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ABSTRACT

Usual inference methods for stable distributions are typically based on lintitbdigons. But
asymptotic approximations can easily be unreliable in such cases, forstaadalarity conditions
may not apply or may hold only weakly. This paper proposes finite-sampéestied confidence sets
for tail thickness and asymmetry parametersafid 3) of stable distributions. The confidence sets
are built by inverting exact goodness-of-fit tests for hypotheseshssign specific values to these
parameters. We propose extensions of the Kolmogorov-Smirnov, SHajikand Filliben criteria,
as well as the quantile-based statistics proposed by McCulloch (1986jeéntorbetter capture tail
behavior. The suggested criteria compare empirical goodness-ofitibntile-based measures with
their hypothesized values. Since the distributions involved are quite commpdiexam-standard, the
relevant hypothetical measures are approximated by simulationp-amatues are obtained using
Monte Carlo (MC) test techniques. The properties of the proposee@uoes are investigated by
simulation. In contrast with conventional wisdom, we find reliable results withpses sizes as
small as 25. The proposed methodology is applied to daily electricity price dtte id.S. over
the period 2001-2006. The results show clearly that heavy kurtosiagymimetry are prevalent in
these series.

Key words: stable distribution; skewness; asymmetry; exact test; Monte Carlo tesifisgton
test; goodness-of-fit; tail parameter; electricity price.



1. Introduction

Drawing inference on the parameters of stable distributions is an endtaimgisal problem. Such
distributions appear in general central limit theorems, and thus providéactee alternative to the
Gaussian distribution. So they are commonly considered in various fieltitistiss, econometrics
and finance; see Mandelbrot (1963), Ibragimov and Linnik (1976)ptarev (1986), Samorod-
nitsky and Taqqu (1994), Embrechts,tigpelberg and Mikosch (1997), Rachev, Kim and Mittnik
(199%, 199%), Rachev and Mittnik (2000), and Dufour, Kurz-Kim and Palm (2010).

In finance, stable distributions are often considered to account foy tiails and asymmetries
typically observed in financial returns and speculative price data. émuntbre, the family of stable
distributions is consistent with optimization arguments underlying fundamentaidial models
such as the Capital Asset Pricing Model (CAPM); see, for exampledilarot (1963), Samuelson
(1967), and our own reviews and applications in Dufour, Khalaf areliBeu (2003) and Beaulieu,
Dufour and Khalaf (2005).

In the latter papers, we consider asset pricing models based on multivarégteregressions
with stable error distributions, and we derive tests for the efficiency ofrtheket portfolio (zero
intercepts), allowing for stable error distributions with unknown tail thickreasd asymmetry pa-
rameters @ andfB). To estimate these parameters, we “inverted” goodness-@fi} {ests based
on multivariate kurtosis and skewness coefficients computed from mosldueds. By test “in-
version”, we mean the operation of finding the set of parameter value$vahécnot rejected by
the test. We found that abnormal returns are less prevalent when es®ignallowed, so allowing
for skewness has crucial implications for testing asset pricing modelseTresults also indicate
that inference on the asymmetry parameter tends to be much less precisddhamcmon the tail
parameter. Indeed, the distribution is fundamentally determined by the \ectBy, and there is
generally no reason why the values of its components could be separatetynthed in a precise
way. This suggests that inference should focus on the(pajB), so a joint approach may be more
informative.

In this paper, we reconsider the problem of buildjagt confidence sets for the tail and skew-
ness parameters of a stable distribution, with the view of improving inferendbe skewness
parameter. Almost invariably, tests and confidence sets which have bmmspd for inference on
models with stable distributions are based on asymptotic approximations. Thectatteasily be
unreliable, since standard regularity conditions and asymptotic distributic@itimay easily not
apply [or apply only weakly] to such distributions. Consequently, it is impaifiam an inference
viewpoint that we approach this problem from a finite-sample perspective

Stable distributions, despite their analytical complexities, can be easily simusstedham-
bers, Mallows and Stuck (1976), and Weron (1996). To get reliabkrénte, we thus use the
technique of Monte Carlo (MC) tests. This method [originally proposed bya$3w(1957) and
Barnard (1963)] is an exact simulation-based test procedure related arametric bootstrap in
the sense that the distribution of the test statistic is simulated under the null bgjsotiVhile

1see, for example, Dufour (2006), Dufour and Khalaf (2001, 20@R02, 2003), Dufour and Kiviet (1996, 1998),
Kiviet and Dufour (1997), Dufour, Farhat, Gardiol and Khalaf 8% Dufour, Khalaf, Bernard and Genest (2004),
Dufour et al. (2003).



typical bootstrap methods are justified only asymptotically, the level of a MC#esibe controlled
in finite samples as soon as the distribution of the test statistic under the nuthkeggcan be
simulated once parameter values are set. Test statistics with very complicdtduliiibss may
thus be considered; the existence of a limiting distribution is not even requiléch is particularly
relevant for stable distributions.

As illustrated in Dufour et al. (1998), Dufour and Khalaf (2001) andddw et al. (2003), MC
test methods are especially suited for testing goodness-of-fit. In this, pe@exploit our earlier
research into such problems for inference on the parameters of statlbudiens. To be more
specific, we derive exact joint confidence sets for the tail and asymrpataymeters by inverting
exact GF tests. The tests we propose to invert are new and provide meefel diagnostics.

MC test methods are used in two ways in our analysis. Typically, GF testiardempare
sample measures,g. moments, order statistics or the empirical distribution functiebDFk), with
hypothesized values, and discrepancies betweeolibervedandhypothesizedor expectelimea-
sures suggest that the null hypothesis should be rejected. Two difficuitist be addressed in
this process First, computing the hypothesized measure may not be straightforward. Indke ca
of stable laws, a simple closed-form expression is not even availablegfaoletsity or distribution
function. Second GF test statistics often have complex null distributions. In many caseslieven
iting null distributions are not pivotal. As a matter of fact, both difficulties renpa@sent even in
the Gaussian case; see Thode (2002), Dufour et al. (1998) anefénences therein.

Here we approach both problems vitna-stageMC test procedure. In the first stage, we obtain
simulation-based estimates the hypothesized (or expected) measures considered; setitand
stage we obtain tesp-values by the MC test technique. The parameter pairs for whicp-tredues
are greater than the level, constitute a confidence set with level-1n...

Our methodology considerably expands the class of statistics which caselear building
confidence sets. We use extensions of the Kolmogorov-Smirnov [Kolmedd®33), Smirnov
(1939)], Shapiro-Wilk [Shapiro and Wilk (1965)] and Filliben (1975)teria, as well as the
guantile-based statistics proposed by McCulloch (1986), which we amntsidapture tail behavior.
Our results provide further avenues for development in general GRggsoblems.

The properties of the proposed procedures are investigated in askeaigeMonte Carlo study.
Since the size of the tests we invert is controlled by construction, our simukttidg allows us to
precisely assess their effective power advantages. This experigveats notable power differences
in testing the skewness parameter.

