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ABSTRACT

We study the distribution of Durbin-Wu-Hausman (DWH) and Revankatieia(RH) tests for ex-
ogeneity from a finite-sample viewpoint, under the null and alternative thgges. We consider
linear structural models with possibly non-Gaussian errors, wherdtaliparameters may not be
identified and where reduced forms can be incompletely specified (or reonptic). On level con-
trol, we characterize the null distributions of all the test statistics. Throagtitoning and invari-
ance arguments, we show that these distributions do not involve nuisararaegters. In particular,
this applies to several test statistics for which no finite-sample distributioraiytieyet available,
such as the standard statistic proposed by Hausman (1978). The distisbotithe test statistics
may be non-standard — so corrections to usual asymptotic critical vakesaded — but the char-
acterizations are sufficiently explicit to yield finite-sample (Monte-Carlo) tekthe exogeneity
hypothesis. The procedures so obtained are robust to weak identificati®sing instruments or
misspecified reduced forms, and can easily be adapted to allow for paanwtrGaussian error
distributions. We give a general invariance reshlo€k triangular invariancg for exogeneity test
statistics. This property yields a convenienxbgeneity canonical formnd a parsimonious reduc-
tion of the parameters on which power depends. In the extreme case nehstreictural parameter
is identified, the distributions under the alternative hypothesis and the mdtigsis are identical,
so the power function is flat, for all the exogeneity statistics. Howeverpas as identification
does not fail completely, this phenomenon typically disappears. We preisemation evidence
which confirms the finite-sample theory. The theoretical results are illustvatbdwo empirical
examples: the relation between trade and economic growth, and the widebdspudblem of the
return of education to earnings.

Keywords: Exogeneity; Durbin-Wu-Hausman test; weak instrument; incomplete modek no
Gaussian; weak identification; identification robust; finite-sample theorgtadi invariance; Monte
Carlo test; power.

JEL classification: C3; C12; C15; C52.
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1. Introduction

The literature on weak instruments is now considerable and has ofteretbonsnference for the
coefficients of endogenous variables in so-called “instrumental-variaglessions” (or “IV re-
gressions”); see the reviews of Stock, Wright and Yogo (2002)pDuf2003), Andrews and Stock
(2007), and Poskitt and Skeels (2012). Although research on testgdgeneity in IV regressions
is considerable, most of these studies either deal with cases where insialvagiables are strong
(thus leaving out issues related to weak instruments), or focus on the @yngpoperties of ex-
ogeneity tests. To the best of our knowledge, there is no study on the finite-sample pefame
of exogeneity tests when IVs can be arbitrary weak, when the errordatiay a non-Gaussian
distribution, or when the reduced form is incompletely specified. The laturfeis especially im-
portant to avoid losing the validity of the test procedure when important msints are “left-out”
when applying an exogeneity test, as happens easily for some common “@ddiatifirobust” tests
on model structural coefficients [see Dufour and Taamouti (2007)].

In this paper, we investigate the finite-sample properties (size and pofvexpgeneity tests
of the type proposed by Durbin (1954), Wu (1973), Hausman (198),Revankar and Hartley
(1973), henceforth DWH and RH tests, allowing for: (a) the possibility ehtdication failure
(weak instruments); (b) model errors with non-Gaussian distributioniidimg heavy-tailed dis-
tributions which may lack moments (such as the Cauchy distribution); and @nplete reduced
forms (e.g, situations where important instruments are missing or left out) and arbieteydgene-
ity in the reduced forms of potentially endogenous explanatory variables.

As pointed out early by Wu (1973), a number of economic hypothesebedormulated in
terms of independence (or “exogeneity”) between stochastic explgnaoables and the distur-
bance term in an equation. These include, for example, the permanemigmgypothesis, expected
profit maximization, and recursiveness hypotheses in simultaneous etudiixogeneity (or “pre-
determination”) assumptions can also affect the “causal interpretatiomiodl coefficients [see
Simon (1953), Engle, Hendry and Richard (1982), Angrist and Pes¢a809), Pearl (2009)], and
eventually the choice of estimation method.

To achieve the above goals, we consider a general setup which allomsfgsaussian distribu-
tions and arbitrary heterogeneity in reduced-form errors. Understuimaption that the distribution
of the structural errors (given IVs) is specified up to an unknowtofgevhich may depend on IVs),
we show that exact exogeneity tests can be obtained from all DWH andadgistiss [including
Hausman (1978) statistic] through the Monte Carlo test (MCT) method [séauD(2006)]. The
null distributions of the test statistics typically depend on specific instrumdaésaso “critical

1See, for example, Durbin (1954), Wu (1973, 1974, 19d®83), Revankar and Hartley (1973), Farebrother (1976),
Hausman (1978), Revankar (1978), Dufour (1979, 1987), l4w&880, 1985), Kariya and Hodoshima (1980), Hausman
and Taylor (1981), Spencer and Berk (1981), Nakamura andriNatea(1981, 1985), Engle (1982), Holly (1982, 1883
1983), Holly and Monfort (1983), Reynolds (1982), Smith (1983, 198483, 1994), Thurman (1986), Rivers and
Vuong (1988), Smith and Pesaran (1990), Ruud (1984, 2000)eN€®8%, 198%)), Davidson and Mackinnon (1985,
1985, 1989, 1990, 1993), Meepagala (1992), Wong (1996, 199 (1997), Staiger and Stock (1997), Hahn and
Hausman (2002), Baum, Schaffer and Stillman (2003), Kiviet ancthiizyk (2006, 2007), Blundell and Horowitz (2007),
Guggenberger (2010), Hahn, Ham and Moon (2010), Jeong aod (&910), Chmelarova and Hill (2010), Kiviet and
Pleus (2012), Lee and Okui (2012), Kiviet (2013), Wooldridgel®®®015), Caetano (2015), Doko Tchatoka (2815
Kabaila, Mainzer and Farchione (2015), and Lochner and MorettifR0



values” should also depend on the latter. Despite this, the MCT procediamatically controls
the level irrespective of this complication, and traw®idsthe need to computeritical values Of
course, as usual, the null hypothesis is interpreted here as the conjuofcaib model assumptions
(including “distributional” ones) with the exogeneity restriction.

The finite-sample tests built in this way are also robust to weak instruments, setise that
they never over-reject the null hypothesis of exogeneity even whemal¢ weak. This entails
that size control is feasible in finite samples for all DWH and RH tests [inclutisgHausman
(1978) test]. All exogeneity tests considered can also be describedra#i@tion-robust in finite
samples. These conclusions stand in contrast with ones reached by Stai@tock (1997, Section
D) who argue — following a local asymptotic theory — that size adjustment midyenieasible due
to the presence of nuisance parameters in the asymptotic distribution. @&cthis underscores
the fundamental difference between a finite-sample theory and an asynggptaximation, even
when the latter is “improved”.

More importantly, we show that the proposed Monte Carlo test proceduarains valid even if
the right-hand-side (possibly) endogenous regressors are hateregyand the reduced-form model
is incompletely specified (missing instruments). Because of the latter propertgay that the
DWH and RH tests armbust to incomplete reduced fornfsor example, robustness to incomplete
reduced forms is relevant in macroeconomic models with structural bre#ties iaduced form: this
shows that exogeneity tests remain applicable without knowledge of bate&. dn such contexts,
inference on the structural form may be more reliable than inference aediieed form. This is
of great practical interest, for example, in inference based on I\essgns and DSGE models.
For further discussion of this issue, see Dufour and Taamouti (20Qifpur, Khalaf and Kichian
(2013) and Doko Tchatoka (20kp

We study analytically the power of the tests and identify the crucial paramefténge power
function. In order to do this, we first prove a general invariance gntypblock triangular invari-
ance for exogeneity test statistics — a result of separate inteesst,to study how nuisance pa-
rameters may affect the distributions of exogeneity test statistics. Thisrprofields a convenient
exogeneity canonical forand a parsimonious reduction of the parameters on which power depends.
In particular, we give conditions under which exogeneity tests have wempand conditions under
which they have power. We show formally that the tests have little power wistruinents are
weak. In particular, the power of the tests cannot exceed the nominéiflallestructural parame-
ters are completely unidentified. Nevertheless, power may exist as sooe asstrument is strong
(partial identification).

We present a Monte Carlo experiment which confirms our theoretical §isdiim particular,
simulation results confirm that the MCT versions of all exogeneity statisticsidered allow one
to control test size perfectly, while usual critical values (under a Gaussror assumption) are
either exact or conservative. The conservative property is visiblarincplar when the two-stage-
least-squares (2SLS) estimator of the structural error variance isingedariance matrices. In
such cases, the MCT version of the tests allows sizable power gains.

The results are also illustrated through two empirical examples: the relatioed®twade and
economic growth, and the widely studied problem of the return of educatieartongs.

The paper is organized as follows. Section 2 formulates the model studieé&extion 3 de-



scribes the exogeneity test statistics, including a number of alternative l&iroms €.9, linear-
regression-based interpretations) which may have different analgtichhumerical features. In
Section 4, we give general characterizations of the finite-sample distrisutiiothe test statistics
and show how they can be implemented as Monte Carlo tests, with either GausstanGaussian
errors. In Section 5, we give the general block-triangular invariaesalt and describe the as-
sociated exogeneity canonical representation. Power is discussedtionS& The simulation
experiment is presented in Section 7, and the empirical illustration in Sectiore8&oWélude in
Section 9. Additional details on the formulation of the different test statistidstlaa proofs are
supplied in Appendix.

Throughout the papely, stands for the identity matrix of orden. For any full-column-rank
T x mmatrixA, P[A] = A(A'A)~A is the projection matrix on the space spanned by the columns of
A, andMI[A] = It — P[A]. For arbitrarym x m matricesA andB, the notationA > 0 means tha is
positive definite (p.d.)A > 0 meand is positive semidefinite (p.s.d.), add< B meansB— A > 0.

Finally, ||A]| is the Euclidian norm of a vector or matrixe., ||A|| = [tr(A’A)]%.
2. Framework
We consider a structural model of the form:
y=YB+X1y+u, (2.2)
Y = g(Xe, Xo, X3, V, 1), (2.2)

where (2.1) is a linear structural equatigrs RT is a vector of observations on a dependent vari-
able,Y € R™*C is a matrix of observations on (possibly) endogenous explanatory iesialnich
are determined by equation (2.2 € R"*k is a matrix of observations on exogenous variables
included in the structural equation (2.% € R"*k2 andXs € RT*% are matrices of observations
on exogenous variables excluded from the structural equatier(uy, ... , ur)’ € RT is a vector of
structural disturbance¥, = Vi, ..., Vr]" € RT*C is a matrix of random disturbance8,c R® and

y € R¥ are vectors of unknown fixed structural coefficients, &his a matrix of fixed (typically
unknown) coefficients. We suppo&e> 1, k; > 0, k, > 0, ks > 0, and denote:

) X =X, o] = [xa,.oxal s X =X, X, Xe] = (%o, 5] (2.3)
Y= [Y, Xl], Z= [Y, X1, Xz] = [21,...,ZT]I7 Z= [Y, X1, X2, )%] = [Z_l,...,Zr]l, (2.4)
U= [U,V] = [Ul, ce. ,UT]/ . (25)

Equation (2.2) usually represents a reduced-form equation. féhe form of the functiory(-) may

be nonlinear or unspecified, so model (2.2) can be viewed as “nanp#aia’ or “semiparametric”.
The inclusion ofX3 in this setup allows folf to depend on exogenous variables not used by the
exogeneity tests. This assumption is crucial, because it characterizestlteat we consider here
“incomplete models” where the reduced form formay not be specified and involves unknown
exogenous variables. It is well known that several “identificationsstittests for3 [such as those
proposed by Kleibergen (2002) and Moreira (2003)] are not rtofauallowing a general reduced



form forY such as the one in (2.2); see Dufour and Taamouti (2007) and Dokatdkzh(2015).
We also make the following rank assumption on the matr¢eX] and [P[X]Y, X1]:

Y, X] and [5[X]Y, X1] have full-column rank with probability ongonditional onX).  (2.6)

This (fairly standard) condition ensures that the matriXeM[X;]Y andM[X]Y have full column
rank, hence the unicity of the least-squares (LS) estimates when eaaimncoll is regressed on
X, as well as the existence of a unique two-stage-least-squares (28l&ate for3 andy based
on X as the instrument matrix. Clearly, (2.6) holds whéhas full column rank and the conditional
distribution ofY givenX is absolutely continuous (with respect to the Lebesgue measure).

A common additional maintained hypothesis in this context consists in assumirgy thista
linear equation of the form

Y =Xo[M1+XolM2+V = XM +V (2.7

wherell; € R}*C andf1, € R*C are matrices of unknown reduced-form coefficients. In this case,
the reduced form foy is
y=Xim +Xom+V (2.8)

wherery = y+ M1 B3, i, = I, 3, andv = u+V (. When the errors andV have mean zero (though
this assumption may also be replaced by another “location assumption”, saehoamedians), the
usual necessary and sufficient condition for identification of this model is

rank(l;) = G. (2.9)

If [, =0, the instrumentX; are irrelevant, an@ is completely unidentified. If ¥ rank(I1;) < G,

B is not identifiable, but some linear combinations of the elemengsart identifiable [see Dufour
and Hsiao (2008) and Doko Tchatoka (20Y]5 If 1, is close not to have full column rank.g,

if some eigenvalues dfl;[1, are close to zero], some linear combinationgddre ill-determined

by the data, a situation often called “weak identification” in this type of setup [adour (2003),

Andrews and Stock (2007)].

We study here, from a finite-sample viewpoint, the size and power propeftibe exogeneity
tests of the type proposed by Durbin (1954), Wu (1973), Hausmar8j18id Revankar and Hart-
ley (1973) for assessing the exogeneityfah (2.1) - (2.7) when: (a) instruments may be weak; (b)
[u, V] may not follow a Gaussian distributior.p, heavy-tailed distributions which may lack mo-
ments (such as the Cauchy distribution) are allowed]; and (c) the usiwded-form specification
(2.7) is misspecified, and follows the more general model (2.2) which allows for omitted instru-
ments, an unspecified nonlinear form and heterogeneity. To achievevéhiginsider the following
distributional assumptions on model disturbances (wi¢teefers to the relevant probability mea-
sure).

Assumption 2.1 CONDITIONAL SCALE MODEL FOR THE STRUCTURAL ERROR DISTRIBUTON.
For some fixed vector a iR®, we have:

u=Va+e, (2.10)



e=(ey,...,er) =01(X)e, (2.11)
wherea(X) is a (possibly randomfunction ofX such that’[o1(X) # 0|X] = 1, and the condi-
tional distribution ofe givenX is completely specified.

Assumption 2.2 CONDITIONAL MUTUAL INDEPENDENCE OFeAND V. V ande are indepen-
dent, conditional orX.

In the above assumptions, possible dependence betnaedV is parameterized bg, while &
is independent of (conditional onX), anda1(X) is an arbitrary (possibly randorsgale parameter
which may depend oX (except for the non-degeneracy conditiBjo(X) # 0| X] = 1). So we
call a the “endogeneity parameter” of the model. Assumption 2.1 is quite generalliaad for
heterogeneity in the distributions of the reduced-form disturbavicés=1,..., T. In particular, the
rows ofV need not be identically distributed or independent. Further, hon-Gaudisigibutions
are covered, including heavy-tailed distributions which may lack second mtenfguch as the
Cauchy distribution). In such cgsersl(x)_z does not represent a varianc&ince the scale factor
may be random, we can hawg (X) = g (X, V, e). Of course, these conditions hold wher- o ¢,
where o is an unknown positive constant aads independent oK with a completely specified
distribution. In this context, the standard Gaussian assumption is obtainekify. ta~ N[O, I7].
The distributions o and o, may also depend on a subsetafsuch asX = [X;, X]. Note also
the parameteat is not presumed to be identifiable, amthay not be independent ¥f— though this
would be a reasonable additional assumption to consider in the presésttcon

In this context, we consider the hypothesis tiiatan be treated as independenudh (2.1),
deemed the (strictgxogeneityof Y with respect tou, so no simultaneity bias would show up if
(2.1) is estimated by least squares. Under the Assumptions 2.1 ara=22js clearly a sufficient
condition foru ande to be independent. Further, as soovVdsas full column rank with probability

one,a= 0 is also necessary for the latter independence property. This leads et
Ho:a=0. (2.12)

We stress here that “exogeneity” may depend on a set of conditioningoies ), though of
course we can have cases where it does not depeddarholds unconditionally. The setup we
consider in this paper allows for both possibilities.

Before we move to describe tests of exogeneity, it will be useful to stuelHyocan be reinter-
preted in the more familiar language of covariance hypotheses, proviaiedbsd second-moment
assumptions are made.

Assumption 2.3 HOMOSKEDASTICITY. The vectors Y= [w, V{/]',t=1,..., T, have zero means
and the saméfinite) nonsingular covariance matrix:

2 !
Oy O-Vu

}>o, t=1,...,T. (2.13)

wherea?, gy, and 5y may depend ok.



Assumption 2.4 ORTHOGONALITY BETWEEN € AND V. EM&|X] =0, Ele|X] =0 and
F[e?|X] = a3, fort=1,...,T.

