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Summary We construct finite-sample distribution-free tests and confidence sets for the
parameters of a linear median regression, where no parametric assumption is imposed on
the noise distribution. The set-up studied allows for non-normality, heteroscedasticity, non-
linear serial dependence of unknown forms as well as for discrete distributions. We consider a
mediangale structure—the median-based analogue of a martingale difference—and show that
the signs of mediangale sequences follow a nuisance-parameter-free distribution despite the
presence of non-linear dependence and heterogeneity of unknown form. We point out that a
simultaneous inference approach in conjunction with sign transformations yield statistics with
the required pivotality features—in addition to usual robustness properties. Monte Carlo tests
and projection techniques are then exploited to produce finite-sample tests and confidence
sets. Further, under weaker assumptions, which allow for weakly exogenous regressors and a
wide class of linear dependence schemes in the errors, we show that the procedures proposed
remain asymptotically valid. The regularity assumptions used are notably less restrictive than
those required by procedures based on least absolute deviations (LAD). Simulation results
illustrate the performance of the procedures. Finally, the proposed methods are applied to tests
of the drift in the Standard and Poor’s composite price index series (allowing for conditional
heteroscedasticity of unknown form).
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1. INTRODUCTION

Median regression (and related quantile regressions) provides an attractive bridge between
parametric and non-parametric models. Distributional assumptions on the disturbance process
are relaxed, but the functional form remains parametric. Associated estimators, such as the least
absolute deviations (LAD) estimator, are more robust to outliers than usual least-squares (LS)
methods and may be more efficient whenever the median is a better measure of location than
the mean (Dodge, 1997). They are especially appropriate when unobserved heterogeneity is
suspected in the data. The current expansion of such ‘semiparametric’ techniques reflects an
intention to depart from restrictive parametric frameworks (see Powell, 1994). However, related
tests remain usually based on asymptotic normality approximations.

In this paper, we show that tests based on residual signs yield an entire system of finite-
sample exact inference under very general assumptions. We study a linear median regression
model where the (possibly dependent) disturbance process is assumed to have a null median,
conditional on some exogenous explanatory variables and its own past. This set-up covers
non-stochastic heteroscedasticity, standard conditional heteroscedasticity (like ARCH, GARCH,
stochastic volatility models, . . .) as well as other forms of non-linear dependence. We provide
both finite-sample and asymptotic distributional theories. In the first set of results, we show that
the level of the tests is provably equal to the nominal level, for any sample size. Exact tests
and confidence regions are valid under general assumptions and allow for heteroscedasticity
and non-linear dependence of unknown forms, as well as for discrete distributions. This is
done, in particular, by combining Monte Carlo tests adapted to discrete statistics—using a
randomized tie-breaking procedure (Dufour, 2006)—with projection techniques, which allow
inference on general parameter transformations (Dufour, 1990). We also show that the tests
proposed include locally optimal tests. However, for more general processes that may involve
stationary ARMA disturbances, sign-based statistics are no longer pivotal. The serial dependence
parameters constitute nuisance parameters.

In a second set of results, we show that the proposed procedures remain asymptotically
valid when the regressors are weakly exogenous and disturbances are stationary ARMA.
Transforming sign-based statistics with standard heteroscedasticity and autocorrelation-corrected
(HAC) methods allows one to eliminate nuisance parameters asymptotically. We thus extend the
validity of the Monte Carlo test method. In such cases, we lose exactness but retain asymptotic
validity. The latter holds under much weaker assumptions on moments or the shape of the
distribution (such as the existence of a density) than usual asymptotically justified inference (such
as LAD-based techniques). Besides, one does not need to evaluate the disturbance density at zero,
which constitutes one of the major difficulties of asymptotic kernel-based methods associated
with LAD and other quantile estimators.

A basic motivation for the sign-based techniques studied in this paper comes from an
impossibility result due to Lehmann and Stein (1949), who proved that inference procedures
that are valid under conditions of heteroscedasticity of unknown form when the number of
observations is finite, must control the level of the tests conditional on the absolute values (see
also Pratt and Gibbons, 1981). This result has two main consequences. First, sign-based methods
constitute the only general way of producing provably valid inference for any given sample size.
Second, all other methods, including the usual HAC methods developed by White (1980), Newey
and West (1987), Andrews (1991) and others, which are not based on signs, are not provably
valid for any sample size. Although this provides a compelling argument for using sign-based
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procedures, the latter have barely been exploited in econometrics; for a few exceptions which
focus on simple time series models, see Dufour (1981), Campbell and Dufour (1991, 1995,
1997) and Wright (2000). In a regression context, the vast majority of the statistical literature is
reviewed by Boldin et al. (1997). These authors also develop sign-based inference and estimation
for linear models, both exact and asymptotic with i.i.d. errors. In the same vein, the recent paper
by Chernozhukov et al. (2008) considers quantile regression models and derives finite sample
inference using quantile indicators when the observations are independent.

The problem of interest in the present paper consists in giving conditions under which
signs will be i.i.d. according to a known distribution, even though the variables to which
indicator functions are applied are not independent or do not satisfy other regularity conditions
(such as following an absolutely continuous distribution). An important feature of our results
consists in allowing for a dynamic structure in the error distribution, providing a considerable
extension of earlier results on the distribution of signs in the presence of dependent observations.
Moreover, errors with discrete distribution (or mixtures of discrete and continuous distributions)
are allowed, as opposed to the usual continuity assumption. This is made possible by the
combination of a ternary sign operator—rather than binary—and Monte Carlo test techniques
involving randomized tie-breaking.

Sign-based inference methods constitute an alternative to inference derived from the
asymptotic distribution of LAD estimators and their extensions (see Koenker and Bassett,
1978, Powell, 1984, Weiss, 1991, Fitzenberger, 1997b, Horowitz, 1998, Zhao, 2001, etc.). An
important problem in the LAD literature consists in providing good estimates of the asymptotic
covariance matrix, on which inference relies. Powell (1984) suggested kernel estimation, but
the most widespread method of estimation is the bootstrap (Buchinsky, 1995; Fitzenberger,
1997b; Hahn, 1997).1 Kernel techniques are sensitive to the choice of kernel function and band-
width parameter, and the estimation of the LAD asymptotic covariance matrix needs a reliable
estimator of the error term density at zero. This may be tricky especially when disturbances
are heteroscedastic or simply do not possess a density with respect to the Lebesgue measure
(discrete distributions). Besides, whenever the normal distribution is not a good finite-sample
approximation, inference based on covariance matrix estimation may be problematic. From
a finite-sample point of view, asymptotically justified methods can be arbitrarily unreliable.
Test sizes can be far from their nominal levels. One can find examples of such distortions for
time series in Dufour (1981) and Campbell and Dufour (1995, 1997) and for L1-estimation in
Dielman and Pfaffenberger (1988a,b), De Angelis et al. (1993) and Buchinsky (1995). Infer-
ence based on signs constitutes an alternative that does not suffer from these shortcomings.2

The paper is organized as follows. In Section 2, we present the model and the notations.
Section 3 contains results on exact inference. In Section 4, we derive confidence intervals at any
given confidence level and illustrate the method on a numerical example. Section 5 is dedicated
to the asymptotic validity of the finite-sample inference method. In Section 6, we give simulation
results from comparisons with usual techniques. Section 7 presents an illustrative application:
testing the presence of a drift in the Standard and Poor’s composite price index series. Section 8
concludes. The Appendix contains the proofs.

1 See Buchinsky (1995, 1998) for a review and Fitzenberger (1997b) for a comparison between these methods.
2 Other notable areas of investigation in the L1-literature concern: (1) censored quantile regressions (Powell, 1984,

1986, Fitzenberger, 1997a, Buchinsky and Hahn, 1998), (2) endogeneity (Amemiya, 1982, Powell, 1983, Hong and
Tamer, 2003), (3) misspecification (Jung, 1996, Kim and White, 2002, Komunjer, 2005).
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2. FRAMEWORK

We consider a stochastic process {(yt , x ′
t ) : � → R

p+1 : t = 1, 2, . . . } defined on a probability
space (�, F , P), such that yt and xt satisfy a linear model of the form

yt = x ′
tβ + ut , t = 1, . . . , n, (2.1)

where yt is a dependent variable, xt = (xt1, . . . , xtp)′ is a p-vector of explanatory variables, and
ut is an error process. The xt ’s may be random or fixed. In the sequel, y = (y1, . . . , yn)′ ∈ R

n

will denote the dependent vector, X = [x1, . . . , xn]′ the n × p matrix of explanatory variables,
and u = (u1, . . . , un)′ ∈ R

n the disturbance vector. Moreover, F t (· |x1, . . . , xn) represents the
distribution function of ut conditional on X.

Inference on this model will be made possible through assumptions on the conditional
medians of the errors. To do this, it will be convenient to consider adapted sequences of the
form

S(v, F) = {vt ,Ft : t = 1, 2, . . . }, (2.2)

where vt is any measurable function of Wt = (yt , x ′
t )

′, Ft is a σ -field in �, Fs ⊆ Ft for s < t ,
σ (W1, . . . , Wt ) ⊂ Ft and σ (W 1, . . . , W t ) is the σ -algebra spanned by W 1, . . . , W t .

We shall depart from the usual assumption that E(ut |Ft−1) = 0, ∀t ≥ 1, i.e. u = {ut : t =
1, 2, . . . } in the adapted sequence S(u, F) = {ut ,Ft : t = 1, 2, . . . } is a martingale difference
with respect to Ft = σ (W1, . . . , Wt ), t = 1, 2, . . . .

In a framework that allows for heteroscedasticity of unknown form, it is known from Bahadur
and Savage (1956) that inference on the mean of i.i.d. observations of a random variable,
without any further assumption on the form of the distribution, is impossible. Such a test has
no power. This problem of non-testability can be viewed as a form of non-identification in
a wide sense. Unless relatively strong distributional assumptions are made, moments are not
empirically meaningful. Thus, if one wants to relax the distributional assumptions, one must
choose another measure of central tendency, such as the median. The median is especially
appropriate if the distribution of the disturbance process does not possess moments. Thus, in
the median regression framework, it appears that the martingale difference assumption should be
replaced by an analogue in terms of median. Such a mediangale may be defined conditional on
the design matrix X or unconditionally. Here, we focus on the conditional form.