We also apply the proposed methodology to electricity price data. This emnedy}sis il-
lustrates the usefulness of our joint estimation approach. We study theadn{gaily) electricity
spot price initially provided by ICAP US, over the period from Januar2@®)1 to May 15, 2006.
We assess the fit of a stable distribution to this series and derive joint enoéidegions for both
skewness and tail index parameters. Results may differ depending ostthedesidered. Overall,
however, our confidence sets reveal heavy kurtosis and asymmetitiessearies analyzed.

The paper is organized as follows. Section 2 specifies the statistical fiaknander consider-
ation. In section 3, we present the proposed inference methods tiorsécwe report the results of
an illustrative MC study. The empirical application is discussed in sectiondioBes concludes.



2. Framework

If a random variablér follows a stable distributio®(u, o, a, ), whereu, o, a andf represent
location, scale, tail and skewness parameters, then its characteristioffiup(t) takes the form:

B , [ exp{—0o|t|?|[1—-iBsgnt)tan(rta /2)| +iut} , fora #1,
o(t) = E[exp(ity)] _{ exp}—a|t|[1J[riB(2/n)sgr(t)In\t]] %—]iut},} fora =1,

where O< o <2 and—1< 8 <1, and sgfft) is the sign functioni.e.

1, ift>0
sgn(t) = 0, ift=0 .
-1, ift<O

For inference oro and 3, location and scale parameterizations raise difficult issues. For ex-
ample, the above parametrization for the location paramete(tinimplies a discontinuity in the
distribution arounda = 1 whenf3 # 0. The scale parameter in the expressiongdr) also in-
volves an irregularity atr = 1, which calls for caution in interpreting usual standardizations; see
McCulloch (1996). We thus consider the following location-scale reptesen:

Yi = U+ ayi, (2.1)
yi " 70,1,a,), i=1...,n, (2.2)

whereY; is a set ofn i.i.d. observations, in which case we propose inference methods amd
B that are invariant tu ando. Invariance, which we prove analytically in finite samples, ensures
adequate size despite such irregularities.

As it is well known, a simple closed-form expression is not available fdvlstdistributions
(except in special cases); for a review of the properties of thesebdisbtns, see Samorodnitsky
and Taqqu (1994, Chapter 1) and Rachev and Mittnik (2000, ChapteH&)e we exploit the
following limit result which characterizes the tail of a stable random variébleS(u, o, a, 3): for
O0<a<?2,

/\Iim AYPIY > A]=Cq4 <l+2ﬁ> 0%, (2.3)
: a _ 1_B a
Allinw)\ PlY < —A]=Cq (2> o°, (2.4)
® o -t 1/l (2—a)cos(ma/2)], fora #1,
Co = (/o X smxdx) = { o/m, for o = 1: (2.5)

see see Samorodnitsky and Taqqu (1994, pages 16-17). We useptesstan for one class of
statistics we introduce, to approximate the tail distribution of a standardizele slistrvibution as



follows:

(2.6)

{ Ca Elgﬁg/xa , x>0
Fo(X0,B)=1-Ga(X0a,p) =

Ca () /X, x<0

Alternative expressions are available and may be considered for kpasés, including3 = 1;
see Samorodnitsky and Taqqu (1994, Chapter 1). Results in this papenrg.6); our method-
ology [subject to some conditions discussed in section 3] can howevettdrded to alternative
approximations for the tail probabilities.

Random variables with stable distributions can easily be simulated; see Clsaahbér(1976)
and Weron (1996). All simulations performed in this paper apply Wero8&),9vhich we repro-
duce here for completeness. Generate, independently, a randoimevgfiauniformly distributed
over(—r1/2, 1/2), and an exponential random variat#é with mean 1, and set

arctan(Btan( 2% a1/ (2a)
g = OBBENE)) g o [ prart (T0)] .

a
Then,
; ) ) ) (1-a)/a
sin(a (7 +%q. cos ¥ —a(V+HBy.
,%[(g+37/)tan”f/—ﬁlog<@‘f§;/))}, fora =1,

provides a draw from th&(0, 1, a, 3) distribution.

3. Inference methods

We develop a comprehensive approach for joint estimation and GF. Formallyuild confidence
sets hyinvertinga test for the null hypothesis (2.2) where

HO(GO7 BO) -a=daop, B = BO (31)

wherea andf are given. The joint confidence set fwrand 3 involves the pairgao, B,) which
are not rejected by the test applied.

The tests we introduce for this purpose are modifications of GF tests. deresebased on
moments are studied in Dufour et al. (2003) and Beaulieu et al. (200%®revwue noticed the
difficulty of making inference on the asymmetry paramg@efo improve inference, we exploit here
different GF, quantile and EDF-based approaches. Even thoughctitelo and scale parameters (
ando) are also unknown, it turns out these can be eliminated. This is done lagirgpthe original
data by appropriately normalized observations. More precisely, wédmresstandardization based
on the sample median and interquatrtile range:

N Y —Y [50]

V=g v =1

Y75 -Y25’ yeee, N, (3.2)



whereY [X] refers to thexth quantile ofY;, i =1,...,n.

Theorem 3.1 LOCATION AND SCALE INVARIANCE. In the context 0f2.1)-(2.2), the joint distri-
bution of the standardized observatiohsi = 1,...,n, defined in(3.2) does not depend gm and
g.

PROOF. If we denote byy[x] the xth quantile ofy;, i = 1,...,n where, as defined b§2.1), yi =
(Yi—u) /o, thenclearly[x = (Y[X — u) /o, so
o (Yi—p/o—(Y[50—u) /o ¥i —y[50

NN w /o (R /ey -y et 69

By (2.2), i L (0,1, a, B), and(3.3) implies that the distribution of;,"i = 1,...,n, does not

depend oru ando . Ol

For testingHo(a 0, By), Theorem3.1 entails that any statistic which depends on the data only
throughyi, i=1,...,n, does not depend on nuisance parameters, since its distribution is completely

determined by the distribution gf"'r'vd‘ <(0,1,a,B),i=1,...,n. Forasimilar invariance results
with stable distribution, see Proposition 1 in Dufour and Kurz-Kim (2010)a@y, the sample
mean and standard deviation lead to a similar result. We rely on the median andantide range
for power considerations, as will be illustrated in section 4.\gti"=1,...,n, denote the order
statistics corresponding 1p, T =1, ..., n, andy]x| refer toxth quantile ofy;,i=1,...,n.

3.1. Goodness-of-fit test inversion

We consider here three classes of tests. First, we extend the orderedbaied normality tests of
Shapiro and Wilk (1965) and Filliben (1975) to stable distributions. Seawadgefine GF measures
using the estimators of McCulloch (1986). Finally, we propose EDF-bastdods. Besides global
EDF procedures, we consider criteria focusing on the tail of the distributd criteria compare
sample measures, defined below, with their hypothesized (populationpwaideHo (oo, B,), and
exactp-values are obtained via the MC test method. Hypothesized measurepeoriagated via
a preliminary simulation. This feature is fully taken into account by the MC metwthe level of
the tests remains controlled. , but using the latter does not affect the esachMCp-values.

Formally, given a tesb with observed valu& and setting the number of MC simulationsNo
so thata (N + 1) is an integer, we obtain M@-values denoteg\(Sy) or pn(S) depending on
whether the distribution dbis continuous or not, such that for finiteand finiteN,

P[pn(S) <a.]=a.orP[pn(S) <a.] =a..