Under the above assumptions, the reduced-form disturbances
\M: [Vt7\/t/]/: [ut +\/t/B’\/[,},7 tzl? A 7T7 (2'14)
also have a nonsingular covariance matrix (conditionakpn

o- o3+ B2 B+2B ow B3 +0, _ (2.15)
v B+ ovy 2y

In this context, the exogeneity hypothesisrofan be formulated as
Ho : ovy=0. (2.16)

Further,
ow=3va, 03=03+dSa= 02+ 0w, (2.17)

sooyy, =0 < a= 0, and the exogeneity of can be assessed by testing whether 0. Note,
however, that Assumptions 2.3 and 2.4 will not be needed for the resaftenied in this paper.

In order to study the power of exogeneity tests, it will be useful to consgligefollowing sepa-
rability assumptions.

Assumption 2.5 ENDOGENEITY-PARAMETER DISTRIBUTIONAL SEPARABILITY. 1 is not re-
stricted by a, and the conditional distribution P, €] givenX does not depend on the parameter
a

Assumption 2.6 REDUCED-FORM LINEAR SEPARABILITY FORY. Y satisfies the equation

Y =g(Xq, X2, X3, 1) +V. (2.18)

Assumption 2.5 means that the distributions/oande do not depend on the endogeneity pa-
rametera, while Assumption 2.6 means thdtcan be linearly separated frogXi, Xz, X3, 1) in
(2.2).

3. Exogeneity tests

We consider the four statistics proposed by Wu (1928)| = 1,2,3,4], the statistic proposed by
Hausman (1978)7#] as well as some varianis#s, 73| occasionally considered in the literature
[see, for example, Hahn et al. (2010)], and the test suggested lankRavand Hartley (1973, RH)
[#]. These statistics can be formulated in two alternative ways: (1) as Waldstgfistics for
the difference between the two-stage least squares (2SLS) and thargritast squares (OLS)
estimators of3 in equation (2.1), where different statistics are obtained by changingttaiance
matrix; or (2) aF-type significance test on the coefficients of an “extended” versio2.4),(so



the different statistics can be written in terms of the difference betweeirctedtand unrestricted
residual sum of squares.
3.1. Test statistics

We now give a unified presentation of different available DWH-type statisfidhe test statistics
considered can be written as follows:

‘%:Ki(é_ﬁ)lzi_l(é_ﬁ)a [ :1a 27 37 47 (31)
jz&j :T(B_ﬁ>,2;1(l§_l§>v J :17 2a 37 (32)
% = Kr(Y YRY/ OR) , (33)

wheref% and f)‘ are the ordinary least squares (OLS) estimator and two-stage leastS@RELS)
estimators of3, i.e.

B=(Y'M1Y) Y Muy, (3.4)
B = [(PY)M1(PY)] H(PY)'Mry = (Y'N1Y) ™Y'Nyy, (3.5)
while we denotey andy the corresponding OLS and 2SLS estimatorg,afnd

M;=M[X], P=PX], M=M[X]=It —P[X], N;=MP, (3.6)
51=03A, 5,=083A, 53=06°A, 5,=07%, (3.7)

5,520 620/, 3,- %A, 33— 6%, (3.8)

A=O0ir -0, Qv= %Y’va, Qs= %Y’MlY, (3.9)
G=y-YB-XiJ=Mi(y—YB), G=y—YB—XF=My—YB), (3.10)

62 = Z0a= (- YBMiy—YB), &%= Tda=T(y-YB)Mily-YB),  (31D)
&= (- YBNily-YB) = 6%~ 83, G3=1(y-YBYMY-YB).  (3.12)
65=06"—(B—BYAB-B), (3.13)

Yh= (MIV]-M(Z}, GR=yAy, A,=IM(Z, (3.14)

T

K1 = (kz—G)/G, Ko = (T—kl—ZG)/G, K3 = K4=T—k1—G, andkr = (T—k]_—kz—G)/kz.
Here,is the vector of OLS residuals from equation (2.1) @rfds the corresponding OLS-based
estimator ofg? (without correction for degrees of freedom), whilds the vector of the 2SLS
residuals and? the usual 2SLS-based estimatoraff; 53, &3, 62 andd3 may be interpreted as
alternative IV-based scaling factors. Note also @ =PP, = P, MM = MM; =M, and

Nt = MP=PM;=PM;P=M;PM; =NiM1; =MiN; = N1N;

= M;—M=P—P =P[X] - P[Xy] = P[M1Xy)]. (3.15)



Each one of the corresponding tests rejéttsvhen the statistic is “large”. We also set

~ ~ A
V=iMy, Sy =2V, (3.16)

i.e. 3y is the usual sample covariance matrix of the LS resid(\a)srom the reduced-form linear
model (2.7).

The tests differ through the use of different “covariance matrix” estirsatéef; uses two dif-
ferent estimators ofr2, while the others resort to a single scaling factor (or estimatar?pf We
think the expressions given here f6f,| = 1, 2, 3, 4, in (3.1) are easier to interpret than those of
Wu (1973), and show more clearly the relation with Hausman-type tests tatistis.»#1 can be in-
terpreted as the statistic proposed by Hausman (1978), vijilend.7#3 are sometimes interpreted
as variants of71 [see Staiger and Stock (1997) and Hahn et al. (2010)]. We use the abtations
to better see the relation between Hausman-type tests and Wu-type testsicligrass = 5, and
Si= 23, s0.73 = (K3/T)# and 94 = (Ka/T)#3. Further,7, is a nonlinear monotonic transfor-

mation of %: 7
Ka 72 Kg
T = = . 3.17
YT Zvke (Ko/Tp)+1 (3.17)
Despite these relations, the tests based®and.7# are equivalent only if exact critical values are
used, and similarly for the pai(s7s, .773) and (%, Z4). We are not aware of a simple equivalence
betweens4 and. %, i =1, 2, 3, 4, and similarly betweew; and.s7, j =1, 2, 3.
The link between the formulation of Wu (1973) and the one above is distussgpendix A?
Concjition (2.6) entails tha®)y, Q| s and2y are (almost surely) nonsingular, which in turn implies
thatA is invertible; see Lemma A.1 in Appendix. In particular, it is of interest to oles#rat

At = On+Quv(Qis—Qv) 1y = Qv+ Qw3 0y = Qis3y Qs — Qs

1 1
= ?Y’Nl [T +Y(Y'MY) YNy = ?Y’Ml[Y(Y’MY)‘lY’ — I7]MgY. (3.18)

from which we see easily that 1 is positive definite. FurtheA—! only depends on the least-
squares residuald,Y andMY from the regressions of on X; andX respectively, and ! can be
bounded as follows:

Qv <A< O35, 0 (3.19)

so that
B-B)Qw(B-B)<B-B)AXB-B)<(B-B) ss Os(B-B). (3.20)

To the best of our knowledge, the additive expressions in (3.18) a@vadable elsewhere.
Finite-sample distributional results are available f&r 7> and% when the disturbances are

2When the errord)s,..., Ut are i.i.d. Gaussian [in which case Assumptions 2.3 and 2.4 hold]Zhest of Wu
(1973) can also be |nterpreted as the LM test of 0; see Smith (1983) and Engle (1982).



i.i.d. Gaussian. Ifi~ N[0, 0°It] andX is independent ofi, we have:
A~F(G ke —~G), ZH~F(GT-k-26), Z~F(k,T-k-k-G),  (3.21)

under the null hypothesis of exogeneity. Furthermore, for large samptesave under the null
hypothesis (along with standard asymptotic regularity conditions):

%—L>X2(G),i:1,2,3andﬁbxz(G),l:374’

when rankrl,) = G.

Finite-sample distributional results are not available in the literaturg4oi = 1, 2, 3 and.%j,
| = 3,4, even when errors are Gaussian and usual full identification assumm@atie made. Of
course, the same remark applies when usual conditions for identificatidrafék(/72) < G] or
get close to do so e.g, some eigenvalues @f,/1, are close to zero (weak identification) — and
disturbances may not be Gaussian. This paper provides a formatwhaation of the size and
power of the tests when IVs may be arbitrary weak, with and without Gaussiars.

3.2. Regression-based formulations of exogeneity stafrss

We now show that all the above test statistics can be computed from relaingdie linear regres-
sions, which may be analytically revealing and computationally convenient.ow&der again the
regression ofionV in (2.10):

u=Va+e (3.22)

for some constant vectare R®, wheree has mean zero and varianaé and is uncorrelated with
V andX. We can write the structural equation (2.1) in three different ways asifsilo

y = YB+Xiy+Vate =20+e,, (3.23)
y = YB+Xiy+Vb+e =270, +e,, (3.24)
y = Yb+Xiy+Xa+te=Z06+e, (3.25)

where

Z=[Y,%,V],8=(B",y,a), Z. =Y, %,V], 8. = (B",y,b"), Z. = [Y, X, %], (3.26)

0=(,y.,a), b=B+a y=y-a a=-Iha, (3.27)
Y=PX]Y, V=M[X]Y, e =PX]Va+e. (3.28)
Clearly, B8 = b if and only if a= 0. Equations (3.22) - (3.25) show that the endogeneity @
(2.1)-(2.7) can be interpreted as an omitted-variable problem [for fudiseussion of this view,
see Dufour (1979, 1987) and Doko Tchatoka and Dufour (2014)& inclusion oV in equations
(3.23) - (3.24) may also be interpreted as an application of control funtigthods [see Wooldridge



(2015)]. We also consider the intermediate regression:
y—YB = Xiy+ Yo+ €. = X0, +€.. (3.29)

wherefi is the 2SLS estimator ¢f.

Let 8 be the OLS gstimator d and éo the restricg%d OLS estimator 6éfunder the constraint
Ho:a=0 [in (3.23)], 6. the OLS estimator 0. and@, the restricted OLS estimate 6f. under

Hg : B = b [in (3.24)], 0 the OLS estimate 08 and 8° the restricted OLS estimate 6f under
Ho : a= 0[in (3.25)]. Similarly, the OLS estimate d., based on (3.29) is denotéd].., while
~0

0., represents the corresponding restricted estimate uHgled = 0. The sum of squared error
functions associated with (3.23) - (3.25) are denoted:

S(6) = ly—26|%, S.(6.) =[y—Z.6.]% S(6)=y-Z56|? (3.30)
§(8..) = ly—YB—X6..|?. (3.31)

UsingY =Y +V, we see that:

S6)=s.(8.)=58"), s8")=s.(8) =58, (3.32)
S0)=T63, SO°)=T8?, S(8)=T32, §b..)=Ta2. (3.33)
We then get the following expressions for the statistics in (3.1) - (3.3):
0 - 0 ~
%:m( S6)~36) >:K1<~Sff)_~s(f)) ) (3.34)
~0 ~ ~0 ~ ~0 ~
P <s<e >js<e>>7 T ks (sw >jos<e>> gk (sw >;Os<e>> (335
S(6) S.(6,) S(6°)
~0 ~ ~0 ~
T (sm—sw)) T (W) (3.36)
S.(6., S(6)
7 = ke[S(8") - §(8))/5(8). (3.37)

Details on the derivation of the above formulas are given in Appendix B.

(3.36) - (3.37) provide simple regression formulations of the DWH and Rtik8ts in terms
of restricted and unrestricted sum of squared errors in linear régnsssHowever, we did not
find such a simple expression for the Hausman stati#tic While DWH-type tests consider the
null hypothesisHp : a = 0, the RH test focuses on the null hypothebi$: a= —IT,a = 0. If
rank(l1;) = G, we have:a = 0 if and only if a = 0. However, if rankl1,) < G, a= 0 does not
imply a = 0: Hp entailsHg, but the converse does not hold in this case.

The regression interpretation of tl¥¢ and.7/3 statistics was mentioned earlier in Dufour (1979,
1987) and Nakamura and Nakamura (1981). #hstatistic was also derived as a standard regres-
sion test by Revankar and Hartley (1973). To our knowledge, the otigeession interpretations
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given here are not available elsewhere.

4. Incomplete models and pivotal properties

In this section, we study the finite-sample null distributions of DWH-type anceERbfjeneity tests
under Assumption 2.1, allowing for the possibility of identification failure (oaw&lentification)
and model incompleteness. The proofs of these results rely on two lemmatepémdent interest
(Lemmas C.1 - C.2) given in Appendix.

4.1. Distributions of test statistics under exogeneity

We first show that the exogeneity test statistics in (3.1) - (3.3 ) can be rawaitéollows, irrespec-
tive whether the null hypothesis holds or not.

Proposition 4.1 QUADRATIC-FORM REPRESENTATIONS OF EXOGENEITY STATISTICS The
exogeneity test statistics (8.1) - (3.3) can be expressed as follows:

_ YWy _
T =K (y,/\y forl=1,2,3,4, (4.1)
=T =T (Coy) [(YAsy) Ot — (YAay) @E] " (Cy), (4.2)
) 7= ()
, 4.3
( ) (Y'/\4 “43)
where
1. - 1-

Alz?Nllvl[NlY] Ny, Arx=M; (TM[MlY]HL{)) M; (4.4)

1 ) 1-— 1. -
Ag = TMIN;NMy /\4:?M[Y]:?M1M[M1Y]M1, (4.5)
Wy = Ci571C = C[(YAsy) Ot — (Y Aay) 9] 'au, (4.6)

and¥,, By, C;, ¥k and A, are defined as in Lemma C.1.

The following theorem characterizes the distributions of all exogeneitytitatisnder the null
hypothesis of exogeneityHp : a = 0).

Theorem 4.2 NULL DISTRIBUTIONS OF EXOGENEITY STATISTICS Under the model described
by (2.1) - (2.6), suppose Assumption 2.1 holds. i Ha = 0 also holds, then the test statistics
defined in(3.1) - (3.3) have the following representations:

T =k (‘Ejjg) forl =1,2,3, 4, 4.7)
| €
=T (£ W[ele) =T (Cie) [(€N38) Ot — (€M18) Q] 1), (4.8)

11



/ / /
%FT(‘E%‘E), %=T<£%£>7 %=KR<£%‘E), (4.9)

e'N3€ E'NgE gN €

where¥), Ay, ..., A4, ¥, Yk and A are defined as in Proposition 4.1. If Assumption 2.2 also holds,
the distributions of the test statisticg, .72, 73, 4, 1, /3, 73 andZ, conditional onX and Y,
only depend on the conditional distribution ®fgiven X, as specified in Assumption 2.1, and the
values of Y and X.

The last statement of Theorem 4.2 comes from the fact that the weighting esadiefined in
(4.4) - (4.6) only depend oK, Y ande. GivenX andY, the null distributions of the exogeneity test
statistics only depend on the distribution&fprovided the distribution of | X can be simulated,
exact tests can be obtained through the Monte Carlo test method [see Seg}ioRurthermore,
the tests obtained in this way are robust to weak instruments in the sense tleaethe controlled
even if identification fails (or is weak). This result holds even if the distributibe | X does not
have moments (the Cauchy distribution, for example). This may be usefekdonple, in financial
models with fat-tailed error distributions, such as the Stutiéigtribution. There is no further re-
striction on the distribution of | X. For example, the distribution &ffX may depend oiX, provided
it can be simulated.

It is interesting to observe that the distributiorvoplays no role here, so the vectdfs ..., Vr
may follow arbitrary distributions with unspecified heterogeneity (or hekedesticity) and serial
dependence. In addition to finite-sample validity of all the exogeneity tests ipridsence of
identification failure (or weak identification), Theorem 4.2 entails robustt@acomplete reduced
formsandinstrument exclusionnder the null hypothesis of exogeneity. No further information is
needed on the form of the reduced formYoin (2.2): g(-) can be an unspecified nonlinear function,
I =[y, My] an unknown parameter matrix, avidnay follow an arbitrary distribution. This result
extends to the exogeneity tests the one given in Dufour and Taamouti)(@0@¥derson-Rubin-
type tests (for structural coefficients).

As long as the distribution of (given X andY) can be simulated, all tests remain valid under
Ho, and test sizes are controlled conditional>mandY, hence also unconditionally. In particular,
Monte-Carlo test procedures remain valid even if the instrument m#irig not used by the test
statistics. A similar property is underscored in Dufour and Taamouti (2fa7Anderson-Rubin
tests in linear structural equation models. This observation is also usefldwofar models with
structural breaks in the reduced form: exogeneity tests remain valid ircentéxts without knowl-
edge of the form and timing of breaks. In such contexts, inference ostthetural form may be
more reliable than inference on the reduced form, a question of greaamekefor macroeconomic
models; see Dufour et al. (2013). However, although the exclusionstriuiments does not affect
the null distributions of exogeneity test statistics, it may lead to power lossen tite missing
information is important.

