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Abstract. A family of linear rank statistics is proposed in order to test the independence 
of a time series, under the assumption that the random variables involved have symmetric 
distributions with zero medians, without the standard assumptions of normality or 
identical distributions. The family considered includes analogues of the sign, Wilcoxon 
signed-rank and van der Waerden tests for symmetry about zero and tables constructed for 
these tests remain applicable in the present context. The tests proposed are exact and may 
be applied to assess serial dependence at lag one or greater. The procedures developed are 
illustrated by a test of the efficiency of forward exhange rates as predictors of future spot 
rates during the German hyperinflation. 
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1. INTRODUCTION 

The purpose of this paper is to describe a family of linear rank tests aimed at 
testing the independence of a sequence of random variables under a simple 
symmetry assumption, without the standard assumptions of normality or identical 
distributions. 

Namely, let X1, . . . , X,, be a time series of random variables having symmetric 
(marginal) probability density functions (pdf’s) with zero medians; it is not 
required that these pdf’s be identical in other respects. We want to test the null 
hypothesis (Ho) that X1, . . . , X, are mutually independent against the alternative 
that these variables are ‘positively (or negatively) serially dependent’. 

However, there is a problem in defining precisely the latter notion in a 
nonparametric context, especially since we did not assume covariances are finite. 
By the symmetry assumption, we can see easily that, under Ho, med (X,X,+k) = 0, 
t=l,..., n -k, where k is a positive integer (1 d k < n) and med (X,X,+k) refers 
to the median of XtXt+k. Then, a simple way of defining ‘positive serial depen- 
dence’ (at lag k) consists in saying that the medians of the variables XIX,+k are 
positive: 

med (X,X,+k) > 0, t=l,...,n-k; (1.1) 

similarly, ‘negative serial dependence’ can be defined via negative medians: 

med W,X,+~) < 0, t=I,...,n-k. WV 

Another concept of dependence one could also use is the concept of ‘positive (or 
negative) quadrant dependence’ introduced by Lehmann (1966), to which the 
reader is referred for further details. It will be sufficient here to indicate that, 
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under the symmetry assumption, if X, and Xr+k are ‘positively (negatively) 
quadrant dependent’ and the events X, Q 0 and Xl+k d 0 are not independent, 
then med (X,X,+k) > O(< 0); further, if second moments exist, we also have in this 
case E(X,X,+k) > O(<O), so that the alternatives (1.1) and (1.2) could be restated 
in terms of positive and negative autocorrelations. Under wide conditions thus, 
the tests described in this paper may be viewed as tests against serial correlation. 
Furthermore, it is easy to see that alternatives of the type (1.1) or (1.2) include as 
well a large variety of trend alternatives (monotonic, cyclic, etc.). 

A natural statistic to look at for such a test is the sequence of the products 
XrXr+k, t = 1,. . . , n - k. We propose to test Ho (against serial dependence at lag 
k) by applying linear rank tests for symmetry about zero to this sequence. The 
tests obtained in this way are both easy to run and applicable against a wide set of 
alternative hypotheses, such as the ones where (1 .l) or (1.2) holds. It is not 
required that Xt, t = 1, . . . , n, have identical distributions; in particular, variances 
may differ under Ho, a feature which may be useful even with Gaussian series. 
The linear rank statistics used integrate information about both the signs of the 
observations and their sizes (via the ranks of the absolute values IXtXt+kl, t = 
1 , * * - , n -k). The exact null distributions of the test statistics can be obtained 
easily and, in some standard cases, are already well tabulated. Finally by changing 
k, one has the opportunity of assessing dependence at various lags. 

None of the available nonparametric tests against randomness seems applicable 
under the same conditions. In particular, the tests considered by Wallis and Moore 
(1941), Moore and Wallis (1943), David (1947), Stuart (1952), Cox and Stuart 
(1955), Goodman (1958) and Granger (1963) use only information about signs 
and depend on the assumption that the observations have identical distributions 
under the null hypothesis. Similarly, the rank tests (based on the ranks of the 
original observations X,) studied by Wald and Wolfowitz (1943), Mann (1945), 
Daniels (1950), Stuart (1954), Knoke (1977) and Aiyar et al. (1979) depend 
crucially on the same assumption; furthermore, the tests of Mann, Daniels and 
Aiyar et al. are designed specifically against monotonic trend alternatives. It is 
also interesting to note that the widely used tests based on sample correlation 
coefficients are large sample tests (see Box and Jenkins, 1970, chapters 2 and 6), 
while the classical parametric tests of von Neumann (1941) and the modified von 
Neumann test (see Theil, 197 1, pp. 2 18-2 19) deal with serial correlation at lag 1 
only and assume homoskedasticity. 

