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ABSTRACT

The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive
method of building exact tests from statistics whose finite-sample distribution is intractable but can
be simulated (provided it does not involve nuisance parameters). We extend this method in two
ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; sec-
ond, by generalizing the method to statistics whose null distributions involve nuisance parameters
(maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are
also proposed and it is shown that they provide a simple way of improving standard asymptotics and
dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may
be interpreted as a simplified version of the MMC method (without the general validity properties
of the latter).

Key words: Monte Carlo test; maximized monte Carlo test; finite-sample test; exact test; nuisance
parameter; bounds; bootstrap; parametric bootstrap; simulated annealing; asymptotics; nonstandard
asymptotic distribution.
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RÉSUMÉ

La technique des tests de Monte Carlo [MC; Dwass (1957), Barnard (1963)] constitue une méthode
attrayante qui permet de construire des tests exacts fondés sur des statistiques dont la distribution
exacte est difficile à calculer par des méthodes analytiques mais peut être simulée, pourvu que cette
distribution ne dépende pas de paramètres du nuisance. Nous généralisons cette méthode dans deux
directions: premièrement, en considérant le cas où le test de Monte Carlo est construit à partir
de réplications échangeables d’une variable aléatoire dont la distribution peut comporter des dis-
continuités; deuxièmement, en étendant la méthode à des statistiques dont la distribution dépend
de paramètres de nuisance (tests de Monte Carlo maximisés, MMC). Nous proposons aussi des
versions simplifiées de la procédure MMC, qui ne sont valides qu’asymptotiquement mais four-
nissent néanmoins une méthode simple qui permet d’améliorer les approximations asymptotiques
usuelles, en particulier dans des cas non-standards (e.g., l’asymptotique en présence de racines uni-
taires). Nous montrons aussi que les tests basés sur la technique du bootstrap paramétrique peut
s’interpréter comme une version simplifiée de la procédure MMC. Cete dernière fournit toutefois
des tests asymptotiquement valides sous des conditions beaucoup plus générales que le bootstrap
paramétrique.

Mots-clés: test de Monte Carlo; test de Monte Carlo maximisé; test exact; test valide en échantillon
fini; paramètre de nuisance; bornes; bootstrap; bootstrap paramétrique; recuit simulé; distribution
asymptotique non-standard.
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1. Introduction

During the last twenty-five years, the development of faster and cheaper computers has made Monte
Carlo techniques more affordable and attractive in statistical analysis. In particular, such techniques
may now be used routinely for data analysis. Important developments in this area include the use
of bootstrap techniques for improving standard asymptotic approximations [for reviews, see Efron
(1982), Beran and Ducharme (1991), Efron and Tibshirani (1993), Hall (1992), Jeong and Maddala
(1993), Vinod (1993), Shao and Tu (1995), Davison and Hinkley (1997), Chernick (1999) and
Horowitz (1997)] and techniques where estimators and forecasts are obtained from criteria evaluated
by simulation [see McFadden (1989), Mariano and Brown (1993), Hajivassiliou (1993), Keane
(1993), Gouriéroux and Monfort (1996) and Gallant and Tauchen (1996)].

With respect to tests and confidence sets, these techniques only have asymptotic justifications
and do not yield inferences that are provably valid (in the sense of correct levels) in finite samples.
Here it is of interest to note that the use of simulation in the execution of tests was suggested much
earlier than recent bootstrap and simulation-based techniques. For example, randomized tests have
been proposed long ago as a way of obtaining tests with any given level from statistics with discrete
distributions (e.g., sign and rank tests); see Lehmann (1986). A second interesting possibility is the
technique of Monte Carlo tests originally suggested by Dwass (1957) for implementing permutation
tests and later extended by Barnard (1963), Hope (1968) and Birnbaum (1974). This technique has
the great attraction of providing exact (randomized) tests based on any statistic whose finite-sample
distribution may be intractable but can be simulated. The validity of the tests so obtained does not
depend at all on the number of replications made (which can be small). Only the power of the
procedure is influenced by the number of replications, but the power gains associated with lengthy
simulations are typically rather small. For further discussion of Monte Carlo tests, see Besag and
Diggle (1977), Dufour and Kiviet (1996, 1998), Edgington (1980), Edwards (1985), Edwards and
Berry (1987), Foutz (1980), Jöckel (1986), Kiviet and Dufour (1997), Marriott (1979) and Ripley
(1981).

An important limitation of the technique of Monte Carlo tests is the fact that one needs to
have a statistic whose distribution does not depend on nuisance parameters. This obviously limits
considerably its applicability. The main objective of this paper is to extend the technique of Monte
Carlo tests in order to allow for the presence of nuisance parameters in the null distribution of the
test statistic.

In Section 2, we summarize and extend results on Monte Carlo (MC) tests when the null distri-
bution of a test statistic does not involve nuisance parameters. In particular, we put them in a form
that will make their extension to cases with nuisance parameters easy and intuitive, and we gen-
eralize them by allowing for MC tests based on exchangeable (possibly non independent) replica-
tions and statistics with discrete distributions. These generalizations allow, in particular, for various
nonparametric tests (e.g., permutation tests) as well as test statistics where certain parameters are
themselves evaluated by simulation. We deal with possibly discrete (or mixtures of continuous and
discrete distributions) by exploiting Hájek’s (1969) method of randomized ranks for breaking ties
in rank tests, which is both simple to implement and allows one to easily deal with exchangeable [as
opposed to independent and identically distributed (i.i.d.)] simulations. On the problem of discrete
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distributions, it is also of interest that the method proposed by Jöckel (1986) was derived under the
assumption of i.i.d. MC replications.

In Section 3, we study how the power of Monte Carlo tests is related to the number of repli-
cations used and the sensitivity of the conclusions to the randomized nature of the procedure. In
particular, given the observed (randomized) p-value of the Monte Carlo test, we see that the proba-
bility of an eventual reversal of the conclusion of the procedure (rejection or acceptance at a given
level, e.g. 5%) can easily be computed.

In Section 4, we present the extension to statistics whose null distribution depends on nuisance
parameters. This procedure is based on considering a simulated p-value function which depends on
nuisance parameters (under the null hypothesis). We show that maximizing the latter with respect to
the nuisance parameters yields a test with provably exact level, irrespective of the sample size and
the number replications used. For this reason, we call the latter maximized Monte Carlo (MMC)
tests. As one would expect for a statistic whose distribution depends on unknown nuisance parame-
ters, the probability of type I error for a MMC test can be lower (but not higher) than the level of the
test, so the procedure can be conservative. We also discuss how this maximization can be achieved
in practice, e.g. through simulated annealing techniques.

In the two next sections, we discuss simplified (asymptotically justified) approximate versions
of the proposed procedures, which involve the use of consistent set or point estimates of model para-
meters. In Section 5, we suggest a method [the consistent set estimate MMC method (CSEMMC)]
which is applicable when a consistent set estimator of the nuisance parameters [e.g., a random subset
of the parameter space whose probability of covering the nuisance parameters converges to one as
the sample size goes to infinity] is available. The approach proposed involves maximizing the sim-
ulated p-value function over the consistent set estimate, as opposed to the full nuisance parameter
space. This procedure may thus be computationally much less costly. Using a consistent set estima-
tor (or confidence set), as opposed to a point estimate, to deal with nuisance parameters is especially
useful because it allows one to obtain asymptotically valid tests even when the test statistic does not
converge in distribution or when the asymptotic distribution depends on nuisance parameters possi-
bly in a discontinuous way. Consequently, there is no need to study the asymptotic distribution of
the test statistic considered or even to establish its existence.1 This consistent set estimator MMC
method (CSEMMC) may be viewed as an asymptotic Monte Carlo extension of finite-sample two-
stage procedures proposed in Dufour (1990), Dufour and Kiviet (1996, 1998), Campbell and Dufour
(1997), and Dufour, Hallin and Mizera (1998). These features may be contrasted with those of boot-
strap methods which can fail to provide asymptotically valid tests when the test statistic simulated
has an asymptotic distribution involving nuisance parameters, especially if the asymptotic distri-
bution has discontinuities with respect to the nuisance parameters [see Athreya (1987), Basawa,
Mallik, McCormick, Reeves and Taylor (1991) and Sriram (1994), Andrews (2000), Benkwitz,
Lütkepohl and Neumann (2000), Inoue and Kilian (2002, 2003)].

