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Abstract

When some explanatory variables in a regression are correlated with the disturbance term, instrumental variable methods are
typically employed to make reliable inferences. Furthermore, to avoid difficulties associated with weak instruments, identification-
robust methods are often proposed. However, it is hard to assess whether an instrumental variable is valid in practice because
instrument validity is based on the questionable assumption that some of them are exogenous. In this paper, we focus on structural
models and analyze the effects of instrument endogeneity on two identification-robust procedures, the Anderson–Rubin (1949, AR)
and the Kleibergen (2002, K) tests, with or without weak instruments. Two main setups are considered: (1) the level of “instrument”
endogeneity is fixed (does not depend on the sample size) and (2) the instruments are locally exogenous, i.e. the parameter which
controls instrument endogeneity approaches zero as the sample size increases. In the first setup, we show that both test procedures
are in general consistent against the presence of invalid instruments (hence asymptotically invalid for the hypothesis of interest),
whether the instruments are “strong” or “weak”. We also describe cases where test consistency may not hold, but the asymptotic
distribution is modified in a way that would lead to size distortions in large samples. These include, in particular, cases where the
2SLS estimator remains consistent, but the AR and K tests are asymptotically invalid. In the second setup, we find (non-degenerate)
asymptotic non-central chi-square distributions in all cases, and describe cases where the non-centrality parameter is zero and the
asymptotic distribution remains the same as in the case of valid instruments (despite the presence of invalid instruments). Overall, our
results underscore the importance of checking for the presence of possibly invalid instruments when applying “identification-robust”
tests.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The last decade shows growing interest for so-called weak-instrument problems in the econometric literature, i.e.
situations where “instruments” are poorly correlated with endogenous explanatory variables; see the reviews of Dufour
(2003) and Stock et al. (2002). More generally, these can be viewed as situations where model parameters are not
identified or close not to being identifiable, as meant in the econometric literature (see Dufour and Hsiao, 2008).
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When instruments are weak, the limiting distributions of standard test statistics—like Student, Wald, likelihood ratio
and Lagrange multiplier criteria in structural models—often depend heavily on nuisance parameters; see e.g. Phillips
(1989), Bekker (1994), Dufour (1997), Staiger and Stock (1997) and Wang and Zivot (1998). In particular, standard
Wald-type procedures based on the use of asymptotic standard errors are very unreliable in the presence of weak
identification. As a result, several authors have worked on proposing more reliable statistical procedures that would be
applicable in such contexts.

Interestingly, in the early days of simultaneous-equation econometrics, Anderson and Rubin (1949, AR) proposed a
procedure which is completely robust to weak instruments as well as to other difficulties such as missing instruments
(see Dufour, 2003; Dufour and Taamouti, 2005, 2006). But the AR procedure may suffer from power losses when too
many instruments are used. So alternative methods largely try to palliate this difficulty, for example: pseudo-pivotal
LM-type and LR-type statistics (Wang and Zivot, 1998; Kleibergen, 2002; Moreira, 2003), sample-splitting methods
(Dufour and Jasiak, 2001), approximately optimal instruments (Dufour and Taamouti, 2003), systematic search methods
for identifying relevant instruments and excluding unimportant instruments (Hall et al., 1996; Hall and Peixe, 2003;
Dufour and Taamouti, 2003; Donald and Newey, 2001).

However, all these procedures—including the AR method—rely on the availability of valid (exogenous) instruments.
This raises the question: what happens to these procedures when some of the instruments are endogenous? In particular,
what happens if an invalid instrument is added to a set of valid instruments? How robust are these inference proce-
dures to instrument endogeneity? Do alternative inference procedures behave differently? If yes, what is their relative
performance in the presence of instrument endogeneity?

We view the problem of instrument endogeneity as important because it is hard in practice to assess whether
an instrumental variable is valid, i.e. whether it is uncorrelated with the disturbance term. Instrument validity or
orthogonality tests are built on the availability of a number of undisputed valid instruments, at least as great as the
number of coefficients to be estimated, whereas the validity of those initial instruments is not testable.

In the econometric literature, little is known about test procedures when some instruments are both invalid and
weak. Hahn and Hausman (2003) deal with both instrument endogeneity and weakness, but they focus on estimation.
Ashley (2006) proposed a sensitivity analysis of IV estimators when instruments are imperfect; his results, however,
are only applicable if the covariance between the structural error term and some instruments is known, which is not
necessarily the case as it is shown in this paper. Analyzing the effect of instrument invalidity on the limiting and
empirical distribution of IV estimators, Kiviet and Niemczyk (2006) conclude that for the accuracy of asymptotic
approximations, instrument weakness is much more detrimental than instrument invalidity and that the realizations of
IV estimators based on strong but possibly invalid instruments seem usually much closer to the true parameter values
than those obtained from valid but weak instruments. However, this finding of Kiviet and Niemczyk leaves open crucial
questions: is it really possible to make reliable inference with endogenous instruments? Is instrument endogeneity really
more detrimental than its weakness for inference procedures like a general family of Anderson–Rubin-type procedures?
Swanson and Chao (2005) proposed a weak-instrument unified framework, but they do not take into account possible
invalidity of some instruments. Finally, Small (2007) recently studied the properties of tests for identifying restrictions
(Sargan, 1958; Kadane and Anderson, 1977), which can be sensitive to the use of “endogenous instruments”, and he
proposed a sensitivity analysis to assess the importance of the issue. These results, however, do not allow for weak
identification.