Potential applications of the tests described below are to be found especially in 
studies of the behaviour of speculative prices, such as stock prices or exchange 
rates, usually in view of testing market efficiency. One important problem, in this 
area, involves testing whether a given time series follows a simple random walk, 
i.e., testing whether a series of price (or log-price) changes Pr - Ptpl are indepen- 
dent with zero mean (or median); for a general discussion, see Fama (1970). 
Evidence concerning the non-normality and symmetry of distributions of stock 
price or exchange rate changes has been presented by several authors, including 
Mandelbrot (1963, 1967), Fama (1965), Praetz (1972), Blattberg and Gonedes 
(1974), Giddy and Dufey (1975). Another related problem consists in testing 
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whether a given predictor of a market variable is ‘optimal’, e.g., the forward 
exchange rate between two moneys as a predictor of the corresponding future spot 
rate: this usually involves testing whether the prediction errors P1 -fit-l, where 
p,-r is a predictor of Pt, have mean zero and are uncorrelated; we give below 
an example of such a test. Furthermore, in many of these problems, the assump- 
tion of identical distributions is neither essential to the null hypothesis tested 
nor realistic; for example, with long historical series, heteroskedasticity is quite 
likely to be observed. 

. 

The family of tests considered is described in section 2 and the exact null 
distributions of the test statistics are obtained in section 3. In sections 4 and 5, 
special tests in the family are considered; in particular, we derive an exact run test 
for which critical points can be obtained from tables of the binomial distribution, 
and an analogue of the Wilcoxon signed-rank test for which tables built for this last 
test may be used. In section 6, we discuss some power comparisons with alter- 
native tests and present the results of a small Monte-Carlo experiment showing 
that a number of well-known alternative tests of randomness may be completely 
unreliable under conditions of heteroskedasticity. In section 7, the procedures 
developed are illustrated by a test of the optimality of the forward exchange rate 
as a predictor of the future spot rate during the German hyperinflation. Finally, 
in section 8, a few concluding remarks are made. 

2. DESCRIPTION OF THE TESTS 

Let Z,=X,X,+k, t=l,. . ., n -k, where 1 s k < n. It is easy to see that, under 
Ho, each random variable Zl, has a continuous distribution symmetric about 
zero; hence 

P[Z, 3 O] = P[Z, < O] = ;, t=l,...,n-k. (2.1) 

In a wide variety of cases, non-independence will break this pattern. In particular, 
under an alternative of positive (negative) serial dependence at lag k, the medians 
of the variables Zl, t = 1, . . . , n -k, will be shifted towards the right (left). This 
suggests to test whether these variables have median zero against such alter- 
natives. In order to do this, we shall consider the family of simple linear rank 
tests for symmetry about zero, applied to the variables Z,, t = 1,2, . . . , n - k. 
These are based on test statistics of the form: 

whereN=n-k and 

Ga 

u( * ) is an indicator function such that 

u(f)= 1, if 2 20 

=0, if z<O; 

R,’ = ; u(lzrI -l-51>, 
i=l 
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the rank of Iz,[ when IZ1), . . . , lZlvl are ranked in increasing order; 

arv (. ) is a score function transforming the ranks RI’. (2.3) 

(Note that Zt, R,’ and N are also functions of k; this could be made explicit by 
using instead Z& R i and Nk ; but, to avoid heavy notations in the sequel, we will 
adopt the convention of letting k implicit). 

Under the null hypothesis that Zr, . . . , Zrv have pdf’s symmetric about zero, 
the distribution of Sk is obtained in standard cases with the assumption that the 
observations Z1, . . . , ZN are independent (see Hajek, 1969, chapter V). The 
difficulty in the present case is that, even under Ho, the variables Z1, . . . , ZN are 
not independent Ialthough they have marginal distributions symmetric about 
zero). We show, in this paper, that this difficulty is in fact of no consequence here, 
in the sense that standard null distributions of Sk can be used. 