Details and algorithms are given in section 3.2.
The tests are inverted to build confidence set as follows. We assemblericaimethe pairs
(a, B) which are not rejected by each of the proposed tests at éevelVe used a grid search and



a. = 5%. Formally, for each test we invert, we obtain a subs@%fdenoted Cé%a, B;a.), such
that
P[(a,B)€CS(a,B;a.)] >1—a, forfiniten. (3.4)

The shape of confidence regions so obtained is non-standard aadstimerreason to expect con-
vexity; e.g, the union of two disjoint sets cannot be ruled out. Because the paramatassfor
a and B are bounded, the confidence regions will not be unbounded; this i woting since
confidence sets obtained by test inversion are not bounded by adisirlEX ante there are no
theoretical grounds to describe the resulting regions in any furtheifispgay.

Moving from CS(a, B; a.) to individual confidence sets for each @fand 8 is achieved by
projecting this region. By definition, a projection-based confidence aetbe obtained for any
functiong(a, ) by minimizing and maximizing the functiog(a, ) over thea and 3 values
included in CSa, 3;a.). Confidence intervals so obtained are simultaneous, in the sense that
valid inference on any arbitrary number of transformations of(tihg3) pair is feasible ensuring
overall level control; see Miller (1981), Dufour (1989), Abdelkhaseid Dufour (1998) or Bolduc,
Khalaf and Yelou (2010). Formally, for any setmfcontinuous real valued functions of the, 3)
pair, gi (a,B) e R, i=1,...,m, let gi(CS(a, B;a*)) denote the image of G&, 3;a.) by the
functiong;. Clearly,

(a,B) € CS(a, B;a,) =g (a,B) €g(CS(a, B;a.)),i=1,...,m
hence
Plgi(a,B) €gi(CS(a, B;a,)), i=1,...,m >Pla,BecCS(a,pB;a.)]. (3.5)
Then equation (3.4) implies that
Plgi(a,B) €gi(CS(a,B;a.)), i=1....m>1-a., VY(a,B). (3.6)
It also follows that if CSa, 3; a.) is empty, then (2.1)-(2.2), can be rejected at the considered test
level, that isa,.

3.1.1. Regression-based Shapiro-Wilks type criteria

The regression-based GF approach may be traced back to Shapillkiitio65) for the problem
of testing normality. It consists in regressing the observed (sample) statéstics on a constant
and the series of their means under the normality null hypothesis; tests feigtiiBcance of the
regression slope serve to assess GF. Filliben (1975), again restrimting tb normality tests, sug-
gested to replace, in the latter regression, the population means of otdgicsthy their population
medians. These tests are left-tailed, for large values support the hgjzetthelistribution.

The (population) means or medians of order statistics for stable distributiemetavailable.

2Beyond few special cases, for example, the Gaussian distributionhichvhapiro and Wilks provided specialized
tables for given sample sizes, expected values and population mefliamiepstatistics are unavailable. This literature
acknowledges difficulties with various approximations even with Gausssaribditions.



We thus rely on simulation-based approximations, under the null hypotBek)jsihich fixesr and
B to given valuesxg andf3,. This is done as follows.

Al. DrawNp i.i.d. samples of size from a stable distribution imposing (3.1);

A2. For each sample drawn, construct the order statistics; theseNgedhlizations of each of the
order statistics.

A3. The vector of empirical means (averages), denoted

s{ao, Bo) = [S1(a0, Bo), --- » Sn(ao, Bo)]',
and the vector of empirical medians
§(ao, Bo) = [81(a0, Bo), --- » &(ao, Bo)l'
of theNp simulated values for each order statistic yield the desired approximation.

Comparings(ao, o) or §(ao, Bg) which impose (3.1) to the vector of observed order statistics

Vi), 1=1,...,n, allows one to assess the acceptability of (3.1). For this purpose, wesgrépo
use the coeff|C|ent of determinatioR?y], denotedp [y( S(ao, By)], associated with regressing
Yy, - Yn ) on a constant anéi (0o, Bg), - - - ,aq(ao,Bo) Alternatively, we consider th&?,
denotedo [Vi), §(ao, By)], from the regression of1), - ,Ym) on a constant ansi (ao, Bo), - - -

S(ao, Bo)- For convenience, we subtract the coefﬁcients of determination fromtomdtain the
right-tailed tests:

SW(GO7BO) = 1- p[y() §(GO>BO)] (37)
FB(ao, Bo) 1—-p [V, §(ao, Bo)] - (3.8)

3.1.2. Quantile-based criteria

We next consider two test statistics based on the estimators of McCulloch)(198

601(007 Bo) = ‘@1—51(0’07 Bo)” §01:;/[[795?]__;/[[25;J]7 (3.9)
602(007 Bo) = ‘@2—52(0’07 Bo)” ¢2_y[9517—[53é][5_;[§]y[50}7 (3.10)

where, (a0, B) and @,(ao, B,) are the hypothesized values fpr and ¢, imposing (3.1). We
estimate, (0o, Bog) and @,(ao, By) by simulation, so we do not need any specialized tables to
conduct these tests. The algorithm we use may be summarized as follows.

B1. DrawNp i.i.d. samples of size from a stable distribution imposing (3.1).

B2. For each sample drawn, construct the quantiles which appear inrthal&s forg, and @,;
these yield\g realizations of the measures under consideration.



B3. The average across thg simulated values of each measure yigidao, B,) and@,(ao, By).

3.1.3. Empirical distribution function measures

Tests based on the EDF are naturally described as GF tests. Here we textea case of (3.1),
three of the most popular EDF criteria of the Kolmogorov-Smirnov and AsateDarling type
form, which we adapt to target the tail behavior of the distribution as follows.

Let Ifn(x) refer to the EDF of the samph,”... , ¥, that is, Ifn(x) equals the proportion of
observationyy, ..., ¥, that are less than or equal xo We consider the following three statistics,
which differ regarding the weights attributed to the observed and hypaéukdistributions:

KSA(ao.fo) = max{VA|F( — Falx o, Bo)l} @.11)
Fa(X) — Fo(X, o, Bo)
Fo(X; 00, Bo) [1— Fo(X; a0, Bo) +1/n] }’ (3.12)

Fn(X) — F_O(XJ ao, Bo)
Fa() [1—Fa(x)] +1/n } ’ (3.13)

KSA(ao, By) = m)?x{ﬁ

KSA(ao, By) = m):’;lx{ Vvn

WhereF_o(x; 0o, By) is a simulation based estimate of the hypothesized distribution, derived as fol-
lows.

C1. Draw ond.i.d. sample of sizé, denotedyi(ao, By), --- ,Ya(0Qo, By), from a standard stable
distribution imposing (3.1§.