In this paper, we focus on structural models and analyze the effects of instrument endogeneity on the Anderson and
Rubin (1949) and Kleibergen (2002) tests, in the presence of possibly weak instruments. After formulating a general
asymptotic framework which allows one to study these issues in a convenient way, we consider two main setups: (1)
the one where the level of “instrument” endogeneity is fixed (i.e. it does not depend on the sample size) and (2) the
one where the instruments are locally exogenous, i.e. the parameter which controls instrument endogeneity approaches
zero (at rate T −1/2) as the sample size increases. In the first setup, we show that both test procedures studied are
in general consistent against the presence of invalid instruments (hence asymptotically invalid for the hypothesis of
interest), whether the instruments are “ strong” or “weak”. We also observe there are cases where consistency may not
hold, but the asymptotic distribution is modified in a way that would lead to size distortions in large samples. In the
second setup, asymptotic non-central chi-square distributions are derived, and we give conditions under which the non-
centrality parameter is zero and the asymptotic distribution remains the same as in the case of valid instruments (despite
the presence of invalid instruments). Overall, our results underscore the importance of checking for the presence of
possibly invalid instruments when applying “ identification-robust” tests.
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The paper is organized as follows. Section 2 formulates the model considered. Section 3 describes briefly the statistics.
Section 4 studies the asymptotic distribution of the statistics (under the null hypothesis) when some instruments are
invalid. We conclude in Section 5. Proofs are presented in the Appendix.

2. Framework

We consider the following standard simultaneous-equation framework, which has been the basis of much work on
inference in model with possibly weak instruments (see the reviews of Dufour, 2003; Stock et al., 2002):

y = Y� + Z� + u, (2.1)

Y = X� + Z� + V , (2.2)

where y is a T ×1 vector of observations on the dependent variable, Y =[Y1, . . . , YT ]′ is a T ×G matrix of observations
on explanatory (possibly) endogenous variables (G�1), Z is a T × r matrix of observations on the included exogenous
variables, X = [X1, . . . , XT ]′ is a T × k(k�G) full-column-rank matrix of observations on (supposedly) “exogenous
variables” (instruments) excluded from the structural equation (2.1), u = [u1, . . . , uT ]′ and V = [V1, . . . , VT ]′ =
[v1, . . . , vG] are, respectively, T × 1 vector and T × G disturbance matrices, � and � are G × 1 and r × 1 vectors
of unknown coefficients, � and � are k × G and r × G matrices of unknown coefficients. The usual necessary and
sufficient condition for identification of this model is rank(�) = G.

Since we focus on the parameter � in our analysis, we can simplify the presentation of the results without notable
loss of generality by setting �=0 and �=0, so that Z drops from the model. With this simplification, model (2.1)–(2.2)
reduces to

y = Y� + u, (2.3)

Y = X� + V . (2.4)

We also assume that

ut = V ′
t a + εt , t = 1, . . . , T , (2.5)

Xt = X0t + Wt, t = 1, . . . , T , (2.6)

ut = W ′
t b + et , t = 1, . . . , T , (2.7)

where X0 =[X01, . . . , X0T ]′ is a T ×k matrix of exogenous variables, εt is uncorrelated with Vt , and et are uncorrelated
with Wt . Vt and Wt have mean zero and covariance matrices �V and �W, εt and et have mean zero and variances
�2

ε and �2
e , respectively, while a and b are G × 1 and k × 1 vectors of unknown coefficients. Eqs. (2.5)–(2.7) can be

rewritten in matrix form as

u = V a + ε, (2.8)

X = X0 + W , (2.9)

u = Wb + e, (2.10)

where X0 is uncorrelated with W , V , ε and e, while W = [W1, . . . , WT ]′ is uncorrelated with e but may be correlated
with u (when b �= 0). So a controls the endogeneity of the variable Y , whereas b represents the possible endogeneity
of the instruments X. If b = 0, the instruments X are valid; otherwise, they are invalid (endogenous). More precisely,
if b �= 0, i.e. there exists at least one i such that bi �= 0, i = 1, . . . , k, and the corresponding variable Xi does not
constitute a valid instrument.

We also make the following generic assumptions on the asymptotic behavior of model variables [where A > 0 for a
matrix A means that A is positive definite (p.d.), and → refers to limits as T → ∞]:

1

T
[V ε]′[V ε] p→

[
�V 0′
0 �2

ε

]
> 0, (2.11)
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1

T
[X0 W ]′[X0 W ] p→

[
�0 0′
0 �W

]
, �0 > 0, (2.12)

1

T
X′

0[V ε e] p→ 0, (2.13)

1

T
X′X p→ �X, (2.14)

1

T
[W e]′[W e] p→

[
�W 0′
0 �2

e

]
, (2.15)

1

T
W ′V p→ �WV , (2.16)

1√
T

[
X′e

(X′W − �W)b

]
L→

[
Se

Sb

]
∼ N[0, �S], (2.17)

Se ∼ N[0, �2
e�X], Sb ∼ N[0, �2

e�b], (2.18)

where �V is G × G fixed matrix, �0 and �W are k × k fixed matrices and Se and Sb are k × 1 random vectors. Note
that �W may be singular, and Sb may not be independent of Se.