We shall furthermore assume that the score function in (2.2) is nonnegative: 

aN(r) 30 for all r. (2.4 

Then, under the alternative (1.1) of positive dependence, we expect the number of 
positive Zt’s to be greater than under Ho, and hence Sk to take a relatively large 
value: against this one-sided alternative we use a critical region of the form 
{Sk 3 c}. Similarly, against the alternative (1.2) of negative dependence, we use a 
critical region of the form {Sk 3 c’}, while a two-sided test has a critical region of 
the form {Sk 3 c or Sk d c’}. 

Finally, let us note that, if ties are present among the IZ,l‘s, the formula used in 
(2.3) in order to define Rj’ (given by Hajek, 1969, p. 103) has the property of 
assigning to the tied observations the highest rank associated with each tie. A 
somewhat more natural, although computationally less convenient, alternative 
approach would consist in using average ranks or average scores for the tied 
observations (see Hajek, 1969, chapter VII). In any case, under the continuity 
assumption adopted here, the method of treatment of ties can make a difference 
only in a set with probability zero. 

3. NULL DISTRIBUTIONS OF THE TEST STATISTICS 

First, let us introduce the following notations: 

x = (Xl, - * * , x>, 2 = (Z,, . . . ., ZJJ, 

Ix/ = (IXll, * * * 9 IXI), I4 = (IZII, * * ’ , lzvl), 
Gu=bdx1),. * ~,~4wn>>, ~4w=b4~zd,. * *,u(&4) 

R+= (R;, . . . , R;), 

dR’) = h(Rt), . . . , adRi% 

E = (0, l), E”=ExEx-.xE. 
\ Y / 

n times 

(3.1) 
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Since X1, . . . , X,, have continuous distributions, the variables Z1, . . . , ZN also 
have continuous (marginal) distributions. Consequently, the vector R’ is with 
probability 1 a permutation of (1,2, . . . , N), although all permutations may not 
be equally likely, even under Ho. Similarly, the vector aN(R’) is a permutation of 
(adl>, . . . , ahi(N and the rank statistic Sk = ~~~, z4(Z,)aN(R:) can be viewed 
as a linear combination of the set of constants aN(l), . . . . , aN (N). Furthermore, if 
the random variables r4(Zl), . . . , 14(ZN) and the random vector R’ are mutually 
independent with 

P[u(Z,)=O]=P[u(Z,)= l]=& t=l,...,N, 

the characteristic function of Sk is easily computed to be (with i = J-1): 

E[exp (irsk)] = ($)” f; [l + eiTuh.“‘], 7 real. (3.2) 
r=l 

The distribution of Sk is thus completely determined for a given score function 
aN(. ) and is identical to the null distribution of Sk obtained under standard 
assumptions (where Z1, . . . , ZN are assumed independent). 

We will now show that the above condition does hold in our problem. 

THEOREM 1. Let X1,. . . , X,, be a seql4ence of independent real random vari- 
ables having pdf’s symmetric about zero, k a positive integer (1 s k < n - 1) and 
z, =xrxf+k, t = 1,. . . . , n -k. Then, l4sing the notations in (3.1) and (2.3), rzith 
N = n - k, the random vector 14 (2) is independent of the random vectors IZ I and 
R’, and the elements of 14(Z) are mutually independent btqith 

P[u(Z,)=O]=P[u(ZJ= l]=& t=l,...,n-k. (3.3) 

Proof. By the symmetry assumption, the sign and the absolute value of X, are 
independent for each t (see Lehmann 1975, pp. 169-170). Thus, sinceXr, . . . , X, 
are independent, the random vectors u(X) and /Xl are independent; furthermore 
u(XJ, . . . , u(X,,) are mutually independent with 

P[u(Xr) = O] = P[z,(X,) = l] = $, t=l,...,n, 

so that the 2” different values which the vector u(X) may take in E” have the same 
probability (i)“. Then, since 

u(zr) = u(x,)u(xt+k)+[l - u(x,)][l - u(x,+k)], t=l,...,n-k 

with probability 1, we can see easily that exactly 2k of these values give each 
possible value of u(Z) in E”-k 

($)“-“. Therefore, u (Z,), . . . , 
and thus each of these has the same probability 

u(Z,-k) are mutually independent with (3.3) hold- 
ing, as well as independent of the vectors )Z I and R’ (for these are both functions 
of 1x1 only). Q.E.D. 