C2. For any x, define F_O(x;ao,Bo) as the proportion of the simulated observations
y1(0o, By), ---,Ya(Qo, Bo) that are less than or equalxo

Given our interest on heavy tailed distributions, we also consider varidrtse latter EDF
statistics which focus on the tail of the distribution:

KSG(ao, By) = max {vn|F(x)—Fo(x ao, Bo)|}, (3.14)

XeA(X)
_ Ful0) — Folx 0. Bo)
sl o) = e (V| S e BT ) 549

XeA(X)
} , (3.16)

3The size of the simulated sampl®, is not necessarily equal to the size of the observed sampl#, large n'is
recommended. Our simulation study uses 1000 for all considered values nf Our empirical analysis uses= 2000

'fn(x) — F_O(XJ ao, Bo)
Fa(¥) [1—Fa(x)] +1/n

XeA(X)

KSG(ao, Bp) = max {\m

where _ _
A(X)={x<Ar0rx> Az}




andA; andA» correspond to a cut-off points which allow us to focus on a specific rggjere, in
the tail) of the hypothesized distribution. In our simulation and empirical illustrafiose use the
5th and 95th percentiles of tisgmulatedsampleys (0o, By), --- , Ya(Qo, Bo)-

Alternative approximations for the tail distribution function which underlie 43-{3.16) may
be also used. We consider thg(x; ao, Bo) approximation as defined in (2.6), which leads to:

KST(ao, By) = xrg\ax {Vn|Fa(x) — Fu(X; a0, Bo)|} - (3.17)
_ Fn( ) — Feo(X; 00, Bo)
KSHan. 80 = M|Vl e o Fotken g Tl ©19

'fn(x) — Fao(X; 00, Bo)
Fn(X) [1—Fa(X)] +1/n

KSE&(ao, By) = max{ﬁ

XeN(X)

} : (3.19)

Statistics so obtained would be less costly and do not call for a first-stagagonu Interestingly,
the MC technique [described below] allows us to obtain exacalues for the latter statistics, even
though limiting distributions are used in their formulation. For further refezemtthe unconven-
tional use of asymptotip-values to derive exact tests, see Dufour, Khalaf and Beaulieu Y2010

3.2. Finite samplep-values

Clearly, the test criteria introduced above complex null distributions which lmeagifficult to es-
tablish analytically in both finite and large samples. Yet these distributions ceadilg simulated
which justifies the application of Monte Carlo tests [Dufour (2006)]. Theegal MC test method-
ology proceeds as follows.

Let S denote the test statistic calculated from the observed data set; geNergpications
S, ..., Sy of the test statistiS so thatSy, S, ..., Sy areexchangeable Given the latter series,
computepy (S) where

NGy (x) +1

NOO="NT

Gn(x) = Gn % S(N)] Nzln (§>x), (3.20)

S(N) = (S1,...,S) and1(C) is the indicator function associated with conditi®n

1(C) = 1,ifconditionC holds
= 0, otherwise.

In other words NGy (S) is the number of simulated values greater than or equ&.tofhe MC
critical region is:pn(S) < a.,0< a. < 1.
If the distribution ofSis continuous andr.(N + 1) is an integer, then

P[pn(S) < a.] =a..

Some of the statistics we consider, particularly the truncated EDF-basedhane possibly dis-



continuous distributions. The technique of MC tests can be adapted foetdististributions using
the following randomized tie-breaking procedure [for proofs and arrtleferences, see Dufour
(2006)].

DrawN + 1 uniformly distributed variate®, Z, ... , Zy independently o§N) and arrange the
pairs(S;, Zj) following the lexicographic order:

(S,Zi)Z(Sj,Zj)®[3>Sj or (§=S; and ZZZJ')]. (3.21)

This leads to the M@-value py (S) where

i = N 622
Gu(x) = Gu [x-zo S(N), Z(N)] (3.23)
1 N
_ 1t 1(S<x)+ 1(Z < Zo
P PRE
andZ(N) = (Z1,...,Zn)", En(X) ={i : S = x, 1 <x < N}. The resulting critical region ipN(S) <

a.,0<a, <1 Ifa.(N+1)isaninteger, then

Ppn(S0) < a.] < P[pu(S) < a.] = a..

When applied to the above GF criteria, the MC test technique can be summasifeltbws.
Note that step D1 is not needed for the statistics (3.17) - (3.18) - (3.19).

D1. We obtain the above described approximations for the population nesasoderlying all
considered statistics.  Specifically, we implement algorithm A1-A3 to desiwa, B,)
or §(ao, By), algorithm B1-B3 to derivep,(ao, By) and ¢@,(ao, By), and algorithm C1-
C2 which serves to construct the functidi(x;ao,By), using the reference sample
y1(0o, By), - ,Ya(ao, Bp). All these population measures are generaigly once so the
next steps are conditional on these estimates.

D2. Applying (3.7)-(3.8), (3.9)-(3.10) and (3.11)-(3.19) to the data,fwd the observed value of
each test statistic.

D3. Independently of the step D1, we drdvi.i.d. samples of siz& from a stable distribution
under (3.1), and standardize the simulated observations for eachutiiag,the median and
interquartile range of each simulated samples.

D4. Using the same population measures derived in D1, and applying(8387)<{3.9)-(3.10) and
(3.11) - (3.19) to the simulated data, we obthirsimulated values for each test statistic con-
sidered.

D5. We can then compute a simulatpeialue, for any one of the test statistics, using the rank
of the observed statistic, relative to its simulated counterpart; see (3.28)22).( The null
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hypothesis is rejected at level. by each of the test considered if the MiSralue so obtained
is less than or equal ..

Because the above MC test procedure involves two levels of simulatiomst(arfe to approx-
imate the population measures, and a second one to get the test statistidisytidistics except
(3.17) - (3.18) - (3.19), we call it avo-stage MC testt is important to emphasize a key step in the
above algorithm: the observed and simulated statistics must rely catheapproximated popula-
tion measures; in this way, the observed and simulated statistics are (byuctinsjrexchangeable
under the null hypothesis, which yields size control; see Dufour (286d)Dufour et al. (2003)
or Beaulieu, Dufour and Khalaf (2007). The underlying simulations areindependent but re-
main exchangeable, which is sufficient to ensure exactness as shawfdayr (2006). In addition
to minimizing noise which may affect power, using the same approximated popuragasures
implies important execution cost savings. The fact that exchangeabilityfisient from a finite-
sample perspective is worth pointing out here since all statistics we proggs® just one prelim-
inary simulation.

3.3. Combined statistics

The MC test technique can also be applied to combine the above statisticsjfeeie & al. (2003),
Dufour and Khalaf (200&), Dufour et al. (2004), Dufour, Khalaf and Beaulieu (2010), Bieau,
Dufour and Khalaf (2013). Combining our modified version of McCullsc(il986) statistics
cbl(ao, Bo) and (})Z(ao, Bo) is the most relevant question, since the former is originally designed
to focus onag and the latter oif8 . To avoid relying on Boole-Bonferroni rules for this purpose, we
use the following combined statistics:

¢(ao, Bo) = 1—min{pn(s(c0, Bo)), Pn(P2(a0, Bo)) } (3.24)
(p(a()v BO) = 1- min{ﬁN ((pl(GO) BO))? ﬁN ((pZ(aOv ﬁO))} . (325)

Such a combination method allows us to reject the null hypothesis if at leastf dine individual
tests is significant; for convenience, we subtract the mininpevalue from one to obtain a right-
sided test. The MC test technique may once again be applied to obtain a tasbhake combined
statistic; details of the algorithm can be summarized as follows, for the cagéaef B,). The
algorithm can be easily adapted to the casé(cm‘o, Bo) replacing the survival functioBy [X; S(N)]
by Gy [x; S(N)] in what follows.

