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1. Introduction 

The problem of the instability of econometric relationships over time has 
been recognized by several econometricians [e.g. Chow (1960), Duesenberry 
and Klein (1965), Cooley and Prescott (1976)]. Parameter stability is 
especially important when one wants to use a model for forecasting and 
policy simulations. For example, the assessment of the stability of the 
demand for money is of crucial importance in decisions about the role of 
monetary policy. Generally, when using an econometric model to study the 
effect of a policy change, it is essential that the parameters of the model be 
invariant with respect to the change contemplated. In this respect, Lucas 
(1976) has shown that, since the parameters of econometric models reflect the 
optimal decision rules of economic agents and these integrate knowledge 
about policy decision rules, changes in policies are likely to induce changes 
in the parameters of the relationships. Assessing the importance of such 
possible instabilities may be particularly relevant in the context of policy 
simulation studies. 

A fairly general way of interpreting the instability of econometric 
relationships over time is to assume the presence of some sort of 
misspecification (omitted variables, incorrect functional forms, etc.). One 
could also speak of ‘structural changes’ in the economy but it can always be 
argued that the ‘structural parameters’ one has in mind are changing because 
the variables which determine them are omitted from the model, and that 
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these have changed. Therefore, testing for parameter stability over time may 
be considered as a way of testing for the presence of specification errors.’ 

We will be concerned here with the problem of detecting and assessing 
parameter instability in linear regression models. When one has in mind a 
specific type of structural change relatively powerful tests can usually be 
formulated. However, in the routine assessment of econometric models, there 
is a need for exploratory procedures aimed at being sensitive to a wide 
variety of instability patterns and capable of yielding information on the type 
and timing of structural change. By exploratory methods, we mean 
procedures akin to the ‘analysis of residuals’, as described by Anscombe 
(1961), Anscombe and Tukey (1963), Zellner (1975), Belsley, Kuh and Welsch 
(1980), ‘diagnostic checking’ in time series analysis [Box and Jenkins (1969, 
ch. 5)] and the various procedures proposed by Ramsey (1969, 1974) in order 
to detect departures from the assumptions of a model. Such procedures can 
be contrasted with ‘overfitting’, i.e., the approach consisting of nesting a 
model into a more general one (hence adding parameters and assumptions) 
and then performing a significance test on the added parameters [e.g. Box 
and Cox (1964)]; examples of the latter approach in testing for parameter 
stability over time can be found in Chow (1960), Quandt (1960), Farley and 
Hinich (1970), Cooley and Prescott (1976), Singh et al. (1976). These tests are 
likely to be more powerful against specific alternatives but depend on the 
assumptions of the wider model analyzed. It appears useful to have checks 
using as few extra assumptions as possible. Needless to say, the two 
approaches should be considered as complementary and not as substitutes. 

Entertained 
model 

Inference 
+ Conditional 

‘ analysis 
Criticism 

Fig. 1 

To put things in a wider context, if we view the statistical analysis of data 
as an iterative process of model building (depicted in fig. l), we are herein 
concerned with ‘model criticism’ [see Box and Tiao (1973, pp. S-9)]. The 
aim of the analysis is to place an entertained model in jeopardy and check 
for inadequacies or ‘anomalies’. Notably, we would like to have procedures 
capable of generating information concerning the types and timings of the 
possible instabilities, without requiring many additional assumptions: the 
data should ‘speak for themselves’. Finally, the various clues and 
‘diagnostics’ noticed may be combined with subject matter considerations 
and suggest possible modifications to the model. Our general attitude is thus, 

‘For some further details concerning the relationship between specikation errors and 
parameter instability, see section 3. 
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to a large extent, that of ‘exploratory data analysis’ as exposited by Tukey 
(1962, 1977) and Mosteller and Tukey (1977). 

A fairly general approach aimed at investigating the stability of the 
regression coefficients of a given relationship consists of estimating these 
recursively, adding one observation at a time. The ‘predictive performance’ of 
the model can then be simulated, each observation in the sample being 
predicted with the parameter estimates based on the preceding observations. 
In particular, standardized one-step ahead prediction errors may be 
computed. This sequence was called the ‘recursive residuals’ by Brown, 
Durbin and Evans (1968, 1975). Under the conditions of the classical linear 
regression model and, in particular, if the regression coefficients are stable 
over time (or no specification error is present), these constitute a set of 
residuals with mean zero and scalar covariance matrix, similar in this respect 
to the BLUS residuals.’ They are thus especially convenient both for a 
descriptive analysis and for the construction of various test statistics. They 
were introduced, apparently independently, by Brown, Durbin and Evans 
(1968, 1975) in the context of testing parameter stability over time (with the 
CUSUM and CUSUM of square tests) and, in a somewhat different form, by 
Heyadat and Robson (1969) in a test for heteroskedasticity.3 They have 
multiple uses. In particular, Harvey and Phillips (1974) proposed another test 
for heteroskedasticity based on them, Phillips and Harvey (1974) used them 
to test for serial correlation while Harvey and Collier (1977) provided a test 
for functional misspecitication. The recursive residuals also have the great 
intuitive appeal of being generated by simulating the operation of the model 
as a prediction instrument and they are computationally simpler to obtain 
than the BLUS residuals. Further, they can be considered as a cross- 
validatory device in the spirit of Stone (1974) and Geisser (1975). 

The recursive estimation process along with the recursive residuals thus 
seem to offer a very interesting basis for a data-analytic approach to the 
analysis of structural change. The purpose of this paper is to review, 
systematize and extend in a number of ways the approach originating in 
Brown, Durbin and Evans (1975). In particular, we want to stress the fact 
that a large number of statistics useful for the analysis of structural change 
can be obtained rather cheaply from this simple process of recursive 
estimation. Basically, two types of outputs can be generated: 

(1) a number of potentially revealing descriptive statistics (e.g. in graphical 
form) which can be examined, interpreted and cross-checked in search 
for indications of structural change; 

‘See Theil (1971, ch. 5). 
3Brown et al. (1975, p. 189) also mention that the recursive residuals were known to them in 

the mid-1950s as a generalization of the Helmert transformation and are probably ‘much older’. 
On this issue, Farebrother (1978) has pointed out that the recursive residuals may be found 
(though not in a very explicit form) in a little known work by Pizetti (1891). 
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(2) a number of related significance tests allowing the investigator to assess 
the ‘significance’ of the patterns or ‘anomalies’ observed. 

Among the more specific items we want to stress or suggest, let us mention 
the following. First, the recursive residuals are probably the basic instrument 
for the analysis of structural change, as opposed to the CUSUM graphs (on 
which attention has traditionally centered), especially if one is interested in 
tracking possible points of discontinuity.4 Second, the recursive estimation 
process allows the computation of other sets of residuals with simple 
statistical properties and whose observation may be instructive in the 
analysis of structural change; in particular, we suggest computing 
standardized first differences of recursive estimates and several-steps ahead 
recursive residuals; in some cases, these may track instabilities which were 
completely missed by the recursive residuals while, in other cases, they will 
usefully cross-check observations made on the recursive residuals and allow a 
more precise assessment of points of discontinuity. Third, in order to be in a 
better position to interpret the behaviour of the recursive (and related sets of) 
residuals and to construct test statistics, we examine more carefully their 
properties when parameter instability is present; in particular, it is shown 
that the recursive residuals remain uncorrelated even when regression 
coefficients are unstable, a property which greatly facilitates the latter study. 
Fourth, a number of significance tests are suggested, besides the CUSUM 
tests originally proposed by Brown et al. (1975). Given the very nature of the 
basic statistics generated by the recursive estimation process (prediction 
errors, changes in the coefficient estimates), structural changes will be 
indicated by tendencies to either overpredict or underpredict, heterogeneity 
in the prediction performance of the model, trends in the coefficient 
estimates, etc. The problem is to quantify the ‘statistical significance’ of 
such patterns. For that purpose, a number of test statistics are described, 
bearing on the locational (systematic over- or under-prediction) and 
heteroskedacticity characteristics of these series. In selecting these, we tried to 
stress simple and intuitive test statistics, with exactly-known distributions in 
small samples; for example, several runs tests are suggested as an especially 
simple and convincing way of assessing the significance of what one sees in 
the graphs of the recursive residuals. 

It is important to note that significance tests in this context should be 
‘regarded as yardsticks for the interpretation of data rather than leading to 
hard and fast decisions’ [Brown et al. (1975, p. lSO)]. High power against a 
very specific alternative is not the concern here; we prefer some power 
against a wide range of interesting alternatives and, especially, ‘suggestions’ 

4For some applications of the CUSUM tests to economic relationships, see Khan (1974, 1978), 
Brown et al. (1975), Cameron (1979), Heller and Khan (1979), Riddell (1979), Stern et al. (1979), 
Hwang (1980). 
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from the data. One may also characterize these as being ‘general tests’ [in the 
terminology of Ramsey (1974)] or ‘non-constructive tests’ [to use the 
terminology of Goldfeld and Quandt (1972)], in the sense that they are tests 
against broad diffuse alternatives. 

In section 2, we study in some detail the properties of the recursive 
residuals under the null hypothesis. The standardized first differences of 
recursive estimates and the various sets of k-steps ahead (kz 2) recursive 
residuals are introduced as additional diagnostic instruments. Further, the 
problem of computing ‘recursive residuals’ when the covariance matrix of the 
disturbances is not scalar (i.e. in the generalized least squares set-up) and/or 
lagged dependent variables are present is discussed succinctly. 

In section 3, we examine the properties of the recursive residuals and 
related series when parameter instability is present. Among other things, a 
number of schemes involving fixed and random coefficients are studied, 
standardized first differences of the recursive estimates are rationalized as an 
additional diagnostic instrument and the link between parameter instability 
and specification errors is explicited. 

In section 4, the methodology itself is described, including a number of 
descriptive statistics to be considered individually and cross-checked as well 
as several significance tests allowing the investigator to assess more rigorously 
the importance of various observed deviations from the pattern expected 
under the null hypothesis. Finally, in section 5, we make some concluding 
remarks. 

