579 .623
FB .209 .275 .326 .375 .254 .361 .422 .528 .262 .367 .429 .542

KSA1 .085 .281 .620 .974 .091 .334 .715 .986 .087 .332 .728 .989
KSA2 .281 .867 .992 .986 .308 .935 .999 .999 .308 .932 .999 1.00
KSA3 .151 .194 .213 .243 .165 .209 .211 .238 .166 .210 .212 .224
KSC1 .194 .647 .957 .999 .209 .697 .976 1.00 .209 .701 .978 1.00
KSC2 .281 .867 .992 .986 .307 .935 .999 .999 .307 .932 .999 1.00
KSC3 .096 .150 .208 .241 .096 .149 .205 .236 .097 .145 .205 .224
KST1 .391 .459 .452 .406 .604 .977 .995 .993 .066 .054 .053 .053
KST2 .391 .459 .452 .406 .604 .977 .995 .993 .066 .054 .053 .053
KST3 .391 .459 .452 .406 .604 .977 .995 .993 .066 .054 .053 .053

φ̂1 .159 .084 .051 .042 .199 .085 .051 .042 .203 .084 .050 .041
φ̂2 .384 .818 .977 1.00 .541 .863 .985 1.00 .552 .868 .987 1.00

Notes – See Table 1.
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TABLE 3: Power, GF tests onβ - continued

α = 1.9;β = .3 α = 1.9;β = .5 α = 1.9;β = .7

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .065 .055 .049 .042 .069 .062 .060 .050 .079 .077 .068 .068
FB .060 .049 .050 .046 .065 .051 .053 .046 .074 .058 .060 .053

KSA1 .066 .050 .048 .062 .065 .050 .053 .062 .066 .053 .053 .083
KSA2 .039 .070 .067 .055 .052 .088 .097 .125 .055 .113 .143 .267
KSA3 .061 .070 .074 .103 .063 .095 .097 .146 .067 .109 .123 .189
KSC1 .047 .058 .063 .080 .049 .061 .077 .125 .047 .076 .094 .171
KSC2 .040 .070 .067 .055 .052 .088 .097 .125 .055 .113 .143 .267
KSC3 .067 .077 .075 .103 .066 .082 .096 .146 .070 .093 .122 .189
KST1 .076 .082 .074 .063 .086 .113 .103 .089 .109 .165 .171 .146
KST2 .076 .082 .074 .063 .086 .113 .103 .089 .109 .165 .171 .146
KST3 .076 .082 .074 .063 .086 .113 .103 .089 .109 .165 .171 .146

φ̂1 .065 .050 .045 .040 .071 .049 .045 .038 .077 .053 .048 .041
φ̂2 .058 .055 .067 .115 .073 .071 .085 .210 .088 .085 .110 .351

α = 1.9;β = .9 α = 1.9;β = .99 α = 1.9;β = 1

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .092 .097 .100 .118 .099 .120 .127 .160 .101 .122 .131 .173
FB .079 .065 .067 .066 .082 .066 .071 .075 .083 .067 .071 .075

KSA1 .074 .058 .115 .261 .074 .063 .070 .120 .074 .062 .071 .119
KSA2 .055 .134 .226 .474 .063 .143 .282 .573 .065 .149 .288 .579
KSA3 .075 .121 .149 .230 .078 .124 .165 .253 .077 .123 .166 .255
KSC1 .053 .081 .060 .101 .051 .080 .134 .317 .053 .081 .136 .324
KSC2 .055 .134 .226 .474 .063 .143 .282 .573 .065 .149 .288 .579
KSC3 .072 .096 .147 .230 .073 .103 .167 .253 .073 .104 .167 .255
KST1 .133 .295 .405 .383 .139 .366 .590 .930 .048 .053 .053 .053
KST2 .133 .295 .405 .383 .139 .366 .590 .930 .048 .053 .053 .053
KST3 .133 .295 .405 .383 .139 .366 .590 .930 .048 .053 .053 .053

φ̂1 .083 .053 .047 .039 .086 .053 .050 .034 .088 .053 .051 .033
φ̂2 .099 .109 .157 .496 .114 .122 .181 .559 .114 .123 .187 .569

Notes – See Table 1.