4.2. Exact Monte Carlo exogeneity tests

To implement the exact Monte Carlo exogeneity testllpfvith level o (0 < o < 1), we suggest
the following methodology; for a more general discussion, see Dufd@62 Suppose that the
conditional distribution of (given X) is continuous, so that the conditional distribution, givén

12



of all exogeneity statistics is also continuous. tdenotes any of the DWH and RH statistic in
(3.1)- (3.3). We can then proceed as follows:

1. choosex* andN so that a*N] 1
a*NJ]+

= = 4.10

TNt (4.10)

where for any nonnegative real numbet[x] is the largest integer less than or equat;to

2. compute the test statisti¢' (9 based on the observed data;

3. generatd i.i.d. error vectorg!) = | (1” - j=1,...,N, according to the specified
distribution of&|X , and compute the corresponding statisti¢$), j = 1, ..., N, following
Theorem 4.2; the distribution of each statistic does not deperfs} @mder the null hypothe-
sis;

4. compute the empirical distribution function based#fy), j =1, ..., N,

. o LtV <
or, equivalently, the simulategtvalue function
14+ 5N 1) > x
P [X] = it L7 =X (4.12)

N+1
wherel[C] = 1 if conditionC holds, andl [C] = O otherwise;

5. reject the null hypothesis of exogeneily, at levela when 7 (© > Fi1(1—a*), where
Fol(g) = inf{x: Ry(x) > q} is the generalized inverse &k(-), or (equivalently) when
oY [7/(0)} <a.

UnderHo, A
Pl#©>Ft(1—-a")] =P[pn# ¥ <a]=a (4.13)

so that we have a test with level The property given by (4.13) is a finite-sample validity result
which holds irrespective of the sample sizeand no asymptotic assumption is required. If the dis-
tributions of the statistics are not continuous, the Monte Carlo test prazedareasily be adapted
by using “tie-breaking” method described in Dufour (2086).

It is important to note here that the distributions of the exogeneity test statisfiteeorem 4.2
generally depend on the specific “instrument matdxtised by the tests (especially wheis not
Gaussian), so no general valid “critical value” (independeit)ds available. The Monte Carlo test
procedure transparently controls the level of the test irrespectivésafdimplication, so there i%0
need to compute critical values

Swithout correction for continuity, the algorithm proposed for statistics withtiooious distributions yields a con-
servative testi.e. the probability of rejection under the null hypothesis is not larger than thenas level(a). Further
discussion of this feature is available in Dufour (2006).
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5. Block-triangular invariance and exogeneity canonical form

In this section, we establish invariance results for exogeneity tests whichenilseful to study the
distributions of the test statistics under the alternative hypothesis. Thisibaaimnce property is
given by the following proposition.

Proposition 5.1 BLOCK-TRIANGULAR INVARIANCE OF EXOGENEITY TESTS Let

R1 O
R= 51
[ Ro1 Rao ] ®-1)

be a lower block-triangular matrix such thatR# 0 is a scalar and R is a nonsingular Gx G
matrix. If we replacey and Y by y= yR;1+ Y Rz and Y = YRy in (3.1) - (3.14), the statistics%
(i=1,2,3,4), 74 (j=1,2,3) andZ do not change.

The above result is purely algebraic, so no statistical assumption is ndd¢ol@dver, when it is
combined with our statistical model, it has remarkable consequences oo festis of exogeneity
tests. For example, if the reduced-form erddrs. .. , Vi for Y have the same nonsingular covariance
matrix 2, the latter can be eliminated from the distribution of the test statistic by cho&singp
thatR,,, > Ro» = Ig. This entails that the distributions of the exogeneity statistics do not depend on
2 under both the null and the alternative hypotheses.

Consider now the following transformation matrix:

"= pa o] 5.2
Then, we havey*, Y*| = [y, Y]R with
y' = y=-Y(B+a)=YB+Xiy+Vate-Y(B+a)=Uy,(a)+e, (5.3)
Y* =Y (5.4)
wherep,, (a) is aT x 1 vector such that
My (8) = Xay + [V — g(Xe, X2, Xa,V, T)]a. (5.5)

The (invertible) transformation (5.3) - (5.4) yields the following “latent reglil-form” represen-
tation: _
y =Xy + [V —g(X, X2, X3, V, M)]a+e, (5.6)
Y = g(X1, X2, X3, V, 7). (5.7)
We say “latent” because the functigf-) and the variableXs are unknown or unspecified. An
important feature here is that the endogeneity paranagtan be isolated from other model param-
eters. This will allow us to get relatively simple characterizations of the pofvexogeneity tests.

For this reason, we will call (5.6)-(5.7), the “exogeneity canonicamnfoassociated with model
(2.1) - (2.2) along with Assumption 2.1.
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In the important case where reduced-form error linear separabilitys {dlslsumption 2.6) in
addition to (2.1) - (2.2), we can write

Y =g(X1, X2, X3, M) +V = by +V (5.8)
which, by (2.1), entails
y=Hy(a)+ (u+Vp)=py(a)+v (5.9)
wherepy isaT x G matrix andu, is aT x 1 vector, such that
My = 9%, X2, Xa, 1), 1,(a) = g(Xe, X2, Xa, M)B+Xay, (5.10)
v=u+VB=e+V(B+a). (5.11)
Then _
Uy () = Uy(a) — py (B +a) = Xey — g(X1, Xz, X3, [1)a (5.12)

does not depend ow, and the exogeneity canonical form is:

y' = X1y—9(Xg, X2, X3, [M)a+e, (5.13)

Y = g(Xq, Xo, X3, [1) + V. (5.14)

6. Power

In this section, we provide characterizations of the power of exogensity. té/e first consider the
general case where only Assumption 2.1 is added to the basic setup @A) -To simplify the
exposition, we use the following notation: for aliyx 1 vectorx andT x T matrix A, we set

Sr[x, Al = T XAx. (6.1)

Theorem 6.1 EXOGENEITY TEST DISTRIBUTIONS UNDER THE ALTERNATIVE HYPOTHSIS.
Under the model described [§2.1) - (2.6), suppose Assumption 2.1 holds. Then the test statistics
defined in(3.1) - (3.3) have the following representations:

T =K (W) , forl=1,23 4, (6.2)

=T U@ W@ u@)}, =T (m) =T (W) . (63)
_ . (Srlu@), %]

A= <sr[u<5>,AR1) ’ (6.4)

where ya) =Va+e¢,a = a(X) 1a,

W [u(@)] = Ci(Sru@), As] @yt - Srlu(@), A Qd) T (6.5)



and G, ¥, ¥, Yk, /\;, \1,..., \g are defined as in Theorem 4.2. If Assumption 2.5 also holds, the

distributions of the test statisti¢sonditional onX) depend on a only throughin u(a ).

By Theorem 6.1, the distributions of all the exogeneity statistics deperad thiwugh possibly
in a rather complex way (especially when disturbances follow non-Gauds#ibutions). If the
distribution ofe does not depend aa— as would be typically the case — power depends on the way
the distributions of the quadratic forn®[u(a ), ¥/] andSr[u(a ), A;j] in (6.2) - (6.4) are modified
when the value o& changes. Both the numerator and the denominator of the statistics in Theorem
6.1 may follow different distributions, in contrast to what happens in starfe#ests in the classical
linear model.

The power characterization given by Theorem 6.1 does not providagagicture of the param-
eters which determine the power of exogeneity tests. This can be donglbjtieg the invariance
result of Proposition 5.1, as follows.

Theorem 6.2 INVARIANCE-BASED DISTRIBUTIONS OF EXOGENEITY STATISTICS Under the
model described b§2.1) - (2.6), suppose Assumption 2.1 holds. Then the test statistics defined in
(3.1) - (3.3) have the following representations:

_ o (STe(@), %) _

T =K (Sr[y*l(é),/h])’ forl=1,2 3 4, (6.6)

e _ L (Syi@), W]
=Sy @) @) =T () 67)

_(Sily@), ¥ o (SIvE@), W)
=T (Sr[yi(g),/u]) A=K <sr[yf<a>,AR]> ’ (6.8)

where

yH(@) = @ (&) +Mye, (6.9)
Uy, (&) = MoV —g(X1, Xe, Xg,V, M)]a, a=o(X) "a, (6.10)
Wy (@)] = Ci(Srly-(@), As) Ont — Srly- (@), A Opd) e, (6.11)

and G, ¥, ¥, Yk, Ny, \1,..., /A4 are defined as in Theorem2. If Assumption 2.5 also holds,
the distributions of the test statisti¢sonditional onX and V) depend on a only througﬁﬁ(é) in
y;(a). If Assumption 2.6 also holds,

/,_1;(5) = —M19(Xg, X2, X3, M) a. (6.12)

Following Theorem 6.2, the powers of the different exogeneity testsatailed by/,_tﬁ(a_)
in (6.10). Clearlya=0 entailsﬁ)ﬁﬁ(é) = 0, which corresponds to the distribution under the null
hypothesis [under Assumption 2.5]. Note however, the latter propertyhalds when

M1V — g(Xe, X2, X3, V, T)] =0 (6.13)
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even ifa# 0.

Under Assumption 2.6/ is evacuated fronp_lyl*(g) as given by (6.12). If Assumptions 2.5 and
2.6 hold, power is determined by this parametﬁﬁ(&) = 0 whena = 0, but also wherX; and
9(X1, X2, X3, IT) are orthogonal. Note also the norm;@*(z?) shrinks wheno (X) increases, so
power decreases when the variance of valug; aficreases (as expected). Under Assumption 2.6,
conditioning onX andV also becomes equivalent to conditioningXmndY.

Consider the special case of a complete linear model where equationar{d.{.8) hold. We
then have:

g(X1, X2, X3, M) = Xa M1+ XolM2, Py (2) = —M1XolT2a. (6.14)

When M, = 0 (complete non-identification of model parameters),MaX, = 0 (X, perfectly
collinear with X;), or more generally wheW; Xz, = 0, we haveﬁﬁ(aT) = 0. Then, under As-
sumption 2.5, the distributions of the exogeneity test statistics do not depemdaod the power
function is flat (with respect ta). B

Theorem 6.2 provides a conditional power characterization [gfvandV (orY)]. Even though
the level of the test does not depend on the distributiov, gfower typically depends on the distri-
bution ofV. Unconditional power functions can be obtained by averaging\éyéut this requires
formulating specific assumptions on the distributioof

When the disturbances, ..., et are i.i.d. Gaussian, it is possible to express the power function
in terms of non-central chi-square distributions. We denotg4w; 8] the non-central chi-square
distribution withn degrees of freedom and noncentrality paraméteand byF [n1, np; d1, d2] the
doubly noncentraF-distribution with degrees of freedoim;, np) and noncentrality parameters
(01, 02), i.e. F~ F[ny,np; 81, 0] means thak can be written a& = [Q1/my] /[Q2/Mp] where
Q:andQ; are two independent random variables such @at- x2[ng; &1] andQ, ~ x2[Nny; 82];
see Johnson, Kotz and Balakrishnan (1995, Ch. 30). When O, F ~ F[n1, np; 1] the usual
noncentraF -distribution.

Theorem 6.3 INVARIANCE-BASED DISTRIBUTIONS OF EXOGENEITY STATISTICS COMPO
NENTS WITH GAUSSIAN ERRORS  Under the model described 4.1) - (2.6), suppose As-
sumptions 2.1 and 2.2 hold. &f~ NIO, I7], then, conditional orX and V, we have:

Srlyh@), W) ~ x%G; 8(a W)], Srlyr (&), Al ~ x?lke—G; 8(& A1), (6.15)
Srlyh(@), Al ~ x3[T —ki—2G; 8(a, A)],  Srlyr (@), Ad] ~ x?[T —ki—G; 5(&, As)], (6.16)
Srlys (@), Ykl ~ x°k2; 6(a, YR)],  Srlyr (@), Al ~ X*[T—ki—ko—G; 8(a, A)],  (6.17)

where

5(a, Yk) = Sr[Hy. (@), W], 8(a Ag) =SrlHy (@), Adl, (6.20)

and the other symbols are defined as in Theorem 6.2. Further, conditan@and V, the random
variable Sy (a), W] is independent of8y.- (&), A1) and Sy (&), Az, and Syl (a), YK is
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independent of Sy (&), Ay].

Note we do not have a chi-square distributional resulSidy." (&), As] which depends on the
usual 2SLS residuals. On the other ha®dy;- (a), A4] follows a noncentral chi-square distribution,
but it is not independent @r [y (a), ¥).

The noncentrality parameters in Theorem 6.3 can be interpretednagntration parameters
For example,

5(a W) = T[h(a) Wi (@)] =T [Hy.(2)CA Cipy. ()]
= {M1]V —g(Xa, Xo, X3, V, M)]a}'C1(C1CY) ~*Cr{M1[V — g(X1, %o, X3, V, IT)]&}
= {M1lV —g(X1, Xo, X3, V, M)]a} PC{M1V —g(X1, %o, X3, V, T)]@}  (6.21)

and, in the case of the simple complete linear model where (2.7) and (2.8) hold,
3(a, W) = (M1 X 128)' P[C}] (M1 X2 [T2.@) = &'[15 X5 M1 P[C; My Xo M2 (6.22)

For d(a, ¥,) to be different from zero, we need; XxlM2a # 0. In particular, this requires that the
instruments<; not be totally weak/{l, £ 0) and linearly independent &f (M1X; # 0). Similar in-
terpretations can easily be formulated for the other centrality parametgratticular, in the simple
complete linear model, all noncentrality parameters are zev X, l1,a = 0. Note, however, this
may not hold in the more general model described by (2.1) -(2.6), becdulse nonlinear reduced
form forY and the presence of excluded instruments.

Theorem 6.3 allows us to conclude that, %gnd%’ follow doubly noncentraF-distributions
under the alternative hypothesis (conditional ¥randV). This is spelled out in the following
corollary.

Corollary 6.4 DOUBLY NONCENTRAL DISTRIBUTIONS FOR EXOGENEITY STATISTICS Under
the model described bi2.1) - (2.6), suppose Assumptions 2.1 and 2.2 holde 4 N[O, I1], then
conditional onX and V, we have:

<72 ~ F[Ga T— kl - ZG, 5(a_) (H))v 6(3_-7 /\2)] ) (624)
K4

Ip=——"7-" < T 6.25

= +1—< >2, (6.25)

X ~Flke, T—ki—k—G; 5(a, ¥k), 6(a, ¥R)], (6.26)

where the noncentrality parameters are defined in Theorem 6.3.

In the special case where (2.7) and (2.8) hold, we haygVi1g(Xy, Xo, X3, 1) =
N O(X1, X2, X3, 1) = 0 andd(a, $R) = 0, soZ ~ Flko, T — ks — ko — G; d(a, %k)| the usual non-
central noncentraF -distribution. Whena = 0, the distributions of7;, % and % reduce to the
central chi-square in (3.21) originally provided by Wu (1973) and Rkaaand Hartley (1973).
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The setup under which these are obtained here is considerably momalgbae the usual linear
reduced-form specification (2.7) considered by these authors.

Note .7, is proportional to a ratio of two noncentral chi-square distributions, lisihibt doubly-
noncentral chi-square due to the non-orthogonalit/ofindA, [¥, Ay = T -1, see (C.50)]. This
observation carries tg#3 through the identitys#3 = (T /k4) Z2. The same applies té¢i and. 73,
because of the presence®y. (a), A3] in these statistics.

7. Simulation experiment

We use simulation to analyze the finite-sample performances (size and piviee)standard and
exact Monte Carlo DWH and RH tests. The DGP is described by equatidisaf®d (2.7) without
included exogenous instruments variab¥gsY = [Y1 : Y] € RT*2, the T x kp instrument matrix
X5 is a such thaXy L N(O, Ix,) forall t =1,..., T, and is fixed within experiment. We set the
true values off at B, = (2,5)' but the results are qualitatively the same for alternative choices
of By. The matrix/T, that describes the quality of the instruments in the first stage regression is
such thatl1, = [n1Mo1 : Nolo) € Rkex2 where [[p1 : IMpy] is obtained by taking the first two
columns of the identity matrix of orderk,. We vary bothn, andn, in {0,0.01, 0.5}, where
Ny =n, =0 is a design of a complete non-identificatiop, = n, = 0.01 is a design of weak
identification,n, € {0, 0.01}andn, = 0.5 or vice versais a design of partial identification, and
finally, n4 = n, = 0.5 corresponding to strong identification (strong instruments).

The erroras andV are generated so that

u=Vat+e=Vias +Voar +e (7.2)

wherea; anday are fixed scalar coefficients. In this experiment, wesset(a;,a2)’ = A ap, where

ap = (0.5,0.2) andA € {—20—5,0,1,100} but the results do not change qualitatively with alter-
native values oy andA. In the above setup\ controls the endogeneity 8t A = 0 corresponds
to the exogeneity hypothesis (level), while valuesioflifferent from zero represent the alterna-
tive of endogeneity (power). We consider two specifications for the jogttibution of [e,V]. In
the first one,(e,V/)’ ~N(0,13) forallt=1,..., T (Gaussian errors). In the second oaeand
Vit, j = 1,2, follow a t(3) distribution and are uncorrelated for &k=1, ..., T. In both casesy;
andV, are independent. The sample siz& is 50, and the Monte Carlo teptvalues are computed
with N = 199 pseudo-samples. The simulations are based on 10000 replicatiensorfimal level
for both the MC critical values and the standard tests is set at 5%.