2. Recursive estimation and recursive residuals 

2.1. Recursive estimation 

Let us consider the varying parameters model in its full generality as set 
up by Brown, Durbin and Evans (1975), 

Yr = xx + 43 

t=l,...,7: (1) 

where, at time t, yr is the observation on the dependent variable, x, is a K x 1 
column vector of non-stochastic regressors, /I, is a K x 1 vector of regression 
coefficients, u, is a disturbance term which follows a normal distribution with 
mean zero and variance a:. The disturbances ui,. . .,I+ are assumed to be 
independent (ie). Further, we will consider that the ordering of the 
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observations corresponds to their time ordering (or, more generally, to some 
natural order). We want to test the null hypothesis 

HO : /I1 = fi2 = . . . =/IT 5 /I (constancy of regression parameters), 

2 fJ1=rJ;=...=+fJ2 (homoskedasticity). 
(2) 

Under H,, model (1) becomes the classical linear regression model 

y=xj?+u, u-N[0,~213] (3) 

where 

Y=(Yl,...,YT)I, X’=[x,,...,x,], u=(u1,...,t+)‘. (4) 

In this framework, a natural approach in order to investigate the stability 
of the regression parameters consists of estimating recursively the parameter 
vector. Using the K first observations in the sample to get an initial estimate 
of j, we gradually enlarge the sample, adding one observation at a time, and 
re-estimate fl at each step. We get in this way the following sequence of 
estimates: 

where 

6, = (x:x,) - ‘x: Y,, r=K,K+l,...,‘T: (5) 

x:=cx1,.~.,~rl, Y,=(Y,,..*,Y,)‘. (6) 

We will furthermore assume that r(X,) = K, for all r=K,. . ., T5 It is 
intuitively clear that an examination of the sequence b,, r=K,. . ., T is 
capable of supplying information concerning possible instabilities of the 
regression coefficients over the sample period. The problem is to get an idea 
of what kind of behaviour one can expect of this sequence under H, and to 
find related statistics with known distributions whose behaviour is relatively 
easy to interpret. 

A way to do this is to compute for each r=K + 1,. . ., T the forecasted 
value of y, using the estimate of jI based on the I- 1 previous observations 
and, then, the corresponding forecast error, 

u,=y,--x:6,-1, r=K+l,...,T. (7) 

5This will not usually be a very restrictive qualification. Yet, a case where diffkulties may 
occur relatively easily is the one where dummy variables are present among the regressors. 
However, problems of this type can be dealt with rather simply [see Brown et al. (1975, pp. 152- 
15311. 
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What we do, in a sense, here is to simulate the operation of model as a 
prediction instrument. One can verify easily that, under H,, U, has mean zero 
and variance a2df, where 

d,=[l+x:(X:_,X,_,)-‘x,13, r=K+i,...,T @I 

If we divide V, by d,, we obtain a set of standardized prediction errors, 

w, = vrldr, r=K+l,...,r (9) 

having the same variance u’. These were called the ‘recursive residuals’ by 
Brown et al. (1968, 1975). What is more important, the same authors showed 
that, under H,, 

E(w,w,)=O for rfs, (10) 

so that w~+~,..., wT are independent N[O,& a pattern which should be 
relatively easy to recognize. Furthermore, convenient formulas allowing 
computation of the recursive residuals in an economic way without having to 
invert a matrix at each step are available, 

(x:x,)-‘=(x:-,x,_,)-‘- 
(x:_,x,_,)-‘x,x:(x:_,x,_,)-l 

1 +x:(X:-,X,_,)-‘x, ’ 
(11) 

k=b,-1 +(x:x,)-'x,(Y,-x:b,-l), (12) 

where 

s,=s,_,+w,2, (13) 

S,=(Y,-X$,)‘(Y,-X,&).6 (14) 

As one can easily see from the above definition, the order of the 
observations is crucial in the definition of the recursive residuals. In principle, 
one can get a different set each time the observations are reordered (except 
when one simply permutes the first K observations). Clearly, not all 
these sets are equally relevant for the analysis of structural change. However, 
a natural alternative set of residuals, also suggested by Brown et al. (1975) is 
the set of recursive residuals obtained when the order of the observations is 

6Formula (11) is due to Plackett (1950), Sherman and Morrison (1950) and Bartlett (1950). 
Proofs of formulas (12) and (13) are given in Brown et al. (1975). Moreover, one should note that 
this algorithm can be viewed as a special case of Kalman filtering, a technique well known in 
control theory [see Kalman (1950), Duncan and Horn (1972), Chow (1975, ch. 8)]. For a review 
of recursive estimation algorithms, the reader may see Riddell (1975) and Phillips (1977); on the 
computation of the recursive residuals, see also Farebrother (1976). 
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simply reversed, i.e., obtained when running the recursive estimation process 
backwards. The behaviour of these may be cross-checked with that of the 
forward recursive residuals and may be especially useful in assessing the 
presence of structural change near the beginning of the sample period. 

Another illuminating way of looking at the recursive residuals [pointed 
out by Phillips and Harvey (1974)] is to regard them as a member of the 
family of ‘linear unbiased with scalar covariance matrix’ residuals. We 
proceed to examine this aspect with further detail in the following section. 

2.2. Linear unbiased scalar residuals and recursive residuals 

Let us consider the classical linear regression model (3) (where the 
normality assumption can be dropped for the purposes of this section). The 
ordinary least squares (OLSQ) residuals resulting from the regression of y on 
X are given by 

where 

G=My=Mu, (15) 

M=I,-X(X1X)-‘X’. (16) 

The vector ri has mean 0 like u, but whereas u has a scalar covariance 
matrix, 

E(uu’) = oZI,, (17) 

this property is not preserved by ri, 

E(iiii) = 02M. (18) 

Any R x 1 vector of the form u”= Cy, which has mean zero and scalar covariance 
matrix 021R, i.e., 

E(c) = 0 and E(iZ’) = a2Z,, (19) 

is called a ‘linear unbiased with scalar covariance matrix’ (LUS) set of 
residuals. 

From these two properties, the matrix C must satisfy 

P.1) cx=o, 

P.2) CC’ = I,. 

Theil (1971, section 5.2) shows that the maximum dimension of the vector II 
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is T-K and that a vector of LUS residuals always exists. Some other 
properties that the matrix C and the vector u” must satisfy are listed below, 

(P.3) CM=C and MC’=C’, 

(P.4) G=Cy=Cu=CMu=CQ, 

(P.5) C’C=M, 

0’4 c?'u"=y'c'Cy=y'My=&'& 

Typically, one may define an infinity of vectors of LUS residuals. The 
BLUS residual vector introduced by Theil (1965, 1968) is a vector of T-K 
LUS residuals having the further property of minimizing E[(rl-u,)‘(G-ur)], 
where u1 is a (T-K) x 1 sub-vector of u, i.e., they minimize the expected 
squared length of the difference rl-u,. We refer to Theil (1971, sec. 5.2-5.3) 
for a detailed study of the BLUS residuals.7 Note, however, that the fact that 
the BLUS residuals minimize EC@--u,)‘(ti-u,)] does not guarantee that they 
are optimal for various testing purposes, and in particular for detecting 
parameter instability. 

The recursive residuals constitute another set of LUS residuals (with R= 
T-K). If we define 

w=(wK+l,...,wT)‘, (20) 

the matrix C such that w= Cy is 

r a11 a12 ... alK WK+l 0 0 . . . 01 

“fl "f" . . . "fK a2,f+1 . l/dK,2 0 . . . 
. . . . 

. 

aN1 aN2 . . . aNK aN,K+l aN,K+2 aN,K+3 . . . 

where N=T-K and 

1 
=--Xh+t(Xk+t-lXK+r-l)-lXk+r-l, d 

t=l,...,N. 
K+r 

‘For further details on the properties of LUS residuals, the reader may see Dent and Styan 
(1978) and Godolphin and de Tullio (1978). 
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One can check by direct multiplication that 

CX=O and CC’=I,_,, (23) 

so that properties (P.l) to (P.6) hold. Therefore, if the disturbances ZJ,, 
t=l,..., 7; have mean zero, the same finite variance and are uncorrelated, 
the recursive residuals also have the same property. Furthermore, if 
u~N[0,~~Zr], then w-N[O,~~lr_~], which means, as pointed out 
previously, that the recursive residuals are i.i.d. N[O,a’]. 

2.3. Standardized first differences of recursive estimates 

The recursive residuals allow an analysis of parameter instability via a 
consideration of its effects on a set of standardized prediction errors. It is 
also intuitively attractive to look directly at the trajectory of the recursive 
parameter estimates. The problem here is that the behaviour of the graphs 
(versus time) of the different coefficient estimates under the null hypothesis 
appears difficult to assess. 

Nevertheless, from eq. (12), we have 

6,-b,_, =(x:x,)-‘x,(y,-x:6,_,) 

(24) 
= d,(X;X,) - lx, w,, r=K+1,...,7; 

so that, under He, the changes in the parameter estimates as we proceed with 
the recursive process are independent and normal with mean 

E(b,-b,_,)=O, r=K+l,...,?: (25) 

and covariance matrices 

E[(b,-b,_ ,)(b,-b,_ 1)‘] = 02d,2(X:X,)-1x,x:(X:X,)- ‘, 

r=K+l,...,T 
(26) 

Now let 

4 =(h,, . . -9 bKrY, (x:x,)- l= (Q,. . ., %). (27) 

The jth component of b,- b,_ I, where 12 j j K, can be written 

Thus, under HO, the differences bj,,- b,,,_ 1, r = K + 1,. . ., T, are independent 
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and normal with mean zero and variances a*D$ r = K + 1,. . ., 7: respectively, 
where 

D, = d,(a;,x,). (29) 

Let us assume that D, # 0, r = K + 1,. . ., T. Then, if we divide bj,r-bj,,_l by 
ID,,/, the resulting standardized differences 

d,=(bj,,-bj,,~1)lJDj,J, r=K+l,...,T (30) 

are independent N[O, rr*] under H,. The K vectors 

Aj = (A, K + 19 . . .T A, T)‘, j=l,...,K, (31) 

constitute K sets of LUS residuals. They are closely linked to the recursive 
residuals, since, by (28)-(30), 

Ajr =(DjrllDjr()Wr , r=K+l,..., (32) 

so that the elements of each vector Aj have the same absolute values as those 
of W. Nevertheless, they may exhibit very different sign patterns. In section 
3.2, we give an example of a case where looking at the first differences is 
likely to be much more revealing concerning structural change than looking 
at the recursive residuals. Finally, let us note that A, (1 zjs K) can be 
defined in a somewhat more general way (avoiding the assumption Dj,#O, 
r=K+l , . . .,7’) by using the formula 

Ajr = 4Djr)Wr 7 r=K+l,...,T, (33) 

where 

s(x) = 1 if x>O, 

=o if x=0, (34) 

=-1 if x<O. 