DEFINITION 2.1. (Weak conditional mediangale). Let Ft = σ (u1, . . . , ut , X), for t ≥ 1.
u in the adapted sequence S(u,F) is a weak mediangale conditional on X with respect
to {Ft : t = 1, 2, . . . } iff P[u1 < 0|X] = P[u1 > 0|X] and P[ut < 0|u1, . . . , ut−1, X] =
P[ut > 0|u1, . . . , ut−1, X], for t > 1.

The above definition allows ut to have a discrete distribution with a non-zero probability
mass at zero. A more restrictive version, called the strict conditional mediangale, imposes
a zero probability mass at zero. Then, P[u1 < 0|X] = P[u1 > 0|X] = 0.5 and P[ut <

0|u1, . . . , ut−1, X] = P[ut > 0|u1, . . . , ut−1, X] = 0.5, for t > 1. With no mass at zero and
no matrix X, this concept coincides with the mediangale one defined in Linton and Whang (2007),
together with other quantilegales.3

3 Linton and Whang (2007) define that ut is a mediangale if E(ψ 1
2

(ut )|Ft−1) = 0, ∀t , where Ft−1 = σ (ut−1,

ut−2, . . . ) and ψ 1
2

(x) = 1
2 − 1(−∞,0)(x). This definition is adapted to continuous distributions but does not work
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Stating that u is a weak mediangale with respect to F is equivalent to assuming that its
sign process s(u) = {s(ut ) : t = 1, 2, . . . }, where s(a) = 1[0,+∞)(a) − 1(−∞,0](a), ∀a ∈ R, is a
martingale difference with respect to the same sequence of sub-σ algebras F . The difference of
martingale assumption on the raw process u is replaced by a quasi-similar hypothesis on a robust
transform of this process s(u).

However, the weak conditional mediangale concept differs from a martingale difference on
the signs, because it requires conditioning upon the whole process X. We shall see later that
asymptotic inference may be available under a classical martingale difference on signs or, more
generally, mixing conditions on {s(ut ), σ (W 1, . . . , W t ) : t = 1, 2, . . . }.

It is relatively easy to deal with a weak mediangale by a simple transformation of the sign
operator. Consider P[ut = 0 | X, u1, . . . , ut−1] = pt (X, u1, . . . , ut−1) > 0, where the pt (·)
are unknown and may vary between observations. A way out consists in modifying the
sign function s(x) as s̃(x, V ) = s(x) + [1 − s(x)2]s(V − 0.5), where V ∼ U(0, 1). If V t is
independent of ut then, irrespective of the distribution of ut ,

P[s̃(ut , Vt ) = +1] = P[s̃(ut , Vt ) = −1] = 1

2

To simplify the presentation, we shall focus on the strict mediangale concept. Therefore, our
model will rely on the following assumption.

ASSUMPTION 2.1. (Strict conditional mediangale). The components of u = (u1, . . . , un)′

satisfy a strict mediangale conditional on X.

One remark concerns exogeneity. As long as the xt ’s are strongly exogenous, the conditional
mediangale concept is equivalent to a martingale difference on signs with respect to Ft =
σ (W1, . . . , Wt ), t = 1, 2, . . . .

PROPOSITION 2.1. (Mediangale exogeneity). Suppose {xt : t = 1, 2, . . . } is a strongly
exogenous process for β, P[u1 > 0] = P[u1 < 0] = 0.5 and

P[ut > 0|u1, . . . , ut−1, x1, . . . , xt ] = P[ut < 0|u1, . . . , ut−1, x1, . . . , xt ] = 0.5.

Then {ut : t = 1, 2, . . . } is a strict mediangale conditional on X.

Model (2.1) with the Assumption 2.1 allows for very general forms of the disturbance
distribution, including asymmetric, heteroscedastic or dependent ones, as long as conditional
medians are 0. Neither density nor moment existence are required. Indeed, what the mediangale
concept requires is a form of independence in the signs of the residuals. This extends results in
Dufour (1981), Campbell and Dufour (1991, 1995, 1997) and Dufour et al. (1998).

For example, Assumption 2.1 is satisfied if ut = σ t (x1, . . . , xn) εt , t = 1, . . . , n, where
ε1, . . . , εn are i.i.d. conditional on X, which is relevant for cross-sectional data. Many dependence
schemes are also covered, especially any model of the form u1 = σ 1(x1, . . . , xt−1)ε1, ut =
σ t (x1, . . . , xt−1 , u1, . . . , ut−1)εt , t = 2, . . . , n, where ε1, . . . , εn are independent with median
0, σ 1(x1, . . . , xt−1) and σ t (x1, . . . , xn , u1, . . . , ut−1), t = 2, . . . , n, are non-zero with probability
one. In time series context, this includes models presenting robustness properties to endogenous
disturbance variance (or volatility) specification, such as ARCH, GARCH or stochastic volatility

well with discrete distributions. If ut has a mass at zero, the condition given by Definition 2.1 can hold even if
E(ψ 1

2
(ut )|Ft−1) �= 0.
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models with non-Gaussian noises. Further, the mediangale property is more general because
it does not specify explicitly the functional form of the variance in contrast with an ARCH
specification. Note again that the disturbance process does not have to be second-order stationary.

Asymptotic normality of the LAD estimator, which is presented in its most general way
in Fitzenberger (1997b), holds under some mixing concepts on {s(ut ), σ (W 1, . . . , W t ) : t =
1, 2, . . . } and an orthogonality condition between s(ut ) and xt . Besides, it requires additional
assumptions on moments.4 With such a choice, testing is necessarily based on approximations
(asymptotic or bootstrap). Here, we focus on valid finite-sample inference without any further
assumption on the form of the distributions. This non-parametric set-up extends those used in
Dufour (1981) and Campbell and Dufour (1991, 1995, 1997).

Assumption 2.1 can easily be extended to allow for another quantile q by setting
P[ut < 0|Ft−1] = q, ∀t , which would lead to P[ut < 0|u1, . . . , ut−1, x1, . . . , xt ] = q in
Proposition 2.1. However, with error heterogeneity or dependence of unknown form, such an
assumption can plausibly hold only for a single quantile. So little generality is lost by focusing
on the median case. Further, contrary to other quantiles, the median may have an economic
meaning when it coincides with the expectation, e.g. if the error density is symmetric. It can be
used to state expectation-based economic conditions such as a no-arbitrage opportunity condition
on a market etc.

A classical result in non-parametric statistics consists in using this Bernoulli distribution to
build exact tests and confidence intervals on quantiles (for i.i.d. observations); see Thompson
(1936), Scheffé and Tukey (1945) and the review of David (1981, ch. 2). For recent econometric
exploitation of a quantile version of this result which holds if the observations are X-conditionally
independent, see Chernozhukov et al. (2008). Proposition 2.1 above provides general conditions
under which such a result holds for non-i.i.d. observations. Finally, the set-up presented here
extends those approaches to the time series context where some kinds of Markovian serial
dependence are permitted as well as discrete distributions.

3. EXACT FINITE-SAMPLE SIGN-BASED INFERENCE

In finite samples, first-order asymptotic approximations can be misleading. Test sizes of
asymptotically justified t- or χ2-statistics can be quite far from their nominal level. One can
find examples of such distortions in the dynamic literature (see, for example, Dufour, 1981,
Mankiw and Shapiro, 1986, Campbell and Dufour, 1995, 1997); on inference based on L1-
estimators (see Dielman and Pfaffenberger, 1988a,b; Buchinsky, 1995; De Angelis et al., 1993).
This remark usually motivates the use of bootstrap procedures. In a sense, bootstrapping (once
bias corrected) is a way to make approximation closer by introducing artificial observations.
However, the bootstrap still relies on approximations and in general there is no guarantee that
the level condition is satisfied in finite samples. The asymptotic method unreliability motivates
us to turn a fully finite-sample-based approach. Sign-based procedures provide a way to build
distribution-free statistics even in finite samples. Sign-based statistics have been used in the
statistical literature to derive non-parametric sign tests.

In this section, we present the general sign pivotality result and apply it in median regression
context to derive sign-based test statistics that are pivots and provide power against alternatives

4 Fitzenberger (1997b) show that LAD and quantile estimators are consistent and asymptotically normal when
E[xt sθ (ut )] = 0, ∀t , where (ut , x t ) has a density and finite second moments.
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of interest. This will enable us to build Monte Carlo tests relying on their exact distribution.
Therefore, the level of those tests is exactly controlled for any sample size. We study first the
test problem, then build confidence sets. Finally, estimators can be derived.5 Hence, results on
the valid finite-sample test problem will be adapted to obtain valid confidence intervals and
estimators.

3.1. Distribution-free pivotal functions and non-parametric tests

When the disturbance process is a conditional mediangale, the joint distribution of the signs of
the disturbances is completely determined. If there is no positive mass at zero, the signs are
i.i.d. and take the values 1 and −1 with equal probability 1/2. The case with a mass at zero can
be covered provided the transformation in the sign operator definition presented in the previous
section. These results are stated more precisely in the following propositions.

PROPOSITION 3.1. (Sign distribution). Under model (2.1), suppose the errors (u1, . . . , un)
satisfy a strict mediangale conditional on X = [x1, . . . , xn]′. Then the variables s(u1), . . . , s(un)
are i.i.d. conditional on X according to the distribution

P[s(ut ) = 1 |x1, . . . , xn] = P[s(ut ) = −1 |x1, . . . , xn] = 1

2
, t = 1, . . . , n. (3.1)

More generally, this result holds for any combination of t = 1, . . . , n. If there is a permutation
π : i → j such that mediangale property holds for j, then the signs are i.i.d. From Proposition 3.1,
it follows that the residual sign vector

s(y − Xβ) = [s(y1 − x ′
1β), . . . , s(yn − x ′

nβ)]′

has a nuisance-parameter-free distribution (conditional on X), i.e. it is a ‘pivotal function’. Its
distribution is easy to simulate from a combination of n independent uniform Bernoulli variables.
Furthermore, any function of the form T = T (s(y − Xβ), X) is pivotal, conditional on X. Once
the form of T is specified, the distribution of the statistic T is totally determined and can also be
simulated.