7.1. Size and power with the usual critical values

Tables 1-2 present the empirical rejections of the standard DWH and Riifeedoth Gaussian
errors (Table 1) ant3) errors (Table 2). The first column of each table reports the statistics, while
the second column contains the valuegofnumber of excluded instruments). The other columns

4We run the experiment whefElp1 : Moy] is theky x 2 matrix of ones, and we found similar results as those presented
here.
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report, for each value of the endogeneity measajeafpd IV qualitiesn,; andn,, the rejection
frequencies of the tests. The results confirm our theoretical analysis.

First, the rejection frequencies of all tests under the null hypothesis of eettggA = 0) are
equal or smaller than the nominal 5% level, whether identification is wgak, € {0, 0.01}),
partial (7, € {0,0.01}andn, = 0.5 or vice versy, or strong(n; = N, = 0.5), with or without
Gaussian errors. Thus, all DWH-type and RH tests are valid in finite saraptésobust to weak
instrumentsi(e., level is controlled). This confirms the analysis of Section 4. As expetiiedests
Do, T4, 73, andZ have rejections close to the 5% nominal level. Meanwhilg,.7#1 and.775 are
highly conservative when identification is weak; [, € {0, 0.01} in the tables].

Second all tests have power when identification is partial (columhsz O and n; €
{0,0.01}andn, = 0.5 or vice versa or strong (columnst # 0 andn, = n, = 0.5), with and
without Gaussian errors. Their rejection frequencies are close to WA # 0 and identifica-
tion is strong (, = n, = 0.5), despite the relatively small sample siZze-{£ 50). However, all tests
have low power when all instruments are irrelevant4 0 andn4,n, € {0, 0.01}). In particular,
the rejection frequencies are close to 5% whe# 0, with n,,n, € {0, 0.01}, thus confirming the
results of Theorems 6.2 and 6.3. The simulations also suggest that theZiest§, 7,, and%#
have greater power than the others. However, this is not also alwagasheafter size correction
through the exact Monte Carlo test method, as shown in the next subsection

7.2. Performance of the exact Monte Carlo tests

We now examine the performance of the proposed exact Monte Carlemsibgtests. Tables 3-4
present the results for Gaussian errors (Table 3)t&iderrors (Table 4). The results confirm our
theoretical findings.

First, the rejection frequencies under the null hypothesis of exogenkity Q) of all Monte
Carlo tests are around 5% whether identification is wegk rf, € {0, 0.01}), partial (@7, €
{0,0.01} andn, = 0.5 or vice versy, or strong £; = n, = 0.5), with or without Gaussian er-
rors. This represents a substantial improvement for the stan@ards and Hausman (1978)71
statistics.

SecongdwhenA # 0 (endogeneity), the rejection frequencies of all tests improve in most.case
This is especially the case farz, 771 and 7. For example, with Gaussian errors akd= 5
instruments, the rejection frequencies. %, 771 and.7% have increased from 3%, 209% and
36.8% (for the standard tests) to .606, 565% and 607% (for the exact Monte Carlo tests); see
the columns fol =1 (n, = 0.5 andn, = 0) in Tables 1 and 3. The results are more remarkable
with t(3) errors andk,; = 5 instruments. In this case, the rejection frequencies of the exact Monte
Carlo 73, 771 and .77 tests have tripled those of their standard versionsjseel (n, = 0.5 and
n, =0) in Tables 2 and 4. The results are essentially the same for other valugsiotind IV
strength (, andn,). Moreover, except for7;, the other exact Monte Carlo tests exhibit power
with or without Gaussian errors, including when identification is very wepk= 0.01, n, = 0)
and endogeneity is larga (= 100 for example). Note that the standard exogeneity tests (including
> andR) perform poorly in this case. Thus, size correction through the exacttdCarlo test
method yields a substantial improvement for the exogeneity tests considieraddition, observe
that after size correction, even the Hausman (1978) statigti} becomes attractive in terms of
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Table 1. Size and power of exogeneity tests with Gaussian errors at ridewielsb%

A=-20 A=-5 A=0 A=1 A =100
ke | N1=0 n;=01 ny=5|n=0 n=01 n=5|n=0 n=01 n=5|n=0 =01 n=5|n=0 n=01 n=5
N2=0 N;=0 nNp=0]n,=0 1np;=0 NnNp=0]n,=0 1np;=0 Np=0]n,=0 1np=0 1np=0]n,=0 1n,=0 1np,=0
T 5 5.0 4.8 74.2 5.3 4.8 67.7 4.7 5.0 5.1 51 4.8 211 5.3 4.4 74.1
T - 4.6 12.4 100.0 5.1 5.7 100.0 4.7 5.2 49 5.0 49 57.7 5.1 69.8 100.0
T3 - 0.0 0.0 98.4 0.0 0.0 97.8 0.0 0.0 0.7 0.0 0.0 34.1 0.0 3.6 98.4
T - 4.3 11.8 100.0 4.7 5.2 100.0 4.5 4.9 4.6 4.7 45 56.4 4.8 69.2 100.0
JA - 0.0 0.0 92.4 0.0 0.0 90.6 0.0 0.0 0.3 0.0 0.0 20.9 0.0 2.1 92.1
I - 0.0 0.0 98.5 0.0 0.0 98.0 0.0 0.0 0.8 0.0 0.1 36.8 0.0 45 98.5
I3 - 5.0 12.9 100.0 5.4 6.0 100.0 5.0 5.5 5.2 5.3 5.2 58.7 55 70.4 100.0
Xz - 5.2 18.6 100.0 5.1 5.8 100.0 4.6 4.7 4.8 5.3 51 44.8 5.2 100.0 100.0
S 10 49 3.9 99.5 5.0 4.7 98.1 4.7 51 4.7 5.2 5.2 37.9 4.7 3.1 99.4
T - 4.8 9.7 100.0 5.0 5.1 100.0 4.8 4.8 5.1 5.1 52 59.1 4.8 44.6 100.0
T3 - 0.3 0.7 100.0 0.4 0.2 100.0 0.3 0.3 1.8 0.3 0.4 48.8 0.3 10.7 100.0
T - 45 9.2 100.0 4.6 4.8 100.0 4.5 4.6 4.8 4.8 49 57.8 45 43.8 100.0
JA - 0.2 0.4 99.1 0.2 0.1 98.5 0.2 0.1 0.8 0.1 0.1 32.1 0.1 7.1 99.2
I - 0.4 0.9 100.0 0.6 0.3 100.0 0.5 0.4 2.2 0.4 0.5 51.4 0.4 12.7 100.0
I3 - 5.0 10.1 100.0 5.3 5.5 100.0 5.1 5.1 55 5.4 55 60.0 5.1 45.6 100.0
Xz - 51 215 100.0 4.8 5.6 100.0 5.4 4.9 5.6 5.3 5.2 37.8 5.0 100.0 100.0
S | 20 5.2 3.4 99.9 5.3 5.1 99.4 4.7 4.7 5.1 49 5.0 41.7 4.7 1.5 99.9
T - 5.0 7.0 100.0 5.2 5.2 100.0 4.9 4.6 5.1 5.1 5.0 51.9 5.1 14.5 100.0
T3 - 1.8 2.8 100.0 1.9 2.1 100.0 2.1 1.7 3.3 2.0 2.0 47.8 2.0 7.4 100.0
T - 4.6 6.7 100.0 4.9 4.9 100.0 4.5 4.3 4.7 4.8 4.6 50.7 4.7 13.9 100.0
JA - 1.1 1.7 99.7 1.2 1.2 99.4 1.4 1.0 1.2 11 1.2 30.6 1.2 5.0 99.8
I - 2.3 3.4 100.0 2.4 2.6 100.0 2.5 2.2 3.9 2.5 2.6 50.3 2.4 8.5 100.0
R ) - 53 7.4 100.0 5.6 5.4 100.0 5.2 5.0 53 5.4 5.2 53.0 5.5 15.0 100.0
X - 4.7 29.4 100.0 5.0 6.0 100.0 5.0 5.0 5.4 4.7 5.4 25.7 5.1 100.0 100.0
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Table 1 (continued). Size and power of exogeneity tests with Gauss@s atmominal level 5%

A=-20 A=-5 A=0 A=1 A =100
ke | n1=0 m=01 ny=5| n=0 =01 m=5| m=0 ny=01 nm=5|n=0 n=01 n=5|n=0 nmn=01 n=>5
Np=5 Np=5 Np=5]Np=5 Np=5 Np=5]nNp=5 1Np=5 Np=5]nN=5 nNp=5 Np=5]n,=. N2=5 nNp=.

T 5 63.4 64.1 78.2 37.6 39.8 725 4.7 49 5.2 7.1 7.7 23.2 66.7 66.0 78.3
T - 100.0 100.0 100.0 96.8 98.1 100.0 4.9 53 4.9 11.6 12.3 61.4 100.0 100.0 100.0
T3 - 97.3 97.0 98.4 81.7 84.0 98.1 0.6 0.7 11 3.1 3.1 39.1 97.2 97.8 98.6
T - 100.0 100.0 100.0 96.5 97.9 100.0 4.5 49 4.7 11.0 11.7 60.2 100.0 100.0 100.0
JA - 90.7 91.2 914 66.5 69.4 89.6 0.3 0.4 0.4 1.7 1.6 23.4 914 92.3 91.9
I - 97.5 97.2 98.5 83.6 85.6 98.2 0.7 0.9 1.2 3.6 3.8 41.4 97.4 98.0 98.7
I3 - 100.0 100.0 100.0 97.1 98.2 100.0 5.2 5.6 5.3 12.2 12.8 62.5 100.0 100.0 100.0
Xz - 100.0 100.0 100.0 94.7 96.5 100.0 5.0 53 5.4 9.3 9.5 48.4 100.0 100.0 100.0
2 | 10 98.8 98.9 99.7 79.4 81.4 99.0 4.8 5.3 5.4 10.3 11.2 43.3 99.4 99.2 99.8
T - 100.0 100.0 100.0 98.6 99.1 100.0 5.1 53 5.0 131 14.4 65.6 100.0 100.0 100.0
T3 - 100.0 100.0 100.0 97.3 98.1 100.0 1.7 1.7 1.8 7.1 8.3 57.4 100.0 100.0 100.0
T - 100.0 100.0 100.0 98.4 99.0 100.0 4.7 5.0 4.7 12.6 13.6 64.5 100.0 100.0 100.0
JA - 99.2 99.0 98.1 87.5 90.6 97.2 0.7 0.5 0.4 3.3 3.9 33.0 99.1 99.1 98.4
I - 100.0 100.0 100.0 97.7 98.4 100.0 2.1 2.0 2.2 8.1 9.5 59.9 100.0 100.0 100.0
I3 - 100.0 100.0 100.0 98.6 99.2 100.0 55 5.6 5.3 13.9 15.1 66.5 100.0 100.0 100.0
Xz - 100.0 100.0 100.0 95.5 97.1 100.0 5.1 51 51 8.4 9.4 42.8 100.0 100.0 100.0
S | 20 99.8 99.7 100.0 84.0 85.8 99.5 53 5.2 4.9 10.9 11.7 43.2 99.9 99.9 100.0
T - 100.0 100.0 100.0 95.3 96.5 100.0 5.1 5.0 5.1 121 12.8 54.6 100.0 100.0 100.0
T3 - 100.0 100.0 100.0 94.5 95.7 100.0 3.4 3.1 3.3 9.2 10.0 50.4 100.0 100.0 100.0
T - 100.0 100.0 100.0 95.0 96.2 100.0 4.9 4.6 4.7 115 12.2 53.3 100.0 100.0 100.0
JA - 99.7 99.7 98.9 85.2 87.2 97.7 1.1 1.2 0.8 4.2 4.4 26.9 99.8 99.8 99.0
I - 100.0 100.0 100.0 95.2 96.4 100.0 4.0 3.7 3.8 10.5 11.3 53.2 100.0 100.0 100.0
R ) - 100.0 100.0 100.0 95.6 96.7 100.0 5.3 54 5.5 12.6 134 55.6 100.0 100.0 100.0
X - 100.0 100.0 100.0 86.9 90.2 100.0 5.1 5.3 4.9 7.5 7.3 27.4 100.0 100.0 100.0
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Table 2. Size and Power of exogeneity tests wi8) errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | 1y=0 ny=.01 ny=5|n=0 n=01 m=5|mnm=0 m=01 n=5|n=0 n=0 nm=5|n=0 n=01 n=>5
N2=0 N2=0 np=0]nNp;=0 np=0 1np=0]n,;=0 1np=0 nNp=0)n,=0 nNp=0 1np=0]n,=0 1np=0 np=0

A 5 4.6 5.0 50.5 5.3 5.2 43.9 5.3 4.9 5.0 4.9 4.9 12.9 5.0 4.4 50.7
D - 4.8 7.8 99.9 4.9 5.2 99.5 5.2 5.0 4.8 5.1 5.2 33.7 51 52.6 99.9
T3 - 0.0 0.0 91.2 0.0 0.0 87.6 0.0 0.0 0.4 0.0 0.0 10.6 0.0 1.5 91.2
T - 4.5 7.3 99.9 4.6 4.9 99.4 4.9 4.7 4.5 4.7 4.9 32.6 4.7 51.7 99.9
A - 0.0 0.0 85.3 0.0 0.0 79.4 0.0 0.0 0.2 0.0 0.0 6.4 0.0 0.8 84.8
I - 0.0 0.0 91.9 0.0 0.0 88.6 0.0 0.0 0.6 0.0 0.0 12.3 0.0 1.8 91.9
I3 - 5.1 8.1 99.9 5.3 5.6 99.5 55 5.3 5.1 54 5.5 35.0 55 53.2 99.9
X - 49 9.8 100.0 5.0 5.4 99.6 5.0 5.2 49 5.3 5.6 27.8 5.2 92.0 100.0
A 10 51 4.6 86.0 5.0 4.7 78.6 4.9 4.9 4.6 4.9 5.0 21.1 5.2 3.2 87.2
D - 5.1 6.2 99.8 53 5.0 99.2 4.9 51 5.2 5.0 4.6 34.2 5.0 29.4 99.8
T3 - 0.4 0.4 99.0 0.3 0.4 97.7 0.3 0.3 1.2 0.3 0.2 20.5 0.2 4.4 99.2
T - 4.8 5.7 99.8 5.0 4.7 99.2 4.5 4.7 4.8 4.6 4.4 33.2 4.6 28.4 99.8
A - 0.1 0.1 97.9 0.1 0.2 95.5 0.1 0.1 0.6 0.1 0.1 13.3 0.1 2.5 98.1
Kz - 0.5 0.5 99.2 0.4 0.5 98.0 0.4 0.4 1.5 0.4 0.3 22.6 0.4 5.4 99.3
I3 - 5.4 6.6 99.9 5.6 5.3 99.2 51 54 5.4 5.3 4.9 35.1 5.2 30.2 99.8
x - 49 9.4 100.0 5.4 5.2 99.6 5.1 5.1 49 5.2 51 23.7 5.2 93.2 100.0
7 20 4.8 4.4 97.9 4.6 4.6 94.6 51 4.9 5.4 4.9 4.9 29.8 4.9 1.6 98.4
D - 49 5.8 99.8 4.7 4.6 99.4 5.2 5.1 55 4.8 4.8 38.8 4.6 12.2 99.9
T3 - 1.8 2.3 99.8 1.7 1.9 99.3 2.1 2.0 3.3 1.7 1.9 335 1.7 5.7 99.8
T - 45 54 99.8 4.5 4.2 99.4 4.9 4.9 5.1 45 45 37.6 4.3 115 99.9
A - 1.1 1.4 99.6 0.9 1.0 98.5 1.2 1.1 1.6 1.0 1.1 24.5 1.0 3.7 99.7
I - 2.3 2.8 99.8 2.1 2.2 99.4 2.5 2.4 3.8 2.1 2.3 35.9 2.2 6.7 99.8
I3 - 5.2 6.2 99.9 5.1 4.7 99.4 55 55 5.7 5.1 5.1 39.6 4.8 12.6 99.9
i - 5.2 11.8 100.0 4.9 5.4 99.4 5.1 4.7 4.7 5.0 4.9 23.0 4.4 98.0 100.0
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Table 2 (continued). Size and Power of exogeneity teststi@herrors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100
ke | m4=0 nm=.01 =5} =0 nm=.01 n=5|n=0 n=0 n=5|nn=0 n=0 mn=5|nn=0 n=01 n=>5
MN2=35 Np=5 Np=5|MN=5 Np=5 Np=5|Np=5 MNp=5 MNp=5|MNp=5 MNp=5 Np=5]|1MN=5 Np=5 np=.5
A 5 47.0 47.6 67.0 26.4 27.2 59.0 4.5 4.8 5.4 6.6 7.1 18.3 50.6 49.9 68.3
D - 99.7 99.8 100.0 83.3 86.2 99.8 4.6 49 4.9 8.9 10.1 48.9 99.9 99.8 100.0
T3 - 89.8 89.9 97.1 51.0 54.9 95.9 0.5 0.4 0.7 1.4 1.6 26.1 91.1 91.3 97.7
T - 99.7 99.8 100.0 825 85.7 99.8 4.3 4.5 4.6 8.3 9.5 48.0 99.9 99.8 100.0
A - 82.6 83.4 91.7 38.5 42.5 88.2 0.3 0.2 0.3 0.7 0.8 16.0 84.6 85.3 91.9
I - 90.8 90.8 97.3 54.1 57.7 96.3 0.6 0.5 0.8 1.7 1.8 28.3 91.8 92.1 97.9
I3 - 99.7 99.8 100.0 83.8 86.7 99.8 4.8 5.1 5.2 9.3 10.7 50.0 99.9 99.8 100.0
X - 99.9 100.0 100.0 79.7 84.1 99.8 5.3 4.7 5.0 7.7 7.9 38.7 100.0 100.0 100.0
A 10 90.5 90.1 98.5 57.3 59.2 95.7 5.3 49 5.1 8.7 9.2 34.1 92.2 92.4 98.8
D - 99.8 99.8 100.0 87.7 90.0 99.9 53 51 5.0 10.5 115 53.9 99.9 99.9 100.0
T3 - 99.5 99.4 100.0 80.5 83.5 99.8 1.4 1.4 1.6 4.6 4.9 43.1 99.5 99.6 100.0
T - 99.8 99.8 100.0 87.2 89.7 99.9 4.9 4.8 4.6 10.0 10.9 52.7 99.9 99.9 100.0
A - 98.4 98.5 99.1 70.3 73.8 98.0 0.7 0.5 0.7 2.4 2.7 29.8 98.9 98.8 99.3
Kz - 99.5 99.5 100.0 82.3 85.2 99.8 1.9 1.6 1.9 5.3 5.6 45.6 99.6 99.6 100.0
I3 - 99.8 99.9 100.0 88.2 90.5 99.9 5.7 5.4 55 11.0 119 54.8 99.9 99.9 100.0
x - 99.9 99.9 100.0 81.6 85.0 99.8 5.1 51 4.8 7.8 8.1 36.5 100.0 100.0 100.0
7 20 96.8 96.7 99.8 66.6 68.4 98.1 4.8 4.7 5.2 9.3 9.2 36.8 98.0 97.7 99.8
D - 99.8 99.7 100.0 835 84.5 99.7 4.8 5.0 5.2 10.2 10.2 46.4 99.8 99.8 100.0
T3 - 99.7 99.6 100.0 80.6 82.1 99.7 2.9 3.0 3.2 7.4 7.1 42.3 99.8 99.7 100.0
T - 99.8 99.7 100.0 82.8 83.9 99.7 4.4 4.7 4.9 9.7 9.6 45.3 99.8 99.8 100.0
A - 99.5 99.4 99.8 72.2 74.9 908.8 1.4 1.6 1.4 4.1 4.1 29.6 99.7 99.6 99.9
I - 99.8 99.6 100.0 82.1 83.4 99.7 3.4 35 3.8 8.3 8.3 44.5 99.8 99.8 100.0
I3 - 99.8 99.7 100.0 84.1 84.9 99.7 51 53 5.4 10.6 10.6 47.5 99.8 99.8 100.0
i - 99.9 99.9 100.0 73.1 76.2 99.5 5.2 4.8 5.1 7.3 7.5 25.6 100.0 100.0 100.0
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Table 3. Size and power of exact Monte Carlo tests with Gaussian etmoosinal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | N1=0 n;=01 ny=5|n=0 n=01 n=5|n=0 n=01 n=5|n=0 n=01 n=5|n=0 n=01 n=5