In Section 6, we consider the simplest form of a Monte Carlo test with nuisance parameters,
i.e. the one where the consistent set estimate has been replaced by a consistent point estimate. In

1A case where the distribution of a test statistic does not converge in distribution is the one where the associated
sequence of distribution functions has several accumulation points, allowing different subsequences to have different
limiting distributions.
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other words, the distribution of the test statistic is simulated after replacing the nuisance parameters
by a consistent point estimate. Such a procedure can be interpreted as a parametric bootstrap test
based on the percentile method [see Efron and Tibshirani (1993, Chapter 16) and Hall (1992)]. The
term “parametric” may however be misleading here, because such MC tests can be applied as well
to nonparametric (distribution-free) test statistics. We give general conditions under which a Monte
Carlo test obtained after replacing an unknown nuisance parameter yield an asymptotically valid test
in cases where the limit distribution of the test statistic involves nuisance parameters. Following the
general spirit of Monte Carlo testing and in contrast with typical bootstrap arguments, the proofs
take the number of Monte Carlo simulations as fixed (possibly very small, such as 19 to obtain
a test with level 0.05). As in standard bootstrap arguments, the conditions considered involve a
smooth (continuous) dependence of the asymptotic distribution upon the nuisance parameters. It
is, however, important to note that these conditions are more restrictive and more difficult to check
than those under which CSEMMC procedures would be applicable. We conclude in Section 7.

2. Monte Carlo tests without nuisance parameters

Let us consider a family of probability spaces {(Z , AZ , Pθ) : θ ∈ Ω} , where Z is a sample space,
AZ a σ−algebra of subsets of Z , and Ω a parameter space (possibly infinite dimensional). Let also
S ≡ S(ω), ω ∈ Z , be a real-valued AZ -measurable function whose distribution is determined by
Pθ0 – i.e., θ0 is the “true” parameter vector. We wish to test the hypothesis

H0 : θ0 ∈ Ω0 (2.1)

where Ω0 is a nonempty subset of Ω, using a critical region of the form {S ≥ c} . Although, in
general, the distribution of S under H0 depends on the unknown value of θ0, we shall assume in
this section that this distribution does not depend on (unknown) nuisance parameters, so that we can
write

Pθ [S ≤ x] = F (x) , for all θ ∈ Ω0 , (2.2)

where F (x) is the unique distribution that S can have under H0. In view of this assumption, we
shall – until further notice – compute probabilities under the (unique) P ≡ Pθ0 when θ0 ∈ Ω0. The
constant c is chosen so that

P [S ≥ c] = 1 − F (c) + P [S = c] ≤ α (2.3)

where α is the desired level of the test (0 < α < 1). Note that the critical region S ≥ c can also be
put in two useful alternative forms, which are equivalent to S ≥ c with probability one (i.e., they
can differ from the critical region S ≥ c only on a set of zero probability):

G (S) ≤ G (c) , (2.4)

S ≥ F−1
[(

F (c) − P [S = c]
)+]

= F−1
[(

1 − G (c)
)+]

(2.5)
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where
G (x) = P [S ≥ x] = 1 − F (x) + P [S = x] (2.6)

is the “tail-area” or “p-value” function associated with F , and F−1 is the quantile function of F ,
with the conventions

F−1
(
q+

)
= lim

ε↓0
F−1 (q + ε) = inf

{
F−1 (q0) : q0 > q

}
, 0 ≤ q ≤ 1 ,

F−1 (1+) = ∞ and F−1 (0+) = F−1 (0). For any probability distribution function F (x), the
quantile function F−1 (q) is defined as follows:

F−1 (q) = inf {x : F (x) ≥ q} , if 0 < q < 1 ,
= inf {x : F (x) > 0} , if q = 0 ,
= sup {x : F (x) < 1} , if q = 1 ;

(2.7)

see Reiss (1989, p. 13). In general, F−1 (q) takes its values in the extended real numbers R̄ =
R ∪ {−∞,+∞} and, for coherence, we set F (−∞) = 0 and F (∞) = 1. Using (2.7), it is easy to
see that

F−1
[
(F (c) − P [S = c])+

]
= c

when: 0 < F (c) < 1 and either P(S = c) > 0 or F (x) is continuous and strictly monotonic in an
open neighborhood containing c. However, the formulation (2.5) remains valid in all cases.

2.1. Monte Carlo tests based on statistics with continuous distributions

Consider now a situation where the distribution of S under H0 may not be easy to compute ana-
lytically but can be simulated. Let S1, . . . , SN be a sample of identically distributed real random
variables with the same distribution as S. Typically, it is assumed that S1, . . . , SN are also inde-
pendent. However, we will observe that the exchangeability of S1, . . . , SN is sufficient for most of
the results presented below.2 This can accommodate a wide array of situations, where the simulated
statistics are not independent because they involve common (conditioning) variables, such as: sta-
tistics obtained by permuting randomly a given set of observations (permutation tests), tests which
are simulated conditionally on a common set of initial values (e.g., in time series models), common
regressors or a common subsample [see the Anderson-Rubin-type split-sample test described in Du-
four and Jasiak (2001)], tests that depend on a common independent simulation [e.g., tests based
on a criterion evaluated by a preliminary simulation, such as the simulated method of moments or
indirect inference; see Gouriéroux and Monfort (1996)], etc.

The technique of Monte Carlo tests provides a simple method allowing one to replace the theo-

2The elements of a random vector (S1, S2, . . . , SN )′ are exchangeable (or P-exchangeable) if
(Sr1 , Sr2 , . . . , SrN )′ ∼ (S1, S2, . . . , SN)′ for any permutation (r1, r2, . . . , rN) of the integers (1, 2, . . . , N)
under the relevant probability measure P.
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retical distribution F (x) by its sample analogue based on S1, . . . , SN :

F̂N (x) ≡ F̂N [x; S (N)] =
1
N

N∑
i=1

1 (Si ≤ x) (2.8)

where S (N) = (S1, . . . , SN )′ and 1 (C) is the indicator function associated with the condition C:

1 (C) = 1 , if condition C holds, (2.9)

= 0 , otherwise.

In the latter notation, C may also be replaced by an event A ∈ AZ , in which case 1 (A) ≡ 1(ω ∈ A)
where ω is the element drawn from the sample space.

We also consider the corresponding sample tail-area (or survival) function:

ĜN [x; S (N)] =
1
N

N∑
i=1

1 (Si ≥ x) . (2.10)

The sample distribution function is related to the ranks R1, . . . , RN of the variables S1, . . . , SN

(when put in ascending order) by the expression:

Rj = NF̂N [Sj; S (N)] =
N∑

i=1

1 (Si ≤ Sj) , j = 1, . . . , N . (2.11)

The central property we shall exploit here is the following: to obtain critical values or compute
p-values, the “theoretical” null distribution F (x) can be replaced by its simulation-based “estimate”
F̂N (x) in a way that will preserve the level of the test in finite samples, irrespective of the number
N of replications used. For continuous distributions, this property is expressed by Proposition 2.2
below, which is easily proved by using the following simple lemma.