2.4. Several-steps ahead recursive residuals 

The recursive residuals, as defined by Brown et al. (1975) are generated by 
simulating the performance of the considered relationship as an instrument 
of prediction one-step ahead (after each updating). We suggest it can be of 
interest to consider also prediction two or more steps ahead. For example, 
let us look more closely at the two-steps ahead prediction errors obtained 
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from the recursive estimation process, 

v2,r=yr-x:br-2, r=K+2,...,T. (35) 

It can be verified easily that, under Ho, vZ,, has the mean zero and variance 
a2d2 z,,, where 

d 2,,=c1+~:(x:-,x,-2)-'~,13, r=K+2,...,IT: (36) 

so that the standardized prediction errors 

W2,r=~2,rld2.n r=K+2,...,IT: (37) 

have mean zero and the same variance a2. We will call these the ‘two-steps 
ahead recursive residuals’. Furthermore, v2,r can be rewritten 

where (24) has been used, hence (taking szr) 

%2,rv2.s)=a2&,r if s=r, 

=a2d~x:+1(X;X,)-1x, if s-r=l, (38) 

=o if s-r> 1, 

so that any pair of the two-steps ahead recursive residuals, say w2,* and w~,~, 
are independent provided Is-r1 22. Consequently, if we denote w2 = 

(w 2.K+23**7 w2,J', the distribution of the vector w2, under Ho, is normal 
with mean zero and covariance matrix a2B2 = a2 [@], where (taking s 2 r) 

p = 1 
N 

if s=r, 

=(d,Z/d3,,d2,,+l)x:+1(X:X,)-1x, if s=r+l, 

=o if s-r>& 

and bit)=b$). It is important to note here that the matrix B2 is entirely 
known from the sample data. 
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These results are easily generalized to the case of k-steps ahead (kz2) 
prediction errors, 

v,c,r=yr-X:br-,c, r=K+k,...,T (39) 

The corresponding ‘k-steps ahead recursive residuals’ are given by 

where 

Wk.? = Vk,r/dk.r, r=K+k,...,z 

dk,r=[l+X:(X:_kXr-k)-lX,]), r=K+k,...,T’ 

Now vk,r can be rewritten 

k-l 

Uk,r=yr-Xib,_ I+ C X:(b,-i-b,-i- 1) 
i=l 

k-l 

=d,w,+ C dr-ix:(X:-iX,_i)-lX,_iW,_i 
i=l 

where 

k-l 

=i&zf~‘w,-i, r=K+k ,..., 7: 

,$k) = d II * if i=o, 

=d,_ix~(X~_iXr-i)-lx,_i if 1 sisk-1, 

(40) 

(41) 

(42) 

(43) 

=o otherwise, 

from which we can see easily that vk,r and vk,S are independent provided 
1s - r( 2 k. Consequently, if we denote 

(44) 

the distribution of the vector wk, under H,, is normal with mean zero and 
covariance matrix 

E(wkw;) = n2Bk = c~~[bii)-J, 

‘Note that, in the sequel, we will usually keep the term ‘recursive residuals’ in order to 
designate the ‘one-step ahead recursive residuals’. 
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where (taking s 2 r) 

b(k) = 1 
IS if s= r, 

k-l 

=(1/d&& 1 a$‘@\+(,_,, if O<s-rsk-l, 
j=O 

(45) 

=o otherwise, 

and bck)= bck) Consequently, each vector wk, where k>= 2, does not constitute IS SI . 
a set of LUS residuals. Nevertheless, since any two k-steps ahead recursive 
residuals are independent provided they are separated by k periods or more, 
it is easy to find subvectors of wk which are sets of LUS residuals. For 
example, if k = 2, the sets 

{W .t=2,4 ,..., T,} and {~~,~+,:t=3,5,...,T2}, Z,K+t. 

where Tl and T, are respectively the biggest even and odd integers smaller 
than or equal to T-k, constitute two different sets of LUS residuals, 
containing approximately (T- k)/2 elements. In general, the k sets 

Aj={Wk,.+j+ki:i=O, l,...,nj}, j=l,...,K, (46) 

where nj is the biggest positive integer such that K + j+ knjs 7: constitute k 

different sets of LUS residuals. 

2.5. Some extensions 

Frequently, one wishes to impose a set of linear constraints on the 
parameters of a linear model of the form (3) and then proceed to a stability 
analysis. Since this is equivalent to a reparametrization of the model, the 
easiest way to proceed in this case is precisely to reparametrize accordingly 
and then proceed as usual to obtain the recursive residuals. These and all the 
associated recursive statistics (several-steps ahead recursive residuals, etc.) will 
have the standard properties under the null hypothesis. 

Another frequently encountered problem is the one in which the 
covariance matrix of the errors is non-scalar, 

u-N[0,02v], (47) 

where V is a T x T positive definite matrix. If V is known, we can find a non- 
singular matrix P such that P’VP=I.. Thus, by multiplying both sides of (3) 
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by P’, we obtain the transformed model 

p’y=(P’X)/?+v, v-N[0,a2Z,], 

which has the standard form.’ The difficulty, in practice, is that I/ may not 
be entirely known. Nevertheless, having some knowledge of the form of K 
one can usually obtain a consistent estimate of V using the full sample; the 
corresponding transformation may then be performed. For example, if the 
errors follow an AR(l) process, 

where the 8;‘s are i.i.d. N [0, a’], we can estimate p consistently with the T 

observations available (using, for example, the Hildreth-Liu or the 
Cochrane-Orcutt algorithm) and then perform the standard autoregressive 
transformation with the resulting estimate 6, 

Yt-h&l =h,-i%JS+$, t = 2, . . .) i? 

If j? is sufficiently close to p, we may expect the corresponding recursive 
residuals to have (under the null hypothesis) properties quite close to those 
of the residuals based on the true value of p. However, there is no general 

guarantee that various test statistics computed from both sets of recursive 
residuals (based on p and fi respectively) will have the same asymptotic 
distributions [see Durbin (1970)]. Evidence obtained from such ‘approximate 

residuals’ should thus be taken cautiously and it would seem important in 
such a case to study the sensitivity of the conclusions to different values of p. 
One possible method would be to consider a grid of values of p (possibly 
inside some neighbourhood of b), do the analysis conditionally on each of 
these values, and see whether the main conclusions are the same. 
Presumably, if the model is correct, one of the values is the true one (or is 
very close to it) and thus provides exact statistics. Consequently, if the main 
conclusions of the analysis are the same independently of p (e.g. the 
indication that there is indeed instability), these can be viewed as reliable.” 

90n this issue, see also Riddell (1975) Harvey and Phillips (1979) and McGilchrist and 
Sandland (1979). 

“An attractive alternative approach here would be to estimate p (as well as j?) recursively 
using non-linear least squares. The one-step ahead prediction errors could then be computed 
and standardized. However, the recursive calculations involve some small sample sizes and thus 
large sample rationalizations are not again satisfactory. The properties of non-linear estimators 
are well-known for large samples only; it is not clear that the corresponding one-step ahead 
prediction errors are independent, or can even be standardized appropriately, in small samples. 
It would certainly be interesting to consider and study ‘non-linear recursive residuals’; however, 
this does not appear to be an easy problem. 
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Similar remarks apply to other types of covariance matrices (involving a 
sufliciently small number of parameters to be estimated). 

Finally, let us note that, in the previous developments, we always assumed 
the regressor vector x, is non-stochastic. What happens if it is more 
reasonable to view it as stochastic? When the variables in the regressor 
matrix X are independent of the disturbances II, there is really no problem. 

Since the distribution (conditional on X) of any set of LUS residuals i=Cu 
does not involve X, its unconditional distribution has the same property and, 
thus, the distribution of any statistic based on rl remains unaffected. The 
situation becomes more difficult when X and u are not independent. In this 

case, C and u are not independent and there is generally no simple way of 
finding the distribution of rl. In particular, this may happen if there are 

lagged dependent variables among the regressors. For example, if the 
postulated model is 

we cannot state in general that the recursive residuals will have their usual 
properties. Note however that, if we knew the true value of c(, the model 
could be reduced to the standard form by considering 

Yt--cry,-,=$B+u,, t = 1,. . .) T; (51) 

one could then proceed as usual and estimate recursively the vector 8. 
Furthermore, using the full sample, one can usually obtain a consistent 
estimate 6; and replacing a by oi in (51), we expect (provided oi is not too far 
from a) that the resulting recursive residuals will have approximately the 
same properties as those based on ~1. However, the qualifications made in the 
preceding paragraph also apply in this case. Consequently, it may again be a 
good idea to look at a grid of values of @,a) around @,oi) and see whether 
the conclusions are sensibly affected by such changes. Besides, it is 
straightforward to see how this approach can be generalized to cases in 
which several lagged values of the endogenous variable are present among 
the regressors (through the relevant sensitivity analysis will become more 
costly). Of course, the above suggestions are not very satisfactory, as it 
appears intuitively clear that the most informative procedure is to estimate 
all the coefficients recursively. They should be viewed as ways of cross- 
checking observations made after computing the recursive residuals in the 
usual manner. Further work has evidently to be done on these issues. 
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3. The effect of parameter instability 

In the previous section, we examined the properties of the recursive 
residuals and some similar statistics under the null hypothesis of parameter 
stability (or no misspecification). We will now look more closely at what 
happens when parameters are unstable. 