Np=0 nNp=0 nNp=0|n=0 1np=0 np=0]1n,=0 1np=0 1np=0|n,=0 1np=0 np=0]n,=0 1np,=0 1np=0

Tme 5 51 5.2 72.3 4.9 5.0 67.1 5.0 4.8 4.9 5.2 51 21.0 4.8 4.2 74.9
Tome - 54 11.2 100.0 5.3 5.6 100.0 5.3 5.4 5.1 5.3 55 55.7 55 69.4 100.0
Tame - 5.2 9.0 99.3 5.0 5.4 99.2 4.9 5.0 4.9 5.1 5.1 60.7 5.1 40.4 99.4
Tame - 53 11.2 100.0 5.2 5.6 100.0 5.3 5.4 5.1 5.2 5.4 55.7 55 69.4 100.0
Fme - 5.1 9.0 97.6 4.8 5.3 97.2 4.8 4.9 4.9 5.0 5.1 56.5 5.1 39.9 97.8
Fome - 5.2 9.0 99.3 5.0 5.4 99.2 5.0 5.0 49 5.0 5.1 60.7 5.1 40.4 99.4
Hame - 53 11.2 100.0 5.2 5.6 100.0 5.3 5.4 5.1 5.3 5.4 55.7 55 69.4 100.0
Hme - 55 16.4 100.0 5.5 5.7 100.0 5.4 5.2 53 5.0 4.9 43.1 5.8 100.0 100.0
Tme | 10 5.0 4.4 99.0 5.0 5.0 96.8 5.1 5.0 5.2 5.1 5.0 32.9 4.6 4.0 98.8
Tome - 5.2 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 5.5 5.6 54.6 5.7 40.9 100.0
Tame - 5.0 7.8 100.0 5.0 5.1 100.0 4.9 4.7 4.9 5.0 5.0 60.9 5.1 35.1 100.0
Tame - 51 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 5.5 5.6 54.6 5.7 40.9 100.0
Hme - 5.0 7.7 99.9 5.0 5.2 99.9 4.8 5.0 4.7 4.8 4.9 58.5 51 34.9 99.9
Fome - 5.0 7.8 100.0 5.0 5.1 100.0 4.9 4.7 49 5.1 5.0 60.9 5.1 35.1 100.0
Hame - 5.2 8.5 100.0 5.0 5.3 100.0 5.2 5.1 5.0 5.5 5.6 54.6 5.7 40.9 100.0
Hme - 5.6 16.7 100.0 5.0 5.6 100.0 51 53 5.4 55 5.8 35.1 5.0 100.0 100.0
Tme | 20 49 3.3 99.9 5.0 4.6 99.2 4.9 4.7 4.8 4.8 5.0 40.7 4.7 4.3 99.9
Tome - 51 6.8 100.0 5.0 4.8 100.0 5.1 4.8 4.9 5.3 5.7 51.5 5.6 14.6 100.0
Tame - 4.8 6.6 100.0 5.0 4.7 100.0 5.0 4.6 4.7 5.0 5.1 54.3 5.0 13.9 100.0
Tame - 5.0 6.8 100.0 5.0 4.8 100.0 5.1 4.9 5.0 5.2 5.7 51.5 5.6 14.6 100.0
Hme - 49 6.6 100.0 5.0 4.7 99.9 5.0 4.6 49 5.0 51 51.5 5.1 14.0 100.0
Fome - 4.8 6.6 100.0 5.0 4.7 100.0 5.0 5.0 4.8 5.2 51 54.3 5.1 13.9 100.0
Hame - 51 6.8 100.0 5.0 4.8 100.0 5.1 5.1 5.0 5.0 5.7 51.5 5.6 14.6 100.0
Hme - 5.8 30.5 100.0 5.0 5.9 100.0 5.2 5.2 4.9 5.1 5.9 26.1 55 100.0 100.0
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Table 3 (continued). Size and power of exact Monte Carlo tests with @aussors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100
ke | ny=0 m=01 ny=5| n=0 nm=.01 m=5| m=0 ny=01 nm=5|n=0 n=01 n=5|n=0 nmn=01 n=>5
Np=. Na=5 Np=5|MN=5 Np=5 Np=5|N=5 Np=5 Np=5]N=5 Np=5 Np=5]"n=. Np=. Na2=.

Tme 5 71.2 72.3 80.3 44.5 441 76.0 4.8 51 5.2 7.9 8.4 24.4 74.3 74.0 80.5
Tome - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 125 14.3 67.7 100.0 100.0 100.0
Tame - 99.3 99.5 99.6 96.3 96.5 99.4 4.8 5.0 4.9 14.6 16.2 71.2 99.3 99.4 99.5
Tame - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 12.5 14.3 67.7 100.0 100.0 100.0
Fme - 97.6 97.5 97.3 91.9 92.5 97.0 4.8 5.0 4.9 14.2 15.7 63.9 97.7 97.7 97.1
Fome - 99.3 99.5 99.6 96.3 96.5 99.4 4.7 49 5.1 14.6 16.2 71.2 99.3 99.4 99.5
Fame - 100.0 100.0 100.0 98.7 99.2 100.0 5.1 5.2 5.3 12.5 14.3 67.7 100.0 100.0 100.0
Hme - 100.0 100.0 100.0 97.4 98.6 100.0 5.0 5.0 5.0 9.6 10.7 54.8 100.0 100.0 100.0
Tme | 10 98.3 98.3 99.8 75.6 79.9 98.5 4.9 5.2 5.2 9.6 10.6 40.8 99.0 98.9 99.6
Tome - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 51 5.1 13.2 12.7 63.4 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 98.9 99.3 100.0 4.9 4.8 5.0 14.5 14.2 70.1 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 51 5.1 13.2 12.7 63.4 100.0 100.0 100.0
Hme - 99.9 99.8 99.8 97.7 98.1 99.7 4.9 4.8 5.0 14.4 13.8 66.2 99.9 99.9 99.8
Fome - 100.0 100.0 100.0 98.9 99.3 100.0 4.8 4.7 4.9 14.5 14.2 70.1 100.0 100.0 100.0
Hame - 100.0 100.0 100.0 98.0 98.9 100.0 5.0 5.1 5.1 13.2 12.7 63.4 100.0 100.0 100.0
Hme - 100.0 100.0 100.0 94.8 96.6 100.0 5.2 5.3 5.4 7.9 8.4 41.6 100.0 100.0 100.0
Tme | 20 99.6 99.5 99.8 80.5 82.4 99.3 5.1 5.3 5.2 10.6 10.1 40.1 99.8 99.8 99.9
Tome - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 51 5.0 12.0 115 51.2 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 95.0 95.7 100.0 4.8 4.7 4.8 125 12.7 54.3 100.0 100.0 100.0
Tame - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 5.1 5.0 12.0 115 51.2 100.0 100.0 100.0
Hme - 100.0 100.0 100.0 94.0 94.9 100.0 4.7 4.7 4.9 12.0 12.4 51.4 100.0 100.0 100.0
Fome - 100.0 100.0 100.0 95.0 95.7 100.0 4.8 4.7 4.8 125 12.7 54.3 100.0 100.0 100.0
Hame - 100.0 100.0 100.0 93.6 94.8 100.0 5.1 5.1 5.0 12.0 115 51.2 100.0 100.0 100.0
Hme - 100.0 100.0 100.0 84.2 88.2 100.0 53 5.4 5.2 7.0 7.3 26.7 100.0 100.0 100.0
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Table 4 . Size and power of exact Monte Carlo tests Wi errors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | 1y=0 ny=.01 ny=5|n=0 n=01 m=5|m=0 m=01 n=5|n=0 n=0 nm=5|n=0 n=01 n=>5

N2=0 Np=0 np=0]Np;=0 np=0 1np=0]n,;=0 1np=0 nNp=0)n,=0 nNp=0 1np=0]n,=0 1np=0 np=0

Tme 5 4.4 4.6 47.1 4.5 4.9 42.2 5.2 4.9 4.8 5.1 5.2 12.9 4.7 4.6 49.1
Tome - 5.3 7.6 99.9 5.1 5.1 99.4 53 5.2 54 5.3 55 32.7 5.2 50.7 99.9
Tame - 4.8 6.3 96.8 5.0 5.4 95.7 4.9 4.7 49 4.9 51 35.2 5.1 29.6 96.8
Tame - 5.3 7.6 99.9 5.1 5.1 99.4 53 5.2 54 5.3 5.4 32.7 5.2 50.7 99.9
Hme - 49 6.4 95.7 4.9 5.3 94.4 4.7 4.8 4.8 4.8 5.0 34.5 5.1 29.1 95.5
Fome - 4.8 6.3 96.8 5.0 5.4 95.7 4.9 4.7 4.9 4.9 5.1 35.2 5.1 29.6 96.8
Hame - 5.3 7.6 99.9 5.0 5.1 99.4 5.3 5.2 54 5.2 5.4 32.7 5.2 50.7 99.9
Prme - 54 9.4 100.0 5.1 5.1 99.5 5.1 5.0 5.2 5.4 5.6 27.9 54 91.0 100.0
Tme | 10 45 4.7 91.1 4.7 4.9 82.8 5.1 4.9 5.1 5.0 5.2 23.2 51 4.4 90.5
Tome - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 5.3 5.3 5.2 39.2 5.4 31.9 99.9
Tame - 5.0 6.4 99.8 5.1 5.1 99.4 4.8 4.9 49 5.1 5.1 43.3 5.1 26.7 99.7
Tame - 5.2 6.9 99.9 5.4 5.3 99.5 5.1 5.2 53 5.3 5.2 39.2 5.4 31.9 99.9
Hme - 49 6.4 99.7 5.0 5.1 99.2 4.8 4.8 4.7 5.0 5.1 42.4 49 26.5 99.7
Hme - 5.0 6.4 99.8 5.1 5.1 99.4 4.8 4.9 49 5.1 5.1 43.3 5.1 26.7 99.7
Hame - 5.2 6.9 99.9 54 5.3 99.5 5.1 5.2 53 5.3 5.2 39.2 54 31.9 99.9
Prme - 55 10.6 100.0 5.5 5.4 99.7 5.1 5.1 5.2 5.3 5.5 27.7 5.7 95.5 100.0
Ame | 20 4.8 4.2 98.0 5.0 4.8 95.0 4.9 4.8 4.8 5.0 51 28.7 5.2 4.8 98.0
Tome - 5.4 5.9 99.9 53 5.1 99.4 5.1 5.0 51 5.2 5.1 38.2 5.3 12.0 99.9
T3me - 51 5.8 99.9 5.1 5.1 99.5 4.8 5.0 4.7 4.8 4.9 40.7 5.1 11.2 99.8
Tame - 5.4 59 99.9 5.3 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 53 12.0 99.9
Hme - 5.1 5.8 99.9 5.1 5.2 99.4 4.9 4.9 4.8 4.8 4.8 40.3 5.1 11.3 99.9
Iome - 51 5.8 99.9 5.1 5.1 99.5 4.8 5.0 4.7 4.8 4.9 40.7 5.1 11.2 99.8
Hame - 5.4 5.9 99.9 53 5.1 99.4 5.1 5.0 5.1 5.2 5.1 38.2 53 12.0 99.9
Prme - 5.7 12.3 100.0 5.2 5.6 99.3 5.2 5.2 53 5.3 54 22.9 59 98.3 100.0
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Table 4 (Continued). Size and power of exact Monte Carlo teststy@jterrors at nominal level 5%

A=-20 A=-5 A=0 A=1 A =100

ke | =0 n=01 my=5| m=0 nm=.01 n=5|n=0 =0 n=5|n=0 n=0 mn=5|nn=0 n=01 n=>5

MN2=35 Np=5 Np=5|N=5 Np=5 Np=5|Np=5 MNp=5 MNp=5|MNp=5 MNp=35 Np=5]|1MN=35 Np=5 np=.5

Tme 5 46.7 46.9 67.0 25.6 27.3 58.7 4.7 4.9 5.0 6.3 6.5 18.4 50.3 51.8 68.9
Tome - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
Tame - 96.7 96.9 99.2 79.9 82.4 98.7 4.9 4.8 4.9 10.1 10.1 52.6 96.8 97.2 99.1
Tame - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
Hme - 95.2 95.6 97.5 77.5 79.7 96.6 4.6 4.7 4.9 9.9 10.1 50.3 95.6 96.0 97.7
Fome - 96.7 96.9 99.2 79.9 82.4 98.7 4.9 4.8 4.9 10.1 10.1 52.6 96.8 97.2 99.1
Hame - 99.9 99.8 100.0 83.3 85.7 99.9 5.2 5.1 5.4 9.1 9.4 48.9 99.9 99.9 100.0
Rme - 100.0 99.9 100.0 79.6 82.9 99.8 5.3 5.2 5.1 7.3 7.7 40.2 100.0 100.0 100.0
Tme | 10 89.6 89.8 98.6 56.3 56.9 95.7 5.1 5.3 5.2 8.6 8.8 34.6 91.2 91.5 98.6
Tome - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Tame - 99.6 99.7 100.0 89.7 91.5 99.9 5.0 4.9+ 51 11.6 12.4 56.9 99.6 99.8 100.0
Tame - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Hme - 99.5 99.7 99.9 88.7 90.2 99.6 4.9 51 4.8 115 12.1 55.1 99.6 99.8 99.9
Fome - 99.6 99.7 100.0 89.7 91.5 99.9 5.0 4.9 5.1 11.6 12.4 56.9 99.6 99.8 100.0
Hame - 99.7 99.9 100.0 87.5 89.1 99.9 5.4 5.2 5.2 10.9 11.2 53.0 99.8 99.9 100.0
Pme - 99.9 100.0 100.0 82.6 83.9 99.8 5.5 5.3 5.1 8.0 7.8 35.0 100.0 100.0 100.0
Ame | 20 97.3 97.6 99.8 69.8 71.5 98.2 4.8 4.8 5.1 9.5 10.4 38.8 98.4 98.8 99.9
Tome - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 53 10.9 10.8 48.3 99.9 99.9 100.0
T3me - 99.8 99.7 100.0 87.1 88.4 99.7 4.9 4.8 5.0 114 11.9 50.8 99.9 99.9 100.0
Tame - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 5.3 10.9 10.8 48.3 99.9 99.9 100.0
Hme - 99.7 99.7 100.0 86.3 87.7 99.6 4.7 4.6 5.1 115 11.6 49.0 99.9 99.9 100.0
Fome - 99.8 99.7 100.0 87.1 88.4 99.7 4.9 4.8 5.0 11.4 11.9 50.8 99.9 99.9 100.0
Hame - 99.7 99.7 100.0 84.9 86.7 99.7 5.1 5.0 53 10.9 10.8 48.3 99.9 99.9 100.0
Prme - 100.0 99.9 100.0 75.6 79.3 99.6 5.3 5.2 5.4 7.3 7.8 26.4 100.0 100.0 100.0




power. This is the case in particular fdB) errors wherk, = 10, 20 andA = —5, 1; see Table 4.