From the above assumptions, it is easy to see that

1

T
X′

0u
p→ 0,

1

T
X′

0e
p→ 0, (2.19)

1

T
X′u p→ � = �Wb,

X′V
T

p→ �WV , (2.20)

1

T
[u V ]′[u V ] p→ � =

[
�2

u 	′
	 �V

]
> 0, (2.21)

1

T
[u W ]′[u W ] p→

[
�2

u �′
� �W

]
, (2.22)

1

T
[W V ]′[ε e] p→

[
	Wε 0

0 	V e

]
, (2.23)

where

	 = �V a, �2
u = a′�V a + �2

ε = �2
e + b′�Wb, (2.24)

�V a = �′
WV b + 	V e, �Wb = �WV a + 	Wε, (2.25)

�X = �0 + �W > 0, �XY = �X� + �WV , (2.26)

�Y = �′�X� + �V + �′
WV � + �′�WV . (2.27)

Finally, we denote by N(�W) the null set of the linear map on Rk characterized by the matrix �W :

N(�W) = {x ∈ Rk : �Wx = 0}. (2.28)

If �W is a full-column-rank matrix, then N(�W) = {0}; otherwise, there is at least one x0 �= 0 such that �Wx0 = 0.
The setup described above is quite wide and does allow one to study several questions associated with the possible

presence of “invalid” instruments. In particular, an important practical problem consists in studying the effect on
inference of adding an “invalid” instrument to a list of valid (possibly identifying) instruments. Note that this problem
is distinct from studying the effect of imposing “incorrect” overidentifying restrictions (as done by Small, 2007). To
better see the issues studied here, it will be useful to consider a simple example.
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Example 2.1. Consider a model with one endogenous explanatory variable (G = 1) and two candidate instruments
(k = 2). Then Y and V are T × 1 vectors, X = [X1, X2] and W = [W1, W2] are T × 2 matrices, � = [
1, 
2]′ and
b = [b1, b2]′ are vectors of dimension 2, and

Y = X� + V = X1
1 + X2
2 + V , (2.29)

u = Wb + e = W1b1 + W2b2 + e. (2.30)

Let us further assume that X1 is a valid instrument (with W1 = 0), E[u|X1] = 0, X2 = W2, 
2 = 0 and b1 = 0, where e
is independent of X1 and X2 (with finite mean zero), so that

Y = X� + V = X1
1 + V , (2.31)

u = Wb + e = W2b2 + e. (2.32)

Here W2 is not a “valid” instrument when b2 �= 0. But the structural equation (2.3) may in principle be estimated
using only X1 as an instrument, because E[u|X1] = 0; if X1 is not a weak instrument (
1 �= 0) and satisfies usual
regularity conditions, a consistent estimate of � can be obtained. Among other things, we study below the effect (on
some identification-robust tests) of taking X2 as an instrument when b2 �= 0, i.e. when X2 is correlated with u. Note that
the condition E[u|X1]=0 does not entail E[e|X1, X2]=0, which is a maintained hypothesis used by Small (2007). So
the problem considered here is distinct from the problem of testing overidentifying restrictions (studied, for example,
by Sargan, 1958; Kadane and Anderson, 1977; Small, 2007).

3. Test statistics

We consider in this paper the problem of testing

H0 : � = �0, (3.1)

where some of the “instruments” used are in fact endogenous (b �= 0). We analyze the behavior of the Anderson–Rubin
and Kleibergen statistics. The Anderson and Rubin (1949) test for H0 in Eq. (2.3) involves considering the transformed
equation

y − Y�0 = X� + ε, (3.2)

where � = �(� − �0) and ε = u + V (� − �0). H0 can then be assessed by testing H′
0 : � = 0. The AR statistic for H′

0
is given by

AR(�0) = 1

k

(y − Y�0)
′PX(y − Y�0)

(y − Y�0)
′MX(y − Y�0)/(T − k)

, (3.3)

where MB =I −PB and PB =B(B ′B)−1B ′ is the projection matrix on the space spanned by the columns of B. If b=0,
the asymptotic distribution of AR(�0) is a �2(k)/k under H0. If furthermore u ∼ N[0, �2IT ] and X is independent of
u, then AR(�0) ∼ F(k, T − k) under H0 irrespective of whether the instruments are strong or weak. However, when
some instruments are invalid, the distribution of the AR statistic may be affected.