Using Proposition 3.1, it is possible to construct tests for which the size is fully controlled
in finite samples. Consider testing H 0(β 0) : β = β 0 against H 1(β 0) : β �= β 0. Under H 0(β 0),
s(yt − x ′

tβ 0) = s(ut ), t = 1, . . . , n. Thus, conditional on X,

T
(
s(y − Xβ0), X

) ∼ T (Sn,X), (3.2)

where Sn = (s1, . . . , sn) and s1, . . . , sn

i.i.d.∼ B(1/2). A test with level α rejects H 0(β 0) when

T
(
s(y − Xβ0), X

)
> cT (X,α), (3.3)

where cT (X, α) is the (1 − α)-quantile of the distribution of T (Sn, X).
This result is generalized for distributions with a positive mass at zero in the following

proposition.

PROPOSITION 3.2. (Randomized sign distribution). Suppose (2.1) holds with the assumption
that u1, . . . , un belong to a weak mediangale conditional on X. Let V 1, . . . , V n be i.i.d. random
variables U(0, 1) distributed and independent of u1, . . . , un and X. Then the variables s̃t =

5 For the estimation theory, the reader is referred to Coudin and Dufour (2006).
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s̃(ut , Vt ) are i.i.d. conditional on X with the distribution P[s̃t = 1 | X] = P[s̃t = −1 | X] = 1
2 ,

t = 1, . . . , n.

All the procedures described in the paper can be applied by replacing s by s̃. When the error
distributions possess a mass at zero, the test statistic T (s̃(y − Xβ0), X) has to be used instead of
T (s(y − Xβ 0), X).

3.2. Regression sign-based statistics

We consider test statistics of the following form:

DS(β0,�n) = s(y − Xβ0)′X�n

(
s(y − Xβ0), X

)
X′s(y − Xβ0), (3.4)

where �n(s(y − Xβ 0), X) is a p × p weight matrix that depends on the constrained signs s(y −
Xβ 0) under H 0(β 0). The weight matrix �n(s(y − Xβ 0), X) provides a standardization that can
be useful for power considerations as well as to account for dependence schemes that cannot be
eliminated by the sign transformation. Further, �n(s(y − Xβ 0), X) would normally be selected
to be positive definite (although this is not essential to show the pivotality of the test statistic
under the null hypothesis).6

Statistics of the form DS(β 0, �n) include as special cases the ones studied by Koenker and
Bassett (1982) and Boldin et al. (1997). Namely, on taking �n = I p and �n = (X′X)−1, we get:

SB(β0) = s(y − Xβ0)′XX′s(y − Xβ0) = ∥∥X′s(y − Xβ0)
∥∥2

, (3.5)

SF (β0) = s(y − Xβ0)′P (X)s(y − Xβ0) = ∥∥X′s(y − Xβ0)
∥∥2

M
, (3.6)

where P (X) = X(X′X)−1X′. In Boldin et al. (1997), it is shown that SB(β 0) and SF(β 0) can be
associated with locally most powerful tests in the case of i.i.d. disturbances under some regularity
conditions on the distribution function (especially f ′(0) = 0).7 Their proof can easily be extended
to disturbances that satisfy the mediangale property and for which the conditional density at zero
is the same f t (0|X) = f (0|X), t = 1, . . . , n.

SF(β 0) can be interpreted as a sign analogue of the Fisher statistic. SF(β 0) is a monotonic
transformation of the Fisher statistic for testing γ = 0 in the regression of s(y − Xβ 0) on
X : s(y − Xβ 0) = Xγ + v. This remark holds also for a general sign-based statistic of the
form (3.6), when s(y − Xβ 0) is regressed on �

−1/2
n X.

Wald, Lagrange multiplier (LM) and likelihood ratio (LR) asymptotic tests for M-estimators,
such as the LAD estimator, in L1-regression are developed by Koenker and Bassett (1982). They

6 Under more restrictive assumptions, statistics that exploit other robust functions of y − Xβ 0 (such as ranks, signed
ranks, and signs and ranks) can lead to more powerful tests. However, the fact we allow for both heteroscedasticity and
non-linear serial dependence of unknown forms appears to break the required pivotality result and makes the use of
such statistics quite difficult if not impossible in the context of our set-up. For discussion of such alternative statistics
(applicable under stronger assumptions), see Hallin and Puri (1991, 1992), Hallin et al. (2006, 2008), Hallin and Werker
(2003) and the references therein.

7 The power function of the locally most powerful sign-based test has the faster increase when departing from β 0.
In the multiparameter case, the scalar measure required to evaluate that speed is the curvature of the power function.
Restricting to unbiased tests, Boldin et al. (1997) introduced different locally most powerful tests corresponding to
different definitions of curvature. SB(β 0) maximizes the mean curvature, which is proportional to the trace of the shape;
see Dubrovin et al. (1984, ch. 2, pp. 76–86) or Gray (1998, ch. 21, pp. 373–80) for a discussion of various curvature
notions.

C© The Author(s). Journal compilation C© Royal Economic Society 2009.



Finite-sample distribution-free inference in linear median regressions S27

assume i.i.d. errors and a fixed design matrix. In that set-up, the LM statistic for testing H 0(β 0) :
β = β 0 turns out to be the SF(β 0) statistic. The same authors also remarked that this type of
statistic is asymptotically nuisance-parameter-free, contrary to LR and Wald-type statistics.

The Boldin et al. (1997) local optimality interpretation can be extended to heteroscedastic
disturbances. In such a case, the locally optimal test statistic associated with the mean curvature,
i.e. the test with the highest power near the null hypothesis according to a trace argument, will
be of the following form.

PROPOSITION 3.3. In model (2.1), suppose the mediangale Assumption 2.1 holds, and the
disturbances are heteroscedastic with conditional densities f t (· |X), t = 1, 2, . . . , which are
continuously differentiable around zero and such that f ′

t (0|X) = 0. Then, the locally optimal
sign-based statistic associated with the mean curvature is

˜SB(β0) = s(y − Xβ0)′X̃X̃′s(y − Xβ0), (3.7)

where X̃ = diag(f1(0|X), . . . , fn(0|X))X.

When the f i(0|x)’s are unknown, the optimal statistic is not feasible. The optimal weights
must be replaced by approximations, such as weights derived from the normal distribution.

Sign-based statistics of the form (3.4) can also be interpreted as GMM statistics which exploit
the property that {st ⊗ x ′

t ,Ft } is a martingale difference sequence.8 However, these are quite
unusual GMM statistics. Indeed, the parameter of interest is not defined by moment conditions
in explicit form. It is implicitly defined as the solution of some robust estimating equations
(involving constrained signs):

n∑
t=1

s(yt − x ′
tβ) ⊗ xt = 0.

For i.i.d. disturbances, Godambe (2001) showed that these estimating functions are optimal
among all the linear unbiased (for the median) estimating functions

∑n
t=1 at (β)s(yt − x ′

tβ). For
independent heteroscedastic disturbances, the set of optimal estimating equations is

∑n
t=1 s(yt −

x ′
tβ) ⊗ x̃t = 0. In those cases, X (resp. X̃) can be viewed as optimal instruments for the linear

model.
We now turn to linearly dependent processes. We propose to use a weighting matrix

directly derived from the asymptotic covariance matrix of 1√
n
s(y − Xβ0) ⊗ X. Let us denote

it by J n(s(y − Xβ 0), X). We consider �n(s(y − Xβ0), X) = 1
n
Ĵn(s(y − Xβ0), X)−1, where

Ĵn(s(y − Xβ0), X) stands for a consistent estimate of J n(s(y − Xβ 0), X) that can be obtained
using kernel estimators; for example, see Parzen (1957), Newey and West (1987), Andrews
(1991) and White (2001). This leads to

DS

(
β0,

1

n
Ĵ−1

n

)
= 1

n
s(y − Xβ0)′XĴ−1

n X′s(y − Xβ0). (3.8)

J n(s(y − Xβ 0), X) accounts for dependence among signs and explanatory variables. Hence, by
using an estimate of its inverse as weighting matrix, we perform a HAC correction. Note that the
correction depends on β 0.

8 Concerning power performance again, Chernozhukov et al. (2008) show also the class of GMM sign-based statistics
contains a locally asymptotically uniformly most powerful invariant test.
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In all cases, H 0(β 0) is rejected when the statistic evaluated at β = β 0 is large: DS(β0,�n) >

c�n
(X, α), where c�n

(X, α) is a critical value, which depends on the level α. Since we are
looking at pivotal functions, the critical values can be evaluated to any degree of precision by
simulation. This is the strategy followed by Chernozhukov et al. (2008), which exploits the
same finite sample property of (θ -) signs in a quantile regression context with conditionally
independent observations. However, as the distribution is discrete, a test based on c�n

(X,α) may
not exactly reach the nominal level. A more elegant solution consists in using the technique
of Monte Carlo tests with a randomized tie-breaking procedure, which do not suffer from this
shortcoming. Further, we will show later that the Monte Carlo procedure also enables one to
build tests with asymptotically controlled level for general processes when Assumption 2.1 fails
to hold.

3.3. Monte Carlo tests

Monte Carlo tests can be viewed as a finite-sample version of the bootstrap. They have been
introduced by Dwass (1957) (see also Barnard, 1963) and can be adapted to any pivotal statistic
whose distribution can be simulated. For a general review and for extensions in the case of the
presence of a nuisance parameter, the reader is referred to Dufour (2006).