8. Empirical illustrations

We illustrate our theoretical results on exogeneity tests through two empipiphtations related
to important issues in macroeconomics and labor economics literature: (19l#ten between
trade and growth [Irwin and Tervio (2002), Frankel and Romer ().9498rrison (1996), Mankiw,
Romer and Weil (1992)]; (2) the standard problem of measuring retareducation [Dufour and
Taamouti (2007), Angrist and Krueger (1991), Angrist and Krud$895), Angrist, Imbens and
Krueger (1999), Mankiw et al. (1992)].

8.1. Trade and growth

The trade and growth model studies the relationship between standardegfdnd openness.
Frankel and Romer (1999) argued that trade share (ratio of imporigorte to GDP) which is the
commonly used indicator of openness should be viewed as endogempusstBimental variables
method should be used to estimate the income-trade relationship. The equatied su

In(Inci) = By + B, Trade + y;In(Pop) + y,In(Area) +ui,i=1,..., T (8.1)

where Ing¢ is the income per capita in countryTrade is the trade share (measured as a ratio of
imports and exports to GDP), Pap the population of countri, and Areais countryi area. The
first stage model for Trade variable is given by

Trade = a+bX +ciIn(Pop) +coIn(Area) + Vi, i=1,..., T (8.2)

whereX; is an instrument constructed on the basis of geographic characteristitgs paper, we
use the sample of 150 countries and the data include for each countryadieestrare in 1985, the
area and population (1985), per capita income (1985), and the fittedstnade (instrument).

We wish to assess the exogeneity of the trade share variable in (8.1)F-$tagistic in the
first stage regression (8.2) is around 13 [see Frankel and Ron&9,(T&ble 2, p.385) and Dufour
and Taamouti (2007)], so the fitted instrum&ntoes not appear to be weak. Table 5 presents the
p-values of the DWH and RH tests computed from the tabulated and exact ganle critical
values. The Monte Carlo critical values are computed for Gaussiamn(8pérrors. Because the
model contains one instrument and one (supposedly) endogenoude/atha statistidy is not well
defined and is omitted.

First, we note that thg-values based on the usual asymptotic distributions are close to the 5%

nominal level fors4, 9, 9, andZ%. So, there is evidence against the exogeneity of the trade
share (at nominal level of 5%) when these statistics are applied. Meantialp-values of. 77,
5, and 73 are relatively large (around 12%) so that there is little evidence againg staare
exogeneity at 5% nominal level using the latter statistics. Since the stagdaré#s, and .73 tests
are conservative when identification is weak, the latter result may be due fadhthat the fitted
instrument is not very strong.
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Table 5. Exogeneity in trade and growth model

Statistics | Estimation| Standardp-value (%) | MC p-value (%) | MC p-value (%)
(Gaussian errors)  [t(3)-errors]
X 3.9221 4.95 4.98 5.38
JA 2.3883 12.23 6.14 5.99
%) 2.4269 11.93 6.12 5.96
W% 3.9505 4.67 5.39 5.66
D 3.9221 4.95 5.39 5.66
T3 2.3622 12.43 6.12 5.96
T 3.8451 4.99 5.49 5.66

Secongwe observe the exact Monte Carlo tests yieldalues close to the 5% level in all cases,
thus indicating that there is evidence of trade share endogeneity in this niddelis supported
by the relatively large discrepancy between the OLS estimafy ¢0.28) and the 2SLS estimate
(2.03). Overall, our results underscore the importance of size comettiough the exact Monte
Carlo procedures proposed.

8.2. Education and earnings

We now consider the well known example of estimating the returns to educagermdngrist and
Krueger (1991); Angrist and Krueger (1995); and Bound, Jaagd Baker (1995)]. The equation
studies is a relationship where the log-weekly earni)gq explained by the number of years of
education E) and several other covariates (age, age squared, 10 dummies faflyigdr):

kg
y:BO+B1E+_;ViXi+U' (8.3)

In this model 3, measures the return to education. Because education can be viewddgesreus,
Angrist and Krueger (1991) used instrumental variables obtained bsaatiieg quarter of birth
with the year of birth (in this application, we use 40 dummies instruments). Theibasids that
individuals born in the first quarter of the year start school at an @der and can therefore drop
out after completing less schooling than individuals born near the end gktire Consequently,
individuals born at the beginning of the year are likely to earn less thae thas during the rest
of the year. The first stage model fris then given by

ka kg

E=Ho+;mxa +_;<Pi><i +V (8.4)

whereX is the instrument matrix. It is well known that the instrumeXtsonstructed in this way
are very weak and explains very little of the variation in education; see etial. (1995). The
data set consists of the 5% public-use sample of the 1980 US census fdrommebetween 1930
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Table 6. Exogeneity in education and earning model

Statistics | Estimation| Standardp-value (%) | MC p-value (%) | MC p-value (%)
(Gaussian errors)  [t(3)-errors]
X 0.68 93.99 4991 49.93
JA 1.34 24.76 24.26 24.30
V%) 1.34 24.76 24.26 24.30
W% 1.35 24.54 24.26 24.30
A 2.04 16.11 22.49 22.99
) 1.35 24.54 24.26 24.30
T3 1.35 22.48 24.26 24.30
T 1.35 24.54 24.26 24.30

and 1939. The sample contains 329 509 observations.

As in Section 8.2, we want to assess the exogeneity of education in (8.8).-Ta@ble 6 shows
the results of the tests with both the usual and exact Monte Carlo criticalsvahgeseen, the-
values of all tests are quite large, thus suggesting that there is little evidgaiostahe exogeneity
of the education variable, even at 15% nominal level. This means that eithedtitation variable
is effectively exogenous or the instruments used are very poor so ¢habtrer of the test is flat, as
shown in Section 6. The latter scenario is highly plausible from the previoustlite [for example,
see Bound et al. (1995)]. This viewed is reinforced by the small diso®pbetween the OLS
estimate (0.07) and the 2SLS estimate (0.08} pf

9. Conclusion

This paper develops a finite-sample theory of the distribution of standaturbwu-Hausman and
Revankar-Hartley specification tests under both the null hypothesisogfeerity (level) and the
alternative hypothesis of endogeneity (power), with or without identifinaf@ur analysis provides
several new insights and extensions of earlier procedures.

Our study of the finite-sample distributions of the statistics under the null hgpistehows that
all tests are robust to weak instruments, missing instruments or misspecifisgdddrms — in the
sense that level is controlled. Indeed, we provided a general ¢beration of the structure of the
test statistics which allows one to perform exact Monte Carlo tests underajgrarametric distri-
butional assumptions, which are in no way restricted to the Gaussian celseljing heavy-tailed
distributions without moments. The tests so obtained are exact even in dasesidentification
fails (or is weak) and conventional asymptotic theory breaks down.

After proving a general invariance property, we provided a charaate®n of the power of
the tests that clearly exhibits the factors which determine power. We shoaeéxibigeneity tests
have no power in the extreme case where all IVs are weak [similar to StaigeBtack (1997),
and Guggenberger (2010)], but typically have power as soon asawe dne strong instrument.
Consequently, exogeneity tests can detect an exogeneity problem exgralf model parameters
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are identified, provided at least some parameters are identifiable.

Though the exact distributional theory given in this paper requiresvelatspecific distribu-
tional assumptions, the “finite-sample” procedures provided remain asyogtiyovalid in the same
way (in the sense that test level is controlled) under standard asymptatimpons. We study this
problem in a separate paper [Doko Tchatoka and Dufour (2016)th&u even if exogeneity hy-
potheses can have economic interest by themselves, we also show tveegdgeneity tests can
be fruitfully applied to build pretest estimators which generally dominate OLR8h& estimators
when the exogeneity of explanatory variables is in uncertain.
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APPENDIX

A. Wu and Hausman test statistics

We show here that Durbin-Wu statistics can be expressed in the same afgraative Hausman
statistics. The statisticg, | = 1, 2, 3,4 are defined in Wu (1973, egs. (2.1), (2.18), (3.16), and
(3.20)) as:

A = Klgl,%:KZ&a%:KS&7%ZK484) (A.1)
Q= (b —by) [(Y'AY) T (Y'ALY) Y] (b —byp), (A.2)
Qi = (y-Yh)'Ax(y—Ylp), Qo =Qs—Q", (A.3)
Qi = (Y-Yb)'A(y—Yh),Qs=(y—-Yb)A(y—Yhy), (A.4)
b= (YAY) WAY =12 A =My, A =M- M, (A.5)

whereb; is the ordinary least squares estimatoi3ofandb; is the instrumental variables method
estimator of3. So, in our notationdy; = 3 andb, = 3. From (3.8) - (3.13), we have:

Q' = TB-BAYB-B)=T&(B-B)5*B-B), (A.6)
Qi = Td&2, Q=T3&%, Q=To?, (A7)
Q@ = Q-Q=T&*-T(B-B)AB-P)=T03. (A.8)

Hence, we can writeJ] as:
F=ki(B-B)EYB-B), 1=1,234,

wherek;, andZ; are defined in (3.8)-(3.13). _
To obtain (3.17), set = (B — B)'A~Y(B — B). Thend’ = 6> — T, T4 = K49/ 62, and

To To (%/8°) (Ta/K4)
9 =Ko— =K =K = ) A9
2 26_% 26'2—,% 21—(%/62) 21_(%/’(4) ( )
hence P 7 7 1
s_ (Afk) _ % (A.10)

Ka (BJK2)+1 Totka (Ko/ Do) +1

In the sequel of this appendix, we shall use the following matrix formulastwhie easily
established by algebraic manipulations [on the invertibility of matrix differersmesHarville (1997,
Theorem 18.2.4)].

Lemma A.1 DIFFERENCE OF MATRIX INVERSES Let A and B be two nonsingulaser matrices.
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Then
Al_Btl = BiB-AAI=AB-AB"
At A-pABlAA=B1BAB-BB L (A.11)

Furthermore, A' —B~1is nonsingular if and only if B- A is nonsingular. If B- A is nonsingular,
we have:

(At-BH1 = AB-AB=A-AA-B)lA=A+AB-AA=AA I+ B-A A
= B(B-A!A=BB-AB-B=B[(B-A)'-B1B
= AA-AB A A=B(BAB-B)!B. (A.12)

Itis easy to see from condition (2.6) i@y, QLs and5y are nonsingular. On settig= Qu
andB = Q, s, we get:

A A 1 1 1 1 1o~ &
B-A=Qis— Qv ==Y'MY — ZY'NIY = ZY' (M1 — N )Y = ZY'MY = V'V =5y, (A.13
LS V=7 ! T (M1 —Np) T T v, ( )

s0 Qi s— Qy is nonsingular. By Lemma A A = Q' — O;d = A1 —B1is also nonsingular,
and

Al = A+ A(B— A)*lA = Qv + Qv (-éLS— Qw)flélv = Qv + Qv 2\71Q|v
1 1
= T [YNY +Y'NLY (YMY) YNy Y] = =g +YYMY) YN, (A14)

From the above form, it is clear that L is positive definite. Note also that
At = BB-A)B-B=Q5(Qs—Qv) Qs Qis=Qs5, 1 Qs— Qs

= %[(Y’MlY)(Y’MY)‘l(Y’MlY)—(Y’MlY)]:%Y’Ml[Y(Y’MY)‘lY’—IT]MlY. (A.15)

The latter shows that 2 only depends on the least-squares residMglé andMY.

B. Regression interpretation of DWH test statistics

Let us now consider the regressions (3.22)-(3.25). Udng Y +V, Y = X[1 and 1 =
(X'X)~IX'Y, we see that the 2SLS residual veatdor model (2.1) based on the instrument matrix
X = [X1, Xo] can be written as

0 = y-YB-Xiy=(y—YB—X7) ~VB =My YB)-Vp
= Mily—YB—-VB)=Mi(y-YB) (B.1)
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whereB and y are the 2SLS estimators @ and y, and the different sum-of-squares functions
satisfy:

S6)=s.(6.), Ti=58")=s(8)=88)), ¥b..)=(y-YBYMy-YB), (B2
8% —58)=s.(8% -s.(8.). (B.3)

LetR=[0 0 Ig],andR,=[1lg 0 —lg |, sothatRb=a andR.6, = —a. The null
hypothesesly : a= 0 andHg : B = b can thus be written as

Ho:RO=0, H:R.6,=0. (B.4)
Further,d, = [, 7, D) and®° = [3', , B, wheref and§ are the OLS estimators @ andy

based on the model (2.1), and

i Bl .
R.0 = [ Ic O _IG [ Y] (B.5)
6, = 6.+Zz)R[R(Z (—R é ) (B.6)

86)-s6.) = (8)-8.) e‘: “* = (RO [R(ZZ)R](RD), B

whereZ, = [Y, X3, V]. On writing Z, = [)21,\7}, Wheref(l = [\?, X1], we get:

AL A

. XX 0 o X{X1) ™1 0

Z*Z* = { ( 101) (\7/\7) :|7 (Z*Z*) 1= |: ( 101) (\7/\7)—1 :| ) (B'8)
o1 [V Y] Wy W
=Lt o | L i 9

whereWyy = [(Y/¥) — ¥/Xa (X{X1) " 2X(¥]

Wey Wy 0 fe Wyy
(Z.z.) 'R, = {le Wi 0 ] [ 0 ] = [ Wiy ] ; (B.10)
(

o 0 (vVv)1 —lg —(VV) L

= [Y'MY] = [Y/(My —M)Y] 2,

Z) 'R =Wy + (V) L, (B.11)

R
A BB Wy e
0.-6.=| 7=V |=| Wy | My+EUV)T] T (b-B). (B.12)
B—b —(VV)~t

B— B =Wy [Wey+ (VV) 1 7 (b— B) =Wy [Why+ (VV) 1] 4, (B.13)
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whered’= B—[? is the OLS estimate adin (3.23). Hence, we have

a=b-f = W+ V) YWHB - B)
= {IY'(Mz—M)Y] "2+ (V) 1LY (ML~ M)Y](B - B), (B.14)

which entails that

8% -s6,) = (RO [R(ZZ *1%]‘1

6.)
b—B) {[Y' (ML —M)Y] "L+ (V) 1} (b B)
B—B)'[Y (ML= M)Y]{[Y' (M — M)Y] >+ (V) 1} [Y/(My — M)Y] (B — B)
B— B)\M(Y Wy + (Y'MY) ™ ]VWY(B B)

B — B)Woy Wy + (Y'M1Y =) " W (B — B). (B.15)

Using Lemma A.1 withA = V\QY andB =Y'MyY in (B.15), we then get:

S62)-S6.) = (B-
= ([AB
- (3

(
= TB-

(
(
=
(
(

B) W,y [Ww+<Y’M1Y W) "t Wi (B — B)
BYA[A " +(B-A)AB-B)=(B-B)B-AHY BB
BYAIY (ML —=M)Y] = (YMY) 1B -B)

B[O — Q17X B-B)=T(B—B)A(B-B) (B.16)

whereQy = 1Y/(M; — M)Y and Qs = 2Y'M,Y. Since we havs, (8°) — S.(8,) = S(8°) - 5(8),
we get from (B.16), (3.13) and (3.30):

Q|

S(6) = 5(8°)— [S.(8)) —S.(8.)] = S(B°) ~T(B—BYA “(B-B) =T &3. (B.17)

8% =762, S.(8°) =T52. (B.18)

~0 ~0 ~
%:T<s<e>jos<e>> %_T<s<e>;os<e>> (B.19)
S.(8)) S8
~0 ~ ~0 ~
a( SURRLA )le(FS?)—?{) (8.20)
~0 ~ ~0 ~ ~0 A
P (sw >js<e>> P <s<e );5(6)) T ke <s<e >;Os<e>> (B21)
6) s.(8)) 8
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o .
% = Kr <S(esz()3(e)> . (B.22)

2
C. Proofs

To establish Proposition 4.1, it will be useful to state some basic identities faliffaeent compo-
nents of alternative exogeneity test statistics.