Kleibergen (2002) proposed a modification of the AR statistic to take into account the fact that this statistic may
have low power when there are too many instruments in the model. The modified statistic for testing H0 can be written
as

K(�0) =
(y − Y�0)

′P
Ỹ (�0)

(y − Y�0)

(y − Y�0)
′MX(y − Y�0)/(T − k)

, (3.4)

where

Ỹ (�0) = X�̃(�0), �̃(�0) = (X′X)−1X′
[
Y − (y − Y�0)

SuV (�0)

Suu(�0)

]
, (3.5)

Suu(�0) = 1

T − k
(y − Y�0)

′MX(y − Y�0), SuV (�0) = 1

T − k
(y − Y�0)

′MXY . (3.6)

Unlike the AR statistic which projects y − Y�0 on the k columns of X, the K statistic projects y − Y�0 on the G
columns of X�̃(�0). If the instruments X are exogenous, �̃(�0) is both a consistent estimator of � and asymptotically
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independent of X′(y − Y�0) under H0, and K(�0) converges to a �2(G). However, if some instruments are invalid
(b �= 0), �̃(�0) may not be asymptotically independent of X′(y−Y�0) and the asymptotic distribution of the K statistic
may not be �2(G).2

If the model contains only one instrument and one endogenous variable (G = k = 1), the AR and K statistics are
equivalent and pivotal even in finite samples whenever b = 0. When k > 1, even if b = 0, the K statistic is not pivotal
in finite samples but is asymptotically pivotal, whereas the AR statistic is pivotal even in finite samples (when X is
independent of u). Following Staiger and Stock (1997), we refer to the locally weak-instrument asymptotic setup by
considering a limiting sequence of � where � is local-to-zero. We also consider a limiting sequence of b where b is
local-to-zero. We refer to this later limiting sequence as locally exogenous instruments asymptotic.

4. Asymptotic theory with invalid and weak instruments

In this section, we study the large-sample properties of the statistics described above when some of the instruments
used are invalid. Two setups are considered. The first is the possibly invalid instrument setup, i.e. the endogeneity
parameter b is a fixed vector. The second is the locally exogenous instrument setup, i.e. b is local-to-zero.

4.1. Possibly invalid instruments

We consider first the case where the endogeneity parameter b is a constant vector and we analyze the asymptotic
distributions of the statistics. Our results cover both strong and weak-instrument asymptotic. Theorem 4.1 below
summarizes the asymptotic behavior of the AR statistic when some instruments may be endogenous. For a random

variable S whose distribution depends on the sample size T , the notation S
L→ +∞ means that P [S > x] → 1 as

T → ∞, for any x.

Theorem 4.1 (Asymptotic distribution of the AR statistic). Suppose that assumptions (2.3)–(2.18) hold, with b = b0
and � = �0, where b0 and �0 are given vectors. If b0 /∈N(�W), then

AR(�0)
L→ +∞. (4.1)

If b0 ∈ N(�W), then

AR(�0)
L→ 1

k�2
u

(Se + Sb)
′�−1

X (Se + Sb), (4.2)

where Se and Sb are defined in (2.17)–(2.18). If b0 = 0, then

AR(�0)
L→ 1

k
�2(k). (4.3)

In the above theorem, no restriction is imposed on the rank of �. In particular, the result holds even if � is not a full-
column-rank matrix. When b0 /∈N(�W), the AR statistic diverges under the null hypothesis H0. When b0 ∈ N(�W),
the limiting distribution of the AR statistic does not diverge, but the AR test is not valid unless Sb = 0. Of course, when
b0 = 0—which is the classical exogenous instrument setup—Sb = 0 and the AR test is asymptotically valid.

Theorem 4.2 below summarizes the asymptotic behavior of the K statistic when some instruments are possibly
invalid.

Theorem 4.2 (Asymptotic distribution of the K statistic). Suppose that assumptions (2.3)–(2.18) hold, with b=b0 and
� = �0, where b0 and �0 are given vectors.

(A) If b0 /∈N(�W) then

K(�0)
L→ +∞ (4.4)

2 We do not study in this paper conditional tests such as those proposed by Moreira (2003), because the distributional theory for such tests is
considerably more complex and would go beyond the scope of a short paper like the present one.



F. Doko, J.-M. Dufour / Journal of Statistical Planning and Inference 138 (2008) 2649–2661 2655

when at least one of the following two conditions holds: (i) �=�0 �= 0 with rank(�̃XY )=G or (ii) �=�0/
√

T with
rank(�∗

XY ) = G, where

�̃XY = �XY − �Wb0(quV /�̄2
u), �∗

XY = �WV − �Wb0(quV /�̄2
u),

quV = 	′ − b′
0�W�−1

X �WV , �̄2
u = �2

u − b′
0�W�−1

X �Wb0.

(B) If b0 ∈ N(�W), then

K(�0)
L→ 1

�2
u

(Se + Sb)
′�−1

X �XY (�′
XY �−1

X �XY )−1�′
XY �−1

X (Se + Sb) (4.5)

when � = �0 �= 0 and rank(�XY ) = G, and

K(�0)
L→ 1

�2
u

(Se + Sb)
′�−1

X �WV (�′
WV �−1

X �WV )−1�′
WV �−1

X (Se + Sb) (4.6)

when � = �0/
√

T and rank(�WV ) = G.
(C) If b0 = 0, then

K(�0)
L→ �2(G) (4.7)

when at least one of the following two conditions holds: (i) �=�0 �= 0 with rank(�XY )=G or (ii) �=�0/
√

T with
rank(�WV ) = G.