Lemma 2.1 DISTRIBUTION OF RANKS WHEN TIES HAVE ZERO PROBABILITY. Let
(y1, . . . , yN )′ be a N × 1 vector of P-exchangeable real random variables such that

P(yi = yj) = 0 for i 	= j , i, j = 1, . . . , N , (2.12)

and let Rj =
∑N

i=1 1 (yi ≤ yj) be the rank of yj when y1, . . . , yN are ranked in nondecreasing
order (j = 1, . . . , N) . Then, for j = 1, . . . , N,

P(Rj/N ≤ x) = I[xN ]/N , for 0 ≤ x ≤ 1 , (2.13)

P(Rj/N ≥ x) = 1 , if x ≤ 0 ,
= (I[(1 − x)N ] + 1)/N , if 0 < x ≤ 1 ,
= 0 , if x > 1 ,

(2.14)

where I[x] is the largest integer less than or equal to x.
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Note that we use the symbol I[x] rather than the common notation [x] to represent the integer
part of a number x, because we heavily use brackets elsewhere in the paper, so that the notation
[ · ] could lead to confusions. It is clear that condition (2.12) is satisfied whenever the variables
y1, . . . , yN are independent with continuous distribution functions [see Hájek (1969, pp. 20-21)],
or when the vector (y1, . . . , yN )′ has an absolutely continuous distribution (with respect to the
Lebesgue measure on R

N ).

Proposition 2.2 VALIDITY OF MONTE CARLO TESTS WHEN TIES HAVE ZERO PROBABILITY.
Let (S0, S1, ... , SN )′ be a (N + 1) × 1 vector of exchangeable real random variables such that

P(Si = Sj) = 0 for i 	= j , i, j = 0, 1, . . . , N , (2.15)

let F̂N (x) ≡ F̂N [x;S (N)] , ĜN (x) = ĜN [x;S (N)] and F̂−1
N (x) be defined as in (2.7) - (2.10),

and set

p̂N (x) =
NĜN (x) + 1

N + 1
. (2.16)

Then,

P
[
ĜN (S0) ≤ α1

]
= P

[
F̂N (S0) ≥ 1 − α1

]
=

I[α1N ] + 1
N + 1

, for 0 ≤ α1 ≤ 1 , (2.17)

P
[
S0 ≥ F̂−1

N (1 − α1)
]

=
I[α1N ] + 1

N + 1
, for 0 < α1 < 1 , (2.18)

and

P
[
p̂N (S0) ≤ α

]
=

I [α (N + 1)]
N + 1

, for 0 ≤ α ≤ 1 . (2.19)

The latter proposition can be used as follows: choose α1 and N so that

α =
I[α1N ] + 1

N + 1
(2.20)

is the desired significance level. Provided N is reasonably large, α1 will be very close to α; in
particular, if α (N + 1) is an integer, we can take α1 = α−

(
(1−α)/N

)
, in which case we see easily

that the critical region ĜN (S0) ≤ α1 is equivalent to ĜN (S0) < α. Further, for 0 < α < 1, the
randomized critical region S0 ≥ F̂−1

N (1 − α1) has the same level (α) as the nonrandomized critical
region S0 ≥ F−1 (1 − α) , or equivalently the critical regions p̂N (S0) ≤ α and ĜN (S0) ≤ α1

have the same level as the critical region G (S0) ≡ 1 − F (S0) ≤ α .

2.2. Monte Carlo tests based on general statistics

The assumption (2.15), which states that ties have zero probability, plays an important role in prov-
ing Proposition 2.2 . However, it is possible to prove analogous results for general sequences of
exchangeable random variables (which may exhibit ties with positive probability), provided we
consider a properly randomized empirical distribution function. For this purpose, we introduce ran-
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domized ranks which are obtained like ordinary ranks except that ties are “broken” according to
a uniform distribution. More precisely, let us associate with each variable Sj , j = 1, . . . , N , a
random variable Uj , j = 1, . . . , N such that

U1, . . . , UN
i.i.d.∼ U (0, 1) , (2.21)

U (N) = (U1, . . . , UN )′ is independent of S (N) = (S1, . . . , SN )′ where U (0, 1) is the uniform
distribution on the interval (0, 1). Then, we consider the pairs

Zj = (Sj , Uj) , j = 1, . . . , N , (2.22)

which are ordered according to the lexicographic order:

(Si, Ui) ≤ (Sj, Uj) ⇐⇒ {Si < Sj or (Si = Sj and Ui ≤ Uj)} . (2.23)

Using the indicator

1 [(x1, u1) ≤ (x2, u2)] = 1(x1 < x2) + δ (x1 − x2)1 (u1 ≤ u2) , (2.24)

S1, . . . , SN are then ordered like the pairs Z1, . . . , ZN according to (2.23), which yield “random-
ized ranks”:

R̃j

[
S (N) , U (N)

]
=

N∑
i=1

1
[
(Si, Ui) ≤ (Sj , Uj)

]
, (2.25)

j = 1, . . . , N . By the continuity of the uniform distribution, the ranks R̃j = R̃j [S (N) , U (N)],
j = 1, . . . , N, are all distinct with probability 1, so that the randomized rank vector
(R̃1, R̃2, . . . , R̃N )′ is a permutation of (1, 2, . . . , N)′ with probability 1. Furthermore when
Sj 	= Si for all j 	= i, we have R̃j = Rj : if (2.15) holds, then R̃j = Rj , j = 1, . . . , N, with
probability 1 [where Rj is defined in (2.11)]. We can now state the following extension of Lemma
2.1 .

Lemma 2.3 DISTRIBUTION OF RANDOMIZED RANKS. Let y (N) = (y1, . . . , yN )′ be a N × 1
vector of exchangeable real random variables and let R̃j = R̃j [y (N) , U (N)] be defined as in
(2.25) where U (N) = (U1, . . . , UN )′ is a vector of i.i.d. U (0, 1) variables independent of
y (N) . Then, for j = 1, . . . , N ,

P
(
R̃j/N ≤ x

)
= I[xN ]/N, for 0 ≤ x ≤ 1 , (2.26)

P
(
R̃j/N ≥ x

)
= 1 , if x ≤ 0 ,
= (I[(1 − x)N ] + 1)/N , if 0 < x ≤ 1 ,
= 0 , if x > 1 .

(2.27)
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To the above randomized rankings, it is natural to associate the following randomized empirical
(pseudo-)distribution function:

F̃N [x; U0, S (N) , U (N)] =
1
N

N∑
i=1

1
[
(Si, Ui) ≤ (x, U0)

]
= 1 − ĜN [x; S (N)] + TN [x; U0, S (N) , U (N)] (2.28)

where U0 is a U (0, 1) random variable independent of S (N) and U (N) ,

TN [x; U0, S (N) , U (N)] =
1
N

N∑
i=1

δ (Si − x)1 (Ui ≤ U0) =
1
N

∑
i∈EN (x)

1 (Ui ≤ U0) (2.29)

and EN (x) = {i : Si = x, 1 ≤ i ≤ N} . The function F̃N [x; ·] retains all the properties of a
probability distribution function, except for the fact that it may not be right continuous at some of
its jump points (where it may take values between its right and left limits). We can also define the
corresponding tail-area function:

G̃N [x; U0, S (N) , U (N)] =
1
N

N∑
i=1

1 [(Si, Ui) ≥ (x, U0)]

= 1 − F̂N [x; S (N)] + T̄N [x; U0, S (N) , U (N)] , (2.30)

T̄N [x; U0, S (N) , U (N)] =
1
N

N∑
i=1

δ (Si − x)1 (Ui ≥ U0) =
1
N

∑
i∈EN (x)

1 (Ui ≥ U0) . (2.31)

From (2.28) – (2.31), we see that the following inequalities must hold:

1 − ĜN [x; S (N)] ≤ F̃N [x; U0, S (N) , U (N)] ≤ F̂N [x; S (N)] , (2.32)

1 − F̂N [x; S (N)] ≤ G̃N [x; U0, S (N) , U (N)] ≤ ĜN [x; S (N)] . (2.33)

When no element of S (N) is equal to x [i.e., when EN (x) is empty], we have:

G̃N [x; U0, S (N) , U (N)] = ĜN [x; S (N)] = 1 − F̂N [x; S (N)]
= 1 − F̃N [x; U0, S (N) , U (N)] . (2.34)

Using the above observations, it is then easy to establish the following proposition.