In the case of discrete distributions, the method must be adapted to deal with ties. Here, we
use a randomized tie-breaking procedure for evaluating empirical survival functions (see Dufour,
2006). Let us consider a statistic T , whose conditional distribution given X is discrete and free of
nuisance parameters, and a test which rejects the null hypothesis when T ≥ c(α). Let T (0) be the
observed value of T , and T (1), . . . , T (N), N independent replicates of T . Each replication T (j ) is
associated with a uniform random variable W (j ) ∼ U(0, 1) to produce the pairs (T (j ), W (j )). The
vector (W (0), . . . , W (N)) is independent of (T (0), . . . , T (N)). (T (i), W (i))’s are ordered according to

(T (i), W (i)) ≥ (T (j ), W (j )) ⇔ {T (i) > T (j ) or (T (i) = T (j ) and W (i) ≥ W (j ))}.
This leads to the following p-value function:

p̃N (x) = NG̃N (x) + 1

N + 1
,

where the empirical survival function, G̃N (x) = 1 − 1
N

∑N
i=1 s+(x − T (i)) + 1

N

∑N
i=1 δ(T (i) −

x)s+(W (i) − W (0)), with s+(x) = 1[0, ∞)(x), δ(x) = 1{0}. Then

P[p̃N (T (0)) ≤ α] = I [α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1.

The randomized tie-breaking allows one to exactly control the level of the procedure. This may
also increase the power of the test.

4. REGRESSION SIGN-BASED CONFIDENCE SETS

In this section, we discuss how to use Monte Carlo sign-based joint tests in order to build
confidence sets for β with known level. This can be done as follows. For each value β0 ∈ R

p,
perform the Monte Carlo sign test for H 0(β 0) and get the associated simulated p-value. The
confidence set C1−α(β) that contains any β 0 with p-value higher than α has, by construction,
level 1 − α (see Dufour, 2006). From this simultaneous confidence set for β, it is possible,
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by projection techniques, to derive confidence intervals for the individual components. More
generally, we can obtain conservative confidence sets for any transformation g(β), where g can
be any kind of real functions, including non-linear ones. Obviously, obtaining a continuous grid
of R

p is not realistic. We will instead require global optimization search algorithms.

4.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confidence intervals and confidence sets for
general functions of the parameter β. For examples of use in different settings and for
further discussion, the reader is referred to Dufour (1990, 1997), Abdelkhalek and Dufour
(1998), Dufour and Kiviet (1998), Dufour and Jasiak (2001) and Dufour and Taamouti
(2005). The basic idea is the following one. Suppose a simultaneous confidence set with
level 1 − α for β, C1−α(β), is available. Since β ∈ C1−α(β) =⇒ g(β) ∈ g(C1−α(β)), we
have P[β ∈ C1−α(β)] ≥ 1 − α =⇒ P[g(β) ∈ g(C1−α(β))] ≥ 1 − α. Thus, g(C1−α(β)) is a con-
servative confidence set for g(β). If g(β) is scalar, the interval (in the extended real numbers)
Ig[C1−α(β)] = [infβ∈C1−α (β) g(β) , supβ∈C1−α(β) g(β)] has level 1 − α:

P

[
inf

β∈C1−α(β)
g(β) ≤ g(β) ≤ sup

β∈C1−α (β)
g(β)

]
� 1 − α.

Hence, to obtain valid conservative confidence intervals for the individual component βk in the
model (2.1) under mediangale Assumption 2.1, it is sufficient to solve the following numerical
optimization problems, where s.c. stands for ‘subject to the constraint’:

min
β∈Rp

βk s.c. p̃N

(
DS(β)

) ≥ α, max
β∈Rp

βk s.c. p̃N

(
DS(β)

) ≥ α,

where p̃N is computed using N replicates D
(j )
S of the statistic DS under the null hypothesis. In

practice, we use simulated annealing as optimization algorithm (see Goffe et al., 1994; Press
et al., 1996).9

In the case of multiple tests, projection techniques allow to perform tests on an arbitrary
number of hypotheses, without ever losing control of the overall level: rejecting at least one true
null hypothesis will not exceed the specified level α.

4.2. Numerical illustration

This part reports a numerical illustration. We generate the following normal mixture process for
n = 50,

yt = β0 + β1xt + ut , t = 1, . . . , n, ut

i.i.d.∼
{

N [0, 1] with probability 0.95

N [0, 1002] with probability 0.05.

We conduct an exact inference procedure with N = 999 replicates. The true process is generated
with β 0 = β 1 = 0. We perform tests of H 0(β∗) : β = β∗ on a grid for β∗ = (β∗

0, β∗
1) and retain

the associated simulated p-values. As β is a two-vector, we can provide a graphical illustration.
To each value of the vector β is associated the corresponding simulated p-value. Confidence

9 See Chernozhukov et al. (2008) for the use of other MCMC algorithms.
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Figure 1. Confidence regions provided by SF-based inference.

Table 1. Confidence intervals.

OLS White SF

β 0 95%CI [−4.57, 0.82] [−4.47, 0.72] [−0.54, 0.23]

98%CI [−5.10, 1.35] [−4.98, 1.23] [−0.64, 0.26]

β 1 95%CI [−2.50, 3.22] [−1.34, 2.06] [−0.42, 0.59]

98%CI [−3.07, 3.78] [−1.67, 2.39] [−0.57, 0.64]

region with level 1 − α contains all the values of β with p-values greater than α. Confidence
intervals are obtained by projecting the simultaneous confidence region on the axis of β 0 or β 1;
see Figure 1 and Table 1.

The confidence regions so obtained increase with the level and cover other confidence regions
with smaller level. Confidence regions are highly non-elliptic and thus may lead to different
results than an asymptotic inference. Concerning confidence intervals, sign-based ones appear to
be largely more robust than OLS and White CI and are less sensitive to outliers.

5. ASYMPTOTIC THEORY

This section is dedicated to asymptotic results. We point out that the mediangale Assumption 2.1
excludes some common processes, whereas usual asymptotic inference still can be conducted on
them. We relax Assumption 2.1 to allow random X that may not be independent of u. We show
that the finite-sample sign-based inference remains asymptotically valid. For a fixed number
of replicates, when the number of observations goes to infinity, the level of a test tends to the
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nominal level. Besides, we stress the ability of our methods to cover heavy-tailed distributions,
including infinite disturbance variance.

5.1. Asymptotic distributions of test statistics

In this part, we derive asymptotic distributions of the sign-based statistics. We show that the
HAC-corrected version of the sign-based statistic DS(β0,

1
n
Ĵ−1

n ) in (3.8) allows one to obtain
an asymptotically pivotal function. The set of assumptions we make to stabilize the asymptotic
behaviour will be needed for further asymptotic results. We consider the linear model (2.1), with
the following assumptions:

ASSUMPTION 5.1. (Mixing). {(x ′
t , ut ) : t = 1, 2, . . .} is α-mixing of size −r/(r − 2), r > 2.10

ASSUMPTION 5.2. (Moment condition). E[s(ut )xt ] = 0, t = 1, . . . , n, ∀n ∈ N.

ASSUMPTION 5.3. (Boundedness). xt = (x1t , . . . , xpt )′ and E[|xht |r ] <  < ∞, h = 1, . . . ,

p, t = 1, . . . , n, ∀n ∈ N.

ASSUMPTION 5.4. (Non-singularity). Jn = var[ 1√
n

∑n
t=1 s(ut )xt ] is uniformly positive

definite.

ASSUMPTION 5.5. (Consistent estimator of J n). �n(β 0) is symmetric positive definite

uniformly over n and �n − 1
n
J−1

n

p→ 0.

We can now give the following result on the asymptotic distribution of DS(β 0, �n) under
H 0(β 0).

THEOREM 5.1. (Asymptotic distribution of sign-based statistics). In model (2.1), with
Assumptions 5.1–5.5, we have, under H 0(β 0), DS(β 0, �n) → χ2 (p).

In particular, when the mediangale condition holds, J n reduces to E(X′X/n), and (X′X/n)−1

is a consistent estimator of J−1
n . This yields the following corollary.

COROLLARY 5.1. In model (2.1), suppose the mediangale Assumption 2.1 and boundedness
Assumption 5.3 are fulfilled. If X′X/n is positive definite uniformly over n and converges in
probability to a definite positive matrix, then, under H 0(β 0), SF(β 0) → χ2 (p).

5.2. Asymptotic validity of Monte Carlo tests

We first state some general results on asymptotic validity of Monte Carlo-based inference
methods. Then, we apply these results to sign-based inference methods.

5.2.1. Generalities. Let us consider a parametric or semi-parametric model {Mβ, β ∈ �}.
Let Sn(β 0) be a test statistic for H 0(β 0). Let cn be the rate of convergence. Under H 0(β 0),
the distribution function of cnSn(β 0) is denoted by F n(x). We suppose that F n(x) converges
almost everywhere to a distribution function F (x). G(x) and Gn(x) are the corresponding
survival functions. In Theorem 5.2, we show that if a sequence of conditional survival functions
G̃n(x|Xn(ω)) given X(ω), satisfies G̃n(x|Xn(ω)) → G(x) with probability one, where G does not

10 See White (2001) for a definition of α-mixing.
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depend on the realization X(ω), then G̃n(x|Xn(ω)) can be used as an approximation of Gn(x). It
can be seen as a pseudo survival function of cnSn(β 0).

THEOREM 5.2. (Generic asymptotic validity). Let Sn(β 0) be a test statistic for testing H 0(β 0):
β = β 0 against H 1(β 0) : β �= β 0 in model (2.1). Suppose that, under H 0(β 0),

P[cnSn(β0) ≥ x|Xn] = Gn(x|Xn) = 1 − Fn(x|Xn) →
n→∞ G(x) a.e.,

where {cn} is a sequence of positive constants, and suppose that G̃n(x|Xn(ω)) is a sequence of
survival functions such that G̃n(x|Xn(ω)) →

n→∞ G(x) with probability one. Then

lim
n→∞ P[G̃n(cnSn(β0), Xn(ω)) ≤ α] ≤ α. (5.1)

This theorem can also be stated in a Monte Carlo version. Following Dufour (2006), we use
empirical survival functions and empirical p-values adapted to discrete statistics in a randomized
way, but the replicates are not drawn from the same distribution as the observed statistic.
However, both distribution functions, respectively F n and F̃n, converge to the same limit F.
Let U (N + 1) = (U (0), U (1), . . . , U (N)) be a vector of N + 1 i.i.d. real variables drawn from
a U(0, 1) distribution, S(0)

n is the observed statistic and Sn(N ) = (S(1)
n , . . . , S(N)

n ) a vector of N
independent replicates drawn from F̃n. Then, the randomized pseudo empirical survival function
under H 0(β 0) is

G̃(N)
n

(
x, n, S(0)

n , Sn(N ), U (N + 1)
) = 1 − 1

N

N∑
j=1

s+
(
x − cnS

(j )
n

)

+ 1

N

N∑
j=1

δ
(
cnS

(j )
n − x

)
S+

(
U (j ) − U (0)).