El. Accordingto steps B1-B3, generafiﬁao, Bo) and(ﬁz(ao, Bo); conformably, calculate the ob-

served value ofp, (a0, By) and@,(ao, By) [denotedps(ao, B,) and@y(ao, B,) respectively],
and theN corresponding simulated statistics using the sgqiero, B,) and@,(ao, By)-

E2. For each test statistic, obtain the “survival functi@ [x; S(N)] defined in (3.20) determined
by the simulated statistics.

E3. Independently of the previous simulations and the data, gem¢eatditionali.i.d. realizations
from a stable distribution under (3.1) each of sizand standardize the simulated observations
for each draw, using the median and interquartile range of the simulated sample
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E4. Usingfﬁl(ao,ﬁo) and 52(010, Bo), and theN draws generated at step E3, compute the corre-
sponding simulated statisticgy (ao. Bo) and@y(ao, Bg) 1=1,...,N.

E5. Using the survival functions obtained at step E2, evaluate the simyjatellies for the ob-
served and th&l additional simulated statistics; specifically, obt&g (})Il(oro, Bo):SIN) |,
1=0,1,...,N, andGy | @y(ao, Bo); SIN)| 1 = 0,1, ..., N, using forS(N) the same simulated
series described in step E1; these lead topghalues pf\l[fpll(ao,ﬁo)] and pn [c})lz(ao,Bo)],
l=0,1,...,N.

E6. From the latter, compute the corresponding values of the combinethtistics:

¢ (a0, Bo) = L—min{ pu[@y (a0, Bo)], Pu[@a(ct0, Bo)]}, 1=0,1,...,N.  (3.26)

It is easy to see that the vect(fpls(ao, Bo): =0,1,...,N, are exchangeable.

~|

E7. ApplyingGy | ¢ (ao, Bo); ((})1(010, Bo), ..., @ (a0, Bo))l} leads to the desired combingd

value.

The test based on the combinpdialue described in steps E1-E7 has the correct level because
the variableg})| (ao,Bo),  =0,1,...,N, are exchangeable under the null hypothesis. We call this
three nested simulation procedure a triple or three stage MC test. Hereragaitgining thesame
approximated population measures throughout ensures exchangeléilitg exactness.

4. Monte Carlo study

We conduct a MC study to assess the performance of the above pdojste We design the
experiment as follows. Simulated samples wita 25, 100, 250 and 1000 are drawn from model
(2.1)-(2.2) withu = 0 ando = 1. For inference oi8, samples are generated with= 0 and two
choices fora: 1.5 and 19. For inference orr, samples are generated with= 1.75 and two
choices for3: 0 and.5.

Size results associated in turn with= 0 anda = 1.75 are reported in Table 1. The power study
for inference org is reported in Table 2 foo = 1.5 and 3 fora = 1.9. In each of these tables,
the hypothesized value far is set to the value which was used to generate the samptesr(19,
respectively) while the hypothesized value fovaries from.1 to 1. The power study for inference
on a is reported in Table 4 fof = 0 and 5 for3 = .5. In each of these tables, the hypothesized
value forf3 is set to the value which was used to generate the samples§0respectively) while
the hypothesized value far varies from.5 to 199.

N = 199 replications are considered for the MC tesky = 1000 andn = 1000 is consid-
ered for all values ofi. We setA; andA, at 5th and 95th percentiles of the simulated samples
y1(to, Boy), ---,Ya(0o, Bg) defined in algorithm C1-C2. All tables report empirical rejections asso-
ciated with a nominal size of 5% and 1000 replications. Results can be sumdnasifalows.
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TABLE 1: Size of GF tests

| Tests omB | a=15p=0 | a=19,=0 |
n 25 100 250 1000 25 100 250 1000

SW .056 .052 .050 .044 .060 .050 .046 .046

FB .059 .042 .044 .044 .058 .049 .050 .045

KSA .047 045 .058 .047 .064 .043 .050 .05¢
KSA .045 052 .056 .052 .039 .051 .049 .03f
KSA .055 .045 .053 .061 .052 .047 .047 .048
KSG .040 .059 .061 .047 .044 .051 .057 .05Q
KSG .043 053 .056 .052 .039 .051 .049 .03q
KSG .045 045 .052 .061 .056 .053 .048 .048
KST .055 .050 .043 .039 .064 .058 .052 .040
KST .055 .050 .043 .039 .064 .058 .052 .040Q
KSTh .055 .050 .043 .039 .064 .058 .052 .040

¢, .058 .055 .039 .054 .056 .049 .047 .44Q

®, .063 .042 .059 .054 .049 .058 .052 .062
Tests onx a=1753=0 a=175B3=.5

n 25 100 250 1000 25 100 250 10004

SwW .064 .048 .047 .046 .064 .046 .047 .045

FB .059 .047 .047 .043 .054 .045 .043 .045

KSA .054 .045 .060 .053 .056 .038 .054 .059
KSA .043 055 .045 .042 .039 .057 .052 .03§
KSA .052 .055 .049 .057] .054 .060 .052 .057
KSG .042 050 .064 .047 .039 .045 .057 .044
KSG .041 .055 .045 .042 .040 .058 .052 .038
KSG .045 .054 .050 .057| .044 .057 .051 .057
KST .061 .052 .048 .035 .061 .051 .050 .04q
KSE .061 .052 .048 .035 .061 .051 .050 .03§
KSh .061 .052 .048 .035 .061 .051 .050 .057
(2)1 .056 .068 .045 .046 .053 .065 .040 .048
(2)2 .053 .043 .055 .038 .061 .038 .055 .04§

Notes —SWandFB are our extensions of the Shapiro and Wilk (1965) and Fifli975) tests defined in
section 3.1.1, which involve regressing the observed mstigistics on a constant and the series of their pop-
ulation means§W) or mediansk B) imposing the null hypothesis (3.18SA, i =1, ..., 3 are our full sample
weighted KSA andKSAs] and standard{SA;] Kolmogorov-Smirnov type tests defined in section 3.1.3.
KSG, i =1,...,3 are their tail-based counterparts, for which the popatatail distribution is simulation-
basedKST,i =1, ..., 3 rely on the asymptotic tail approximation (2.3) instec}zgand(])2 defined in section
3.1.2 assess the distance between the estimators of McB81{l686) and their hypothesized values imposing
the null hypothesis (3.1), the latter approximated by satiah.
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TABLE 2: Power, GF tests off