Proposition 2.4 VALIDITY OF MONTE CARLO TESTS FOR GENERAL STATISTICS. Let
(S0, S1, . . . , SN )′ be a (N + 1) × 1 vector of exchangeable real random variables, let
(U0, U1, . . . , UN )′ be a (N + 1) × 1 vector of i.i.d. U (0, 1) random variables independent
of (S0, S1, . . . , SN )′, let F̂N (x) ≡ F̂N [x; S (N)], ĜN (x) ≡ ĜN [x; S (N)] , F̃N (x) ≡
F̃N [x; U0, S (N) , U (N)] and G̃N (x) ≡ G̃N [x; U0, S (N) , U (N)] be defined as in (2.8) –
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(2.10) and (2.28) – (2.30), with S (N) = (S1, . . . , SN ) and U (N) = (U1, . . . , UN ) , and let

p̃N (x) =
NG̃N (x) + 1

N + 1
. (2.35)

Then for 0 ≤ α1 ≤ 1,

P[ĜN (S0) ≤ α1 ] ≤ P[G̃N (S0) ≤ α1] = P[F̃N (S0) ≥ 1 − α1]

=
I[α1N ] + 1

N + 1
≤ P[F̂N (S0) ≥ 1 − α1] (2.36)

with P[F̂N (S0) ≥ 1 − α1] = P[S0 ≥ F̂−1
N (1 − α1)] for 0 < α1 < 1, and defining p̂N (x) as in

(2.16),

P [p̂N (S0) ≤ α] ≤ P [p̃N (S0) ≤ α] =
I[α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1 . (2.37)

In view of the fact that G̃N (S0) = ĜN (S0) with probability one when the zero probability tie
condition [i.e. (2.15)] holds, it is straightforward to see that Proposition 2.2 is entailed by Proposi-
tion 2.4.

3. Power functions and concordance probabilities

The procedures described above are randomized in the sense that the result of the tests depend on
auxiliary simulations. This raises the issue of the sensitivity of the results to these simulations. To
study this more closely, let us suppose that:

S0, S1, . . . , SN are independent with

P(Si ≤ x) = F (x) , P(Si ≥ x) = G (x) , P(Si = x) = g (x) , i = 1, . . . , N ,

P(S0 ≤ x) = H (x) , P(S0 ≥ x) = K (x) . (3.1)

Then, it is easy to see that NG̃N (x) follows a binomial distribution Bi (N, p) with number of trials
N and probability of “success” p = Ḡ (x, u), where

Ḡ (x, u) = P (1 [(Si, Ui) ≥ (x, u)] = 1) = P (Si > x) + P (Si = x) P (Ui ≥ u)
= 1 − F (x) + g (x) (1 − u) , (3.2)

and we can compute the conditional probability given (S0, U0) of the critical region G̃N (S0) ≤ α1 :

P
[

G̃N (S0) ≤ α1 | (S0, U0)
]

= P
[ N∑

i=1

1 [(Si, Ui) ≥ (S0, U0)] ≤ I [α1N ] | (S0, U0)
]

=
I[α1N ]∑
k=0

(
N
k

)
Ḡ (S0, U0)

k [1 − Ḡ (S0, U0)]N−k (3.3)
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where
(
N
k

)
= N !/ [k! (N − k)!] . Similarly, we can also write:

P
[

ĜN (S0) ≤ α1 | S0

]
=

I[α1N ]∑
k=0

(
N
k

)
G (S0)

k (1 − G (S0))
N−k . (3.4)

When F (x) is continuous, so that g (x) = 0, we have:

P
[

G̃N (S0) ≤ α1 | (S0, U0)
]

= P
[
ĜN (S0) ≤ α1 | S0

]
=

I[α1N ]∑
k=0

(
N
k

)
[1 − F (S0)]kF (S0)

N−k . (3.5)

Using (3.3), we can find a closed-form expression for the power of the randomized test G̃ (S0) ≤
α1 for any null hypothesis which entails that S0 has the distribution F (·) against an alternative under
which its distribution is H (·) :

P
[

G̃N (S0) ≤ α1

]
= E

(S0,U0)
{P[G̃N (S0) ≤ α1 | (S0, U0)]}

=
I[α1N ]∑
k=0

(
N
k

) ∫ ∫ 1

0
Ḡ (x, u)k [1 − Ḡ (x, u)]N−kdu dH (x) . (3.6)

Furthermore, when F (x) is continuous everywhere, the latter expression simplifies and we can
write:

P
[

G̃N (S0) ≤ α1

]
= P

[
ĜN (S0) ≤ α1

]
=

I[α1N ]∑
k=0

(
N
k

) ∫
[1 − F (x)]kF (x)N−k dH (x) . (3.7)

The above formulae will be useful in establishing the validity of simplified asymptotic Monte
Carlo tests in the presence of nuisance parameters. They also allow one to compute the probability
that the result of the randomized test G̃N (S0) ≤ α1 be different of the the corresponding nonran-
domized test G (S0) ≤ α, where α ≡ ([Nα1] + 1) / (N + 1). For example, let α̂0 = G (S0) the
“p-value” one would obtain if the function G (x) were easy to compute (the p-value of the “funda-
mental test”). The latter is generally different from the p-value p̃N (S0) or p̂N (S0) obtained from a
Monte Carlo test based on S1, ... , SN . An interesting question here is the probability that the Monte
Carlo test yields a conclusion different from the one based on α̂0. To study this, we shall consider
the test which rejects the null hypothesis H0 when p̂N (S0) ≤ α under the assumptions (3.1).

If α̂0 > α (in which case H0 is not rejected at level α by the fundamental test), the probability
that H0 be rejected at level α0 is

P
[
p̂N (S0) ≤ α0 | S0

]
= P

[
NĜN (S0) ≤ (N + 1) α0 − 1 | S0

]
= P

[
Bi (N, α̂0) ≤ (N + 1) α0 − 1 | S0

]
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≤ P [Bi (N, α) ≤ (N + 1) α0 − 1]

= P

[
Bi (N, α) − Nα(
Nα (1 − α)

)1/2
≤ N (α0 − α) − (1 − α0)(

Nα (1 − α)
)1/2

]
(3.8)

where the inequality follows on observing that α̂0 > α and Bi (N, p) denotes a binomial ran-
dom variable with number of trials N and probability of success p. From (3.8), we can bound the
probability that a Monte Carlo p-value as low as α0 be obtained when the fundamental test is not
significant at level α. In particular, for α0 < α, this probability decreases as the difference |α0 − α|
and N get larger. It is also interesting to observe that

lim
N→∞

P
[
p̂N (S0) ≤ α0 | S0

]
= lim

N→∞
P

[
Bi (N,α) − Nα(
Nα (1 − α)

)1/2
≤ N (α0 − α) − (1 − α0)(

Nα (1 − α)
)1/2

]
= 0

(3.9)
for α0 < α , so that the probability of a discrepancy between the fundamental test and the Monte
Carlo test goes to zero as N increases.

Similarly, for α̂0 < α (in which case H0 is rejected at level α by the fundamental test), the
probability that H0 not be rejected at level α0 is

P
[
p̂N (S0) > α0 | S0

]
= P

[
Bi (N, α̂0) > (N + 1) α0 − 1 | S0

]
≤ P

[
Bi (N, α) − Nα(
Nα (1 − α)

)1/2
≤ N (α0 − α) − (1 − α0)(

Nα (1 − α)
)1/2

]
(3.10)

hence
lim

N→∞
P [p̂N (S0) ≥ α0 | S0] = 0 , for α0 > α . (3.11)

(3.10) gives an upper bound on the probability of observing a p-value as high as α0 when the
fundamental test is significant at a level lower than α. Again, the probability of a discrepancy
between the fundamental test and the Monte Carlo test goes to zero as N increases. The only case
where the probability of a discrepancy between the two tests does not go to zero as N → ∞ is when
α̂0 = α (an event with probability zero for statistics with continuous distributions).