15



TABLE 4: Power, GF tests onα

α = .5;β = 0 α = 1;β = 0 α = 1.25;β = 0

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .080 .174 .204 .235 .146 .430 .476 .552 .045 .287 .405 .498
FB .281 .671 .740 .760 .003 .003 .072 .209 .010 .004 .005 .007

KSA1 .016 .996 1.0 1.0 .062 .450 .954 1.0 .117 .133 .351 .922
KSA2 .001 .013 .044 .104 .001 .001 .010 .038 .004 0 .002 .015
KSA3 .707 1.0 1.0 1.0 .244 .901 .989 1.0 .138 .591 .874 .986
KSC1 0 .596 .995 1.0 0 .416 .829 1.0 .060 .208 .598 .982
KSC2 0 0 .005 .102 0 0 .005 .035 .004 0 .002 .015
KSC3 .157 .999 1.0 1.0 .157 .903 .976 1.0 .002 .629 .843 .986
KST1 0 0 0 0 .001 0 0 0 .005 .002 .002 0
KST2 0 0 0 0 .001 0 0 0 .005 .002 .002 0
KST3 0 0 0 0 .001 0 0 0 .005 .002 .002 0

φ̂1 .942 .016 .703 1.0 .129 .282 1 1.0 .025 .151 .911 1.0
φ̂2 0 0 0 0 .005 0 0 0 .008 .0 .001 0

α = 1.5;β = 0 α = 1.9;β = 0 α = 1.99.0;β = 0

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .023 .022 .067 .103 .145 .162 .151 .156 .318 .686 .872 .957
FB .016 .010 .013 .012 .148 .166 .158 .160 .328 .700 .877 .957

KSA1 .055 .053 .092 .207 .053 .043 .052 .064 .047 .039 .056 .078
KSA2 .011 .006 .003 .003 .065 .186 .384 .764 .082 .295 .711 .995
KSA3 .079 .244 .415 .665 .039 .016 .006 .003 .032 .011 0 0
KSC1 .017 .048 .144 .705 .053 .091 .139 .224 .064 .107 .171 .400
KSC2 .011 .006 .003 .003 .065 .186 .385 .764 .082 .295 .711 .995
KSC3 .080 .245 .411 .665 .040 .014 .006 .003 .033 .006 0 0
KST1 .013 .006 .006 .004 .122 .163 .176 .171 .230 .543 .740 .842
KST2 .013 .006 .006 .004 .122 .163 .176 .171 .230 .543 .740 .842
KST3 .013 .006 .006 .004 .122 .163 .176 .171 .230 .543 .740 .842

φ̂1 .013 .036 .219 .892 .124 .139 .168 .330 .212 .193 .281 .621
φ̂2 .017 .005 .012 .006 .108 .093 .087 .075 .167 .107 .095 .091

Notes – See Table 1.
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TABLE 5: Power, GF tests onα - continued

α = .5;β = .5 α = 1;β = .5 α = 1.25;β = .5

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .029 .114 .142 .131 .075 .240 .350 .372 .040 .170 .283 .343
FB .001 0 .001 0 .009 .006 .013 .043 .011 .008 .014 .024

KSA1 .109 .729 .972 1.0 .136 .525 .940 1.0 .088 .214 .546 .971
KSA2 .167 .495 .539 .315 .025 .004 .014 .040 .019 .006 .005 .013
KSA3 .940 1.0 1.0 1.0 .513 .923 .987 1.0 .263 .656 .864 .984
KSC1 .001 .263 .952 1.0 .015 .255 .717 .987 .029 .149 .465 .976
KSC2 0 0 .005 .099 .008 .0 .006 .034 .018 .005 .003 .013
KSC3 .206 .999 1.0 1.0 .175 844 .960 1.0 .142 .599 .819 .984
KST1 0 0 0 0 .001 0 0 0 .005 .003 .002 0
KST2 0 0 0 0 .001 0 0 0 .005 .003 .002 0
KST3 0 0 0 0 .001 0 0 0 .005 .003 .002 0

φ̂1 .892 .008 .311 1.0 .089 .135 .971 1.0 .016 .083 .705 1.0
φ̂2 0 .096 .998 1.0 .005 .161 .909 1.0 .009 .106 .631 1.0