Unlike Theorem 4.1 for the AR statistic, Theorem 4.2 requires an additional rank assumption. When b0 /∈N(�W),
the null limiting distribution of the K statistic diverges. This means that the K test often rejects H0 asymptotically when
b0 /∈N(�W). Furthermore, when b0 ∈ N(�W), the K test is not asymptotically valid unless Sb = 0. As expected, if
b0 =0 (i.e. Sb =0), the K statistic converges to a �2(G). It is worthwhile to note that the case where the rank assumption
fails (e.g. the partial identification of �) is not covered in this paper.

Finally, it is interesting to observe that the limiting value of the two-stage least-squares (2SLS) estimator of �,

�̃ = (Ŷ ′Ŷ )−1Ŷ ′y = [Y ′X(X′X)−1X′Y ]−1Y ′X(X′X)−1X′y, (4.8)

is given by

plim
T →∞

�̃ = � + [�′
XY �−1

X �XY ]−1�′
XY �−1

X �Wb (4.9)

provided rank(�XY ) = G, so that �̃ is consistent when b0 ∈ N(�W) and �XY has full column rank (even if some
instruments are invalid). If b0 ∈ N(�W) but b0 �= 0, the asymptotic level of the Anderson–Rubin and Kleibergen tests
can be affected.

4.2. Locally exogenous instruments

We consider now the case where the endogeneity parameter b is local-to-zero. As in the previous subsection, we
analyze the limiting distributions of the statistics. The results also cover two setups: locally exogenous instruments
[� = �0 �= 0, b = b0/

√
T ] and weak locally exogenous instruments [� = �0/

√
T , b = b0/

√
T ]. Theorems 4.3 and

4.4 below derive the distributions of the statistics for both setups.

Theorem 4.3 (Asymptotic distributions with locally exogenous instruments). Suppose that assumptions (2.3)–(2.18)
hold, with b = b0/

√
T , � = �0 �= 0 and � = �0, where b0 and �0 are given vectors, and �0 is a given matrix. If

b0 /∈N(�W), then

AR(�0)
L→ 1

k
�2(k, 1), (4.10)
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K(�0)
L→ �2(G, m′m) if rank(�XY ) = G, (4.11)

where

1 = 1

�2
e

b′
0�W�−1

X �Wb0, m = 1

�e

(�′
XY �−1

X �XY )−1/2�′
XY �−1

X �Wb0, (4.12)

and �X, �XY and �W are given in (2.11)–(2.27). If b0 ∈ N(�W), then

AR(�0)
L→ 1

k
�2(k), (4.13)

K(�0)
L→ �2(G) if rank(�XY ) = G. (4.14)

Theorem 4.4 (Asymptotic distributions with weak locally exogenous instruments). Suppose that assumptions
(2.3)–(2.18) hold, with b = b0/

√
T , � = �0/

√
T and � = �0, where b0 and �0 are given vectors, and �0 is a

given matrix (�0 = 0 is allowed). If b0 /∈N(�W), then

AR(�0)
L→ 1

k
�2(k, 1), (4.15)

K(�0)
L→ �2(G, m̃′m̃) if rank(�WV ) = G, (4.16)

where

m̃ = 1

�e

(�′
WV �−1

X �WV )−1/2�′
WV �−1

X �Wb0, (4.17)

and �X, �WV , �W and 1 are defined in Theorem 4.3. If b0 ∈ N(�W), then

AR(�0)
L→ 1

k
�2(k), (4.18)

K(�0)
L→ �2(G) if rank(�WV ) = G. (4.19)

We make the following remarks concerning Theorems 4.3 and 4.4. First, the endogeneity parameter b is local-to-zero,
and for b0 ∈ N(�W) the AR and K tests are asymptotically valid. However, unlike the AR test, the validity of the
K test is established under an additional rank assumption (the case where this additional rank assumption fails is not
covered in this paper). So, when b0 ∈ N(�W), inference with locally exogenous instruments using the AR and K tests
is feasible (at least in large samples). Second, if b0 /∈N(�W), the results in both theorems are different from those
of Theorems 4.1 and 4.2 because the limiting distributions of both statistics do not diverge. Third, even though the
AR and K statistics have non-central chi-square limiting distributions when b0 /∈N(�W), they are not pivotal since
the non-centrality parameters depend on nuisance parameters. In addition, the limiting distributions of both statistics
cannot be bounded by any pivotal distribution.

It will be useful to see how the above theorems apply in a simple example.