The probabilities (3.8) and (3.10) may be computed a posteriori to assess the probability of
obtaining p-values as low (or as high) as p̂N (S0) when the result of the corresponding fundamental
test is actually not significant (or significant) at level α. Note also that similar (although somewhat
different) calculations may be used to determine the number N of simulations that will ensure a
given probability of concordance between the fundamental and the Monte Carlo test [see Marriott
(1979)].

4. Monte Carlo tests with nuisance parameters

We will now study the case where the distribution of the test statistic S depends on nuisance para-
meters. We consider a family of probability spaces {(Z , AZ , Pθ) : θ ∈ Ω} and suppose that S is a
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real-valued AZ -measurable function whose distribution is determined by Pθ0 [i.e., θ0 is the “true”
parameter vector]. We wish to test the hypothesis

H0 : θ0 ∈ Ω0 (4.1)

where Ω0 is a nonempty subset of Ω. Again we take a critical region of the form S ≥ c, where c is
a constant which does not depend on θ. The critical region S ≥ c has level α if and only if

Pθ [S ≥ c] ≤ α , ∀θ ∈ Ω0 , (4.2)

or equivalently,
sup
θ∈Ω0

Pθ [S ≥ c] ≤ α . (4.3)

Furthermore, S ≥ c has size α when

sup
θ∈Ω0

Pθ [S ≥ c] = α . (4.4)

If we define the distribution and p-value functions,

F [x | θ] = Pθ [S ≤ x] , x ∈ R̄, (4.5)

G [x | θ] = Pθ [S ≥ x] , x ∈ R̄, (4.6)

where θ ∈ Ω, it is again easy to see that the critical regions

sup
θ∈Ω0

G [S | θ] ≤ α , (4.7)

where α ≡ sup
θ∈Ω0

G [c | θ] , and

S ≥ sup
θ∈Ω0

F−1
[
(1 − G [c | θ])+ | θ

]
≡ c̄ (4.8)

are equivalent to S ≥ c in the sense that c ≤ c̄, with equality holding when F [x | θ] is discontinuous
at x = c for all θ ∈ Ω0 or both F [x | θ] and F−1 [q | θ] are continuous at x = c and q = F (c)
respectively for all θ ∈ Ω0, and

sup
θ∈Ω0

Pθ [S ≥ c̄] ≤ sup
θ∈Ω0

Pθ [S ≥ c] = sup
θ∈Ω0

Pθ [sup {G [S | θ0] : θ0 ∈ Ω0} ≤ α] . (4.9)

We shall now extend Proposition 2.2 in order to allow for the presence of nuisance parameters.
For that purpose, we consider a real random variable S0 and random vectors of the form

S (N, θ) = (S1 (θ) , . . . , SN (θ))′ , θ ∈ Ω , (4.10)
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all defined on a common probability space (Z , AZ , P), such that

the variables S0, S1(θ0), . . . , SN (θ0) are exchangeable for some θ0 ∈ Ω ,

each one with distribution function F [x | θ0] . (4.11)

Typically, S0 will refer to a test statistic computed from observed data when the true parameter
vector is θ0 (i.e., θ = θ0), while S1 (θ) , . . . , SN (θ) will refer to independent and identically
distributed (i.i.d.) replications of the test statistic obtained independently (e.g., by simulation) under
the assumption that the parameter vector is θ (i.e., P [Si (θ) ≤ x] = F [x | θ]).

Note that the basic probability measure P can be interpreted as Pθ0 , while the dependence of the
distribution of the simulated statistics upon other values of the parameter θ is expressed by making
Si (θ) a function of θ (as well as ω ∈ Z). In parametric models, the statistic S will usually be
simulated by first generating an “observation” vector y according to an equation of the form

y = g(θ, u) (4.12)

where u has a known distribution (which can be simulated) and then computing

S(θ) ≡ S[g(θ, u)] ≡ gS(θ, u) . (4.13)

In such cases, the above assumptions can be interpreted as follows: S0 = S[y(θ0, u0)] and
Si (θ) = S[y(θ, ui)], i = 1, . . . , N, where the random vectors u0, u1, . . . , uN are i.i.d. (or
exchangeable). Note θ may include the parameters of a disturbance distribution in a model, such
as covariance coefficients (or even its complete distribution function), so that the assumption that
u has a known distribution is not restrictive. Assumptions on the structure of the parameter space
Ω (e.g., whether it is finite-dimensional) will however entail real restrictions on the data-generating
process. More generally, it is always possible to consider that the variables S0, S1 (θ) , . . . , SN (θ)
are P-measurable by considering their representation in terms of uniform random variables [see
Shorack and Wellner (1986, Chapter 1, Theorem 1)]: S0 = F−1 [V0 | θ0] and Si (θ) = F−1 [Vi | θ] ,
i = 1, . . . , N, where V0, V1, . . . , VN are P-exchangeable with uniform marginal distributions
[Vi ∼ U(0, 1), i = 0, 1, . . . , N ].

A more general setup that allows for nonparametric models would consist in assuming that the
null distribution of the test statistic depends on θ only through some transformation T (y) of the
observation vector y, which in turn only depends upon θ through some transformation θ∗ = h(θ),
e.g. a subvector of θ :

T (y) = g[h(θ), u] = g[θ∗, u] , θ∗ ∈ Ω∗ (4.14)

where Ω∗ = h(Ω), hence

S(θ) = S (T (y)) = S (g[h(θ), u]) ≡ gS [h(θ), u] = gS(θ∗, u) . (4.15)

The setup (4.14) - (4.15) allows for reductions of the nuisance parameter space (e.g., through invari-
ance). In particular, nonparametric models may be considered by taking appropriate distribution-
free statistics (e.g., test statistics based on signs, ranks, permutations, etc.). What matters for our
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purpose is the possibility of simulating the test statistic, not necessarily the data themselves.
Let also

F̂N [x | θ] ≡ F̂N [x; S (N, θ)] , ĜN [x | θ] ≡ ĜN [x; S (N, θ)] , (4.16)

p̂N [x | θ] =
NĜN [x | θ] + 1

N + 1
(4.17)

be defined as in (2.8) – (2.10), and suppose the variables

sup{ĜN [S0 | θ] : θ ∈ Ω0} and inf{F̂N [S0 | θ] : θ ∈ Ω0} are AZ -measurable

where Ω0 is nonempty subset of Ω . (4.18)

For general discussions of measurability of conditions for extrema of random functions, the reader
may consult Debreu (1967), Brown and Purves (1973) and Stinchcombe and White (1992).3 We
then get the following proposition.

Proposition 4.1 VALIDITY OF MMC TESTS WHEN TIES HAVE ZERO PROBABILITY. Under the
assumptions and notations (4.10), (4.11) and (4.16) - (4.18), set S0 (θ0) = S0 and suppose that

P [Si (θ0) = Sj (θ0)] = 0 for i 	= j , i, j = 0, 1, . . . , N . (4.19)

If θ0 ∈ Ω0, then for 0 ≤ α1 ≤ 1,

P
[
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
inf{F̂N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1

]
≤ I [α1N ] + 1

N + 1
(4.20)

where P
[
inf{F̂N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1

]
= P

[
S0 ≥ sup{F̂−1

N [1 − α1 | θ] : θ ∈ Ω0}
]

for
0 < α1 < 1, and

P
[
sup {p̂N [S0 | θ] : θ ∈ Ω0} ≤ α

]
≤ I [α (N + 1)]

N + 1
, for 0 ≤ α ≤ 1 . (4.21)

Following the latter proposition, if we choose α1 and N so that (2.20) holds, the critical region
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1 has level α irrespective of the presence of nuisance parameters
in the distribution of the test statistic S under the null hypothesis H0 : θ0 ∈ Ω0. The same also
holds if we use the (almost) equivalent critical regions inf{F̂N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1 or
S0 ≥ sup{F̂−1

N [1 − α1 | θ] : θ ∈ Ω0} . We shall call such tests maximized Monte Carlo (MMC)
tests.