The intuitive basis for considering the recursive residuals in order to study 
parameter instability is that each residual w, represents the discrepancy 
(standardized) between the actual value of the dependent variable at time r 
and an optimal forecast using only the sample information contained in the 
r - 1 previous observations. If a structural shift in the regression coefficients 
takes place at time I, we expect to observe larger forecast errors starting at 
time r and a tendency for a while to either over-predict or under-predict 
(assuming another opposite structural shift does not take place immediately 
after). If monotonic or smooth movements take place we expect to observe a 
systematic tendency to over-predict 
period or, at least, over subperiods. 

3.1. Some general formulas 

In order to see more precisely 

(or under-predict) over the full sample 

how the behaviour of the recursive 
residuals is affected by parameter instability, let us consider again the general 
Brown et al. (1975) set-up, 

Y, = &Br + at 
(52) 

U,‘%V[O, $1, t=l,...,II: 

where the coefficient vectors /&, t = 1,. . ., T are considered non-stochastic, and 
let us rewrite 

y=m+u, (53) 

where 

m=(x~~l,...,x&.)I. (54) 

Then 

w=Cy=Cm+Cu, (55) 

where C is the matrix given in (21), and 

E(w) = Cm. (56) 

Now, we first notice that the normality of w is guaranteed even if H, does 
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not hold, for w is a linear transformation of a multinormal vector. Second, 
the independence of the components of w is then assured by the 
homoskedasticity assumption alone, since G: = ~2 =. . = CJ~ = c2 implies E(uu’) 
= a21, and 

V(w)=E[Cuu’C’]=a2CC’=02z,_K. (57) 

It is easy to see that heteroskedasticity will induce dependence among the 
recursive residuals. Thus, thirdly, non-constancy of the regression coefficients 
affects only the central tendency of w. It is interesting to look more closely 

how this central tendency is modified by the instability of j?,. Since we will be 
concerned here mainly with instability of the regression coefficient vector fi, 
rather than the variances c$, we shall, in the sequel (unless otherwise stated), 
assume that 

cr:=a;=...=&ErJ2. 

Let 

vr=d,w,=yr-x:b,_l, 

Then, using (52), 

r=K+l,...,T 

(58) 

(59) 

v,=x:p,+v-x:(x:.~,x,~,)-‘x:~,Y,_, (60) 

[ 

r-1 

=4+x: 8,-(X:-,X,-,)~l*~~XtYr 1 

and 

=x; [ 
r-1 r-1 

jr-(Xl-lX,_l)~l c x&fit 1 +u,-xxx:-1x,-l)Y 2 w,, 
t=1 t=1 

r-1 
/?-(X:-,X,_,)-’ c x,x;fit d,, r=K+1,...,7: 

1=1 

(61) 

Also, using (58), we have 

E(w,2)=fr2+[E(wr)12, r=K+1,...,7: (62) 

We then see easily that, under H,, 

r-1 

B-(X;_,X,_,)-’ c x,x;/3 d,=O, r=K+l, 
t=1 II 

(63) 
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and 

E(w,Z)=C?, r=K+l,...,T 

If H, does not hold, the expected values E(w,), r = K + 1,. . ., 7; may follow a 
variety of patterns depending on the trajectories of p, and X, (t= 1,. . ., T); 
some of these may be very irregular, hence not easy to detect. Similar 
conclusions relate to the expectations E(wf), r = K + 1,. ., T 

Nevertheless, there is a number of interesting sequences of PI,. ., PT which 
will yield easily identifiable patterns for E(w,), r= K + 1,. . ., 7: For the sake of 
simplicity, let us consider the case of one regressor (K= 1). Eq. (61) then 
takes the form 

It is easy to see that (x:1: f x p,/~~~: x:) is a weighted average of the 

parameters Pt, t = 1,. . ., r- 1; let fit increase (decrease) in a monotonic way; 

then if x, is positive for every t, the expectations E(w,), r = K + 1,. . ., T, will all 
be positive (negative); similarly, if x, is negative for every t, the expectations 
E(w,) will be negative (positive). In particular, when p, suddenly jumps at 
time t,, i.e., 

P1=...=lJ,o-l<a,,=...=BT, 

we have 

E(w,) = 0, r=K+l,...,t,-1, 

if x,>O, for all t; the same thing happens if x,<O and &1 >&. Now, if the 
variable x, switches sign, E(w,) will also switch sign even when p, moves in a 
monotonic way; we will examine this case further in section 3.2. When 
several regressors (Kz2) are present, the situation is of course more 
complex; nevertheless, considering eq. (61), we can see that the expression 

r-l r-1 

( 1 
-11-1 

(x:-lx,-,I-’ 1 x,4&= c vl 
t=1 t=1 

,zl x,4/4 (65) 

is a ‘matrix weighted average’ of the vectors p,, t = 1,. . ., r - 1. In a wide class 
of cases, particularly when the elements of /?, move in a monotonic way, we 
can conjecture that the expectations E(w,), r = K + 1,. . ., T will have the same 
sign or, at least, will exhibit a regular pattern [in the sense that the 
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neighbouring E(w,) will tend to be close]; also, we can expect that jumps in 
the coefficient vector will induce jumps in the expected values E(w,).” 

Thus, the formula (61) shows very clearly that a wide variety of instability 
patterns will affect the central tendency (means or medians) of the recursive 
residuals. But not all patterns of instability will do so and one can easily find 
trajectories of &, t= 1,. . ., 7; such that E(w,)=O, r=K+l,..., T, in (61). 
Nevertheless, these are very special cases and it is interesting to note that we 
then have 

E(u,) = 0, var (0,) = a’df, r=K+l,...,IT: 

so that operating as if coefficients were stable will neither affect the 
unbiasedness of the predictions nor the variances of the prediction errors 
(over the sample period). In this particular sense, this type of instability may 
be viewed as a less ‘troublesome’ problem. 

3.2. Standardized first di$erences and several-steps ahead recursive residuals 

Let us now look at the behaviour of the first differences of recursive 
estimates and the several-steps ahead recursive residuals. In the first case, we 
have 

[ 

r-l 

E(b,-b,-l)=(X:X,)-‘x,x: B,-(x:-lx,-,)-’ 1 x,at 
1 

9 (66) 
t=1 

for each j=l,...,K, 

r=K+l,...,T; 

(67) 

r=K+l,...,T; 

and var(dj,)=var(w,), so that the standardized first differences of recursive 
estimates will react to parameter instability in a way similar to the recursive 
residuals, except for a set of sign transformations. (Note that we set Ojr/)OjrJ 
= 0, whenever Dj, = 0.) 

Let us consider again the case of one regressor (K = 1). We have 

b.-b.-,=(x.d.l~~x:)w., r=K+l,..., T, (68) 

“Conditions under which a matrix weighted average has properties similar to those of a 
scalar weighted average are studied in Learner and Chamberlain (1976). 
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hence 

where 

D, = x,d, 
I 

i x,2, 
1=1 

r=K+l,...,T (70) 

Then, the standardized differences 

A,=@-L I)@,( =b’~xr(h r=K+l,...,T (71) 

(where x,/(x,( =O, when x, =0) are independent normal with variance cr2 and 
mean 

(72) 

=~[p’-(:~x:B,l:~x:)], r=K+l,...,T 

Notice that, if /I, increases (decreases) in a monotonic way the expected 
values ,??(A,), r = K + 1,. . ,, T will all have the same sign [in contrast with 
what can happen for E(w,)], a pattern which should be relatively easy to 
detect. Therefore, in such a case, looking at the sequence {A,.:r = K + 1,. . ., Tj 
may be much more revealing than looking at the recursive residuals. 

As for the k-steps ahead recursive residuals, we can see easily that 

r-k 

E(Wk,r)=(l/dk,rb: ~,-(x:-kx,-k)-’ c -&it . 
I=1 1 

In the one regressor case, this formula takes the form 

(73) 

(74) 

As in (61) and (65), the expression in brackets in (73) and (74) is the difference 
between the current value of fit and a weighted average (or ‘matrix weighted 
average’) of the past values of &; the only difference is that the weighted 
average runs only up to k periods before the current period r. In a large 
number of situations, we can expect these expected values E(w,_), Y= 
K + k, . . ., 7: to exhibit wider (and more easily observable) movements than 
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E(w,), r=K+ 1,. .., ?; because precisely of the greater distance in time 
between /?, and the weighted average of past values of pt. Nevertheless, a 
major difference here is that the k-steps ahead recursive residuals are not 
independent under the null hypothesis (and, a fortiori, under the alternative) 
and subsets must be considered if one wishes to use independent residuals. 