Lemma C.1 PROPERTIES OF EXOGENEITY STATISTICS COMPONENTS The random vectors
and matrices in3.1) - (3.14) satisfy the following identities: setting

By =: (Y'M1Y) YY'My, Bo=: (Y'N1Y)"2Y'Ny, (C.1)
Ci=:By—Bi, ¥ ="CiA'C;, Np=:lt—MiYA, (C.2)

we have
BiM;=B;, BoM;=ByN; =By, BiY=B,Y =g, (C.3)
ClY=0, CX1=0, CiPMY]=0, CiM;=CM[MY]=Cy, (C.4)
MiY A = PMY], Mi¥ My =MW = WM =Y, (C.5)
MiYkM; =Yk, MiA.Mi=MAM=A_, (C.6)
B1B) =B1B, =B;B| = %f)[sl, B,B, = %fzg,l, (C.7)
CiC = %(lel—QLs) -|1-A Ci%h = -|1-Cl’ Hoto = %%’ (C8)
B—B=(Bo—By)y=Cry=Ci(Mry), (C.9)
(B—BYA™(B—B)=y ¥y = (My) % (My), (C.10)
y-YB=[lr—YBly, y-YB=[r-YBly, (C.11)
0=Mi(y—YB) = M[Y]ly = MiM[M1Y]y = M[MyY](Myy), (C.12)
M(y—YB) = MM[MyY]y = MM[MyY](Myy), (C.13)

Ni(y—YB) = MiP(y—YB)=MiM[MPYJPy=MN:YNzy

= PMi(y—YB) =M[PMY|P(Myy), (C.14)
0=Mi(y—YB) =Nao(M1y), M(y—YB)=MNz(Mry), (C.15)
52 = Z(May) NNo (May), (C.16)

62— TYMIVly = TYMIMIMYly— T Moy MMY|(Miy) . (€.47)
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. 1,0 = 1 -
61 = TYNIM[N1Y]Nry = = (Myy) PM[PMiY]P (Myy), (C.18)
. 1~
%~ (Mayy { ThIMaY] -} ), (©.19)
1 T | o
Y YRy = fx/P[M[ X ]M[Y]y = 7 (My) P[M[Y]X2] (M1y), (C.20)
o 1 1
Or= Tx/M[ Jy=F(My)M V(Z](M1y). (C.21)
PrOOF OFLEMMA C.1  Using the idempotence bf; and (3.15), we see that:
BiMz1 = (YMyY) 2Y'MiM; = (Y'M1Y) " Y'M; =By, (C.22)
BoMz = [Y/N2Y] YY/NiM1 = [Y/Ny Y] 1Y/Ny = B = BNy = By (M — M), (C.23)
M1Y Ar = MY (Y/M1Y)"1Y/My = P(M1Y), (C.24)
CiM; =ByM; —BiM; =B, —B; =C;, CiX3 =CiM;X; =0, (C.25)
B1Y = (YM1Y)2Y'MyY = Ig = (Y'N1Y) YY/NY = By, (C.26)
C1Y =ByY —ByY =0, (C.27)
CiPM1Y] = [(Y'N2Y)"YY/Ny — (Y/M1Y) "Y' M1 MY (Y/M1Y) ~1Y'My
[(YNLY)"YY/NLY — (YM1Y) "Y' M1Y] (YM1Y) 1Y/ My
= (lg—Ilg)(Y'MY) YY'M; =0, (C.28)
M[MyY] = Cy It — P[MyY] = Cy, (C.29)
MiM[Y]My=M[Y], MiM[Z]M;=M[Z], (C.30)

1 —
Ml%Ml—*{MlM[ Y]M; — M M[Z] My} = Y4, Ml/\RMlszlM[Z]Mlz/\m (C.31)

so (C.3)-(C.6) are established. (C.7) and (C.8) follow directly from (Batfdl the definitions of
B1, Bz, C; and¥,. We get (C.9) and (C.10) by using the definitionsfind B in (3.4)-(3.5).
(C.11) follows on using (3.4) and (3.5). (C.12) comes from the fact treatahidualdvi; (y —Y3)
are obtained by minimizingy — Y B — Xyy||? with respect toy, or equivalently|ly —YB — X;y/|?
with respect tq3 andy. (C.13) follows from (C.12) and noting thét = M M;. Similarly, the first
identity in (C.14) comes from the fact that the residisP(y — Y 3) = My (y — PY[3) are obtained
by minimizing ||y — PYB — X1 y||? with respect tg, or equivalently by minimizingly — PYS — Xy y||?
with respect tq3 andy. The others follow on noting th&¥; = M1 P = P M; and

M1 M[M:PY]P = M[PM;Y]M:P = M[PM;Y]PM; . (C.32)
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To get (C.15) and (C.16), we note that

=y —YB — X1y =My(y—YB) = My It — YAy = [IT — MY A](M1y) = No(M1y)  (C.33)

hence
~D 1..,/... 1 SN/ P 1 INU
0% =L 00= L (y=YB)MMi(y = YB) = = (M1y) NoNz(Mzy). (C.34)

Further, using (3.11)-(3.3), (C.12) and (C.14), we see that:

62 = Z(y~YB)Ma(y—YB) = TyM[Yly= TyMiM[MiY]y = T (May)M[M:¥](May), (C.35)
57 = 1(y—YE)’Nﬂy—YfB):5<y—YB>’F>MlP(y—YB)
— YN [NMle—lwly) M(PMLYJP (Myy) (C.36)
55 = 6 (B-BYAB-B)= T{yMMMY]y} —y ¥y
Y {1M[Mm W}<M1y>, (€.37)
so (3.11)-(3.13) are established. Finally, (C.20) and (C.21) follow 3enkng thaﬂ\/llM[ ]

)
M[Y]M; = M[Y]M; and M;M[Z] = MiM[Z] = M[Z], so thatM;P[M[Y]X;] M1 = P[M[Y]X.] and
M =M[Z]. O

Using Lemma C.1, we can now prove Proposition 4.1.

PROOF OFPROPOSITION4.1  We first note that

B—B=(B2—B1)y=C1y, (C.38)
(B-B)AB-B)=yCiA 'Cry=y Wy, (C.39)
so that, by the definitions (3.1) - (3.3),

~BYAYB-B) _yWy

— _RVS-LR_ R — — —
A= K|(B B) Z| (B B) =K a_lz = 5_|2 ) | = 1, 27 3, 4, (C4O)
AT By5 - - B)Aaz BoB) Y4 i _aa (can
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where, using Lemma C.1,

. 1 ~ ~ 1, =
61 = (= YB)Na(y=YB) = TyNMINY]Nay = YAy, (C.42)
. 1-
ngyMl{TM[MlY]—Wo}(Ml)’):)//\zy, (C.43)
iy .y 1 )
65 =067 = 2y MiNgNoMry = /gy, (C.44)
io s 1 ,=— 1 -
65=06%= ZYMN]y= Ty MIMM1Y]Mry =y Asy. (C.45)
05=562=y A3y, 85=06"=Yyay. (C.46)
For 71, we have
AA=T(B-B)SB-B)=TYCi3"Cly=T(Y¥My) (C47)
where A A A A A
51 =020t - 620/ ¢ = (Y Ay) Ot — (Y Aay) Q2 (C.48)
The result forZ follows directly by using (3.3). O

In order to characterize the null distributions of the test statistics (Theér@mit will be useful
to first spell out some algebraic properties of the weighting matrices in Bitapo4.1. This is done
by the following lemma.

Lemma C.2 PROPERTIES OF WEIGHTING MATRICES IN EXOGENEITY STATISTICS The matri-
cesW, Ay, g, A4, YR and/\, in (4.1) - (4.6) satisfy the following identities:

No=N—W, CilA=CiAa=WA =Y Ay = YA, =0, (C.49)
1 1

Ciha=ZCr, WA= W, (C.50)

MIAM =A, I =1,..., 4. (C.51)

Further, the matrices ¥,, TA1, TA2, TA4, T4k and TA, are symmetric idempotent.
PROOF OFLEMMA C.2  To get (C.49) - (C.50), we observe that:

1 —
Ap =My (TM[MlY] - 4{)> My =As—Mi¥M; = Ay — Y, (C.52)

1 A 1,4 A A
CiNtPINLY] = =[Bo—Bi]NiNaY Ot Y'Ny = = QY NL — Q7Y MIINLY QYN
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14 R . A 1 .
= T [Q YN QY — QYN QY INg = = QY — QY INg

1.~ A
= 7 QM Y'Ny — Q&Y' My|Ny = [B, — By]N; = C1Ng,

CiM1 P[M1Y] = CiM1Y (Y/MgY)~Y/My =0,
M[YIM([Z] = M(Z],

hence

1. - 1. = 1 -
CiM=Cy <TN1M [NY] N1> = ZCINIM[NiY]Ny = ZCiNy (11 — PN2Y]) Ny =0,

1 1 -
Ciy = C1M1<TM[I\/I1Y]—%> M = =CaMiM[M;Y My — CaMs ¥ My

1 _ 1.1
= ZCiMy(Ir —PIMiY]))My — G = ZC; — =C1 =0,

1 — 1 — 1
CiNg= ?ClMlM M1Y]My = ?ClMlM[MlY] = ?Cl,
filA—l \ 71/A71 Vi 71/,\71 71
W = ZCIATICLMIM[M1Y My = ZCIATICI MIM[MyY] = —CLATICy = =W,
1- 1 1

1 ——  — —
Y/, = — {MIY] ~ M[Z]}M[Z] = .

(C.53)

(C.54)
(C.55)

(C.56)

(C.57)

(C.58)
(C.59)

(C.60)

(C.61)

(C.51) follow directly from the idempotence df; and the definitions of\|, | =1,..., 4. Finally,

the idempotence and symmetry of the weight matrices can be checked as follows

R R R 1\ - R
TY)(TY) = TCGACCATIC=T2CA (24 ) A 'C,=TCA G
0 0 1 1 T

= TY=TY,
(TAL)(TAL) = (NLM[N1Y]Np) (NtM[N1Y]Ng) = Nt M[NyY Ny = T Ay = T A,
(TAs)(T Ag) = MiM[M1Y M1 M; M[M1Y]M; = MiM[MyY My = TAs = T A,
(TA)(TA2) = T*(Aa—¥) (Ma—¥) = T2 (A=W, — W Ag+ W)

%) =T(MA—¥)=TA=TA;,

(C.62)

(C.63)
(C.64)

(C.65)

(C.66)



(TAJ(TA) =M[ZIM[Z] =M[Z] =TA, =TA’. (C.67)

O

PrRooOF OFTHEOREM4.2  Using Lemma C.1, we first note the following identities:
BiY = (Y'M1Y) 1Y MY = Ig = (Y'NLY) " Y/NY = ByY, (C.68)
M[M1Y]M1Y = M[N;Y]N1Y =0, BiXg=BoX; =0, NiX;=M;X; =0, (C.69)

NoM1Y = (It — MY A9)M1Y = (M; — MiYA)Y = My(Y —YAY) =0, NoMiX =0, (C.70)

MIY]Y =M[Z]Y =0, M[Y]X; = M[Z]X; = 0, P[M[Y]Xz]M[Y] = M[Y] P[M[Y]X]M[Y] . (C.71)
Then

Ci1y= (B2—B1)(YB+ X1y +u) =Cyu, (C.72)
YWy=yCA\Cy=UuCiA *Ciu=u Y u, (C.73)
Yy ALy = %y Ny M[N7Y]Npy = %u’ Ni M[N7Y]Nyu = U Ay u, (C.74)
1 - 1 -
}//\zy: ?)/ M]_ (M [M]_Y] — lIJO) Mly: ?U,Ml(M [M]_Y] — %) M]_U = U,/\zu, (C75)
1 1
Y Agy = Ty M1 NGNo My = fu’MlNgNzl\/llu, (C.76)
Y Aay = 2y M¥]y = ZuM[T]u=u Aau (€.77)
1 = —— =1 = —
YYRy = $>/P['V'[ ]Xz]'V'[Y]Y=?)/M[Y} PIM[Y]Xo] M[Y]y
— %u’l\ﬁ[\?] PM[Y]X2] M[Y]u= %u’ PM[YX2]M[Y]u=UYku, (C.78)
o2 = 1;/ M[Z]y = Eu’l\Z[Z] u (C.79)
RTT T ' '

Further, whera = 0, we haveu = g1(X) €, and the expressions in (4.7) - (4.8) follow from (4.1) -
(4.3) in Proposition 4.1 onaeis replaced byr1(X) € in (C.72) - (C.79).01(X) disappears because
it can be factorized in both the numerator and the denominator of each statistic. O

PrROOF OFPROPOSITIONS.1  We must study how the statistics defined in (3.1) - (3.3) change
wheny andY are replaced by* = yRi1+Y R andY* =Y R, This can be done by looking at the
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way the relevant variables in (3.4) - (3.14) change. We first note that
- 1 N A 1 N
Qy = fY*'NlY* = (YR2)Mi(YR2) = RppQiv Rz, Qfs= fY*/MlY* = Ry,Q Rz, (C.80)
hence A A A A A A
A7 = (Q)) ™ = (') = Ry (A" — Q) (Rpz) = RpyA(Ry)' - (C.81)
Using Lemma C.1, we also get:

B; = (Y/MY") Y*Mi = [(YR2)'M1(Y R2)] (Y R2)' M1 = Ry (YM1Y) ~1Y'My

— R,B., (C.82)
B5 = (Y/'NoY*) 'Y Ny = Ry2 (Y/N1Y) " 2Y/Ny = Ry; Bo, (C.83)
C; =B;—B;=R,;C;, CiY=R,CiY =0, (C.84)
3" =Biy' = Ry2Bi(yRu1+Y Re1) = RuR;3B + RoaRot, (C.85)
B =By = R11R§21[~3 +Ry3Ro1, (C.86)
B —B =Ciy =RuR}(B-B). (C.87)
0" = My(y"—Y*B") =M (yRi1+Y R~ Y Ro(RuRy} B+ RozRo1))
= RuMi(y—YB) =Ry, (C.88)
0" =My (y' —Y*B") = M1(YRi1+YR1-Y Re2(RuR2 B + Ry;Re1)) = R0, (C.89)

hence, sinc®&; X; = 0,

070" = R8, 52, (C.90)

?
= %G*’Nl 0 = Rfl%G’Nlﬁ =R2,5%, (C.91)
65 = &2~ (B B ) (@A) B -B) o
= RL0°— (B—PB) (RuRy;) Reod ' Rez(RuRyz ) (B~ B)
= RL[6°—(B—B)A B~ P)) =R 83, (C.92)

51 = 87°A = (R07)RZA(R,)) = Ra Ry (674)(Ryz)
= R4RI5(Ry), 1=1,234, (C.93)
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5 =RyRy5(Ry), =123 (C.94)

It follows that the.7; and.”#] exogeneity test statistics based on the transformed data are identical
to those based on the original data:

Z = kB -B)E)HE -B) o
= (B—B)'(RuRy;) [R1Ro; 51 (Ry7)'TH(RuaRy;) (B — B)
= Ki(B-B)EB-B)=T.i=1234, (C.95)

A = T -BYE) B -B)
T(B-B) (RuRy:) [Ra1Ro; 21 (Ry3)] H(RuRp:) (B~ B) = 4, | =1,2,3. (C.96)
Finally, the invariance of the statisti# is obtained by observing that
y'MZy =R yM[Zly, y'M[Y'ly" =R yM[Yy, (C.97)

whereZ* = [Y*, X1, Xo] andY* = [Y*, X3], SORZ, cancels out inZ O

PROOF OFTHEOREM6.1  Sinceu=Va+ 01(X) €, we can use the identities (C.72) - (C.79) and

replacey by Va+ 01(X) €in (4.1) - (4.1). The expressions (6.2) - (6.4) then follow through divisio
of the numerator and denominator of each statistich{X). O

PROOF OFTHEOREMG6.2  This result follows by applying the invariance property of Proposition
5.1 withR defined as in (5.2)y is then replaced by* = Xjy+ [V — g(X1, X2, X3, V, 1)]a+ e [see
(5.5)], and the identities (C.72) - (C.79) hold witlreplaced by

u, =V —g(Xe, X2, X3,V, M)]a+e. (C.98)

Further, in view of (C.5) and (4.4) - (3.14), each one of the matri#es\s,..., A4, ¥, Yk andAr
remains the same if it is pre- and postmultiplied\Ndy, i.e.