To be more explicit, if S(θ) is generated according to expressions of the form (4.14) - (4.15),

3If measurability is an issue, notions of “near-mesurability” can be substituted [see Stinchcombe and White (1992)].
From the viewpoint of getting upper bounds on probabilities, the probability operator can also be replaced by the associ-
ated outer measure which is always well-defined [see Dufour (1989, footnote 5)].
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we have

ĜN [S0 | θ] =
1
N

N∑
i=1

1
[
Si (θ) ≥ S0

]
=

1
N

N∑
i=1

1
[
S (g[h(θ), ui]) ≥ S0

]

=
1
N

N∑
i=1

1
[
gS(θ∗, ui) ≥ S0

]
. (4.22)

The function ĜN [S0 | θ] (or p̂N [S0 | θ]), is then maximized with respect to θ ∈ Ω0 [or equiv-
alently, with respect to θ∗ ∈ Ω0∗ = h(Ω0)] keeping the observed statistic S0 and the simulated
disturbance vectors u1, . . . , uN fixed. The function ĜN [S0 | θ] is a step-type function which typ-
ically has zero derivatives almost everywhere, except on isolated points (or manifolds) where it
is not differentiable. Further, the supremum of ĜN [S0 | θ] is typically not unique, in the sense
that several values of θ will yield the required supremum. So it cannot be maximized with usual
derivative-based algorithms. However, the required maximizations can be performed by using ap-
propriate optimization algorithms that do not require differentiability, such as simulated annealing.
For further discussion of such algorithms, the reader may consult Goffe, Ferrier and Rogers (1994).

It is easy to extend Proposition 4.1 in order to relax the no-tie assumption (4.19). For that pur-
pose, we generate as in Proposition 2.4 a vector (U0, U1, . . . , UN ) of N +1 i.i.d. U (0, 1) random
variables independent of S0, S1 (θ0) , ... SN (θ0) , and we consider the corresponding randomized
distribution, tail-area and p-value functions:

F̃N [x | θ] ≡ F̃N [x; U0, S (N, θ) , U (N)] , (4.23)

G̃N [x | θ] ≡ G̃N [x; U0, S (N, θ) , U (N)] , p̃N [x | θ] =
NG̃N [x | θ] + 1

N + 1
(4.24)

where
U (N) = (U1, . . . , UN ) , and U0, U1, . . . , UN

i.i.d.∼ U (0, 1) . (4.25)

Under the corresponding measurability assumption

sup{G̃N [S0 | θ] : θ ∈ Ω0} and inf{F̃N [S0 | θ] : θ ∈ Ω0} are AZ -measurable

where Ω0 is nonempty subset of Ω , (4.26)

we can then state the following generalization of Proposition 2.4.

Proposition 4.2 VALIDITY OF MMC TESTS FOR GENERAL STATISTICS. Under the assump-
tions and notations (4.10), (4.11), (4.16) - (4.18) and (4.23) - (4.26), suppose U0, U1, ... , UN are
independent of S0, S1 (θ0) , ... , SN (θ0). If θ0 ∈ Ω0, then for 0 ≤ α1 ≤ 1 and for 0 ≤ α ≤ 1,

P
[
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
sup{G̃N [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ I [α1N ] + 1

N + 1
,
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P
[
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
sup{F̃N [S0 | θ] : θ ∈ Ω0} ≥ 1−α1

]
≤ I [α1N ] + 1

N + 1
,

P
[
sup {p̂N [S0 | θ] : θ ∈ Ω0} ≤ α

]
≤ P

[
sup {p̃N [S0 | θ] : θ ∈ Ω0} ≤ α

]
≤ I [α (N + 1)]

N + 1
.

One should note here that the validity results of propositions 4.1 and 4.2 differ from those
of the corresponding propositions 2.2 and 2.4 in the sense that equalities have been replaced by
inequalities. This entails that the corresponding maximized MC tests is exact in the sense that the
probability of type I error cannot be larger than the nominal level α of the test, but its size may be
lower that the level (leading to a conservative procedure).4 In view of the fact the distribution of
the test statistic involves nuisance parameters, this is not surprising: since the distribution of the
test statistic varies as a function of nuisance parameters, we can expect that the probability of type
I error be lower than the level α for some distribution compatible with the null hypothesis, even if
we use the tightest possible critical value that allows one to control the level of the test. Both the
fundamental (infeasible) test and its MC version are not similar. This is a feature of the test statistic,
not its MC implementation. Of course, it is preferable from the power viewpoint that the discrepancy
between the size of the test and its level be as small as possible. This discrepancy would disappear
if we could estimate and maximize without error the theoretical p-value function G [x | θ] or the
appropriate critical value, but this is not typically feasible. In general, the discrepancy between the
size and the nominal level of the test depends on the form of the test statistic, the null hypothesis,
and the number N of replications of the MMC procedure. Studying in any detail this sort of effect
would go beyond the scope of the present.5

5. Asymptotic Monte Carlo tests based on a consistent set estimator

In this section, we propose simplified approximate versions of the procedures proposed in the pre-
vious section when a consistent point or set estimate of θ is available. To do this, we shall need to
reformulate the setup used previously in order to allow for an increasing sample size.

Consider
ST0, ST1 (θ) , . . . , STN (θ) , T ≥ I0 , θ ∈ Ω , (5.1)

real random variables all defined on a common probability space (Z , AZ , P), and set

ST (N, θ) = (ST1 (θ) , . . . , STN (θ)) , T ≥ I0 . (5.2)

We will be primarily interested by situations where

the variables ST0, ST1(θ0), . . . , STN (θ0) are exchangeable for some θ0 ∈ Ω ,

4We say that a test procedure is conservative at level α if its size is strictly smaller than α. Note that a non-similar test
is not conservative as long as its size is equal to the level α (even though the probability of type I error is smaller than α
for certain distributions compatible with the null hypothesis).

5A question of interest here consists in studying the conditions under which the discrepancy will disappear as the
number of MC replications goes to infinity (N → ∞). The reader will also find simulation evidence on the size and
power properties of MMC procedures in Dufour and Khalaf (2003a, 2003b), Dufour and Jouini (2005) and Dufour and
Valéry (2005).
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each one with distribution function FT [x | θ0] . (5.3)

Here ST0 will normally refer to a test statistic with distribution function FT [· | θ] based on
a sample of size T, while ST1 (θ) , . . . , STN (θ) are i.i.d. replications of the same test statistic
obtained independently under the assumption that the parameter vector is θ (i.e., P [ST i (θ) ≤ x] =
FT [x | θ] , i = 1, . . . , N). Let also

F̂TN [x | θ] = F̂N [x; ST (N, θ)] , ĜTN [x | θ] = ĜN [x; ST (N, θ)] , (5.4)

p̂TN [x | θ] =
NĜTN [x | θ] + 1

N + 1
, (5.5)

and let F̂−1
TN [x | θ] be defined as in (2.7) – (2.10).

We consider first the situation where p-values are maximized over a subset CT of Ω (e.g., a
confidence set for θ) instead of Ω0. Consequently, we introduce the following assumption:

CT , T ≥ I0 is a sequence of (possibly random) subsets of Ω such that

sup{ĜTN [ST0 | θ] : θ ∈ CT } and inf{F̂TN [ST0 | θ] : θ ∈ CT } are AZ -measurable,

for all T ≥ I0, where Ω0 is nonempty subset of Ω . (5.6)

Then we have the following proposition.