3.3. The case of random coeficients 

It is interesting to look at the way the recursive residuals react to non- 
systematic or haphazard movements in the regression coefficients. Let us 
consider again the case of one regressor, 

Y, = xtBt + UC U,% [O, 21, t=l,...,T (75) 

A$sume, for example, the parameters /II,. . ., &. were generated by a random 
walk process independent of the u,‘s, 

flt=Pt-I+% t=l,...,IT: (76) 

where E r,. . ., eT are i.i.d. random variables with mean zero and variance 0,” 
and /?,, is given. l2 From (61) we have, given &,, . . ., PT, 

hence 

=(x.ld,)[e.+:~a..E.], r=K+L...,‘T; 

where 

(77) 

(78) 

(79) 

“This scheme has been considered by several authors, e.g., Cooley and Prescott (1976), 
Garbade (1977), LaMotte and McWhorter (1978). 
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Then, if we take the expected value of E(w,) over B1,. . ., PT, conditional on 
PO, i.e., over 8=(&r,. . ,, +)I, we get 

E (w,) = 0, r=K+1,...,7: (80) 
e 

Therefore, if the sequence fir,. . ., PT exhibits a trajectory similar to that of a 
random walk, we cannot expect the recursive residuals to tend to exhibit a 
uniform pattern of signs (i.e., to indicate a tendency to systematically 
overpredict or underpredict). The problem is not corrected if, instead, we 
look at A,, r = K + 1,. . ., 7; for, using (71), 

E(4) = (x&l) E(w,)=Q r=K+l,...,T 
G e 

Now let us consider the products w,w,+~, I= K + 1,. . ., T- 1. Under 
homoskedasticity condition, the variables wK+ 1,. . ., wT are independent 

P O,. . ., BT fixed) whether the regression coefficient is stable over time or 
Hence, given &,, . . ., /IT, we have 

(81) 

the 
(for 
not. 

W,w,+ I)= WM(w,+ I)> r=K+l,...,T-1. (82) 

Then, taking the expected value over E on both sides of (82), we have 
(conditional on PO) 

(83) 

_x, x,+1 r-l 

4 &+I 
a(,+,),+ 1 a,&,+~), a?, r=K+l,...,T--1. 

s=l 1 
Clearly, if x, is a positive (or negative) variable, 

E(wrw,+A>O, r=K+l,...,T-1, 
E 

i.e., we can expect the recursive residuals to appear positively serially 
correlated. The same thing can also be expected if x, can change sign but is 
strongly serially positively correlated. Similarly, if we consider the sequence 
A,, r = K + 1,. . ., IT; we have, using (72), 
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Thus one can expect changes in the parameter estimates will appear 
positively serially correlated when the parameter /I, has followed a random 
walk-like path. 

Another interesting instability pattern to consider is the one where /I, 
fluctuates randomly around a fixed mean, 

Bt=8+& t=l,...,7; (85) 

where sr,. . ., cT are i.i.d. random variables with mean zero and variance o:, 
independent of the u,‘s. Then, given /II,. . ., &, 

Hence, if we take the expected value of E(w,) with respect to E = (er, . . ., .+)), 

so that we cannot expect the recursive residuals will tend to exhibit a 
uniform pattern of signs. Similarly, 

E(d,)=O. (88) 
E 

Instead, let us consider the products w,w,+ i, r = K + 1,. . ., T- 1, 

E (wr) = 0, r=K+1,...,7; (87) 
8 

Wwr + I) = x,x, + I [5-(~~x:&t~~~X:)][C.+l-(t~lX:El~t~l*:)] 

=(x,x, + l/W + 1 I[ :$&-cJ][ t&E.+l-E*~]. (89) 

where s,=c:Z:x:, r=K+l,..., T Hence, taking the expected value of 
E(w,w,+ 1) over & = (.Q, . . ., E=)I, 

r-1 r-l 

E(w,w,+~)=(x,x,+~/s,s,+~) 1 x;‘+xI’ C x:0,2 
II t=1 t=1 1 

(90) 

=(x,x, + l/W + 1 ) [ 12 ax: -x3] 4. 
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Therefore, if x, is a positive (negative) variable which grows monotonically 
over time (or is close to it), 

Ebw,+1)<0~ r=K+1,...,7: (91) 
z 

Similarly, 
r-1 

E(d,d,+l)=(lx,tt~,+1lld,d,+1s,s,+1) r~lx:(+x,z) +O, 1 (92) 
8 

r=K+1,...,7; 

if x, grows monotonically. Under such circumstances, we can expect the 
recursive residuals w, or the differences A, to appear negatively serially 
correlated. Finally, it is also easy to see that, if /?, changes in a monotonic 
way, the recursive residuals w, (if x, does not change sign) and the changes A, 
in the parameter estimate can be expected to appear positively serially 
correlated. 

Therefore, under a wide variety of instability schemes, the recursive 
residuals can be expected to appear serially correlated, a result in accordance 
with intuition. 

3.4. Parameter instability and specification errors 

We mentioned in section 1 that the appearance of parameter instability 
may be interpreted quite generally as an indication of misspecification. Let us 
look a bit more closely at the relationship between the two problems 
[following an approach similar to that of Theil (1957)]. 

Assume the true relationship is 

y, = z;y + v,, u, ind - N[O, a;], t=l,...,?: (93) 

where, at time t, zI is a G x 1 column vector of nonstochastic regressors, y is 
a vector of regression coefficients, and u, is a disturbance term. Now suppose 
an investigator tries to estimate the relationship 

y,=x;/?+u,. (94) 

Then the expected values of the recursive estimates of B defined in (5H6) are 

E(b) = (XX,) - 1 -KZrr , r=K,...,7; (95) 

where Z; = [z,, . . ., z,]. Since the matrices X, and Z, depend on r, the 
expected values E(b,) will in general vary with r, hence the appearance of 
parameter instability. For example, if the misspecitication is an omitted 
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variable, i.e., if the true relationship is 

Y*=a4l +xJ1+ 43 t=l,...,T (96) 

the expected values of the recursive estimates in (95) take the form 

where 
wr)=Bil+~rBl~ r=K,...,r (97) 

i, = (X:X,) - rx:x,,, r=K,...,7; (98) 

and Xlr=hlr~12,..., x,X. Each vector $, may be viewed as the regression 
coefficient vector obtained by regressing the missing variable X,, on X,. The 
observable pattern of instability depends of course on the time path of @,, 
r = K, . . ., r and thus on the nature of the relationship between xIt and x,. 

4. Methods 

4.1. The basic descriptive statistics 

The recursive estimation process described in section 2 enables one to 
generate several possibly revealing sequences of statistics which may be listed 
and graphed by the investigator for exploratory purposes. The main ones 
are: 

(1) the recursive estimates for each regression coefficient in the model; 
(2) the prediction errors (one- and several-steps ahead); 
(3) the standardized prediction errors, or recursive residuals (one- and 

several-steps ahead); 
(4) the standardized first differences of recursive estimates for each coefficient 

in the model. 

The listing and graphing of the recursive estimates for each regression 
coefficient give an idea of the direct impact of each observation on the 
estimated value of each coefftcient and of the importance of the fluctuations. 
The empirical distribution of each set may be examined; the corresponding 
variances, standard errors and coefficients of variation may be computed as 
indicators of the importance of the fluctuations. In particular, important 
jumps and trends inside the sequences should be noted, since they point to 
possible instabilities.’ 3 

‘%I many instances, it may be practical to draw the graphs of the recursive estimates after 
dropping those based on very few observations at the beginning, since ‘weird’ values are easily 
met at this stage. Also, each recursive estimate may be accompanied by a confidence interval in 
order to assess better the significance of the fluctuations. Finally, one should be conscious that, 
as the sample becomes larger, the impact of each additional observation is likely to appear 
smaller and smaller. 
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The various sequences of prediction errors (one- and several-steps ahead) 
have a great intuitive appeal, since they provide direct evidence on the 
performance of the entertained model as a prediction instrument. Some 
workers will also find useful to express these as a percentage of the 
observation predicted. On the basis of these sets, mean absolute or square 
prediction errors, root mean square errors, etc. may be computed as 
indicators of this performance. These may be particularly interesting when 
two or several models for the same dependent variable are to be compared. 
In every problem, of course, we don’t have to compute all possible sets (in 
terms of steps ahead) but it may certainly be of interest to look at a few of 
them; for example, if two models are compared, they may rank differently 
depending on the number of steps considered, a fact potentially relevant with 
respect to possible uses of the two models in prediction. 

The main difficulty with the untransformed sequences of recursive 
estimates and prediction errors is that their behaviour under the null 
hypothesis is difticult to appreciate. In particular, we know that the 
prediction errors have the same zero mean but, in general, different variances. 
By standardizing them as described in section 2, we obtain the various sets of 
recursive residuals. Of those, the (one-step ahead) recursive residuals are 
clearly the easiest to interpret and to use for testing purposes, since we 
expect them to be normal white noise with mean zero. Given this fact, a 
simple graphical analysis may be quite revealing. Aspects like a systematic 
tendency to over-predict (or under-predict), breaking points (i.e., sudden 
jumps), runs of over-predictions (or under-predictions), etc. should be noted. 
It can also be instructive to look at one or a few sets of k-steps ahead (lkz2) 
recursive residuals. These are more difficult to interpret because the 
independence property breaks down (between residuals distant by less than k 
periods). Nevertheless, they tend frequently to exhibit wider and more 
recognizable movements than the (one-step ahead) recursive residuals. The 
behaviours of these various series can also be cross-checked; breaking points, 
turning points, runs of over-predictions (under-predictions) can be compared 
in order to ascertain the types and timing of the structural shifts. When 
working with quarterly data, an examination of the four-steps ahead 
recursive residuals may be particularly relevant in relation to instabilities 
linked to seasonal phenomena. Similarly, the behaviour of the backward 
recursive residuals (one- and several-steps ahead) can be examined and 
compared with that of the forward recursive residuals. As indicated 
previously, these may be especially useful in detecting structural change at 
the beginning of the sample period (the first K forward recursive residuals 
don’t even exist) and in identifying points of discontinuity. 

Finally, like the recursive residuals, the standardized first differences of 
recursive estimates are independent N[O,o’] under the null hypothesis, which 
makes them also very convenient for examination and testing. They have the 
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same absolute values as the recursive residuals but, as shown in section 2.3, 
they may exhibit different sign patterns, revealing instabilities in cases where 
the recursive residuals are not instructive. 

Although a mere graphical observation of the statistics described above 
can be very informative as an exploratory device, it appears useful to develop 
a number of formal significance tests. 