Example 4.1. Consider again model (2.29)–(2.30), which involves one endogenous explanatory variable and two

instruments. If the matrix �W is invertible, then N(�W)={0}, and Theorem 4.1 entails that AR(�0)
L→ +∞ under the

null hypothesis � = �0. Similarly, if �̃XY �= 0, then rank(�̃XY ) = G = 1 and Theorem 4.2 entails that K(�0)
L→ +∞

when � = �0. If X1 is a valid instrument (with W1 = 0) and X2 = W2 with W ′
2W2/T

p→ �2
W2

> 0, we have

�W =
[

0 0
0 �2

W2

]
, (4.20)

which is a matrix of rank one, and N(�W) = {(x1, x2)
′ : x2 = 0}. If b1 = 0, then b0 ∈ N(�W) and Theorem 4.1

entails that the asymptotic distribution given by (4.2) holds for AR(�0), while for K(�0) part B of Theorem 4.2 is
applicable. Of course, when b0 = 0, AR(�0) follows the usual �2(2)/2 asymptotic distribution, while K(�0) follows a
�2(1) distribution. For locally exogenous instruments, Theorems 4.3 and 4.4 can be applied in a similar way.
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5. Conclusion

In this paper, we have established conditions under which the AR and K tests are asymptotically valid even if some
instruments used are endogenous. We have also shown that when these conditions fail, the limiting distributions of
both statistics may diverge. Furthermore, when these conditions fail, under locally exogenous instruments setup, the
limiting distributions of the statistics depend on nuisance parameters and cannot be bounded by any pivotal distribution.
In consequence, the weak-instrument procedure proposed by Wang and Zivot (1998), the unified weak-instrument
framework of Swanson and Chao (2005) and the inference with imperfect instruments suggested by Ashley (2006)
are not applicable. Overall, our results underscore the importance of checking for the presence of possibly invalid
instruments when applying “identification-robust” tests. They also suggest that sensitivity analyses where different sets
of instruments are considered (Ashley, 2006; Small, 2007) can be quite useful for the interpretation of empirical results
based on instrumental variables.
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Appendix A. Proofs

Proof of Theorem 4.1. Note first that

(y − Y�0)
′MX(y − Y�0)

T − k
= u′u

T − k
− T

T − k

(
u′X
T

) (
X′X
T

)−1 (
X′u
T

)
, (A.1)

where, by assumptions (2.3)–(2.18),

u′u
T − k

p→ �2
u > 0,

X′X
T

p→ �X > 0,
X′u
T

= X′
0u

T
+ W ′W

T
b0 + W ′e

T

p→ �Wb0, (A.2)

(
u′X
T

) (
X′X
T

)−1 (
X′u
T

)
p→ b′

0�W�−1
X �Wb0, (A.3)

(y − Y�0)
′MX(y − Y�0)

T − k

p→ �̄2
u = �2

u − b′
0�W�−1

X �Wb0 �0.. (A.4)

(A) Suppose now that b0 /∈N(�W). Then b′
0�W�−1

X �Wb0 > 0 and the numerator of the AR statistic diverges:

(y − Y�0)
′PX(y − Y�0) = T

(
u′X
T

) (
X′X
T

)−1 (
X′u
T

)
L→ +∞, (A.5)

hence

AR(�0)
L→ +∞. (A.6)
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(B) If b0 ∈ N(�W), we have �Wb0 = 0 and �̄2
u = �2

u. Further,

X′u = X′(e + Wb0) = X′e + X′Wb0, (A.7)

1√
T

X′u = 1√
T

[X′u − �Wb0] = 1√
T

X′e + 1√
T

(X′W − �W)b0
L→ S = Se + Sb. (A.8)

Then,

(y − Y�0)
′PX(y − Y�0) =

(
u′X√

T

) (
X′X
T

)−1 (
X′u√

T

)
L→ S′�−1

X S, (A.9)

(y − Y�0)
′MX(y − Y�0)

T − k

p→ �2
u, (A.10)

hence

AR(�0)
L→ 1

k�2
u

S′�−1
X S. (A.11)

(C) Finally, if b0 = 0, we have b0 ∈ N(�W), with the extra restrictions u = e, �2
u = �2

e ,

S = 1√
T

X′u = 1√
T

X′e L→ N[0, �2
e�X],

hence

AR(�0)
L→ 1

k�2
e

S′
e�

−1
X Se ∼ 1

k
�2(k). � (A.12)

Proof of Theorem 4.2. We note first, as in (A.1)–(A.4), that

Suu(�0) = (y − Y�0)
′MX(y − Y�0)

T − k

p→ �̄2
u,

X′X
T

p→ �X > 0,
X′u
T

p→ �Wb0. (A.13)

(A) Suppose that b0 /∈N(�W).
(i) Let � = �0 �= 0. Then, we have

SuV (�0) = 1

T − k
(y − Y�0)

′MXY
p→ quV = 	′ − b′

0�W�−1
X �WV , (A.14)

�̃(�0) =
(

X′X
T

)−1
X′Y
T

−
(

X′X
T

)−1
X′u
T

SuV (�0)

Suu(�0)

p→ �−1
X �̃XY , (A.15)

where �̃XY = �XY − �Wb0(quV /�̄2
u), and

Ỹ (�0)
′u

T
= �̃(�0)

′ X′u
T

p→ �̃
′
XY �−1

X �Wb0, (A.16)

Ỹ (�0)
′Ỹ (�0)

T

p→ �̃
′
XY �−1

X �̃XY . (A.17)

If rank(�̃XY ) = G, then �̃
′
XY �−1

X �̃XY > 0 and �−1
X �̃XY �Wb0 �= 0 for b0 /∈N(�W), hence

u′Ỹ (�0)