] a=15pB=.3 | a=15pB=.5 | a=15pB=.7 \
n 25 100 250 1000 25 100 250 1000 25 100 250 1009
SW | .082 .073 .081 .072 .127 .135 .149 .150Q0 .219 .278 .286 .281
FB .076 .066 .060 .054 .094 .092 .087 .086 .128 .156 .155 .172
KSA | .065 .072 .117v .277 .074 .135 .225 .623 .079 .191 .425 .886
KSA | .080 .124 135 .113 .131 .302 .389 .377 .203 .581 .783 .759
KSA | .090 .103 .108 .112 .114 .151 .159 .164 .135 .179 .189 .209
KSG | .072 .143 .201 .49 .106 .295 .225 .89 .148 .488 .817 .992
KSG | .080 .123 .135 .113 .128 .301 .389 .377 .201 .582 .783 .759
KSG | .066 .096 .107 .112 .074 .129 .159 .164 .086 .148 .188 .209
KST | .077 .085 .067 .059 .103 .120 .101 .088 .160 .179 .174 .152
KS® | .077 .085 .067 .059 .103 .120 .101 .088 .160 .179 .174 .152
KS® | .077 .085 .067 .059 .103 .120 .101 .088 .160 .179 .174 .152
601 .073 .071 .044 .049 .086 .080 .049 .050 .113 .085 .052 .049
602 .067 .149 .314 .809 .114 .377 .669 .992 .188 .642 .906 1.00
a=15=.9 a=15;=.99 a=15=10

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW | .362 .467 477 .49 419 546 573 .613 .423 558 .579 .623
FB 209 275 .326 .375 .254 .361 .422 528 .262 .367 .429 .542
KSA | .085 .281 .620 .974 .091 .334 .715 .98 .087 .332 .728 .989
KSA | .281 .867 .992 .98 .308 .935 .999 .999 .308 .932 .999 1.00
KSA; | .151 .194 213 .243 .165 .209 .211 .238 .166 .210 .212 .224
KSG | .194 .647 957 .999 .209 .697 .976 1.00 .209 .701 .978 1.00
KSG | .281 .867 .992 .98 .307 .935 .999 .999 .307 .932 .999 1.00
KSG | .096 .150 .208 .241 .096 .149 .205 .23 .097 .145 .205 .224
KST | .391 .459 452 .40 .604 .977 .995 993 .066 .054 .053 .053
KSTH | .391 .459 452 .40 .604 .977 .995 993 .066 .054 .053 .053
KSk | .391 .459 452 .40 .604 977 .995 .993 .066 .054 .053 .053
(2)1 159 084 .051 .042 .199 .085 .051 .042 .203 .084 .050 .041
@2 384 818 977 1.00 .541 .863 .985 1.00 .552 .868 .987 1.00

Notes — See Table 1.
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TABLE 3: Power, GF tests off - continued

] | a=19,=.3 | a=19,=25 | a=19,=7 \
n 25 100 250 1000 25 100 250 1000 25 100 250 1009
SW | .065 .055 .049 .042 .069 .062 .060 .05Q .079 .077 .068 .068
FB .060 .049 .050 .046 .065 .051 .053 .046 .074 .058 .060 .053
KSA | .066 .050 .048 .062 .065 .050 .053 .062 .066 .053 .053 .083
KSA | .039 .070 .067 .055 .052 .088 .097 .125 .055 .113 .143 .267
KSA | .061 .070 .074 .103 .063 .095 .097 .14 .067 .109 .123 .189
KSG | .047 .058 .063 .08Q .049 .061 .077 .125 .047 .076 .094 .171
KSG | .040 .070 .067 .055 .052 .088 .097 .125 .055 .113 .143 .267
KSG | .067 .077 .075 .103 .066 .082 .096 .14 .070 .093 .122 .189
KST | .076 .082 .074 .063 .086 .113 .103 .089 .109 .165 .171 .146
KS® | .076 .082 .074 .063 .086 .113 .103 .089 .109 .165 .171 .146
KSk | .076 .082 .074 .063 .086 .113 .103 .089 .109 .165 .171 .146
601 .065 .050 .045 .040 .071 .049 .045 .038 .077 .053 .048 .041
602 .058 .055 .067 .115 .0v3 .071 .085 .210 .088 .085 .110 .351
a=19;=.9 a=19;=.99 a=19;=1

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW | .092 .097 .100 .118 .099 .120 .127 .16Q .101 .122 .131 .173
FB .079 .065 .067 .066 .082 .066 .071 .075 .083 .067 .071 .075
KSA | .074 .058 .115 .261 .074 .063 .070 .120 .074 .062 .071 .119
KSA | .055 .134 .226 .474 .063 .143 .282 573 .065 .149 .288 .579
KSA | .075 .121 .149 .230 .078 .124 .165 .253 .077 .123 .166 .255
KSG | .053 .081 .060 .101 .051 .080 .134 .317 .053 .081 .136 .324
KSG | .055 .134 .226 .474 .063 .143 .282 573 .065 .149 .288 .579
KSG | .072 .096 .147 .23Q .073 .103 .167 .253 .073 .104 .167 .255
KST | .133 .295 .405 .383 .139 .366 .590 .930 .048 .053 .053 .053
KS%H | .133 .295 .405 .383 .139 .366 .590 .930 .048 .053 .053 .053
KSk | .133 .295 405 .383 .139 .366 .590 .930 .048 .053 .053 .053
(2)1 .083 .053 .047 .039 .086 .053 .050 .034 .088 .053 .051 .033
(Apz .099 .109 .157 .496 .114 .122 .181 559 .114 .123 .187 .569

Notes — See Table 1.
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TABLE 4: Power, GF tests oo

] a=.5p=0 | a=1,3=0 | a=125p3=0 \
n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW | .080 .174 .204 .235 .146 .430 .476 .552 .045 .287 .405 .498
FB | .281 .671 .740 .76Q .003 .003 .072 .209 .010 .004 .005 .007
KSA | .016 996 1.0 1.0|.062 .450 .954 1.0|.117 .133 .351 .922
KSA | .001 .013 .044 .104 .001 .001 .010 .03 .004 0 .002 .015
KSA | .707 10 1.0 10| .244 901 .989 1.0|.138 .591 .874 .986
KSG | 0O 59 .99 10| O .416 .829 10| .060 .208 .598 .982
KSG | O 0 .005 .102| O 0O .005 .035|.004 O .002 .015
KSG | .157 .999 1.0 1.0|.157 .903 .976 1.0| .002 .629 .843 .98f
KST 0 0 0 0 |.001 O 0 0 | .005 .002 .002 0
KST 0 0 0 0 |.001 O 0 0 | .005 .002 .002 0
KS® 0 0 0 0 |.001 O 0 0 | .005 .002 .002 0
(})1 942 016 .703 1.0 .129 .282 1 10} .025 .151 1911 1.0
@, 0 0 0 0 |.005 O 0 0 |.008 .0 .001 0
a=15=0 a=19;6=0 a=1990;6=0