Proposition 5.1 ASYMPTOTIC VALIDITY OF CONFIDENCE-SET RESTRICTED MMC TESTS:
CONTINUOUS DISTRIBUTIONS. Under the assumptions and notations (5.1) to (5.6), set
ST0 (θ0) = ST0, suppose

P [ST i (θ0) = STj (θ0)] = 0 for i 	= j, and i, j = 0, 1, . . . , N , (5.7)

for all T ≥ I0, and let CT , T ≥ I0, be a sequence of (possibly random) subsets of Ω such that

lim
T→∞

P [θ0 ∈ CT ] = 1 . (5.8)

If θ0 ∈ Ω0, then

lim
T→∞

P
[
sup{ĜTN [ST0 | θ] : θ ∈ CT } ≤ α1

]
≤ lim

T→∞
P
[
inf{F̂TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1

]
= lim

T→∞
P
[
ST0 ≥ sup{F̂−1

TN [1 − α1 | θ] : θ ∈ CT }
]
≤ I [α1N ] + 1

N + 1
(5.9)

and

lim
T→∞

P
[
sup {p̂TN [ST0 | θ] : θ ∈ CT } ≤ α

]
≤ I [α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1 . (5.10)
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It is quite easy to find a consistent set estimate of θ0 whenever a consistent point estimate θ̂T of
θ0 is available. Suppose Ω ⊆ R

k and

lim
T→∞

P
[
‖ θ̂T − θ0 ‖< ε

]
= 1 , ∀ε > 0 , (5.11)

where ‖·‖ is the Euclidean norm in R
k [i.e., ‖ x ‖= (x′x)1/2 , x ∈ R

k]. Note that condition
(5.8) need only hold for the true value θ0 of the parameter vector θ. Then any set of the form
CT = {θ ∈ Ω : ‖ θ̂T − θ ‖< c} satisfies (5.8), whenever c is a fixed positive constant that does
not depend on T. More generally, if there is a sequence of (possibly random) matrices AT and a
non-negative exponent δ such that

lim
T→∞

P
[
T δ ‖ AT (θ̂T − θ0) ‖2 < c

]
= 1 , ∀c > 0 , (5.12)

then any set of the form

CT = {θ ∈ Ω : (θ̂T − θ)′A′
T AT (θ̂T − θ) < c/T δ}

= {θ ∈ Ω : ‖ AT (θ̂T − θ) ‖2< c/T δ} , c > 0 (5.13)

satisfies (5.8), since in this case,

P
[
θ0 ∈ CT

]
= P

[
(θ̂T − θ0)′A′

T AT (θ̂T − θ0) < c/T δ
]

= P
[
T δ(θ̂T − θ0)′A′

T AT (θ̂T − θ0) < c
]
−→

T→∞
1 .

In particular (5.12) will hold whenever we can find δ̄ > 0 (e.g., δ̄ = 1) such that T δ̄/2AT (θ̂T − θ0)
has an asymptotic distribution (as T → ∞) and δ is selected so that 0 ≤ δ < δ̄. Whenever δ > 0
and plim

T→∞
(A′

T AT ) = C0 with det (C0) 	= 0, the diameter of the set CT goes to zero, a fact which

can greatly simplifies the evaluation of the variables sup{ĜTN}, inf{F̂TN} and sup{p̂TN} in (5.9)
- (5.10).

The above procedure may be especially useful when the distribution of the test statistic is highly
sensitive to nuisance parameters, in a way that would make its asymptotic distribution discontinuous
with respect to the nuisance parameters. In such cases, a simulation-based procedure where the
nuisance parameters are replaced by a consistent point estimate – such as a parametric bootstrap
procedure – may not converge to the appropriate asymptotic distribution (because the point estimate
does not converge sufficiently fast to overcome the discontinuity). Here, possible discontinuities in
the asymptotic distribution are automatically taken into account thorough a numerical maximization
over a set that contains the correct value of the nuisance parameter with a probability asymptotically
equal to one: using a consistent set estimator as opposed a point estimate (which does not converge
fast enough) can overcome such a high sensitivity to nuisance parameters. Of course, the procedure
can also be helpful in situations where the finite-sample distribution is highly sensitive to nuisance
parameters, even though it does not lead to asymptotic failure of the bootstrap.

Again, it is possible to extend Proposition 5.1 to statistics with general (possibly discrete) dis-
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tributions by considering properly randomized distribution, tail-area and p-value functions:

F̃TN [x | θ] = F̃N [x; U0, ST (N ; θ) , U (N)] , (5.14)

G̃TN [x | θ] = G̃N [x; U0, ST (N ; θ) , U (N)] , (5.15)

p̃TN [x | θ] =
NG̃TN [x | θ] + 1

N + 1
, (5.16)

where F̃N [·], G̃N [·], U0 and U (N) are defined as in (4.23) - (4.25).

Proposition 5.2 ASYMPTOTIC VALIDITY OF CONFIDENCE-SET RESTRICTED MMC TESTS:
GENERAL DISTRIBUTIONS. Under the assumptions and notations (5.1) - (5.6) and (5.14) - (5.16),
suppose the sets CT ⊆ Ω, T ≥ I0, satisfy (5.8). If θ0 ∈ Ω0, then for 0 ≤ α1 ≤ 1 and 0 ≤ α ≤ 1,

lim
T→∞

P
[
sup{ĜTN [ST0 | θ] : θ ∈ CT } ≤ α1

]
≤ lim

T→∞
P
[
sup{G̃TN [ST0 | θ] : θ ∈ CT } ≤ α1

]
≤ I [α1N ] + 1

N + 1
, (5.17)

lim
T→∞

P
[
sup{ĜTN [ST0 | θ] : θ ∈ CT } ≤ α1

]
≤ lim

T→∞
P
[
sup{F̃TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1

]
≤ I [α1N ] + 1

N + 1
, (5.18)

lim
T→∞

P
[
sup{p̂TN [ST0 | θ] : θ ∈ CT } ≤ α

]
≤ lim

T→∞
P
[
sup{p̃TN [S0 | θ] : θ ∈ CT } ≤ α

]
≤ I [α(N + 1)]

N + 1
. (5.19)

6. Asymptotic Monte Carlo tests based on consistent point estimate

Parametric bootstrap tests may be interpreted as a simplified form of the procedures described in
Proposition 5.1 and 5.2 where the consistent confidence set CT has been replaced by a consistent
point estimate θ̂T . In other words, the distribution of ST (θ), θ ∈ Ω0, is simulated at a single point
θ̂T , leading to a local (or pointwise) MC test. It is well known that such bootstrap tests are not
generally valid, unless stronger regularity conditions are imposed. In the following proposition, we
extend earlier proofs of the asymptotic validity of such bootstrap tests. In particular, we allow for
the presence of nuisance parameters in the asymptotic distribution of the test statistic considered.
Further, our proofs have the interesting feature of being cast in the MC test setup where the number
of replications N is kept fixed even asymptotically.

Such pointwise procedures require stronger regularity assumptions (such as uniform continuity
and convergence over the nuisance parameter space) – so that they may fail in irregular cases where
the maximized procedures described in the previous sections succeed in controlling the level of the
test (at least asymptotically). But they are simpler to implement and may be taken as a natural
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starting point for implementing maximized procedures. In particular, if a pointwise MC p-value
is larger than the level α of the test (so that the pointwise MC test is not significant at level α),
it is clear that the maximized p-value must be larger than α (so that the maximized MC test is not
significant at level α)

In order to establish a clear asymptotic validity result, we will use four basic assumptions on the
distributions of the statistics ST (θ) as functions of the parameter vector θ:

ST1 (θ) , . . . , STN (θ) are i.i.d. according to the distribution

FT [x | θ] = P [ST (θ) ≤ x] , ∀θ ∈ Ω ; (6.1)

Ω is a nonempty subset of R
k ; (6.2)

for every T ≥ I0 , ST0 is a real random variable and θ̂T an estimator of θ,

both measurable with respect to the probability space (Z , AZ , P) ,

and FT [ST0 | θ̂T ] is a random variable; (6.3)