T

[
Ỹ (�0)

′Ỹ (�0)

T

]−1
Ỹ (�0)

′u
T

p→ b′
0�W�−1

X �̃XY (�̃
′
XY �−1

X �̃XY )−1�̃
′
XY �X−1�Wb0 > 0.
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Consequently, the numerator of the K statistic diverges:

(y − Y�0)
′P

Ỹ (�0)
(y − Y�0) = T

u′Ỹ (�0)

T

[
Ỹ (�0)

′Ỹ (�0)

T

]−1
Ỹ (�0)

′u
T

p→ +∞ (A.18)

and

K(�0)
L→ +∞. (A.19)

(ii) Let � = �0/
√

T . Then

(y − Y�0)
′P

Ỹ (�0)
(y − Y�0) = T

u′Ỹ (�0)

T

[
Ỹ (�0)

′Ỹ (�0)

T

]−1
Ỹ (�0)

′u
T

, (A.20)

where

Ỹ (�0)
′Ỹ (�0)

T

L→ �∗′
XY �−1

X �∗
XY ,

Ỹ (�0)
′u

T

p→ �−1
X �∗

XY �Wb0,

with �∗
XY =�WV −�Wb0(quV /�̄2

u). If rank(�∗
XY )=G, then the numerator of the K statistic diverges, and K(�0)

L→ +∞.

(B) If b0 ∈ N(�W), we have �Wb0 = 0, �̄2
u = �2

u and (1/
√

T )X′u L→ S = Se + Sb as in (A.7)–(A.8).
(i) If � = �0 �= 0, the denominator of the K statistic satisfies

1

T
(y − Y�0)

′MX(y − Y�0)
p→ �2

u, (A.21)

while the denominator can be written as

(y − Y�0)
′P

Ỹ (�0)
(y − Y�0) = u′X√

T
�̃(�0)

[
Ỹ (�0)

′Ỹ (�0)

T

]−1

�̃(�0)
′ X′u√

T
, (A.22)

where

�̃(�0)
p→ �−1

X �XY ,
Ỹ (�0)

′Ỹ (�0)

T

p→ �′
XY �−1

X �XY ,
Ỹ (�0)

′u√
T

p→ �−1
X �XY S. (A.23)

If rank(�XY ) = G, we have �′
XY �−1

X �XY > 0, hence

K(�0)
L→ 1

�2
u

S′�−1
X �XY (�′

XY �−1
X �XY )−1�′

XY �−1
X S. (A.24)

(ii) If � = �0/
√

T , the numerator of the K statistic is

(y − Y�0)
′P

Ỹ (�0)
(y − Y�0) = u′X√

T
�̃(�0)

[
Ỹ (�0)

′Ỹ (�0)

T

]−1

�̃(�0)
′ X′u√

T
, (A.25)

hence

�̃(�0)
p→ �−1

X �WV ,
Ỹ (�0)

′Ỹ (�0)

T

p→ �′
WV �−1

X �WV ,
Ỹ (�0)

′u√
T

p→ �−1
X �WV S. (A.26)

If rank(�WV ) = G, then

K(�0)
L→ 1

�2
u

S′�−1
X �WV (�′

WV �−1
X �WV )−1�′

WV �−1
X S. (A.27)
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(C) Finally, if b0 = 0, we have b0 ∈ N(�W), with the extra restrictions u = e, �2
u = �2

e ,

S = 1√
T

X′u L→ N[0, �2
e�X],

hence, if � = �0 �= 0,

K(�0)
L→ 1

�2
e

S′
e�

−1
X �XY (�′

XY �−1
X �XY )−1�′

XY �−1
X Se ∼ �2(G), (A.28)

and if � = �0/
√

T (where �0 = 0 is allowed),

K(�0)
L→ 1

�2
e

S′
e�

−1
X �WV (�′

WV �−1
X �WV )−1�′

WV �−1
X Se ∼ �2(G). � (A.29)

Proof of Theorem 4.3. Since b is now local-to-zero, we have

X′u√
T

L→ Se + �Wb0,
X′X
T

p→ �X,
X′u
T

p→ 0,
(y − Y�0)

′MX(y − Y�0)

T − k

p→ �2
u > 0. (A.30)

Further, we have

u′u
T − k

=

(
e + W

b0√
T

)′ (
e + W

b0√
T

)
T − k

= e′e
T − k

+ b′
0W

′e√
T (T − k)

+ e′Wb0√
T (T − k)

+ b′
0e

′Wb0

T (T − k)

p→ �2
e = �2

u. (A.31)

(A) Let b0 /∈N(�W). Then,

AR(�0)
L→ 1

k�2
e

(Se + �Wb0)
′�−1

X (Se + �Wb0) ∼ 1

k
�2(k, 1), (A.32)

where

1 = 1

�2
e

b′
0�W�−1

X �Wb0 �= 0.

Similarly, we have

Ỹ (�0)
′Ỹ (�0)

T

p→ �′
XY �−1

X �XY

and

Ỹ (�0)
′u√

T

L→ �−1
X �XY (Se + �Wb0).