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW | .023 .022 .067 .103 .145 .162 .151 .15 .318 .686 .872 .957
FB | .016 .010 .013 .012 .148 .166 .158 .16Q0 .328 .700 .877 .957
KSA | .055 .053 .092 .207 .053 .043 .052 .064 .047 .039 .056 .078
KSA | .011 .006 .003 .003 .065 .186 .384 .764 .082 .295 .711 .995
KSA | .079 .244 415 .665 .039 .016 .006 .003 .032 .011 O 0
KSG | .017 .048 .144 705 .053 .091 .139 .224 .064 .107 .171 .400
KSG | .011 .006 .003 .003 .065 .186 .385 .764 .082 .295 .711 .995
KSG | .080 .245 .411 .665 .040 .014 .006 .003 .033 .006 O 0
KST | .013 .006 .006 .004 .122 .163 .176 .171 .230 .543 .740 .842
KS% | .013 .006 .006 .004 .122 .163 .176 .171 .230 .543 .740 .842
KSE | .013 .006 .006 .004 .122 .163 .176 .171 .230 .543 .740 .842
601 .013 .036 .219 .892 .124 .139 .168 .330 .212 .193 .281 .621
602 .017 .005 .012 .00 .108 .093 .087 .075 .167 .107 .095 .091

Notes — See Table 1.
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TABLE 5: Power, GF tests oo - continued

] a=.5p=5 | a=1,=.5 | a=125p=.5 \
n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW | .029 .114 .142 131 .075 .240 .350 .372 .040 .170 .283 .343
FB | .001 0 .001 0 | .009 .006 .013 .043 .011 .008 .014 .024
KSA | .109 .729 972 1.0 .136 .525 .940 1.0| .088 .214 546 .971
KSA | .167 .495 .539 .315 .025 .004 .014 .040 .019 .006 .005 .013
KSA | 940 10 1.0 10| .513 .923 .987 1.0| .263 .656 .864 .984
KSG | .001 .263 .952 1.0 .015 .255 .717 .987 .029 .149 .465 .976
KSG | O 0O .005 .099|.008 .0 .006 .034| .018 .005 .003 .013
KSG | .206 .999 1.0 1.0|.175 844 960 1.0|.142 .599 .819 .984
KST 0 0 0 0 |.001 O 0 0 | .005 .003 .002 0
KST 0 0 0 0 |.001 O 0 0 | .005 .003 .002 0
KS® 0 0 0 0 |.001 O 0 0 | .005 .003 .002 0
(})1 .892 .008 .311 1.0|.089 .135 .971 1.0|.016 .083 .705 1.0
@, 0 .096 .998 1.0|.005 .161 .909 1.0/ .009 .106 .631 1.0
a=15=.5 a=19;=.5 a=199;=.5

n 25 100 250 1000 25 100 250 1000 25 100 250 1000
SW | .027 .051 .099 .143 .147 .161 .158 .148 .334 .703 .880 .952
FB | .018 .012 .018 .013 .151 .162 .164 .152 .341 .717 .878 .943
KSA | .070 .078 .116 .379 .045 .038 .069 .102 .044 .042 .099 .233
KSA | .028 .020 .006 .00§ .057 .150 .327 .735 .071 .279 .761 .999
KSA; | .126 .292 426 .673 .028 .007 .004 .003 .021 .003 .002 .00%
KSG | .033 .070 .178 .667 .048 .074 .143 .33 .052 .117 .278 .714
KSG | .029 .018 .006 .00 .057 .150 .327 .735 .071 .279 .761 .999
KSG | .096 .262 .416 .673 .032 .015 .002 .003 .023 .014 .002 .001
KST | .016 .007 .008 .004 .100 .154 .168 .158 .134 .361 .572 .808
KS% | .016 .007 .008 .004 .100 .154 .168 .158 .134 .361 .572 .808
KSE% | .016 .007 .008 .004 .100 .154 .168 .158 .134 .361 .572 .808
601 .011 .033 .144 .824 .113 .126 .171 .352 .162 .162 .277 .614
602 .025 .059 .203 .835 .117 .117 .176 .415 .163 .181 .349 .793

Notes — See Table 1.
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All empirical sizes conform to the nominal level of 5%. Of course, this issetgd because the
procedures are provably size correct. With regards to power, sultsedo not reveal a uniformly
dominant criterion. We thus analyze power ranking within each test classdared as well as from
a global perspective.

Tests based on order statistics. The SWtest outperforms th& B criterion throughout except in
one noteworthy case: tHeB test dominates for inference anwhena = .5; see Table 4. Since
moments do not exist for this case, discrepancies between observedlidnated medians of order
statistics make more sense than the distance between their observed aatkchii@ans. Both the
SWandF B statistics are dominated by the other criteria we introduce except with verysangtlle
sizes (= 25) or when the tested distribution is close to Gaussian: see th&.99 andf = 0 case
in Table 4.

Kolmogorov-Smirnov-type tests. Focusing on the tail improves, for inference Bnthe power
of the unweighted Kolmogorov type EDF statistic, as may be seen from corgpghemperformance
of KSA relative toKSG. In contrast, focusing on the tail costs power for inferenceramlessa
exceeds 1.25. The weighted statiscSG or KSG may or may not outperforri SA andKSAg,
so focus on the tail does not warrant power improvements for such stti€tic balance, we find
that weighing may be preferable to truncation, although a uniformly dominaighitng scheme
did not emerge.

The procedure considered to approximate the tail distributienwhether by simulation or via
an asymptotic argument, has important implications for test power, as mayrbf@®ecomparing
the performance dKST, relative toKSG, i = 1, 2, 3. For inference o1, such effects vary witly.

In particular, simulation outperforms asymptotics foe= 1.5, whereas asymptotics seems prefer-
able witha = 1.9 as long a3 < 1. However, power drops sharply even with a sample size of
1000 forpB = 1, which reflects the inadequacy of the considered approximation fordkées Such

a severe discontinuity illustrates the advantages of our proposed tweestagt procedures for ap-
proximating the tail on which the statistic restricts focus as well as the statigticgue? Results

for inference oro in tables 4 - 5 reinforce this conclusion: tK&T criteria perform poorly and are
almost degenerate [have zero empirical rejections] in many cases.

Quantile-based tests. For inference oif8, despite being dominated in the above discussed counter
examplesg, performs steadily well whereas has low power. For tests anand in sharp contrast
with (})1 which performs quite well, the power aifz is low with B = O [see Table 4] yet it picks

up remarkably well for the considered asymmetric case [see Table Sigkrio outperformp;, in

a number of casesThis result is worth noting sinc«}a2 was originally designed to focus ¢ in
contrast, we find that unless the tested distribution is symméigibplds useful information ooy

as well.

“Recall that the tests we construct are exact in terms of size control bethgapproximation methods, so power
discrepancies can soundly be analyzed.

5The reported value @B in both Tables 4-5 is maintained under the null and alternative hypothesite @¥ course
o varies).
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General observations. Several important conclusions can be drawn from tables 2 - 5 interpreted
collectively. In contrast to conventional wisdom, quality inference witds small as 25 is feasible.
Examples include testing a value @t~ .9 with a = 1.5 for which power withe.g. (})2 ranges from
around 38-50%, or testing a value @f= .5 regardless of the considergdor which power using
again&)2 as an example, ranges from 89-94%, which is remarkable with just 25valisas.

If kurtosis is low, all statistics have limited power to detect low-to-medium skes/agcept for
n = 1000 where we observe some power. In parallel, kurtosis is hardetdotdeith symmetric
distributions for all sample sizes. These results illustrate the non-separabilifigrence oror and
B and provide further motivation for the joint inference approach we follothis paper. The fact
that(fo2 provides information on bothr and a non-zer@ further supports joint inference.