4.2. The Brown-Durbin-Evans (BDE) tests 

In their pioneering paper, Brown et al. (1975) proposed two tests based on 
the recursive residuals. The first one, the CUSUM test, involves considering 
the plot of the quantity, 

W=W) i wt, r=K+1,...,7: 
t=K+l 

where ti2 is the unbiased estimate of a2 (based on T observations). Under 
H,, probabilistic bounds for the path of W, can be determined and HO is 
rejected if W, crosses the boundary (associated with the level of the test) for 
some r. This test is aimed mainly at detecting ‘systematic’ movements of 8,. 
Against ‘haphazard rather than systematic’ types of movements, Brown et al. 
(1975) proposed a second test, the CUSUM of Squares test, which uses the 
squared recursive residuals w: and is based on a plot of the quantities, 

S2 where S2 = i wf , r=K+l,...,T. (100) 
f=K+l 

Again the null hypothesis is rejected if the path of S, crosses a boundary 
determined by the level of the test. 

These tests are of the goodness-of-lit type in the sense that they seem 
applicable against a wide variety of alternatives. In fact, Brown et al. 
mention no specific alternative. We can expect the sequence of the 
cumulative sums W,, r = K + 1,. . ., T, will cross the boundary when the 
recursive residuals show over some sub-period a sufftciently strong tendency 
to be positive (or negative), e.g., when a particularly long run of under- 
predictions (or over-predictions) takes place, or a few relatively big prediction 
errors occur. It relies heavily on the sign behaviour of the recursive residuals. 
As to the CUSUM of Squares test, it does not use information concerning 
the signs of the recursive residuals. The plot of S, (r = K + 1,. . ., 7’) may be 
expected to cross the boundary in the sub-periods in which the recursive 
residuals are unduly large with whatever signs. Thus the BDE tests merge, 
although in a way difficult to specify, information concerning such properties 
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of the recursive residuals as: deviation from the zero mean, autocorrelation, 
heteroskedasticity. 

It may be noted here that these tests can be applied in principle to any set 
of LUS residuals. In particular, we can apply them to each set of 
standardized first differences of recursive estimates (as a way of assessing 
whether the path of the estimates of each coefficient deviates significantly 
from the one expected under the null hypothesis) and to any subset of the k- 

steps ahead recursive residuals (kz 2) selected in such a way that it contains 
only independent residuals. 

Finally, a number of drawbacks of the BDE tests may be mentioned. First, 
it is important to note that the points where the CUSUM graphs cross the 
significance boundaries do not generally coincide with points of discontinuity 
in the coefficients, so that the examination of these graphs is no substitute to 
a direct consideration of the recursive residuals (and related series). Second, 
the null distributions supplied are only approximate. Third, the tables 
provided contain only a very small number of significance levels, which 
makes the computation of p-values (marginal significance levels) potentially 
burdensome. Fourth, it is not clear what kind of alternative is considered. 
Consequently, there appears to be room to consider other test statistics.14 

In the sequel of this section, we describe a number of hopefully simple and 
complementary significance tests; they are exact (except for one) and can be 
performed using already existing quite extensive tables; most of them are 
based on fairly intuitive characteristics of the recursive residuals (and other 
similar sequences) and correspond to explicitly defined (although still very 
wide) alternatives; furthermore, these usually have a direct interpretation 
in terms of the predictive performance of the model considered. 

4.3. Location tests 

As pointed out in section 2, certain types of instabilities, particularly of a 
monotonic type, may lead to systematic under-prediction (over-prediction) in 
the recursive simulation process. This suggests testing the null hypothesis 
E(w,)=O, t=K+l,..., 7: versus E(w,)>O, t=K+l,..., IT; or E(w,)<O, t= 
K + 1,. . .) 7: The standard test for doing this is the t-test based on the 
statisticI 

14For further discussion of the CUSUM tests (their power especially), see Farley et al. (1975), 
Schweder (1977), Garbade (1977), Deshayes and Picard (1979, 1980). The relationship between 
the CUSUM of Squares test and the Chow (1960) tests is also discussed by Harvey (1976) and 
Fisher (1980). 

15This test (after appropriate reordering of the observations) was suggested by Harvey and 
Collier (1977), in the context of testing for functional misspecilication (the “Y-test”). Harvey and 
Phillips (1977) also proposed to use it against random coefficients alternatives. 
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w= i W,/(T-K), 
t=K+l 

and 

s;= i (W,-@/(T-K-l). 
f=K+l 

(102) 

(103) 

Under H,, t” follows a Student-t distribution with T-K- 1 degrees of 
freedom. The null hypothesis is rejected if Id 2 c, where c depends on the level 
of the test. This test can be viewed as a check against systematic under- 
prediction or over-prediction. More generally, it can be viewed as a test 
bearing on the average of the expected (standardized) prediction errors, 

E(G) = i E(wJ/(T - K); 
1=K+l 

(104) 

we test E(w) = 0 versus E(S) # 0. 

If all the expected values E(w,) are equal, i.e., 

E(w~+J=E(w~+~)=..*=E(w~)=L~, (105) 

a t-test based on (101) is either uniformly most powerful (in the one-sided 
case) or uniformly most powerful unbiased (in the two-sided case) among the 
tests based on the recursive residuals. This is a consequence of the fact that, 
in this case, the random variables wx+i,.. ., wr are i.i.d. N(d, 0’) and our 
problem reduces to testing H,:d =0 [see Lehmann 1959, pp. 163-168-J. 
Clearly under the condition (105), the t-test will dominate the CUSUM tests. 
But, of course, there may hypothetically exist situations where the CUSUM 
test will be more powerful. 

Also, in cases where (105) does not hold, it is of interest to note that s$ is 
no longer an unbiased estimator of cr 2. This can be seen easily from the 
following: 

(T - K - 1)s; = w’ Aw = tr Aww’, (106) 

where A is the idempotent matrix defined by 

A=Z,_,-(T-K)-%‘, (107) 
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andiis the(T-K)xl unit vector i=(l,l,...,l)‘. Hence 

= tr A(o’I,,)+ tr AE(w)E(w’) (108) 

Therefore, 

= d(T - K - 1) + [AE(w)]‘[AE(w)]. 

E(s;)=02+([AE(w)]‘[AE(w)])/(T-K - l)>a’, (109) 

unless E(w)=U or E(w) has all its components equal. We conclude that, 
unless very special conditions hold, si will tend to over-estimate g2 under the 
alternative hypothesis. Clearly this will tend to reduce the power of the t-test 
and, as things stand, nothing can be said concerning the optimality of the t- 
test [unless (105) holds]. 

Now we can note that, under the normality assumption, the mean and the 
median of each recursive residual is the same. Under the null hypothesis of 
parameter stability, the recursive residuals are independent and 

symmetrically distributed with median zero. This suggests testing H, by 
applying to the recursive residuals any test in the family of linear rank tests 
for symmetry about a given median [as described, for example, in Hajek 
(1969, ch. 5)]. While the t-test given above is based on considering the mean 

value of the recursive residuals, the linear rank tests stress the symmetry of 
the distributions with respect to zero. Furthermore, the rank tests do not 
require the estimation of the variance CJ~. thus avoiding a potentially 
troublesome problem as pointed out above. 

More specifically, if Z,, ., 2, is a random sample, a linear rank test for 
symmetry about zero uses a statistic of the form 

where u(.) is an indicator function such that 

u(z)= 1 if ~20, 

and 

=0 if z<O, 

(110) 

JE C 
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is the rank of (Z,I when [Z,I,. . ., IZ,,I are ranked in increasing order, and a,(.) 
is a score function transforming the ranks Rt’. 

If one adopts the constant score function a,(r)= 1, we have 

s= t UV,), (111) 
1=1 

i.e., S is just the number of non-negative Z,‘s (the test statistic associated with 
the sign test). If u,,(r)=r, 

S= i u(Z,)R:, 
t=1 

(112) 

i.e., S is the sum of the ranks attached to the non-negative Z,‘s (the Wilcoxon 
statistic). If 

a,(r) = El VI(‘), 

where 11/1”’ is the rth order statistic from the absolute values of a N(0, 1) 
random sample of size n, S is the statistic of the Fraser test for symmetry 

[see Hajek and Sidak (1967, pp. lOS-109)]. Other tests can be generated by 
choosing other score functions. 

The various score functions yield tests with differing powers depending on 
the type of density underlying Z,, . . ., Z,. Assume Z,, . . .,Z, are independent 

and have a common density f(z-d), where f( .) is a function symmetric 
about zero, and consider the problem of testing H,:A =O versus 
Hi : A < 0 (H; : A < 0). In this case, optimal scores can be shown to exist, in the 
sense that the corresponding test with critical region of the form {SAC} (or 
{S SC’}) is the locally most powerful rank test and is asymptotically optimal. 
For example, the Fraser test is optimal if the underlying density f(.) is of 
normal type, while the sign test is optimal when f(.) is of double-exponential 
type and the Wilcoxon test is so for f(.) of logistic type. For further details, 
the reader is referred to Hajek and Sidak (1967, pp. 108-109, and chs. II, 

VII). 
Under the assumption that Z,,. . ., Z, are independent random variables, 

having symmetric probability density functions (pdf’s) with median d =O, the 
distribution of the test statistic S is completely determined.i6 Let us 
furthermore assume that the score function is non-negative: a,(r)20 for any r 
(which is the case for the three particular tests mentioned above). Then, to 
test the null hypothesis A = 0 against A > 0, we use a one-sided critical region 

16Note that it is not necessary to assume that they have a specific distribution nor even the 
same distribution. 
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of the form {S 2 c}; similarly, against A ~0, we use {S SC’). And, to test A =0 

against A+ 0, we use a two-sided region {S 2 c or S 5 c’>. The critical points c 
and c’ depend on the level adopted for the test. 