G̃(N)
n (x, n, S(0)

n , Sn(N ), U (N + 1)) is in a sense an approximation of G̃n(x). Thus, it depends on
the number of replicates, N, and the number of observations, n. The randomized pseudo empirical
p-value function is defined as

p̃(N)
n (x) = NG̃(N)

n (x) + 1

N + 1
. (5.2)

We can now state the Monte Carlo-based version of Theorem 5.2.

THEOREM 5.3. (Monte Carlo test asymptotic validity). Let Sn(β 0) be a test statistic for testing
H 0(β 0) : β = β 0 against H 1(β 0) : β �= β 0 in model (2.1) and S(0)

n the observed value. Suppose
that, under H 0(β 0),

P[cnSn(β0) ≥ x|Xn] = Gn(x|Xn) = 1 − Fn(x|Xn) →
n→∞ G(x) a.e.,

where {cn} is a sequence of positive constants. Let S̃n be a random variable with conditional
survival function G̃n(x|Xn), such that

P[cnS̃n ≥ x|Xn] = G̃n(x|Xn) = 1 − F̃n(x|Xn) →
n→∞ G(x) a.e.,
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and (S(1)
n , . . . , S(N)

n ) be a vector of N independent replicates of S̃n, where (N + 1)α is an integer.
Then, the randomized version of the Monte Carlo test with level α is asymptotically valid, i.e.
limn→∞ P[p̃(N)

n (β0) ≤ α] ≤ α.

These results can be applied to the sign-based inference method. However, Theorems 5.2 and
5.3 are much more general. They do not exclusively rely on asymptotic normality—the limiting
distribution may be different from a Gaussian one. Besides, the rate of convergence may differ
from

√
n.

5.2.2. Asymptotic validity of sign-based inference. In model (2.1), suppose that conditions
5.1–5.5 hold and consider the testing problem: H0(β0) : β = β0 against H1(β0) : β �= β0. Let
DS(β, Ĵ−1

n ) be the test statistic as defined in (3.8). Observe SF (0) = DS(β0, Ĵ
−1
n ). Draw N

independent replicates of sign vector, each one having n independent components, from a B(1,
0.5) distribution. Compute (SF(1), SF(2), . . . , SF(N)), the N pseudo replicates of DS(β 0, X′X−1)
under H 0(β 0). We call them ‘pseudo’ replicates because they are drawn as if observations were
independent. Draw N + 1 independent replicates (W (0), . . . , W (N)) from a U(0, 1) distribution
and form the couple (SF(j ), W (j )). Compute p̃(N)

n (β0) using (5.2). From Theorem 5.3, the
confidence region {β ∈ R

p|p̃(N)
n (β) ≥ α} is asymptotically conservative with level at least 1 − α.

H 0(β 0) is rejected when p̃(N)
n (β0) ≤ α.

Contrary to usual asymptotic tests, this method does not require the existence of moments nor
a density on the {ut : t = 1, 2, . . . } process. Usual Wald-type inference is based on the asymptotic
behaviour of estimators and, consequently, is more restrictive. More moments existence
restrictions are needed; see Weiss (1991) and Fitzenberger (1997b). Besides, asymptotic variance
of the LAD estimator involves the conditional density at zero of the disturbance process {ut : t =
1, 2, . . . } as unknown nuisance parameter. The approximation and estimation of asymptotic
covariance matrices constitute a large issue in asymptotic inference. This usually requires
kernel methods. We get around those problems by adopting the finite-sample sign-based
procedure.

6. SIMULATION STUDY

In this section, we study the performance of sign-based methods compared with usual asymptotic
tests based on OLS or LAD estimators, with different approximations for their asymptotic
covariance matrices. We consider the sign-based statistics DS(β, (X′X)−1) and DS(β, Ĵ−1

n )
when a correction is needed for linear serial dependence. We consider a set of general DGPs
to illustrate different classical problems one may encounter in practice. They are presented in
Table 2. First, we investigate the performance of tests, then, confidence sets. We use the following
linear regression model:

yt = x ′
tβ0 + ut , t = 1, . . . , n, (6.1)

where xt = (1, x2,t , x3,t )′ and β 0 are 3 × 1 vectors. We denote the sample size n. For the
first six ones, {ut : t = 1, 2. . .} is i.i.d. or depends on the explanatory variables and its past
values in a multiplicative heteroscedastic way: ut = h(xt , ut−1, . . . , u1)εt , t = 1, . . . , n. In those
cases, the error term constitutes a strict conditional mediangale given X (see Assumption 2.1).
Correspondingly, the levels of sign-based tests and confidence sets are perfectly controlled. Case
C1 presents i.i.d. normal observations without conditional heteroscedasticity. Case C2 involves
outliers in the error term. This can be seen as an example of measurement error in the observed
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Table 2. Simulated models.

C1: Normal HOM: (x2,t , x3,t , ut )′
i.i.d.∼ N (0, I3), t = 1, . . . , n

C2: Outlier: (x2,t , x3,t )′
i.i.d.∼ N (0, I2),

ut

i.i.d.∼
{

N [0, 1] with p = 0.95

N [0, 10002] with p = 0.05

xt , ut , independent, t = 1, . . . , n.

C3: Stat. (x2,t , x3,t )′
i.i.d.∼ N (0, I2), ut = σtεt with

GARCH(1,1): σ 2
t = 0.666u2

t−1 + 0.333σ 2
t−1 where εt

i.i.d.∼ N (0, 1),

xt , εt , independent, t = 1, . . . , n.

C4: Stoc. (x2,t , x3,t )′
i.i.d.∼ N (0, I2), ut = exp(wt/2)εt with

Volatility: wt = 0.5wt−1 + vt , where εt

i.i.d.∼ N (0, 1), vt

i.i.d.∼ χ2(3),

xt , ut , independent, t = 1, . . . , n.

C5: Deb. design matrix x2,t

i.i.d.∼ N (0, 1), x3,t

i.i.d.∼ χ2(1),

+ HET. dist.: ut = x3,t εt , εt

i.i.d.∼ N (0, 1), xt , εt independent, t = 1, . . ., n.

C6: Cauchy (x2,t , x3,t )′ ∼ N (0, I2),

disturbances: ut

i.i.d.∼ C, xt , ut , independent, t = 1, . . . , n.

C7: AR(1)-HET , xj,t = ρx xj,t−1 + ν
j
t , j = 1, 2,

ρu = 0.5, : ut = min{3, max[0.21, |x2,t |]} × ũt ,

ρx = 0.5 ũt = ρuũt−1 + νu
t ,

(ν2
t , ν

3
t , ν

u
t )′

i.i.d.∼ N (0, I3), t = 2, . . . , n

ν2
1, ν3

1 and νu
1 chosen to ensure stationarity.

C8: Exp. Var.: (x2,t , x3,t , εt )′
i.i.d.∼ N (0, I3), ut = exp(0.2t)εt .

y. Cases C3 and C4 involve other non-linear dependent schemes with stationary GARCH and
stochastic volatility disturbances. Case C5 combines a very unbalanced design matrix (where the
LAD estimator performs poorly) with highly conditional heteroscedastic disturbances. Case C6
is an example of heavy-tailed errors (Cauchy). Next, we study the behaviour of the sign-based
inference (involving a HAC correction) when inference is only asymptotically valid. Case C7
illustrates the behaviour of sign-based inference when the error term involves linear dependence
at a mild level (see the discussion paper for results at other levels of linear dependence and
Fitzenberger, 1997b, for a study of LAD block bootstrap performance on such DGPs). In that
case, xt and ut are such that E(utxt) = 0 and E[s(ut )xt ] = 0 for all t. Finally, case C8
involves disturbances that are not second-order stationary (exponential variance) but for which
the mediangale assumption holds. As we noted previously, sign-based inference does not require
stationary assumptions in contrast with tests derived from CLT. In each case, the design matrix is
simulated once. Hence, results are conditional. More simulation results on other types of DGPs
can be found in the discussion paper (Coudin and Dufour, 2007).
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Table 3. Linear regression under mediangale errors: empirical sizes of conditional tests for H 0 : β =
(1, 2, 3)′.

SIGN LAD OLS
y t = x tβ + ut ,
t = 1, . . . , 50. SF SHAC OS DMB MBB BT LR IID WH BT

Stationary models with mediangale errors

C1: HOM 0.052 0.050 0.086 0.050 0.089 0.047 0.068 0.060 0.096 0.113

ρε = ρx = 0, 0.047∗ 0.019∗

C2: 0.047 0.048 0.088 0.043 0.083 0.039 0.066 0.056 0.008 0.009

Outlier 0.044∗ 0.015∗

C3: 0.042 0.046 0.040 0.005 0.005 0.004 0.012 0.080 0.046 0.046

St. GARCH(1,1) 0.040∗ 0.013∗

C4: 0.043 0.041 0.063 0.006 0.014 0.006 0.031 0.054 0.014 0.014

Stoch. Volat. 0.045∗ 0.021∗

C5: 0.044 0.042 0.687 0.020 0.044 0.152 0.307 0.421 0.171 0.173

Deb. + Het. 0.040∗ 0.018∗

C6: 0.058 0.059 0.069 0.013 0.033 0.012 0.044 0.061 0.023 0.023

Cauchy 0.049∗ 0.021∗

Non-stationary models with mediangale errors

C8: Exp. Var. 0.049 0.051 0.017 0.000 0.000 0.000 0.000 0.132 0.014 0.014

Stationary models with serial dependence

C7: HET 0.218 0.026 0.440 0.131 0.097 0.108 0.308 0.407 0.328 0.276

ρε = ρx = 0.5∗∗ – 0.017∗

Notes: ∗Sizes using asymptotic critical values based on χ2 (3).
∗∗Automatic bandwidth parameters are restricted to be <10 to avoid invertibility problems.