While we do not expect to pin down a uniformly most powerful criterion, wenid that power
ranking differ sizeably within and between alternatives. Given their sdratsteady performance,
one may recommend the quantile-based criteria. These are however dahtypaiee of the EDF-
based criterion in a number of cases, which suggests that focusingaifisguantiles is not with-
out cost. Then again, aside from ruling out asymptotic-based tail appatens, we do not find
grounds for recommending one EDF criterion over another. Recall éntions ina and entail
important differences in the shape of distributions which, for EDF-batsistics, may explain dis-
parities in power ranking across the parameter space. On balandes segigest combining various
statistics. To illustrate the usefulness of such an approach, our empmalgbes implements the
combined statistig(aro, Bo) as defined in 3.25. It is worth noting that any set of statistics, and not
just @, and@, can be combined in the same way.

To conclude, we note that we have experimented with an alternative datiasteration using
the sample mean and standard deviation for inferencg.oWe find that using empirical means
and variances (except of course in the casqsloa’md qoz) cost serious power losses, even with very
large sample sizes, particularly for the EDF statistics based on a simulatied-dyasroximation of
stable distribution. For instance, with a sample size6f100 and foro = 1.5 andf = .7, empirical
rejections withK SG, KSG andKSG are 1.8, 8.2 and 5.0%; wite = .9, empirical rejections for
these statistics are 1.4%, 9.0% and and 4.4%; power does not improvederstagistics when the
sample increases to 250 observations.

We have also considered an alternative chmce’\@and/\ 2, hamely we set the 10th and 90th
percentiles of the simulated samplasao, By), - ,Ya(0o, Bg), Whereas reported results pertain
to the 5th and 95th percentiles. Test powers are affected although natamihg and no choice
uniformly dominates for the cases analyzed.

5. Application to electricity prices

To illustrate the usefulness of the proposed procedures, and in particelaon-separable nature
of the inference problem, we apply our set estimation method to electricity pEésdricity prices
have been regulated up to the beginning of the year 2000. In many caytigetrend since then
has been to let the electricity market clear on its own. In that context, elecpitigys have become
very volatile which can be attributed to the fact that electricity is a hon-stocalsenodity and to
the characteristics of its market. The demand side is very inelastic while its ssigplis affected
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by location of generators, their market concentration as well as the traismsructure. Given
the importance of electricity in the commodity market [Bessembinder and Lemm©86){2ihd the
increased risk for those who need to position themselves in that marketddgadin increased use
of derivatives, there have been a lot of developments in the literaturesanddeling of electricity
prices.

Indeed, models of electricity prices include precise features in orderddHabest match for
the empirical distribution. They include mean reversion, time of day and weeekftects, seasonal
effects, time-varying volatility and volatility clustering and extreme values. Yapjtears that de-
spite modeling such features, normality or log-normality do not represedatheaccurately in their
inability to capture very large changes in prices [Knittel and R. (20053}ehive propose to analyze
the fit of stable distributions on a standard series of electricity prices, apiotain confidence set
estimates for the associated skewness and tail index parameters. Tpecgsotinder consideration
were extracted from Reuters. They are the on-peak electricity spet @xjgressed in US dollars
per megawatt hour. They were initially provided by ICAP US. The daily datees denotedr,
t=1,..T, starts from January 3, 2001 to May 15, 2006; the sample size is 139&vatiges. We
analyze the associated return serigs In(R) —In(R_1).

We derive joint confidence regions for both skewness and tail indexapeters. As explained
in section 3, each confidence set is obtained by collecting all paifs,@) values which are not
rejected by each test applied. A grid search is applied over the range92 and—1< 3 <1, and
95% level confidence sets are constructed by retaining the paics, §) for which (in turn) each
testp-value [calculated using the MC test method as shown above] is greaté&hdhis important
to ensure that the same random draws at all stages of the MC proceden@sintained for each
pair of values tested, so each test applied will depend on the same raadates throughout, and
the sequence of tests applied thus differ only via the (@aj3) values under test. We ude= 999
andNg = n=2000. We sefA; andA at the 5th and 95th percentiles of the underlying simulated
sampley1(ao, Bo); --- » Ya(Qo, Bo)-

Results are reported in graphical form, where we plot the regions iatstavith the non-
rejected pairs for each test inverted at the 5% level. The grid search vienrapted used a step
of .05 for both parameters. Figures 1-12 repdras a function ofa for all non-rejected (at the
5% level) pairs. Confidence intervals for each parameters convenidritlindrom the latter joint
region set by projection.

As may be checked from Figures 1-12, the 95% confidence sets obtdiffexddramatically
depending on the tests inverted. This result is in line with our power studser&8estatistics are
quite uninformative particularly regarding the skewness coefficient.eftlegless, three statistics
lead to very concise set estimates, nameBA, KSG and the test which combiner}s;l and (})2.
Confidence sets based on these tests lead to the following projectionibesedls, respectively:
[1.35,1.7] fora and [0,0.58] forf3, usingKSA; [1.4,1.6] fora and [0.2,0.5] forB, usingKSG;
and [1.3,1.5] fora and [0.18,0.62] fo3, using the combinefpl—c]v2 test. These results suggest that
heavy kurtosis and asymmetries are evident in the series analyzed.

For comparison, we ran the tests on the price series rather than retatesestingly, in this
case, the tests have lead to dramatically different confidence sets (&%hke@el). In particular,
the sets based doSA andKSG are completely uninformative on both parameters (the confidence
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sets practically covers the full parameter space), whereas the setsdrak&A andKSG are
empty, leading to reject the family of stable distributions. The Bonferronitbth combines})1
and (})2 leads to an interval which covers (and is quite concentrated arourajare®, whereas the
associated interval far does not differ importantly from the intervals obtained using returns.
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Figure 1. Joint 95% confidence set far, 3) based orsW

6. Conclusion

In this paper, we have proposed a class of exact procedurestiagtgeodness-of-fit of the stable
distribution in location-scale models. Our procedure extends usual GFagestsll as the quan-
tile based criteria proposed by McCulloch (1986). The statistics null disiviiisiare analytically
intractable, so the tests are implemented using Monte Carlo test methods. Binmteese test
statistics, we solve the problem of estimating the skewness and tail paraniéterproperties of
our proposed procedures were illustrated via a simulation study and anicahppplication on
electricity prices.

Our approach clearly has widespread applications beyond the spé&sat distributions con-
sidered, and provides some insight into the type of simulation-based GF tibsttrvge are likely to
see much more of in the future.
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Figure 2. Joint 95% confidence set far, 3) based orFB

Figure 3. Joint 95% confidence set far, 3) based on combinin(p1 and{o2 using®
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Figure 4. Joint 95% confidence set far, 3) based orKSA

Figure 5. Joint 95% confidence set far, 8) based orKSA
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Figure 6. Joint 95% confidence set far, 3) based orKSAs

Figure 7. Joint 95% Confidence Set baseK&G
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Figure 9. Joint 95% confidence set far, §) based orKSG
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Figure 11. Joint 95% confidence set for, 3) based orKSTh
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Figure 12. Joint 95% confidence set for, 3) based orKSTh
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