From theorem 1, we conclude that the distribution of the test statistic Sk = 
c,v_, u(z,b,dR,‘) ’ 1s completely determined under Ho. The mean and variance of 
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Sk under Ho are easily computed: 

EC&) =i f aN(t), 
r=l 

(3.4) 

var (Sk)=+ F a;(t). 
r=l 

(3.5) 

Furthermore, the distribution of Sk is symmetric about E(&) and approximately 
normal for maxi~&N[a&(r)/~~=r a’,(t)] sufficiently small (see Hajek 1969, 
p. 106). 

By specifying the score function aN (a ), we will now examine special cases in this 
family of test statistics. 

4. AN EXACT RUNS TEST 

If we 
form: 

consider the constant score function aN(r) = 1, the statistic Sk takes the 

n-k 

Sk = 1 u(zt)* 
r=l 

(4.1) 

Sk is here the number of non-negative values in the sequence Z1, . . . , Zn-k, i.e., 
the statistic of the sign test applied to Z1, . . . , Z,-k. From theorem 1, it is easy to 
see that, under Ho, Sk -Bi(n -k, $), i.e., Sk follows a binomial distribution with 
number of trials n -k and probability of ‘success’ &. Then, the fact that Sk takes a 
relatively big (small) value can be viewed as evidence of positive (negative) serial 
dependence. 

In particular, taking k = 1 and assuming X1, . . . , X, are all different from zero 
(an event with probability l), we can see that Si is the number of times consecutive 
Xl’s have the same sign; thus (n - 1) - S1 is the number of times changes of sign 
occur in the sequence Xi,. . . , X,, and n -Si is (with probability 1) the total 
number of runs in the sequence 14 (X1), . . . , u(X,,). Therefore (n - 1) - Sr - 
Bi(n - 1, $) and the null distribution of the total number of runs R = n - S1 can be 
characterized by 

R-l-Bi(n-l,$); (4.2) 

hence the mean and the variance of R are 

n-l n+l n-l 
E(R)=l+-=- 

2 2’ 
var(R)=- 

4 * (4.3) 

Too small a number of runs indicates positive serial dependence while too big a 
number indicates negative serial dependence. 

This runs test or close variants of it were studied in the past by David (1947), 
Goodman (1958) and Granger (1963). Nevertheless, one should note here that 
David’s test is conditional on the number of +‘s and -‘s in the sequence while the 
tests of Goodman and Granger are large sample tests. 
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5. THE SIGNED-RANK TEST AND OTHER TESTS 

If we take aN(r) = r, the statistic Sk becomes 

Sk = c” u(Z,)R;‘. 
r=l 

(5.1) 

Sk is the sum of the ranks of the non-negative Zt’s, the test statistic associated with 
the Wilcoxon signed-rank test against symmetry about zero, when applied to 
z, * * . , ZN. The distribution of Sk, under Ho, is exactly the same as the null 
distribution of the Wilcoxon test statistic (as can be seen easily by comparing with 
Lehmann, 1975, p. 165). It has been very extensively tabulated by Wilcoxon, Katt 
and Wilcox (1968). 

Other tests can, of course, be generated by using other score functions. We will 
mention the analogues of two other well-known tests of symmetry. If we take the 
scores 

aN(r) = El VI”‘, (5.2) 

where I Vlcr) is the rth order statistic from the absolute values of a N(0, 1) random 
sample, we get an analogue of the Fraser test (also called normal scores test). If we 

( 11 r 
ahdr)=C ~+2~+1, > (5.3) 

where C$ (. ) is the cumulative distribution function of a N(0, 1) random variable 
and 4-‘(a) is the inverse function of 4(e), we get an analogue of the van der 
Waerden test. (For further details, see Hajek and Sidak 1967, pp. 108-111). 