In the case we are considering, we have n= T-K and 2, = wK+ i, . . ., 
2, = wT. Under the null and the alternative hypothesis, wK+ 1, w~+~, . . ., wT 
are independent and normally distributed; hence they are independent with 
symmetric pdf’s. Under H,, they have a common median equal to zero. 
Therefore the non-parametric tests mentioned above are applicable to test 
H, against systematic shifts in the parameters inducing the recursive 
residuals to have positive (or negative) medians. The problem is now to 
choose one test from the family proposed. The sign test is very easy to 
perform but is likely to have relatively low power, given in particular that we 
assumed the disturbances are normally distributed. The Wilcoxon test 
combines ease of application with a relatively high power when the 
underlying distribution is normal; in situations where the t-test is optimal 
(normal random sample) the efficiency of the Wilcoxon test relative to the t- 
test is around 0.96 [see Lehmann (1975, p, 174)]. We mentioned previously 
that, for the problems we consider, we can know for sure that the t-test is 
optimal only if (105) holds. Since CJ~ is over-estimated in other cases, it is not 
impossible that the Wilcoxon test has greater power against certain 
alternatives even when the recursive residuals are normally distributed since 
it does not require an estimate of the variance. For the case in which 
Z,, . ., 2, are i.i.d. normal with mean A [in our situation, this occurs if (105) 
holds], the Fraser test {Sic> can be shown to be the locally most powerful 
rank test for H,: A =0 versus A >O and to be asymptotically optimal [see 
Hajek and Sidak (1967, p. 109)]; therefore, it is superior to the Wilcoxon test 
in cases where the t-test is optimal. Nevertheless the Fraser test is 
computationally somewhat less convenient than the Wilcoxon test, although 
the normal scores in (113) have been tabulated, and the difference in power is 
generally small [see Klotz (1963)]. 

We conjectured above that a rank test having relatively good power in the 
normal case, when the t-test is optimal, could be superior to it for certain 
patterns of instability because of the over-estimation of the variance. Now a 
standard property of rank tests is their robustness to non-normality and the 
presence of outliers. Under H,, the recursive residuals constitute a set of 
mutually orthogonal transformations of the disturbances, i.e., 

w=Cu where CC’=I,_,. 

Under the normality assumption, this implies that the elements of w are 
independent. The normality assumption is crucial for independence to hold, 
although the recursive residuals will generally be uncorrelated [assuming 
simply that the disturbances have finite second moments and E(uu’) 
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= a2Z,]. I7 The t-test and the rank tests proposed above are all exact under 
the normality assumption. What happens if this assumption does not hold, 

e.g., if we assume the disturbances u,, t= 1,. ., 7: are i.i.d. with a pdf 
symmetric about zero? In particular, one can still reasonably conjecture that 
the rank tests will be more robust to non-normality than the t-test.” 

Finally, we can note that the tests above (t-test and rank tests) can be 
applied to any set of LUS residuals, in particular the standardized first 
differences of recursive estimates and appropriate sets of k-steps ahead (k 2 2) 
recursive residuals. This remark also applies to the tests described in sections 
4.4 to 4.7. Furthermore, it is interesting to notice that the t-test holds for 

normality and other spherical symmetric distributions. We know that 
u-N[O, 02Z,] and w - N[O, a21,_,] for given B. Then, if r~ has pdf p(o ( O), 
where 8 is a vector of parameters, we have 

P(U 14 = j P(U ( O)P(O 1’3 do, (113) 

and, similarly, p(w 113) = 1 p(w (a)p(o (0) do. Since the statistic t”= J-W/s,, 
conditional on (T, follows a Student-t distribution not involving CJ, it will 

follow the same distribution whenever the pdf of u has the form (113).19 This 
extends considerably the range of applicability of this test. A similar remark 
applies to the rank statistics considered in this section as well as to all the 
test statistics described in sections 4.4 to 4.6. 

4.4. Regression tests 

The t-statistic described in section 4.3 can be viewed as an outcome of the 
regression of the recursive residuals on a column of l’s; i.e., using the model 

W=iy+&, & - N[O, rT2Zv], (114) 

where v=T-K and i=(l, l,..., l)‘, we test the null hypothesis y=O. One 
can see easily that the standard likelihood ratio test for this null hypothesis 
turns out to be based on precisely the same t-statistic as in (101). 

“Indeed, under the assumption that u~,...,u~ are independent, the independence of the 
recursive residuals will imply the normality of IAN,. .,I+. This follows from the fact that the 
recursive residuals are linear transformations of u,, ,, I+ and from the Darmois-Skitovic 
theorem [see Kagan, Linnik and Rao (1973, pp. 84-91)]. 

‘*These points would clearly need further investigation, e.g. via Monte-Carlo experiments. It 
may be noted also that, although independence (or normality) is here a sufficient condition for 
the rank statistics to follow the standard distributions under the null hypothesis, it is not a 
necessary condition. 

lgFor further details, see Zellner (1976). 
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This suggests the following generalization. Consider the regression 

relationship 

w=zy+&, & - N[O, c?Z”]) (115) 

where 2 is a v x g non-stochastic matrix of rank g< v.” Under the null 

hypothesis we have y=O. We can test y= 0 via a standard F-test: the null 
hypothesis is rejected if E > c, where 

E = fyZIZ)jygs2 (116) 

follows a F(g, v-g) distribution under the hull hypothesis, 

f=(zIz)-lz’w, (117) 

s’=(w-Zjq’(w-Zzy^)/(v-g), (118) 

and c depends on the level of the test. We can also test various linear 

restrictions on y via the corresponding F-tests. 
This procedure provides, of course, a very wide class of tests and the 

problem in practice is to select a meaningful set of regressors Z. For 
example, if one expects instability (or an adjustment) to take place over a 
given subperiod I= [t,,t,], where K+ 1 St0 <t, 5 7; we may consider a 

dummy regressor Z,, of the form 

Z,,=l if tEI, 

= 0 otherwise; 
(119) 

then, using the regression 

‘+‘,=zd’~ +E,, Et - ind N[O, 02], t=K+1,...,7; (120) 

we test y1 =O. Clearly, by introducing several dummies, we can allow for two 
or more ‘regimes’. It can be noted also that we are not constrained to 
consider continuous (or uninterrupted) sub-periods. An interesting example is 
the one where we have quarterly data and we think the instability is linked 
to seasonal phenomena; then we could consider four dummy variables Zlt, 

*“A similar approach was suggested by Zellner (1978) in order to obtain the sampling distribution 
of studentized regression residuals. 
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Z2*, Z3*, Z,, such that 

Zj, = 1 if time t is the jth quarter of a year, 

= 0 otherwise, 
(121) 

and the corresponding regression relationship 

wt = Zl,Y 1+ Z,,Y, + Z,,Y, + Z&Y4 + E*, t=IC+1,...,7: (122) 

The signs of the coeffkients may also be of interest and their significance can 
be assessed via standard t-tests.21 

Let us consider once more the case where the model analyzed has only 
one regressor. Then, rewriting (64), we have 

where 

-w,) = Z,Yn r=K+l,...,7; (123) 

(124) 

From this expression, we can see that the mean of w, is proportional to x,/d,. 
This suggests considering the regression relationship 

w, = (xrldrh + L r=K+1,...,7: (125) 

and testing whether y = 0. The least squares estimate of y is 

hence, using (123), 

(126) 

(127) 

“For a somewhat similar approach, in the context of Bayesian analysis of regression error 
terms, see Zellner (1973, 1975). Another way of testing for seasonality would be, of course, to 
introduce Z,, Z2, Z, as regressors in the basic regression model and test their significance (using 
T observations). Such a test would be uniformly most powerful unbiased if the seasonal 
instability is accurately depicted by such dummies (bearing on the constant term) and thus at 
least as good as the procedure based on the recursive residuals. Nevertheless if the seasonal 
instability involves other regression coefficients or is of a more complex type, nothing can be 
said concerning the relative merits of the two methods. 
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Thus 9 is, in general, an estimate of a weighted average of the coefficients yr, 

r=K+l,..., T, and a test of y = 0 provides evidence concerning more or less 

systematic shifts in the value of 8,. Alternatively, we could consider the 
regression 

w, = X,Y 1+ En r=K+1,...,7; WV 

and test y1 =O. 
The test based on (125) extends straightforwardly to several regressors; 

consider simply the regression 

“‘r = <Y + En r=K+1,...,7; (129) 

where 2, =(1/&)x, and the test y=O. Using (61) we can see that 

where f is the least-squares estimate of y and 

rr=B,-K (131) 

so that 9 is an estimate of a ‘matrix weighted average’ of the vectors yr, r= K 
+ l,.. ., T Alternatively, we could also consider the regression 

(130) 

w,=xh +4, r=K+l,...,T, (132) 

and test y1 =O. 
Finally, it is interesting to note that an analogue of the ‘Regression 

Specification Error Test’ (RESET) proposed by Ramsey (1969, 1974) against 
various specification errors can be performed using the recursive residuals 
instead of the BLUS residuals. Let us assume, in a way similar to Ramsey, 

that the mean of w = Cy can be approximated by 

(133) 

where c(~~=EE~) ) X], $‘j’=(Ej, yi,. . ., j+)’ and 3=X/? is the vector of the 
titted values (based on the full sample). Under the null hypothesis, CQ, =c(r 
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= a2 =. . =O. This suggests to run a regression of the type 

w=q)1+cr,q,+a,q,+ . ..+e. 

(134) 
e-N[0,a21,_.], 

where qj = Cj’j+ “, and to test whether a0 = LX, = ~1~ =. . = 0. The standard F- 
test will be valid here, for w= Cy and _$ are independent. Nevertheless, this 

test appears to be somewhat difficult to interpret in the context of parameter 
instability. 

4.5. Runs tests 

We mentioned in section 3 that parameter shifts will tend to be associated 
with runs of either under-predictions or over-predictions in the recursive 
simulation process. This suggests considering the sequence of the signs 

s(wK+ r), . . ., s(wT), where 

s(x) = + if x2.0, 

- if x<O. 

as a basis of analysis. 