6.1. Size

We first study level distortions. We consider the testing problem: H 0(β 0) : β 0 = (1, 2, 3)′ against
H 1 : β 0 �= (1, 2, 3)′. We compare exact and asymptotic tests based on SF = DS(β, (X′X)−1)
and SHAC = DS(β, Ĵ−1

n ), where Ĵ−1
n is estimated by a Bartlett kernel, with various asymptotic

tests. Wald- and LR-type tests are considered. We consider Wald tests based on the OLS estimate
with three different covariance estimators: the usual under homoscedasticity and independence
(IID), White correction for heteroscedasticity (WH) and Bartlett kernel covariance estimator with
automatic bandwidth parameter (BT , Andrews, 1991). Concerning the LAD estimator, we study
Wald-type tests based on several covariance estimators: order statistic estimator (OS),11 Bartlett
kernel covariance estimator with automatic bandwidth parameter (BT , Powell, 1984, Buchinsky,
1995), design matrix bootstrap centring around the sample estimate (DMB, Buchinsky, 1998),
moving block bootstrap centring around the sample estimate (MBB, Fitzenberger, 1997b).12

11 This assumes i.i.d. residuals; an estimate of the residual density at zero is obtained from a confidence interval
constructed for the (n/2)th residual (Buchinsky, 1998).

12 The block size is 5.
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Finally, we consider the likelihood ratio statistic (LR) assuming i.i.d. disturbances with an OS
estimate of the error density (Koenker and Bassett, 1982). When errors are i.i.d. and X is fixed,
the LM statistic for testing the joint hypothesis H 0(β 0) turns out to be the SF sign-based statistic.
Consequently, the three usual forms (Wald, LR and LM) of asymptotic tests are compared in our
set-up.

In Table 3, we report the simulated sizes for a conditional test with nominal level α = 5%,
given X. N replicates are used for the bootstrap and the Monte Carlo sign-based method, and
N = 2999. All bootstrapped samples are of size n = 50. We simulate M = 5000 random samples
to evaluate the sizes of these tests. For both sign-based statistics, we also report the asymptotic
level whenever processes are stationary.

When the mediangale Assumption 2.1 holds, sizes of tests derived from sign-based finite-
sample methods are exactly controlled, whereas asymptotic tests may greatly overreject or
underreject the null hypothesis. This remark especially holds for cases involving strong
heteroscedasticity (cases C3, C5). The asymptotic versions of sign-based tests suffer from the
same underrejection than other asymptotic tests, suggesting that for small samples (n = 50), the
distribution of the test statistic is really far from its asymptotic limit. Hence, the sign-based
method that deals directly with this distribution has clearly an advantage on asymptotic methods.
When the disturbance process is highly heteroscedastic (case C5), the kernel estimation of the
LAD asymptotic covariance matrix is not reliable anymore.

In the last row, we illustrate behaviours when the error term involves linear serial
dependence. The Monte Carlo SHAC sign-based test does not control exactly the level but is
still asymptotically valid and yields the best results. We underscore its advantages compared
with other asymptotically justified methods. Whereas the Wald and LR tests overreject the
null hypothesis, the latter test seems to better control the level than its asymptotic version,
avoiding underrejection. There exist important differences between using critical values from
the asymptotic distribution of SHAC statistic and critical values derived from the distribution of
the SHAC statistic for a fixed number of independent signs. Besides, we underscore the dramatic
overrejections of asymptotic Wald tests based on HAC estimation of the asymptotic covariance
matrix when the data set involves a small number of observations. These results suggest, in a
sense, that when the data suffer from both a small number of observations and linear dependence,
the first problem to solve is the finite-sample distortion, which is not what is usually done.

6.2. Power

Then, we illustrate the power of these tests. We are particularly interested in comparing the
sign-based inference to kernel and bootstrap methods. We consider the simultaneous hypothesis
H0 as before. The true process is obtained by fixing β 1 and β 3 at the tested value, i.e. β 1 =
1 and β 3 = 3 and letting vary β 2. Simulated power is given by a graph with β 2 in abscissa.
The power functions presented here (Figures 2 and 3) are locally adjusted for the level, which
allows comparisons between methods. However, we should keep in mind that only the sign-based
methods lead to exact confidence levels without adjustment. Other methods may overreject the
null hypothesis and do not control the level of the test, or underreject it, and then lose power.

Sign-based inference has a comparable power performance with LAD methods in cases C1,
C2 and a slightly lower in case C6 (Cauchy disturbances), with the advantage that the level
is exactly controlled, which leads to great difference in small samples. In heteroscedastic or
heterogeneous cases (C4, C5 and above all C3 and C8), sign-based inference dominates other
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(a) C1: normal
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(b) C2: outliers
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(c) C3: stationary GARCH
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(d) C4: stochastic volatility
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(e) C5: DEB+HET
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(f) C6: Cauchy

Figure 2. Power functions (level corrected).

C© The Author(s). Journal compilation C© Royal Economic Society 2009.



S38 E. Coudin and J.-M. Dufour

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true value of beta2

p
ro

b
a
b
ili

ty
 o

f 
re

je
c
ti
n
g
 H

0

(a) C 7: AR(1) HET, ρx = ρu = �5
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(b) C 12: exponential variance

Figure 3. Power functions (level corrected).

methods: levels are exactly controlled and power functions exceed others, even methods that
are size-corrected with locally adjusted levels. In the presence of linear serial dependence, the
Monte Carlo test based on DS(β, Ĵ−1

n ), which is still asymptotically valid, seems to lead to good
power performance for a mild autocorrelation, along with a better size control (C7). Only for
very high autocorrelation (close to unit root process), the sign-based inference is not adapted;
see the discussion paper (Coudin and Dufour, 2007).

6.3. Confidence intervals

As the sign-based confidence regions are, by construction, of a level higher than 1 − α, whenever
inference is exact, a performance indicator for confidence intervals may be their width. Thus,
we wish to compare the width of confidence intervals obtained by projecting the sign-based
simultaneous confidence regions to those based on t-statistics on the LAD estimator. We use
M = 1000 simulations, and report average width of confidence intervals for each βk and coverage
probabilities in Table 4. We only consider stationary examples. Spreads of confidence intervals
obtained by projection are larger than asymptotic confidence intervals. This is due to the fact
that they are by construction conservative confidence intervals. However, it is not clear that valid
confidence intervals without this feature can even be built.

7. ILLUSTRATIVE APPLICATION: STANDARD AND POOR’S DRIFT

We test the presence of a drift on the Standard and Poor’s composite price index (SP), 1928–87.
That process is known to involve a large amount of heteroscedasticity and have been used by
Gallant et al. (1997) and Dufour and Valéry (2008) to fit a stochastic volatility model. Here, we
are interested in robust testing without modelling the volatility in the disturbance process. The
data set consists in a series of 16,127 daily observations of SPt , converted to price movements,
yt = 100[log (SPt ) − log (SPt−1)] and adjusted for systematic calendar effects. We consider a
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model with a constant and a drift:

yt = a + bt + ut , t = 1, . . . , 16,127, (7.1)

where we let the possibility that {ut : t = 1, . . . , 16,127} presents a stochastic volatility or
any kind of non-linear heteroscedasticity of unknown form. White and Breusch–Pagan tests for
heteroscedasticity both reject homoscedasticity at 1%.13

We derive confidence intervals for the two parameters with the Monte Carlo sign-based
method, and we compare them with the ones obtained by Wald techniques applied to LAD and
OLS estimates. Then, we perform a similar experiment on two subperiods, the whole year 1929
(291 observations) and on the last 90 opened days of 1929, which roughly corresponds to the four
last months of 1929 (90 observations), to investigate behaviours of the different methods in small
samples. Due to the financial crisis, one may expect data to involve heavy heteroscedasticity
during this period. Let us remind ourselves that the Wall Street Crash occurred between October
24 (Black Thursday) and October 29 (Black Tuesday). Hence, the second subsample corresponds
to September and October with the crash period, and November and December with the early
beginning of the Great Depression Heteroscedasticity tests reject homoscedasticity for both
subsamples.14

In Table 5, we report 95% confidence intervals for a and b obtained by various methods:
finite-sample sign-based method (for SF and SHAC, which involves a HAC correction); LAD and
OLS with different estimates of their asymptotic covariance matrices (order statistic, bootstrap,
kernel, . . .). If the mediangale Assumption 2.1 holds, the sign-based confidence interval coverage
probabilities are controlled. First, results on the drift are very similar between methods. The
absence of a drift cannot be rejected with 5% level, but results concerning the constant differ
greatly between methods and time periods. In the whole sample, the conclusions of Wald tests
based on the LAD estimator differ depending on the choice of the covariance matrix estimate.
Concerning the test of a positive constant, Wald tests with bootstrap or with an estimate derived
if observations are i.i.d. (OS covariance matrix), which is totally illusory in that sample, reject,
whereas the Wald test with kernel (so as sign-based tests) cannot reject the nullity of a. This may
lead the practitioner in a perplex mind. Which is the correct test?

In all the considered samples, Wald tests based on OLS appear to be unreliable. Either
confidence intervals are huge (see OLS results on both subperiods) or some bias is suspected
(see OLS results on the whole period). Take the constant parameter, on one hand, sign-based
confidence intervals and LAD confidence intervals are rather deported to the right; on the other
hand, OLS confidence intervals seem to be biased towards zero. This may due to the presence of
some influential observations. Moreover, the OLS estimate for the whole sample is negative. In
settings with arbitrary heteroscedasticity, LS methods should be avoided.