An interesting feature of these tests is that, in contrast with the runs test of 
section 4, they use not only information concerning the signs of the random 
variable Zr, . . . , ZN, but also their sizes via the ranks R t, . . . , R &. 

6. COMPARISON WITH OTHER TESTS 

In a recent simulation study by Lepage and Zeidan (1979) the powers of the 
sign, Wilcoxon and van der Waerden tests described above (with k = 1) were 
compared with those of a number of well-known alternative tests, including the 
tests proposed by Moore and Wallis (1943), Wald and Wolfowitz (1943), Mann 
(1945), Daniels (1950), Foster and Stuart (1955), von Neumann (1941) and 
Anderson (1942). The alternative hypothesis considered were linear and cyclical 
trends with normal dependent errors. In 48 different simulations (12 different 
models with sample sizes of 15, 25, 35 and 50) reported by Lepage and Zeidan 
(1979, tables 1 to 4), the Wilcoxon and van der Waerden tests showed the best 
power in 20 cases and a power at least as high as the best competitor in 8 other 
cases (nominal level considered: 0.05). In general, the powers of the Wilcoxon and . 
van der Waerden tests were very close, with the van der Waerden test being 
slightly more powerful and the Wilcoxon test computationally easier. However, 
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the power of the sign (or runs) test was appreciably lower than that of the two 
others; this is not surprising since this test uses only information about signs, a 
feature which nevertheless has the advantage of great simplicity. Thus, in terms of 
power, it appears that, under a wide range of circumstances, the tests suggested 
compare favorably with several well-known alternative tests. 

As indicated earlier, an important characteristic of the same tests is the 
allowance for non-identical distributions of the Xl’s under the null hypothesis 
(provided symmetry about zero is preserved), a property which is not shared by 
the available alternatives. A frequent instance of such a situation is one where 
variances (more generally, dispersion parameters) differ. In order to show clearly 
that a number of well-known alternative tests may be very unreliable (in the sense 
that the actual level may differ dramatically from the nominal level) under 
conditions of heteroskedasticity, we performed a small Monte-Carlo simulation 
with series of the form: X, = elYl, t = 1, . . . ,7’, where the Y,‘s are i.i.d. random 
variables with zero median. Two distributions for Y,[N(O, 1) and Cauchy] and two 
sample sizes (T = 30,60) were examined. The following tests were applied to 
these series; (A) serial dependence sign test (k = 1); (B) Wilcoxon serial depen- 
dence test (k = 1); (C) Wallis and Moore (1941) turning point test; (D) Moore and 
Wallis (1943) sign test; (E) Mann (1945) rank test; (F) Daniels (1950) rank test; 
(G) rank serial correlation test (Knoke, 1977); (H) first-order serial correlation 
coefficient rl = CT=, XtX, -1/CT=1 X:, using l/J? as standard error and the 
normal asymptotic distribution to determine levels; (I) modified von Neumann 
test (Theil, 1971, pp. 218-219); (J) Wald and Wolfowitz (1943) permutation 
test.’ These tests were performed in two-sided form at a nominal level of 0.05. 
The actual probabilities of rejection, estimated from 500 replications, are repor- 
ted in table I. From these results, we can see that the sign and Wilcoxon tests 
exhibit frequencies quite consistent with the nominal level of 0.05 (as expected) 
while the actual levels of all the other tests are generally greater than the stated 
level of the test, in some cases by a wide margin (e.g., H, I and J). Thus, the 

TABLE I 
LEVELS OF ALTERNATIVE TESTS UNDER HETEROSKEDASTICITY* 

X, = e*Y,, t=l,...,T 

Nominal significance level: 5%. Number of replications: 500 

Distribution 
of Y, 

N(O, 1) 

Cauchy 

TABCDEFGHIJ 

30 4.60 3.60 14.4 12.2 21.6 12.4 10.8 30.4 57.4 75.2 
60 3.00 5.00 23.0 19.0 24.4 16.4 14.6 45.2 68.4 81.0 

30 6.80 5.80 11.0 8.20 22.6 13.2 16.0 21.2 50.6 62.2 
60 2.60 4.80 10.8 12.6 27.4 17.6 14.2 36.2 61.8 72.6 

* Frequencies are given in percentages. Tests are two-sided except the modified von Neumann test 
(against positive serial dependence only). 
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latter tests may be very misleading under such circumstances and procedures of 
the type described above are then clearly more appropriate. 