A first approach then consists in counting the number R of runs in this 

sequence. If there are too few of them, this may be viewed as evidence that 
one or a few parameter shifts took place over the period considered; this 
suggests a critical region of the form {R SC}. It can be shown that R - l- 
B1’(N - 1,3), where N = T-K, so that we can compute easily P[R 5 c] for any c 

[see Dufour (1979, 1981a)]. 
Now, quite often, an especially long run of under-predictions (or over- 

predictions) points to the presence of a shift after a given point (although, 
except for the run in question, the rest of the sequence may seem ‘clean’). 
This suggests a second approach consisting of considering the length of the 
longest run (of any sign) in the sequence. One then computes the probability 
of getting at least one run of this length or greater. If it is thought too low 
(smaller than some critical number corresponding to a significance level c(), 
the null hypothesis may be rejected. 

Tests based on the length of the longest run were studied by Mosteller 
(1941), Bateman (1948) and Burr and Cane (1961). Assume there are, in our 
sequence, rl t’s and r2 -‘s (where r1 +r, = N). Then, from Bateman’s 
results, the probability that the length g of the longest run of any sign be 
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greater than equal to is (assuming 2~~) 

i 

r1rgo+l 

=(1/c::) 2 CwJ(~,t,g~:go)+~(t+ l,t>g2go) 
1=1 

+&,r+ Lgao)l if g05y1 SN- 1, (135) 

=l if r1 =Nzg,, 

=o otherwise, 

where Cl,l =N!/r,!(N-r,)!, with Ci=O whenever x>n or n<O, and 

for It,-_t,151, t,gr,, t,sr,, 

ZZ 0 otherwise. 

(136) 

This probability is conditional on rl and r2. Now, it is easy to see that the 

probability of (rl, r2) is 

P(r,,r,)=P(r,,N-r,)=C~(~))N, (137) 

so that the unconditional probability that gzgO is 

f’Cg2gol= 2 ~Cg~g~(rl,N--r,l~(rl,N--r,) 
I, =o 

(138) 

In our opinion, runs tests provide an especially simple and intuitive way of 
assessing the ‘significant’ character of what one sees in the graph of the 
recursive residuals. 
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4.6. Serial correlation tests 

In section 3, we saw that a number of instability patterns are likely to 
produce ‘serial correlation’ among the recursive residuals. This, of course, 
suggests testing for this property. More precisely, we wish to test 

versus 

E(w,w + 1) = 0, t=K+l,...,‘T-1, (139) 

WW, + r) > 0 (or < O), t=K+l,...,T-1, (140) 

or, more generally, 

versus 

WV, + k) = 0, t=K+l,...,T-k, (141) 

WV, +J > 0 (or < O), t=K+l,...,T-k, (142) 

where lgksT-K-l. 22 Alternatively, we could also consider medians 
(Med) instead of expected values (E) in (139)-(142). 

A first way of doing this involves examining the correlogram 

T-k 

yk= 1 w,w,+k 
i 

f 2 wt 2 k=l 2 ) ).... 
f=K+l 2=K+l 

(143) 

Under the null hypothesis, the first m autocorrelations Y = (rl, r2,. . ., r,)‘, for 
T-K large and m small relative to T-K, follow approximately a multi- 

Also the autocorrelations variate normal distribution [see Bartlett (1946)]. 
rk, k=l,..., m, are uncorrelated with variances 

(T-K)-k 1 
V(rk)=(T_K)(T_K+2)=.m-K. (144) 

Consequently, each correlation rk (such that k is small relative to T-K) can 

be used to assess the dependence between the recursive residuals at lag k. 
Furthermore, if one wants an overall check for the hypothesis of 

independence, one may use the Ljung-Box statistic 

&=N(N+2)k~l(N-k)p1r,2 where N=T-K, (145) 

“Under the assumption of homoskedasticity of the disturbances Up,. .,I+, we have here 

W%W1+1) = W%)E(w r+k)r t=K + 1,. ., T-k; thus, rigorously, what we are checking is whether 
the cross-products of the means so defined tend to have consistent sign patterns. See section 3.5 
for some examples of instability patterns producing such ‘serial dependence’. 
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which follows approximately a xi distribution under the null hypothesis [see 
Ljung and Box (1978)]. 

The above tests have the inconvenience of being asymptotic. An exact test 
is obtained by considering the modified von Neumann ratio 

T-l 

(N--1)-‘t=~+l(Wy+l-Wt)2 N-l 2 23 w, . 1 (146) 
f=K+ 1 

When VR is too small (large), this points toward positive (negative) serial 
correlation between residuals distant by only one period. Significance limits 
for N 5 60 may be found in Theil (1971, pp. 728-729). Nevertheless, this test 
also has an inconvenient aspect, for it centers strictly on dependence at lag 1. 
A generalization applying to longer lags is not apparently available. 

It would seem desirable to have a set of checks which are both exact (like 
the modified von Neumann ratio) and applicable to assess the dependence 
between observations spaced by an arbitrary lag k2 1 (like those based on 
the sample correlation coefficients). Such tests are obtained by applying 
linear rank tests for symmetry to the sequences {Z,= ~~w~+~:t=K + 1,. . ., 
T-k}, k = 1,2,. . . . These are based on statistics of the form 

(147) 

where n=N- k, u( .) and a,( .) are defined in (110). A large (small) Sk then 
points toward positive (negative) serial dependence. For certain score 
functions, like a,(r)= 1 (the sign score) or a,(r)=r (Wilcoxon score), the null 
distribution of the test statistic S is well tabulated. For further details, the 
reader is referred to Dufour (1979, 1981a). In view of the good performance 
of the Wilcoxon test (as a symmetry test) with normal data and its extensive 
tabulation, we recommend particularly its use in the present contextz4 Note 
also that the two runs tests described in section 4.5 may be viewed as tests 
against positive serial correlation, the first one being in fact identical (except 
for one-sidedness) to the test based on the sign score in (147). 
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4.7. Heteroskedasticity 

We mentioned earlier that the CUSUM of Squares test can be viewed to a 
large extent as a test for heteroskedasticity over the period considered. Also, 
Harvey and Phillips (1974) explicitly proposed using recursive residuals in 
order to test for heteroskedasticity of the disturbances.25 

Although we centered our attention upon instability of the regression 

coefficients, heteroskedasticity is another form of instability (among the 

variances of the disturbances) in which one may be interested. Not allowing 
for this particular type of misspecification will not induce biased predictions, 
but it can vitally affect the validity of confidence regions and significance 
tests based on the ordinary least squares estimates. Furthermore, an 
appearance of heteroskedasticity among the recursive residuals may be an 

indication of instability of the regression coefftcients.26 
Harvey and Phillips (1974, 1977) proposed testing heteroskedasticity by 

considering the statistic 

R=w;w,/w;w2, (148) 

where wr is the vector formed by the first m recursive residuals, w2 the vector 

formed by the last m recursive residuals and m g(T- k)/2.27 Under the null 
hypothesis, i? follows an F-distribution with (m, m) degrees of freedom. 

However, there is no a priori reason why we should stick to the particular 
partition scheme suggested above. Since the recursive residuals are i.i.d. 
N[O,rr’] under the null hypothesis, variances relating to different intervals 
may be compared easily. If I, and I, are two (disjoint) subsets of 
{K + 1,. . ., T} containing respectively m, and m, elements (where m, +m, 5 
T-K), then the statistic 

a = hlm2) ,s ( * w:‘,Fi, w$ (149) 

follows an F distribution with (m2,m,) degrees of freedom. Critical regions 
are then easily designed, depending on the alternative. 

5. Concluding remarks 

In the previous sections, we described a general methodology based on the 
seminal paper by Brown, Durbin and Evans (1975) and aimed at helping an 

Z5Heyadat and Robson (1970) proposed to use an analogous set of residuals, the ‘stepwise 
residuals’ in order to test for heteroskedasticity. 

“Harvey and Phillips (1977) give an illustration of this phenomenon with a random 
coefftcients model. 

“Using a procedure similar to that suggested by Goldfeld and Quandt (1972) a set of 
residuals in the middle are dropped. 
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investigator to discover the existence, type and timing of possible instabilities 
in the coefficients of a linear regression model. Broadly speaking, this 

methodology can be viewed as a way of discovering various specification 
errors in a linear regression model; it is of an exploratory nature because 
alternatives are purposely left vague and the overall philosophy is to let the 
data reveal as many ‘unexpected’ things as possible. It consists basically of 

examining a number of series generated by a process of recursive estimation 
(prediction errors, coefficient estimates) and whose behaviour is easily 
interpretable in terms of structural change. Further, because of the simple 
statistical properties of these series, one can easily construct general tests to 
assess the statistical significance of various deviations of these series from 
what one would expect under the null hypothesis of stability. 

Due to space limitations, we are not presenting here an empirical 
illustration of the extended methodology described above. For some 

applications to econometric problems, the reader may consult Dufour (1979, 
1981c, d). 

In conclusion, we want to stress again that tests against broad diffuse 
alternatives should be viewed as ‘yardsticks for the interpretation’ of the 
basic statistics rather than as ‘leading to hard and fast decision’. As our aim 

is model search and model criticism, and this is why it is useful to look at a 
large number of possible clues. 28 Of course, one must remain conscious that 
performing several individual significance tests on the same set of data has 
an impact on the overall significance level of the analysis. On the other hand, 
when one has in mind a specific alternative, more powerful tests can usually 
be applied [Chow (1960), Quandt (1960), Farley and Hinich (1970) Cooley 
and Prescott (1976), Dufour (1980, 1981b), etc.]. In our view, exploratory and 
specialized tests should be viewed as complementary and not as substitutes. 
Finally, when performing any test, we strongly recommend computing p- 
values (marginal significance levels) which allows an assessment of the degree 
of ‘statistical extremeness’ of a value. The distributions of most of the test 
statistics suggested above are sufftciently well-known for this task not to be 
unduly hard. 

‘“Dempster (1971) argues that ‘significance tests’ are especially useful in such a context. On 
the other hand, in more structured problems (like model comparisons) the use of a Bayesian 
approach may be more appropriate. 
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