Let us examine the third column of Table 5. The tightest confidence intervals for the constant
parameter is obtained for sign-based tests based on the SHAC statistic, whereas LAD (and OLS)
ones are larger. Note besides the gain obtained by using SHAC instead of SF in that set-up.
This suggests the presence of autocorrelation in the disturbance process. In such a circumstance,
finite-sample sign-based tests remain asymptotically valid, such as Wald methods. However, they
are also corrected for the sample size and yield very different results. Finally, sign-based tests

13 White: 499 (p-value = 0.000) ; BP: 2781 (p-value = 0.000).
14 1929: White: 24.2 (p-value = 0.000); BP: 126 (p-value = 0.000); Sept–Oct–Nov–Dec 1929: White: 11.08

(p-value = 0.004); BP: 1.76 (p-value = 0.18).
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Table 5. S&P price index: 95% confidence intervals.

Whole sample Subsamples
Constant parameter (a)

Methods (16,120 obs.) 1929 (291 obs.) 1929 (90 obs.)

Sign

SF statistics [−0.007, 0.105] [−0.226, 0.522] [−1.464, 0.491]

SHAC statistics [−0.007, 0.106] [−0.135, 0.443] [−0.943, 0.362]

LAD (estimate) (0.062) (0.163) (−0.091)

with OS cov. matrix est. [0.033, 0.092] [−0.144, 0.470] [−1.015, 0.832]

with DMB cov. matrix est. [0.007, 0.117] [−0.139, 0.464] [−1.004, 0.822]

with MBB cov. matrix est. (b=3) [0.008, 0.116] [−0.130, 0.456] [−1.223, 1.040]

with kernel cov. matrix est. (Bn=10) [−0.019, 0.143] [−0.454, −0.780] [−1.265, 1.083]

OLS (−0.005) (0.224) (−0.522)

with i.i.d. cov. matrix est. [−0.041, 0.031] [−0.276, 0.724] [−2.006, 0.962]

with DMB cov. matrix est. [−0.054, 0.045] [−0.142, 0.543] [−1.335, 0.290]

with MBB cov. matrix est. (b=3) [−0.056, 0.046] [−0.140, 0.588] [−1.730, 0.685]

Drift parameter (b)

Methods ×10−5 ×10−2 ×10−1

Sign

SF statistics [−0.676, 0.486] [−0.342, 0.344] [−0.240, 0.305]

SHAC statistics [−0.699, 0.510] [−0.260, 0.268] [−0.204, 0.224]

LAD (0.184) (0.000) (−0.044)

with OS cov. matrix est. [−0.504, 0.320] [−0.182, 0.182] [−0.220, 0.133]

with DMB cov. matrix est. [−0.688, 0.320] [−0.256, 0.255] [−0.281, 0.194]

with MBB cov. matrix est. (b=3) [−0.681, 0.313] [−0.236, 0.236] [−0.316, 0.229]

with kernel cov. matrix est. [−0.671, −0.104] [−0.392, 0.391] [−0.303, 0.215]

OLS (0.266) (−0.183) (0.010)

with i.i.d. cov. matrix est. [−0.119, 0.651] [−0.480, 0.113] [−0.273, 0.293]

with DMB cov. matrix est. [−0.213, 0.745] [−0.544, 0.177] [−0.148, 0.169]

with MBB cov. matrix est. (b=3) [−0.228, 0.761] [−0.523, 0.156] [−0.250, 0.270]

seem really adapted for small sample settings. Consequently, they are also particularly adapted
to regional data sets, which have, by nature, fixed sample size.15

8. CONCLUSION

In this paper, we have proposed an entire system of inference for the β parameter of a
linear median regression that relies on distribution-free sign-based statistics. We show that

15 For an illustration on cross-regional β-convergence between the levels of per capita output in the U.S., see the
discussion paper.
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the procedure yields exact tests in finite samples for mediangale processes and remains
asymptotically valid for more general processes, including stationary ARMA disturbances.
Simulation studies indicate that the proposed tests and confidence sets are more reliable than
usual methods (LS, LAD), even when using the bootstrap. Despite the programming complexity
of sign-based methods, we advocate their use when arbitrary heteroscedasticity is suspected in
the data and the number of available observations is small. Finally, we have presented a practical
example: we test the presence of a drift on the S&P price index, for the whole period 1928–87
and for shorter subsamples.
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APPENDIX A: PROOFS

Proof of Proposition 2.1: We use the fact that, as {Xt : t = 1, 2, . . . } is strongly exogenous, {ut : t = 1,
2, . . . } does not Granger cause {Xt : t = 1, 2, . . . }. It follows directly that l(s t |ut−1, . . . , u1, x t , . . . , x 1) =
l(s t |ut−1, . . . , u1, xn, . . . , x 1), where l stands for the density of s t = s(ut ). �
Proof of Proposition 3.1: Consider the vector [s(u1), s(u2), . . . , s(un)]′ ≡ (s 1, s 2, . . . , sn)′. From
Assumption 2.1, we derive the two following equalities:

P[ut > 0|X] = E(P[ut > 0|ut−1, . . . , u1, X]) = 1/2,

P[ut > 0|st−1, . . . , s1, X] = P[ut > 0|ut−1, . . . , u1, X] = 1/2, ∀t ≥ 2.

Further, the joint density of (s 1, s 2, . . . , sn)′ can be written

l(s1, s2, . . . , sn|X) =
n∏

t=1

l(st |st−1, . . . , s1, X)

=
n∏

t=1

P[ut > 0|ut−1, . . . , u1, X](1−st )/2{1 − P[ut > 0|ut−1, . . . , u1, X]}(1+st )/2

=
n∏

t=1

(1/2)(1−st )/2[1 − (1/2)]](1+st )/2 = (1/2)n.

Hence, conditional on X, s1, s2, . . . , sn

i.i.d.∼ B(1/2). �
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Proof of Proposition 3.2: Consider model (2.1) with {ut : t = 1, 2, . . .}, satisfying a weak mediangale
conditional on X. Let us show that s̃(u1), s̃(u2), . . . , s̃(un) can have the same role in Proposition 3.1 as
s(u1), s(u2), . . . , s(un) under Assumption 2.1. The randomized signs are defined by s̃(ut , Vt ) = s(ut ) +
[1 − s(ut )2]s(Vt − 0.5), hence

P[s̃(ut , Vt ) = 1|ut−1, . . . , u1, X] = P
[
s(ut ) + [

1 − s(ut )
2
]
s(Vt − 0.5) = 1|ut−1, . . . , u1, X

]
.

As (V 1, . . . , V n) is independent of (u1, . . . , un) and Vt ∼ U(0, 1), it follows

P[s̃(ut , Vt ) = 1] = P[ut > 0|ut−1, . . . , u1, X] + 1

2
P[ut = 0|ut−1, . . . , u1, X]. (A.1)

The weak conditional mediangale assumption given X entails

P[ut > 0|ut−1, . . . , u1, X] = P[ut < 0|ut−1, . . . , u1, X] = 1 − pt

2
, (A.2)

where pt = P[ut = 0|ut−1, . . . , u1, X]. Substituting (A.2) into (A.1) yields

P[s̃(ut , Vt ) = 1|ut−1, . . . , u1, X] = 1 − pt

2
+ pt

2
= 1

2
. (A.3)

In a similar way,

P[s̃(ut , Vt ) = −1|ut−1, . . . , u1, X] = 1

2
. (A.4)

The rest is similar to the proof of Proposition 3.1. �
Proof of Proposition 3.3: Let us consider first, the case of a single explanatory variable case (p = 1),
which contains the basic idea for the proof. The case with p > 1 is just an adaptation of the same ideas to
multidimensional notions. Under model (2.1) with the mediangale Assumption 2.1, the locally optimal sign-
based test (conditional on X) of H 0(β) : β = 0 against H 1(β) : β �= 0 is well defined. Among tests with level
α, the power function of the locally optimal sign-based test has the highest slope around zero. The power
function of a sign-based test conditional on X can be written Pβ [s(y) ∈ Wα|X], where W α is the critical
region with level α. Hence, we should include in W α the sign vectors for which d

dβ
Pβ [S(y) = s|X]β=0, is

as large as possible. An easy way to determine that derivative is to identify the terms of a Taylor expansion
around zero. Under Assumption 2.1, we have

Pβ [S(y) = s|X] =
n∏

i=1

[Pβ (yi > 0|X)](1+si )/2[Pβ (yi < 0|X)](1−si )/2 (A.5)

=
n∏

i=1

[1 − Fi(−xiβ|X)](1+si )/2[Fi(−xiβ|X)](1−si )/2. (A.6)

Assuming that continuous densities at zero exist, a Taylor expansion at order one entails

Pβ [S(y) = s|X] = 1

2n

n∏
i=1

[1 + 2fi(0|X)xisiβ + o(β)] (A.7)

= 1

2n

[
1 + 2

n∑
i=1

fi(0|X)xisiβ + o(β)

]
. (A.8)
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All other terms of the product decomposition are negligible or equivalent to o(β). That allows us to identify
the derivative at β = 0:

d

dβ
Pβ=0[S(y) = s|X] = 2−n+1

n∑
i=1

fi(0|X)xisi . (A.9)

Therefore, the required test has the form

Wα =
{

s = (s1, . . . , sn)|
∣∣∣∣∣

n∑
i=1

fi(0|X)xisi

∣∣∣∣∣ > cα

}
, (A.10)

or equivalently, Wα = {s|s(y)′X̃X̃′s(y) > c′
α}, where cα and c′

α are defined by the significance level. When
the disturbances have a common conditional density at zero, f (0|X), we find the results of Boldin et al.
(1997). The locally optimal sign-based test is given by W α = {s|s(y)′ XX′s(y) > c′

α} . The statistic does not
depend on the conditional density evaluated at zero.