7. EXAMPLE 

A standard problem in studies of foreign exchange market consists in testing 
whether the forward exchange rate F[ is an ‘optimal’ predictor of the correspond- 
ing future spot rate S,+i, both usually in log form. (For a survey of the work on 
these questions, see Levich, 1979). This is usually interpreted as implying that the 
errors of prediction S,, 1 -F, have mean zero and are uncorrelated. Furthermore, 
evidence of non-normality is quite frequent in this area so that nonparametric 
methods seem indicated. We will consider here the case where S, is the logarithm 
the exchange rate between the German mark and the U.S. dollar (DM/$US) and 
F, is the logarithm of the one-month forward exchange rate, during the interesting 
episode of the German hyperinflation. The series studied is monthly and covers 
the period January 1921-August 1923. It was analyzed previously by Frenkel 
(1977, 1979) who, using a parametric (normal) test, found some evidence of 
bias and serial correlation. However, as it is frequent for such data, this series 
exhibits signs of non-normality and heteroskedasticity, so that non-parametric 
tests of the type described above seem more appropriate here.* 

The sign and Wilcoxon signed-rank serial dependence tests (described in 
sections 4 and 5), for lags of 1 to 6 months, were applied to this series. The test 
statistics, jointly with their marginal significance levels for testing against positive 
or negative serial dependence, are reported in table II. We see from there that the 
sign test is not significant (at a level of less than 0.05) for any of the lags considered 
(although, if we test against positive serial dependence only, it is significant at a 
marginal level of 0.049 for lag 1). The sign tests, however, since they use only 
information about signs, cannot be expected to be very powerful in most situa- 
tions. On the other hand, the signed-rank test is significant for lag 1, although not 
for greater lags; if we test against positive dependence only, the marginal 

TABLE II 
SERIALDEPENDENCETESTSFORLOGFORWARD-LOGSPOTPREDICTIONERRORS 

(February 1921-August 1923)* 

k 1 2 3 4 5 6 

Sk 

Sign tests 20 19 18 18 15 15 
(0.099) (0.136) (0.185) (0.122) (0.557) (0.424) 

Signed-rank tests 329 294 273 228 208 180 
(0.047) (0.101) (0.115) (0.361) (0.423) (0.653) 

* Marginal significance levels for a two-sided test are given in parentheses; for one-sided 
tests against positive serial dependence, these levels are to be divided by 2; e.g., for the 
signed-rank test, 2P [S, 2 329]= 0.047. 
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significance level is 0.024 for lag 1 (0.050 and 0.057 for lags 2 and 3). This 
indicates some positive dependence at least in the short run and thus confirms, 
under less restrictive assumptions, the previous finding of Frenkel (1977, 1979). 

8. CONCLUDING REMARKS 

The tests described in this paper have a number of interesting features: besides 
being nonparametric, they are exact, can be used to assess dependence at various 
lags and do not require-the standard assumption of identical distributions under 
the null hypothesis. The last property is especially distinctive since, under 
conditions of heteroskedasticity for example, alternative tests of randomness may 
be very misleading. Furthermore, we may note that the alternatives considered 
are very wide,* including covariance stationary schemes as well as a number of 
nonstationary ones. 

The main limitations are the assumptions of symmetry and zero (or known) 
median. In practice, what we test is the joint hypothesis that the X;s are 
independent and have pdf’s symmetric about zero (hence, if second moments 
exist, E(X,X,+k) = 0, t = 1, . . . , n - k, for any k). The symmetry assumption may 
reasonably be maintained in a large number of situations. On the other hand, 
although there are many important problems for which the assumption of zero (or 
known) median is part of the null hypothesis, it would certainly be desirable to be 
able to relax it. This remains a topic for further research. 
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NOTES 

’ Most of these tests are described in detail by Lepage and Zeidan (1979). Computations were made 
on a CDC Cyber 173 computer using IMSL (June 1980) random number generators. 

* The Kolmogorov-Smirnov test statistic against non-normality is D = 0.196 [5% critical value = 
0.16; see Lielliefors (1968)]. Evidence of heteroskedasticity is reported by Frenkel (1979). 
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