α = 1.5;β = .5 α = 1.9;β = .5 α = 1.99;β = .5

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW .027 .051 .099 .143 .147 .161 .158 .148 .334 .703 .880 .952
FB .018 .012 .018 .013 .151 .162 .164 .152 .341 .717 .878 .943

KSA1 .070 .078 .116 .379 .045 .038 .069 .102 .044 .042 .099 .233
KSA2 .028 .020 .006 .006 .057 .150 .327 .735 .071 .279 .761 .999
KSA3 .126 .292 .426 .673 .028 .007 .004 .003 .021 .003 .002 .001
KSC1 .033 .070 .178 .667 .048 .074 .143 .336 .052 .117 .278 .714
KSC2 .029 .018 .006 .006 .057 .150 .327 .735 .071 .279 .761 .999
KSC3 .096 .262 .416 .673 .032 .015 .002 .003 .023 .014 .002 .001
KST1 .016 .007 .008 .004 .100 .154 .168 .158 .134 .361 .572 .808
KST2 .016 .007 .008 .004 .100 .154 .168 .158 .134 .361 .572 .808
KST3 .016 .007 .008 .004 .100 .154 .168 .158 .134 .361 .572 .808

φ̂1 .011 .033 .144 .824 .113 .126 .171 .352 .162 .162 .277 .614
φ̂2 .025 .059 .203 .835 .117 .117 .176 .415 .163 .181 .349 .793

Notes – See Table 1.
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All empirical sizes conform to the nominal level of 5%. Of course, this is expected because the
procedures are provably size correct. With regards to power, our results do not reveal a uniformly
dominant criterion. We thus analyze power ranking within each test class considered as well as from
a global perspective.

Tests based on order statistics. TheSW test outperforms theFB criterion throughout except in
one noteworthy case: theFB test dominates for inference onα whenα = .5; see Table 4. Since
moments do not exist for this case, discrepancies between observed andcalibrated medians of order
statistics make more sense than the distance between their observed and calibrated means. Both the
SWandFB statistics are dominated by the other criteria we introduce except with very smallsample
sizes (n = 25) or when the tested distribution is close to Gaussian: see theα = 1.99 andβ = 0 case
in Table 4.

Kolmogorov-Smirnov-type tests. Focusing on the tail improves, for inference onβ , the power
of the unweighted Kolmogorov type EDF statistic, as may be seen from comparing the performance
of KSA1 relative toKSC1. In contrast, focusing on the tail costs power for inference onα unlessα
exceeds 1.25. The weighted statisticsKSC2 or KSC3 may or may not outperformKSA2 andKSA3,
so focus on the tail does not warrant power improvements for such statistics. On balance, we find
that weighing may be preferable to truncation, although a uniformly dominant weighting scheme
did not emerge.

The procedure considered to approximate the tail distribution,i.e., whether by simulation or via
an asymptotic argument, has important implications for test power, as may be seen from comparing
the performance ofKSTi , relative toKSCi , i = 1, 2, 3. For inference onβ , such effects vary withα.
In particular, simulation outperforms asymptotics forα = 1.5, whereas asymptotics seems prefer-
able withα = 1.9 as long asβ < 1. However, power drops sharply even with a sample size of
1000 forβ = 1, which reflects the inadequacy of the considered approximation for this case. Such
a severe discontinuity illustrates the advantages of our proposed two-stage exact procedures for ap-
proximating the tail on which the statistic restricts focus as well as the statistic’sp-value.4 Results
for inference onα in tables 4 - 5 reinforce this conclusion: theKSTi criteria perform poorly and are
almost degenerate [have zero empirical rejections] in many cases.

Quantile-based tests. For inference onβ , despite being dominated in the above discussed counter
examples,̂φ2 performs steadily well whereaŝφ1 has low power. For tests onα and in sharp contrast
with φ̂1 which performs quite well, the power of̂φ2 is low with β = 0 [see Table 4] yet it picks
up remarkably well for the considered asymmetric case [see Table 5], enough to outperform̂φ1 in
a number of cases.5 This result is worth noting sincêφ2 was originally designed to focus onβ : in
contrast, we find that unless the tested distribution is symmetric,φ̂2 holds useful information onα
as well.

4Recall that the tests we construct are exact in terms of size control usingboth approximation methods, so power
discrepancies can soundly be analyzed.