So, if rank(�XY ) = G, we have

K(�0)
L→ 1

�2
e

(Se + �Wb0)
′�−1

X �XY (�′
XY �−1

X �XY )−1�′
XY �−1

X (Se + �Wb0) ∼ �2(G, m′m), (A.33)

where

m = 1

�e

(�′
XY �−1

X �XY )−1/2�′
XY �−1

X �Wb0 �= 0.

(B) If b0 ∈ N(�W), we have �Wb0 = 0. Then 1 = 0 and m = 0, hence

AR(�0)
L→ 1

k
�2(k)

and K(�0)
L→ �2(G). �
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Proof of Theorem 4.4. The proof of Theorem 4.3 for the AR statistic covers Theorem 4.4. The proof for the K statistic
is similar to the one in Theorem 4.3. �

References

Anderson, T.W., Rubin, H., 1949. Estimation of the parameters of a single equation in a complete system of stochastic equations. Ann. of Math.
Statist. 20 (1), 46–63.

Ashley, R., 2006. Assessing the credibilility of instrumental variables inference with imperfect instruments via sensitivity analysis. Technical Report,
Economics Department, Virginia Polytechnic Institute Blacksburg, Virginia.

Bekker, P., 1994. Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62, 657–681.
Donald, S.G., Newey, W.K., 2001. Choosing the number of instruments. Econometrica 69, 1161–1191.
Dufour, J.-M., 1997. Some impossibility theorems in econometrics, with applications to structural and dynamic models. Econometrica 65,

1365–1389.
Dufour, J.-M., 2003. Identification, weak instruments and statistical inference in econometrics. Canadian J. Econom. 36 (4), 767–808.
Dufour, J.-M., Hsiao, C., 2008. Identification. In: Blume, L.E., Durlauf, S.N. (Eds.), The New Palgrave Dictionary of Economics, second ed. Palgrave

Macmillan, Basingstoke, Hampshire, England, to appear.
Dufour, J.-M., Jasiak, J., 2001. Finite sample limited information inference methods for structural equations and models with generated regressors.

Internat. Econom. Rev. 42, 815–843.
Dufour, J.-M., Taamouti, M., 2003. Point-optimal instruments and generalized Anderson–Rubins procedures for nonlinear models. Technical Report,

C.R.D.E., Université de Montréal.
Dufour, J.-M., Taamouti, M., 2005. Projection-based statistical inference in linear structural models with possibly weak instruments. Econometrica

73 (4), 1351–1365.
Dufour, J.-M., Taamouti, M., 2006. Further results on projection-based inference in IV regressions with weak, collinear or missing instruments. J.

Econometrics 139 (1), 133–153.
Hahn, J., Hausman, J.A., 2003. IV estimation with valid and invalid instruments. Technical Report, Department of Economics, Masschusetts Institute

of Technology, Cambridge, MA.
Hall, A.R., Peixe, F.P.M., 2003. A consistent method for the selection of relevant instruments. Econometric Rev. 2 (3), 269–287.
Hall, A.R., Rudebusch, G.D., Wilcox, D.W., 1996. Judging instrument relevance in instrumental variables estimation. Internat. Econom. Rev. 37,

283–298.
Kadane, J.B., Anderson, T.W., 1977. A comment on the test of overidentifying restrictions. Econometrica 45 (4), 1027–1031.
Kiviet, J.F., Niemczyk, J., 2006. On the limiting and empirical distribution of IV estimators when some of the instruments are invalid. Technical

Report, Department of Quantitative Economics, University of Amsterdam Amsterdam, The Netherlands.
Kleibergen, F., 2002. Pivotal statistics for testing structural parameters in instrumental variables regression. Econometrica 70 (5), 1781–1803.
Moreira, M.J., 2003. A conditional likelihood ratio test for structural models. Econometrica 71 (4), 1027–1048.
Phillips, P.C.B., 1989. Partially identified econometric models. Econometric Theory 5, 181–240.
Sargan, J.D., 1958. The estimation of economic relationships using instrumental variables. Econometrica 26 (3), 393–415.
Small, D.S., 2007. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J. Amer. Statist. Assoc. 102 (479),

1049–1058.
Staiger, D., Stock, J.H., 1997. Instrumental variables regression with weak instruments. Econometrica 65 (3), 557–586.
Stock, J.H., Wright, J.H., Yogo, M., 2002. A survey of weak instruments and weak identification in generalized method of moments. J. Business

and Econom. Statist. 20 (4), 518–529.
Swanson, N.R., Chao, J.C., 2005. Notes and comments: consistent estimation with a large number of weak instruments. Econometrica 73,

1673–1692.
Wang, J., Zivot, E., 1998. Inference on structural parameters in instrumental variables regression with weak instruments. Econometrica 66 (6),

1389–1404.


	Instrument endogeneity and identification-robust tests: Some analytical results
	Introduction
	Framework
	Test statistics
	Asymptotic theory with invalid and weak instruments
	Possibly invalid instruments
	Locally exogenous instruments

	Conclusion
	Acknowledgements
	Appendix A. Proofs
	References