WM WM, A=MAM, =123 4, (C.99)
W=M¥ My, Y, =MYKM1, Ar=MiArMy, (C.100)

sou, can in turn be replaced by
MU, = —My [V — g(Xa, X2, Xa, V, I1)]a+M; e (C.101)

in (C.72)- (C.79). Upon division of the numerator and denominator of etatfstic byo1(X), we
get the expressions (6.6) - (6.8). Ol
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PROOF OFTHEOREM 6.3  The result follows from well known properties of the normal and
chi-square distributions: & ~ Nn[u, In] andA is a fixed idempotent x n matrix of rankr, then
X Ax~ x2[r; W’Au] . Conditional orX andV, ¥ is fixed, and

V(@) = g (&) + Mg = Maf [V — g(X1, Xo, X3, V, MT)]a+ €} = Ma (K + €) (C.102)

wherep = [V —g(Xz, X2, X3, V, I'I_)}aTis fixed ande ~ Np[, In]. By Lemmas C.1and C.Z,%, T/,
TNz, T4, TYR and TA, are symmetric idempotent, and each of these matrices remain invariant
through by pre- and post-multiplication b, [M1 %, M1 = ¥, etc.]. Thus

Stlys (@), W] = Ty (@) Wy, (@)= (u+&)M(TY)Ms(1+¢) (C.103)
= (u+e&)(T 0)(/,l+8)~X2[rank(TlIJO);u’(TllJO)u] (C.104)

where
rankT W) = tr(TW) =tr(TCA1C)) =tr(TA1C,C)) = tr(TA T 1A) =G,  (C.105)

(T W) i = p'My(T W) My = [ (8) (T W) 15 (2) = Sr[i (&), W] = 5(&, ¥).  (C.106)
The proofs for the other quadratic forms are similar, with the following degod freedom vary:

rank(T Az) = tr{Ng M[NyY] Ny} = tr{Ny } — tr{P[N1Y]} = tr{M; — M} — tr{NyY (Y'NyY) 2Y'N; }
= (T —ky) — (T — kg — ko) —tr{ (YN Y) " 2Y'Ny Y} = ko — G, (C.107)

rankTA2) = tr{T My (T IM[MY] — &) My} = tr{M:M[M1Y]M1} —tr{T ¥}

= tr{M} —tr{P[MY]} —tr{TW} =T —k; — 2G, (C.108)

rankT Ag) = tr{M{M[M1Y]M1} = tr{M1} —tr{P[M1Y]} =T —k; — G, (C.109)
rank(T Yk) =tr{M[Y] - M[Z]} = (T -k —G) — (T — k1 — G —kp) = kg, (C.110)
rankTAR) =tH(TAR) =tr{M[Z]} =T —G—k; — k. (C.111)

The independence properties follow from the orthogonalities given in9jCGaAd the normality
assumption. O

PROOF OFCOROLLARY 6.4  These results directly from Theorem 6.3 and the definition of the
doubly noncentrakF-distribution. Ol

45



References

Ahn, S. C. (1997), ‘Orthogonality tests in linear mode@%ford Bulletin of Economics and Statis-
tics 59, 83-186.

Andrews, D. W. K. and Stock, J. H. (2007), Inference with weak umgnts,in R. Blundell,
W. Newey and T. Persson, eds, ‘Advances in Economics and Ecoricgnétreory and Ap-
plications, Ninth World Congress’, Vol. 3, Cambridge University Presamnfridge, U.K.,
chapter 6.

Angrist, J. D., Imbens, G. W. and Krueger, A. B. (1999), ‘Jackkiifgrumental variables esti-
mates’,Journal of Applied Econometricst, 57—-67.

Angrist, J. D. and Krueger, A. B. (1991), ‘Does compulsory sclattdndance affect schooling and
earning?’ Quarterly Journal of Economid8VI, 979-1014.

Angrist, J. D. and Krueger, A. B. (1995), ‘Split-sample instrumentaides estimates of the return
to schooling’,Journal of Business and Economic Statistis225—-235.

Angrist, J. D. and Pischke, J.-S. (200Mpstly Harmless Econometrics: An Empiricist's Compan-
ion, Princeton University Press, Princeton, New Jersey.

Baum, C., Schaffer, M. and Stillman, S. (2003), ‘Instrumental varialieds@VIM: Estimation and
testing’, Stata JournaB(1), 1-30.

Blundell, R., R. and Horowitz, J. L. (2007), ‘A non-parametric test aigeneity’,Review of Eco-
nomic Studieg4, 1035-1058.

Bound, J., Jaeger, D. A. and Baker, R. M. (1995), ‘Problems withunsdntal variables estima-
tion when the correlation between the instruments and the endogenousataptarariable is
weak’, Journal of the American Statistical Associati®® 443—-450.

Caetano, C. (2015), ‘A test of exogeneity without instrumental varidhlesodels with bunching’,
EconometriceB3(4), 1581-1600.

Chmelarova, V. and Hill, R. C. (2010), ‘The Hausman pretest estimakEgsgnomics Letters
108 96-99.

Davidson, R., Godfrey, L. and Mackinnon, J. G. (1985), ‘A simplifiedsion of the differencing
test’, International Economic Revie6(3), 639—647.

Davidson, R. and Mackinnon, J. G. (1985), ‘The interpretation ofdiedistics’,Canadian Journal
of Economic4.8(1), 38-57.

Davidson, R. and Mackinnon, J. G. (1989), ‘Testing for consistersigg artificial regressions’,
Econometric Theor$(3), 363-384.

46



Davidson, R. and Mackinnon, J. G. (1990), ‘Specification tests bagedltificial regressions’,
Journal of the American Statistical Associati®®409), 220—-227.

Davidson, R. and Mackinnon, J. G. (1998stimation and Inference in Econometrigdxford
University Press, New York, New York.

Doko Tchatoka, F. (20Hj, ‘On bootstrap validity for specification tests with weak instruments’,
The Econometrics Journail(6), 137-146.

Doko Tchatoka, F. (2013, ‘Subset hypotheses testing and instrument exclusion in the linear IV
regression’Econometric Theor§8(1), 1192-1228.

Doko Tchatoka, F. and Dufour, J.-M. (2014), ‘Identification-rabingerence for endogeneity pa-
rameters in linear structural model$he Econometrics Journdl7, 165-187.

Doko Tchatoka, F. and Dufour, J.-M. (2016), Exogeneity tests arakvekentification in IV regres-
sions: Asymptotic theory and point estimation, Technical report, Departoiditonomics,
McGill University, Montréal, Canada.

Dufour, J.-M. (1979), Methods for Specification Errors Analysis withdvbeconomic Applications,
PhD thesis, University of Chicago. 257 + XIV pages.

Dufour, J.-M. (1987), Linear Wald methods for inference on covagarand weak exogeneity tests
in structural equationsn I. B. MacNeill and G. J. Umphrey, eds, ‘Advances in the Statistical
Sciences: Festschrift in Honour of Professor V.M. Joshi’'s 70th Baghdolume 11, Time
Series and Econometric Modelling’, D. Reidel, Dordrecht, The Netheslgmul 317-338.

Dufour, J.-M. (2003), ‘Identification, weak instruments and statisticarerice in econometrics’,
Canadian Journal of Economi&6(4), 767—808.

Dufour, J.-M. (2006), ‘Monte Carlo tests with nuisance parameters: neige approach to finite-
sample inference and nonstandard asymptotics in econometias’nal of Econometrics
138 2649-2661.

Dufour, J.-M. and Hsiao, C. (2008), IdentificationL. E. Blume and S. N. Durlauf, eds, ‘The New
Palgrave Dictionary of Economics’, second edn, Palgrave Macmillaningsteke, Hamp-
shire, England.

Dufour, J.-M., Khalaf, L. and Kichian, M. (2013), ‘Identification-nadtanalysis of DSGE and struc-
tural macroeconomic modelslpurnal of Monetary Economi@&0), 340-350.

Dufour, J.-M. and Taamouti, M. (2007), ‘Further results on projechased inference in IV regres-
sions with weak, collinear or missing instrumentkiurnal of Econometric$391), 133—-153.

Durbin, J. (1954), ‘Errors in variablesReview of the International Statistical Institl28, 23—32.

Engle, R. F. (1982), ‘A general approach to Lagrange multiplier distijcss, Journal of Economet-
rics 20, 83-104.

47



Engle, R. F., Hendry, D. F. and Richard, J.-F. (1982), ‘Exogendiigbnometricebl, 277-304.
Farebrother, R. W. (1976), ‘A remark on the Wu teEonometricad4, 475-477.

Frankel, J. A. and Romer, D. (1999), ‘Does trade cause growfhrderican Economic Review
89(3), 379-399.

Guggenberger, P. (2010), ‘The impact of a Hausman pretest on th@fsthe hypothesis tests’,
Econometric Theory56, 337-343.

Hahn, J., Ham, J. and Moon, H. R. (2010), ‘The Hausman test and iwsttkments’ Journal of
Econometric460, 289-299.

Hahn, J. and Hausman, J. (2002), ‘A new specification test for thatyadidnstrumental variables’,
Econometrica’0, 163—-189.

Harrison, A. (1996), ‘Oponness and growth: a time-series, crogatry analysis for developing
countries’,Journal of Development Economid8, 419-447.

Harville, D. A. (1997),Matrix Algebra from a Statistician’s Perspectjv8pringer-Verlag, New
York.

Hausman, J. (1978), ‘Specification tests in econometiifonometrical6, 1251-1272.

Hausman, J. and Taylor, W. E. (1981), ‘A generalized specificatiah EBssonomics Letter8, 239—
245,

Holly, A. (1982), ‘A remark on Hausman's tesEconometricab0, 749-759.

Holly, A. (19833), ‘Tests d’exogénéité dans un modéle & equations simultanées: Enarséidats
théoriques en information limitée et illustrations a des tests de dépendance aléitpe
monétaire en régime de changes fix&dhiers du Séminaire d’Econométs, 49—69.

Holly, A. (19830), ‘Une présentation unifiée des tests d’exogénéity dans les modélestoequ
simultanées’Annales de I'INSEBOQ, 3—24.

Holly, A. and Monfort, A. (1983), ‘Some useful equivalence prdigsrof Hausman’s testt:co-
nomics Letter0, 39—43.

Hwang, H.-S. (1980), ‘Test of independence between a subs&bdiastic regressors and distur-
bances’nternational Economic Revie@d, 749-760.

Hwang, H.-S. (1985), ‘The equivalence of Hausman and Lagrandgpiier tests of independence
between disturbance and a subset of stochastic regredsoosipmics Letters7, 83—86.

Irwin, A.-D. and Tervio, M. (2002), ‘Does trade raise income? Eviadefiom Twentieth Century’,
Journal of International Economics8, 1-18.

48



Jeong, J. and Yoon, B. H. (2010), ‘The effect of pseudo-erogs instrumental variables on Haus-
man test’;,Communications in Statistics: Simulation and Computa8y315-321.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (19€5)ntinuous Univariate Distributions, Volume
2, second edn, John Wiley & Sons, New York.

Kabaila, P., Mainzer, R. and Farchione, D. (2015), ‘The impact of asH&n pretest, applied to
panel data, on the coverage probability of confidence internvatsinomics Letterd31, 12—
15.

Kariya, T. and Hodoshima, H. (1980), ‘Finite-sample properties of this fes independence in
structural systems and LRTThe Quarterly Journal of Economi&d, 45-56.

Kiviet, J. F. (2013), ‘Identification and inference in a simultaneous ggiander alternative infor-
mation sets and sampling schem@&sie Econometrics Journd, S24—S59.

Kiviet, J. F. and Niemczyk, J. (2006), On the limiting and empirical distributibiVoestimators
when some of the instruments are invalid, Technical report, Departmeniaft@ative Eco-
nomics, University of Amsterdam, Amsterdam, The Netherlands.

Kiviet, J. F. and Niemczyk, J. (2007), ‘The asymptotic and finite-sampkeildisions of OLS and
simple IV in simultaneous equation€omputational Statistics and Data Analysit 3296—
3318.

Kiviet, J. F. and Pleus, M. (2012), The performance of tests on esrasty of subsets of explanatory
variables scanned by simulation, Technical report, Amsterdam Schooboiics, Amster-
dam, The Netherlands.

Kleibergen, F. (2002), ‘Pivotal statistics for testing structural pararsateinstrumental variables
regression’Econometricar0(5), 1781-1803.

Lee, Y. and Okui, R. (2012), ‘Hahn-Hausman test as a specificatibndesrnal of Econometrics
167, 133-139.

Lochner, L. and Moretti, E. (2015), ‘Estimating and testing models with maiyrtrent levels and
limited instruments’Review of Economics and Statist®&2), 387-397.

Mankiw, N. G., Romer, D. and Welil, D. N. (1992), ‘A contribution to the emraf economic
growth’, The Quarterly Journal of Economid97(2), 407-437.

Meepagala, G. (1992), ‘On the finite sample performance of exogensitydERevankar, Revankar
and Hartley and Wu-HausmarEconometric Reviewkl, 337-353.

Moreira, M. J. (2003), ‘A conditional likelihood ratio test for structurabdels’, Econometrica
71(4), 1027-1048.

Nakamura, A. and Nakamura, M. (1981), ‘On the relationships amoreyalespecification error
tests presented by Durbin, Wu and Hausm&onometricad9, 1583-1588.

49



Nakamura, A. and Nakamura, M. (1985), ‘On the performance of tgsf¥lband by Hausman for
detecting the ordinary least squares bias probldoirnal of Econometric9, 213-227.

Newey, W. K. (1985), ‘Generalized method of moments specification testidgurnal of Econo-
metrics29, 229-256.

Newey, W. K. (1988), ‘Maximum likelihood specification testing and conditional moment tests’,
Econometriceb3(5), 1047-1070.

Pearl, J. (2009)Causality: Models, Reasoning, and Inferensecond edn, Cambridge University
Press, Cambridge, U.K.

Poskitt, D. S. and Skeels, C. L. (2012), ‘Inference in the presehaeak instruments: A selected
survey’,FTEcx6(1), 26—44.

Revankar, N. S. (1978), ‘Asymptotic relative efficiency analysis afaie tests in structural sys-
tems’,International Economic Revietg, 165-179.

Revankar, N. S. and Hartley, M. J. (1973), ‘An independence tedtcanditional unbiased pre-
dictions in the context of simultaneous equation systenmsgrnational Economic Review
14, 625-631.

Reynolds, R. A. (1982), ‘Posterior odds for the hypothesis of inddpece between stochastic
regressors and disturbancdsternational Economic Revie23(2), 479-490.

Rivers, D. and Vuong, Q. (1988), ‘Limited information estimators and eregy tests for simulta-
neous probit modelsJournal of Econometric8%(3), 347—-366.

Ruud, P. A. (1984), ‘Tests of specification in econometriEspnometric Review®(2), 211-242.

Ruud, P. A. (2000)An Introduction to Classical Econometric Thep@®xford University Press,
Inc., New York.

Simon, H. A. (1953), Causal ordering and identifiabilityW. C. Hood and T. C. Koopmans, eds,
‘Studies in Econometric Method’, number 14 ‘Cowles Commission Monographs’, John
Wiley & Sons, New York, chapter Ill, pp. 49-74.

Smith, R. J. (1983), ‘On the classical nature of the Wu-Hausman statisticedependence of
stochastic regressors and disturbanEegnomics Lettersl, 357—-364.

Smith, R. J. (1984), ‘A note on likelihood ratio tests for the independentedes a subset of
stochastic regressors and disturbandesgrnational Economic Revie@b, 263—269.

Smith, R. J. (1985), ‘Wald tests for the independence of stochastic iesiabd disturbance of a
single linear stochastic simultaneous equati&tonomics Letter7, 87—90.

Smith, R. J. (1994), ‘Asymptotically optimal tests using limited information and testngxo-
geneity’,Econometric Theorg0, 53-69.

50



Smith, R. J. and Pesaran, M. (1990), ‘A unified approach to estimatiomrnogonality tests in
linear single-equation econometric modelsgurnal of Econometric44, 41-66.

Spencer, D. E. and Berk, K. N. (1981), ‘A limited-information specificatiest’, Econometrica
49, 1079-1085. Erratum, Econometrica, Vol. 50, No. 4 (Jul., 1982), 710

Staiger, D. and Stock, J. H. (1997), ‘Instrumental variables regmesgith weak instruments’,
Econometrica65(3), 557-586.

Stock, J. H., Wright, J. H. and Yogo, M. (2002), ‘A survey of weaktinments and weak iden-
tification in generalized method of momentsgurnal of Business and Economic Statistics

20(4), 518-529.

Thurman, W. (1986), ‘Endogeneity testing in a supply and demand frankEwReview of Eco-
nomics and Statistioc88(4), 638—646.

Wong, K.-f. (1996), ‘Bootstrapping Hausman’s exogeneity té&stonomics Letter§3, 139-143.

Wong, K.-f. (1997), ‘Effect on inference of pretesting the exodggnef a regressor' Economics
Letters56, 267-271.

Wooldridge, J. M. (2014), ‘Quasi-maximum likelihood estimation and testingdotinear models
with endogenous explanatory variablégurnal of Econometric&821), 226—-234.

Wooldridge, J. M. (2015), ‘Control function methods in applied econaegtrJournal of Human
Resource$0, 420-445.

Wu, D.-M. (1973), ‘Alternative tests of independence between stticheegressors and distur-
bances’Econometricatl, 733—750.

Wu, D.-M. (1974), ‘Alternative tests of independence between stticheegressors and distur-
bances: Finite sample resultEconometrical2, 529-546.

Wu, D.-M. (1983), ‘A remark on a generalized specification teEitonomics Lettersl, 365—-370.

Wu, D.-M. (1983d), ‘Tests of causality, predeterminedness and exogengitgrnational Economic
Review24(3), 547-558.

51