5The reported value ofβ s in both Tables 4-5 is maintained under the null and alternative hypothesis (while of course
αs varies).
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General observations. Several important conclusions can be drawn from tables 2 - 5 interpreted
collectively. In contrast to conventional wisdom, quality inference withn as small as 25 is feasible.
Examples include testing a value ofβ > .9 with α = 1.5 for which power withe.g. φ̂2 ranges from
around 38-50%, or testing a value ofα = .5 regardless of the consideredβ for which power using
againφ̂2 as an example, ranges from 89-94%, which is remarkable with just 25 observations.

If kurtosis is low, all statistics have limited power to detect low-to-medium skewness except for
n = 1000 where we observe some power. In parallel, kurtosis is harder to detect with symmetric
distributions for all sample sizes. These results illustrate the non-separabilityof inference onα and
β and provide further motivation for the joint inference approach we followin this paper. The fact
that φ̂2 provides information on bothα and a non-zeroβ further supports joint inference.

While we do not expect to pin down a uniformly most powerful criterion, we found that power
ranking differ sizeably within and between alternatives. Given their somewhat steady performance,
one may recommend the quantile-based criteria. These are however dominated by one of the EDF-
based criterion in a number of cases, which suggests that focusing on specific quantiles is not with-
out cost. Then again, aside from ruling out asymptotic-based tail approximations, we do not find
grounds for recommending one EDF criterion over another. Recall that variations inα andβ entail
important differences in the shape of distributions which, for EDF-basedstatistics, may explain dis-
parities in power ranking across the parameter space. On balance, results suggest combining various
statistics. To illustrate the usefulness of such an approach, our empirical analysis implements the
combined statistic̃φ(α0, β 0) as defined in 3.25. It is worth noting that any set of statistics, and not
just φ̂1 andφ̂2 can be combined in the same way.

To conclude, we note that we have experimented with an alternative data standardization using
the sample mean and standard deviation for inference onβ . We find that using empirical means
and variances (except of course in the case ofφ̂1 andφ̂2) cost serious power losses, even with very
large sample sizes, particularly for the EDF statistics based on a simulation-based approximation of
stable distribution. For instance, with a sample size ofn= 100 and forα = 1.5 andβ = .7, empirical
rejections withKSC1, KSC2 andKSC3 are 1.8, 8.2 and 5.0%; withβ = .9, empirical rejections for
these statistics are 1.4%, 9.0% and and 4.4%; power does not improve for these statistics when the
sample increases to 250 observations.

We have also considered an alternative choice forλ̄ 1 andλ̄ 2, namely we set the 10th and 90th
percentiles of the simulated samplesy1(α0, β 0), ... , yn̄(α0, β 0), whereas reported results pertain
to the 5th and 95th percentiles. Test powers are affected although not importantly, and no choice
uniformly dominates for the cases analyzed.

5. Application to electricity prices

To illustrate the usefulness of the proposed procedures, and in particular the non-separable nature
of the inference problem, we apply our set estimation method to electricity prices. Electricity prices
have been regulated up to the beginning of the year 2000. In many countries, the trend since then
has been to let the electricity market clear on its own. In that context, electricityprices have become
very volatile which can be attributed to the fact that electricity is a non-storablecommodity and to
the characteristics of its market. The demand side is very inelastic while its supplyside is affected
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by location of generators, their market concentration as well as the transmission structure. Given
the importance of electricity in the commodity market [Bessembinder and Lemmon (2006)] and the
increased risk for those who need to position themselves in that market leading to an increased use
of derivatives, there have been a lot of developments in the literature on the modeling of electricity
prices.

Indeed, models of electricity prices include precise features in order to find the best match for
the empirical distribution. They include mean reversion, time of day and week day effects, seasonal
effects, time-varying volatility and volatility clustering and extreme values. Yet itappears that de-
spite modeling such features, normality or log-normality do not represent thedata accurately in their
inability to capture very large changes in prices [Knittel and R. (2005)]. Here we propose to analyze
the fit of stable distributions on a standard series of electricity prices, and toobtain confidence set
estimates for the associated skewness and tail index parameters. The spotprices under consideration
were extracted from Reuters. They are the on-peak electricity spot price expressed in US dollars
per megawatt hour. They were initially provided by ICAP US. The daily data series denotedPt ,
t = 1, ...T, starts from January 3, 2001 to May 15, 2006; the sample size is 1399 observations. We
analyze the associated return series,i.e. ln(Pt)− ln(Pt−1).