When p > 1, we need an extension of the notion of slope around zero for a multidimensional parameter.
Boldin et al. (1997) propose to restrict to the class of locally unbiased tests with given level α and to consider

the maximal mean curvature. Thus, a locally unbiased sign-based test satisfies, dPβ (Wα )
dβ

∣∣∣
β=0

= 0, and, as

f ′
i(0) = 0, ∀ i, the behaviour of the power function around zero is characterized by the quadratic term of its

Taylor expansion

β ′ 1

2

(
d2Pβ (Wα)

dβ2

)
β = 1

2n−2

∑
1≤i �=

∑
j≤n

[fi(0|X)siβ
′xi][fj (0|X)sj x

′
j β]. (A.11)

The locally most powerful sign-based test in the sense of the mean curvature maximizes the mean curvature,

which is, by definition, proportional to the trace of d2Pβ (Wα )

dβ2

∣∣∣
β=0

; see Boldin et al. (1997, p. 41), Dubrovin

et al. (1984, ch. 2, pp. 76–86) or Gray (1998, ch. 21, pp. 373–80). Taking the trace in expression (A.11), we
find (after some computations) that

tr

(
d2Pβ (Wα)

dβ2

∣∣∣∣
β=0

)
=

∑
1≤i �=

∑
j≤n

fi(0|X)fj (0|X)sisj

p∑
k=1

xikxjk . (A.12)

By adding the independent of s quantity
∑n

i=1

∑p

k=1 x2
ik to (A.12), we find

p∑
k=1

(
n∑

i=1

xikfi(0|X)si

)2

= s ′(y)X̃X̃′s(y) . (A.13)

Hence, the locally optimal sign-biased test, in the sense developed by Boldin et al. (1997) for
heteroscedastic signs, is Wα = {s : s ′(y)X̃X̃′s(y) > c′

α}. Another quadratic test statistic convenient for
large-sample evaluation is obtained by standardizing by X̃′X̃: Wα = {s : s ′(y)X̃(X̃′X̃)−1X̃′s(y) > c′

α}. �
Proof of Theorem 5.1: This proof follows the usual steps of an asymptotic normality result for mixing
processes (see White, 2001). Consider model (2.1). In the following, s t stands for s(ut ). Under Assumption
5.4, V −1/2

n exists for any n. Set Znt = λ′V −1/2
n x ′

t s(ut ), for some λ ∈ R
p such that λ′λ = 1. The mixing

property 5.1 of (x ′
t , ut ) gets transmitted to Znt ; see White (2001, Theorem 3.49). Hence, λ′V −1/2

n s(ut ) ⊗ x t

is α-mixing of size −r/(r − 2), r > 2. Assumptions 5.2 and 5.3 imply

E[λ′V −1/2
n x ′

t s(ut )] = 0, t = 1, . . . , n, ∀n ∈ N . (A.14)

E
∣∣∣λ′V −1/2

n x ′
t s(ut )

∣∣∣r <  < ∞, t = 1, . . . , n, ∀n ∈ N . (A.15)
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Note also that

Var

(
1√
n

n∑
t=1

Znt

)
= Var

[
1√
n

n∑
t=1

λ′V −1/2
n s(ut ) ⊗ xt

]
= λ′V −1/2

n VnV
−1/2
n λ = 1 . (A.16)

The mixing property of Znt and equations (A.14)–(A.16) allow one to apply a central limit theorem (see
White, 2001, Theorem 5.20) that yields

1√
n

n∑
t=1

λ′V −1/2
n s(ut ) ⊗ xt → N (0, 1) . (A.17)

Since λ is arbitrary with λ′λ = 1, the Cramér–Wold device entails

V −1/2
n n−1/2

n∑
t=1

s(ut ) ⊗ xt → N (0, Ip) . (A.18)

Finally, Assumption 5.5 states that �n is a consistent estimate of V −1
n . Hence,

n−1/2�1/2
n

n∑
t=1

s(ut ) ⊗ xt → N (0, Ip), (A.19)

and n−1s ′ (y − Xβ 0)X�n X′s(y − Xβ 0) → χ 2 (p). �
Proof of Corollary 5.1: Let Ft = σ (y0, . . . , yt , x

′
0, . . . , x ′

t ). When the mediangale Assumption 2.1
holds, {s(ut ) ⊗ xt ,Ft : t = 1, . . . , n} belong to a martingale difference with respect to Ft . Hence,
Vn = Var[ 1√

n
s ⊗ X] = 1

n

∑n

t=1 E(xt st s
′
t x

′
t ) = 1

n

∑n

t=1 E(xtx
′
t ) = 1

n
E(X′X), and X′X/n is a consistent

estimate of E(X′X/n). Theorem 5.1 yields SF(β 0) → χ 2(p). �

In order to prove Theorem 5.2, we will use the following lemma on the uniform convergence of
distribution functions (see Chow and Teicher, 1988, sec. 8.2, p. 265).

LEMMA 8.1. Let (Fn)n∈N and F be right continuous distribution functions. Suppose that Fn(x) →
n→∞

F (x),

∀x ∈ R. Then, sup−∞<x<+∞|Fn(x) − F (x)| →
n→∞

0.

Proof of Theorem 5.2: G(−∞) = G̃n(−∞) = 0, G(+∞) = G̃n(+∞) = 1, and G̃n(x|Xn(ω)) →
G(x) a.e. By Lemma 8.1, (G̃n)nN converges uniformly to G. The same holds for Gn. Moreover, G̃n can
be rewritten as

G̃n(cnSn(β0)|Xn) = [G̃n(cnSn(β0)|Xn(ω)) − G(cnSn(β0))]

+ [G(cnSn(β0)) − Gn(cnSn(β0)|Xn(ω))] + Gn(cnSn(β0)|Xn),

hence

Gn(cnSn(β0)|Xn) = G̃n(cnSn(β0)|Xn) + op(1). (A.20)

As cnSn
0 is a discrete positive random variable and Gn, its survival function is also discrete. It directly

follows from properties of survival functions that for each α ∈ Im(Gn(R+)),i.e. for each point of the image
set, we have

P[Gn(cnSn(β0)) ≤ α] = α. (A.21)

Consider now the case when α ∈ (0, 1)\Im(Gn(R+)). α must be between the two values of a jump of the
function Gn. Since Gn is bounded and decreasing, there exist α1, α2 ∈ Im(Gn(R+)), such that α1 < α <

α2 and

P[Gn(cnSn(β0)) ≤ α1] ≤ P[Gn(cnSn(β0)) ≤ α] ≤ P[Gn(cnSn(β0)) ≤ α2].

C© The Author(s). Journal compilation C© Royal Economic Society 2009.



Finite-sample distribution-free inference in linear median regressions S49

More precisely, the first inequality is an equality. Indeed,

P[Gn(cnSn(β0)) ≤ α] = P[{Gn(cnSn(β0)) ≤ α1} ∪ {α1 < Gn(cnSn(β0)) ≤ α}]
= P[Gn(cnSn(β0)) ≤ α1] + 0,

as {α1 < Gn(cnSn(β 0)) ≤ α} is a zero-probability event. Applying (A.21) to α1,

P[Gn(cnSn(β0)) ≤ α] = P[Gn(cnSn(β0)) ≤ α1] = α1 ≤ α. (A.22)

Hence, for α ∈ (0, 1), we have P[Gn(cnSn(β0)) ≤ α] ≤ α. The latter combined with equation (A.20) allows
us to conclude

P[G̃n(cnSn(β0)) ≤ α] = P[Gn(cnSn(β0)) ≤ α] + op(1) ≤ α + op(1). �

Proof of Theorem 5.3: Let S(0)
n be the observed statistic and Sn(N ) = (S(1)

n , . . . , S(N)
n ), a vector of N

independent replicates drawn from F̃n(x). Usually, validity of Monte Carlo testing is based on the fact the
vector (cnS(0)

n , . . . , cnS(N)
n ) is exchangeable. Indeed, in that case, the distribution of ranks is fully specified

and yields the validity of empirical p-value (see Dufour, 2006). In our case, it is clear that (cnS(0)
n , . . . , cnS(N)

n )
is not exchangeable, so that Monte Carlo validity cannot be directly applied. Nevertheless, asymptotic
exchangeability still holds, which will enable us to conclude. To obtain that the vector (cnS(0)

n , . . . , cnS(N)
n ) is

asymptotically exchangeable, we show that for any permutation π : [1, N ] → [1, N ],

lim
n→∞

P
[
S(0)

n ≥ t0, . . . , S(N)
n ≥ tN

] − P
[
Sπ (0)

n ≥ t0, . . . , Sπ (N)
n ≥ tN

] = 0.

First, let us rewrite

P
[
S(0)

n ≥ t0, . . . , S(N)
n ≥ tN

] = EXn

{
P

[
S(0)

n ≥ t0, . . . , S(N)
n ≥ tN , Xn = xn

]}
.

The conditional independence of the sign vectors (replicated and observed) entails:

P
[
S(0)

n ≥ t0, . . . , S(N)
n ≥ tN , Xn = xn

] = P[Xn = xn]
N∏

i=0

P
[
S(i)

n ≥ ti |Xn = xn

]

= Gn(t0|Xn = xn)
N∏

i=1

G̃n(ti |Xn = xn).

As each survival function converges with probability one to G(x), we finally obtain

P
[
S(0)

n ≥ t0, S
(1)
n ≥ t1, . . . , S(N)

n ≥ tN , Xn = xn

] →
N∏

i=0

G(ti) with probability one.

Moreover, it is straightforward to see that for π : [1, N ] → [1, N ], we have, as n → ∞,

P
[
S(0)

n ≥ tπ (0), Sπ (1)
n ≥ t1, . . . , Sπ (N)

n ≥ tN , Xn = xn

] →
N∏

i=0

G(ti) with probability one.

G(t) is not a function of the realization X(ω), so that

lim
n→∞

P
[
S(0)

n ≥ t0, . . . , S(N)
n ≥ tN

] − P
[
Sπ (0)

n ≥ t0, . . . , Sπ (N)
n ≥ tN

] = 0.

Hence, we can apply an asymptotic version of proposition 2.2.2 in Dufour (2006) that validates Monte
Carlo testing for general possibly non-continuous statistics. The proof of this asymptotic version follows
exactly the same steps as the proofs of Lemma 2.2.1 and Proposition 2.2.2 of Dufour (2006). We just have
to replace the exact distributions of randomized ranks, the empirical survival functions and the empirical
p-values by their asymptotic counterparts, and this is sufficient to conclude. Suppose that N, the number of
replicates is such that α(N + 1) is an integer. Then, limn→∞ p̃N

n (cnS
(0)
n ) ≤ α. �
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