We derive joint confidence regions for both skewness and tail index parameters. As explained
in section 3, each confidence set is obtained by collecting all pairs of(α, β ) values which are not
rejected by each test applied. A grid search is applied over the range 0< α ≤ 2 and−1≤ β ≤ 1, and
95% level confidence sets are constructed by retaining the pairs of(α, β ) for which (in turn) each
testp-value [calculated using the MC test method as shown above] is greater than5%. It is important
to ensure that the same random draws at all stages of the MC proceduresare maintained for each
pair of values tested, so each test applied will depend on the same random variates throughout, and
the sequence of tests applied thus differ only via the pair(α, β ) values under test. We useN = 999
andN0 = n = 2000. We set̄λ 1 andλ̄ 2 at the 5th and 95th percentiles of the underlying simulated
sampley1(α0, β 0), ... , yn̄(α0, β 0).

Results are reported in graphical form, where we plot the regions associated with the non-
rejected pairs for each test inverted at the 5% level. The grid search we implemented used a step
of .05 for both parameters. Figures 1-12 reportβ as a function ofα for all non-rejected (at the
5% level) pairs. Confidence intervals for each parameters conveniently obtain from the latter joint
region set by projection.

As may be checked from Figures 1-12, the 95% confidence sets obtaineddiffer dramatically
depending on the tests inverted. This result is in line with our power study. Several statistics are
quite uninformative particularly regarding the skewness coefficient. Nevertheless, three statistics
lead to very concise set estimates, namelyKSA1, KSC1 and the test which combineŝφ1 and φ̂2.
Confidence sets based on these tests lead to the following projection-basedintervals, respectively:
[1.35,1.7] forα and [0,0.58] forβ , usingKSA1; [1.4,1.6] forα and [0.2,0.5] forβ , usingKSC1;
and [1.3,1.5] forα and [0.18,0.62] forβ , using the combined̂φ1-φ̂2 test. These results suggest that
heavy kurtosis and asymmetries are evident in the series analyzed.

For comparison, we ran the tests on the price series rather than returns. Interestingly, in this
case, the tests have lead to dramatically different confidence sets (at the 95% level). In particular,
the sets based onKSA2 andKSC2 are completely uninformative on both parameters (the confidence
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sets practically covers the full parameter space), whereas the sets based on KSA1 andKSC1 are
empty, leading to reject the family of stable distributions. The Bonferroni testwhich combineŝφ1
andφ̂2 leads to an interval which covers (and is quite concentrated around) zero for β , whereas the
associated interval forα does not differ importantly from the intervals obtained using returns.
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Figure 1. Joint 95% confidence set for(α, β ) based onSW

6. Conclusion

In this paper, we have proposed a class of exact procedures for testing goodness-of-fit of the stable
distribution in location-scale models. Our procedure extends usual GF testsas well as the quan-
tile based criteria proposed by McCulloch (1986). The statistics null distributions are analytically
intractable, so the tests are implemented using Monte Carlo test methods. By inverting these test
statistics, we solve the problem of estimating the skewness and tail parameters.The properties of
our proposed procedures were illustrated via a simulation study and an empirical application on
electricity prices.

Our approach clearly has widespread applications beyond the specific class of distributions con-
sidered, and provides some insight into the type of simulation-based GF testingthat we are likely to
see much more of in the future.
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Figure 2. Joint 95% confidence set for(α, β ) based onFB
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Figure 3. Joint 95% confidence set for(α, β ) based on combininĝφ1 andφ̂2 usingφ̃
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Figure 4. Joint 95% confidence set for(α, β ) based onKSA1
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Figure 5. Joint 95% confidence set for(α, β ) based onKSA2
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Figure 6. Joint 95% confidence set for(α, β ) based onKSA3
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Figure 7. Joint 95% Confidence Set based onKSC1
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Figure 8. Joint 95% confidence set for(α, β ) based onKSC2
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Figure 9. Joint 95% confidence set for(α, β ) based onKSC3
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Figure 10. Joint 95% confidence set for(α, β ) based onKST1
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Figure 11. Joint 95% confidence set for(α, β ) based onKST2
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