∀ε0 > 0 , ∀ε1 > 0 , ∃δ > 0 and a sequence of open subsets DT0 (ε0) in R such that

lim inf
T→∞

P [ST0 ∈ DT0 (ε0)] ≥ 1 − ε0 and

‖θ − θ0‖ ≤ δ ⇒ lim sup
T→∞

{
sup

x∈DT0(ε0)
|FT [x | θ] − FT [x | θ0]|

}
≤ ε1 . (6.4)

The first of these four conditions replaces the exchangeability assumption by an assumption of i.i.d.
variables. The two next ones simply make appropriate measurability assumptions, while the last one
may be interpreted as a local equicontinuity condition (at θ = θ0) on the sequence of distribution
functions FT (x | θ) , T ≥ I0. Note that ST0 is not assumed to follow the same distribution as
the other variables ST1 (θ) , . . . , STN (θ). Furthermore, ST0 and FT (x | θ) do not necessarily
converge to limits as T → ∞. An alternative assumption of interest would consist in assuming that
ST0 converges in probability (

p−→) to a random variable S̄0 as T → ∞, in which case the “global”
equicontinuity condition (6.4) can be weakened to a “local” one:

ST0
p−→

T→∞
S̄0 ; (6.5)

D0 is a subset of R such that P
[
S̄0 ∈ D0 and ST0 ∈ D0 for all T ≥ I0

]
= 1 ; (6.6)

∀x ∈ D0 , ∀ε > 0 , ∃δ > 0 and an open neighborhood B (x, ε) of x such that

‖θ − θ0‖ ≤ δ ⇒ lim sup
T→∞

{
sup

y∈B(x,ε)∩D0

|FT [y | θ] − FT [y | θ0]|
}
≤ ε . (6.7)

We can now show that Monte Carlo tests obtained by simulating ST i (θ), i = 1, . . . , N , with
θ = θ̂T are equivalent for large T to those based on using the true value θ = θ0.

20



Proposition 6.1 ASYMPTOTIC VALIDITY OF BOOTSTRAP p-VALUES. Under the assumptions
and notations (5.1), (5.2), (5.4), (5.5), (5.14) - (5.16) and (6.1) - (6.3), suppose the random vari-
able ST0 and the estimator θ̂T are both independent of ST (N, θ) and U0. If plim

T→∞
θ̂T = θ0 and

condition (6.4) or (6.5) - (6.7) hold, then for 0 ≤ α1 ≤ 1 and 0 ≤ α ≤ 1,

lim
T→∞

{
P
[
G̃TN [ST0 | θ̂T ] ≤ α1

]
− P

[
G̃TN [ST0 | θ0] ≤ α1

]}
= lim

T→∞

{
P
[
ĜTN [ST0 | θ̂T ] ≤ α1

]
− P

[
ĜTN [ST0 | θ0] ≤ α1

]}
= 0 (6.8)

and

lim
T→∞

{
P
[
p̃TN [ST0 | θ̂T ] ≤ α

]
− P

[
p̃TN [ST0 | θ0] ≤ α

]}
= lim

T→∞

{
P
[
p̂TN [ST0 | θ̂T ] ≤ α

]
− P

[
p̂TN [ST0 | θ0] ≤ α

]}
= 0 . (6.9)

It is worth noting that condition (6.7) holds whenever FT [x | θ] converges to a distribution
function F∞ [x | θ] which is continuous with respect to (x, θ′)′, for x ∈ D0, as follows:

∀x ∈ D0 , ∀ε > 0 , ∃δ1 > 0 and an open neighborhood B1 (x, ε) of x such that

‖θ − θ0‖ ≤ δ ⇒ lim sup
T→∞

(
sup

y∈B1(x,ε)∩D0

|FT [y | θ] − F∞ [y | θ]|
)
≤ ε ; (6.10)

∀x ∈ D0 , ∀ε > 0 , ∃δ2 > 0 and an open neighborhood B2 (x, ε) of x such that

‖θ − θ0‖ ≤ δ2 ⇒ sup
y∈B2(x,ε)∩D0

|F∞ [y | θ] − F∞ [y | θ0]| ≤ ε . (6.11)

It is then easy to see that (6.10) - (6.11) entail (6.7) on noting that

|FT [x | θ] − FT [x | θ0]| ≤ |FT [x | θ] − F∞ [x | θ]| + |FT [x | θ0] − F∞ [x | θ0]|
+ |F∞ [x | θ] − F∞ [x | θ0]| , ∀x .

Note also that (6.11) holds whenever F∞ [x | θ] is continuous with respect to (x, θ′)′, although the
latter condition is not at all necessary (e.g., in models where D0 is a discrete set of points). In par-
ticular, (6.10) - (6.11) will hold when FT [x | θ] admits an expansion around a pivotal distribution:

FT [x | θ] = F∞ (x) + T−γg (x, θ) + hT (x, θ) (6.12)

where F∞ (x) is a distribution function that does not depend on θ, γ > 0, with the following
assumptions on g (x, θ) and hT (x, θ) :

∀x ∈ D0 , ∃ an open neighborhood B (x, θ0) of (x, θ′0)
′ such that

|g (y, θ)| ≤ C (x, θ) , for all (y, θ′)′ ∈ B (x, θ0) ∩ D0

where C (x, θ) is a positive constant, and
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T γhT (y, θ) −→
T→∞

0 uniformly on B (x, θ0) ∩ D0 . (6.13)

The latter is quite similar (although somewhat weaker) to the assumption considered by Hall and
Titterington (1989, eq. (2.5))].

When ST0 is distributed like ST (θ0) , i.e., P [ST0 ≤ x] = FT [x | θ0] , we can apply Proposition
2.4 and see that P[G̃TN [ST0 | θ0] ≤ α1] = (I [α1N ] + 1) / (N + 1) , hence

lim
T→∞

P
[
G̃TN [ST0 | θ̂T ] ≤ α1

]
=

I [α1N ] + 1
N + 1

. (6.14)

7. Conclusion

In this paper, we have made four main contributions. First, for the case where we have a test sta-
tistic whose distribution does not involve nuisance parameters under the null hypothesis, we have
proposed a general form of Monte Carlo testing which allows for exchangeable (as opposed to
i.i.d.) Monte Carlo replications of general test statistics whose distribution can take an arbitrary
form (continuous, discrete or mixed). In particular, this form is not limited to permutation tests,
which has received considerable attention in the earlier literature on Monte Carlo tests [see Dwass
(1957), Green (1977), Vadiveloo (1983), Keller-McNulty and Higgins (1987), Lock (1991), Edging-
ton (1995), Manly (1997), Noreen (1989), Good (1994)]. Second, we have shown how the method
can be extended to models with nuisance parameters as long as the null distribution of the test sta-
tistic can be simulated once the nuisance parameters have been specified. This leads to what we
called maximized Monte Carlo tests which were shown to satisfy the level constraint. Thirdly, we
proposed a simplified version of the latter method which can lead to asymptotically valid tests, even
if the asymptotic distribution depends on nuisance parameters in a discontinuous way. This method
only requires one to use a consistent set estimator of the nuisance parameters, which is always fea-
sible as long as a consistent point estimate of the nuisance parameters is available. Further, in the
latter case, no additional information is required on the asymptotic distribution of the consistent
estimator. Fourth, we showed that Monte Carlo tests obtained upon replacing unknown nuisance
parameters by consistent estimates also lead to asymptotically valid tests. However, it is important
to note that stronger conditions are needed for this to occur and such conditions may be difficult to
check in practice.

The main shortcoming of the proposed MMC tests comes from the fact that such tests may be
computationally demanding. We cannot study here the appropriate numerical algorithms or detailed
implementations of the theory described above. But a number of such applications are presented
in companion papers (which are based on earlier versions of the present paper). For example, for
an illustration of the adjustment for discreteness proposed here, the reader may consult Dufour,
Farhat, Gardiol and Khalaf (1998) where it is used to correct the size of Kolmogorov-Smirnov tests
(which involve a discrete statistic) for the normality of errors in a linear regression. The method of
maximized Monte Carlo tests can of course be applied to a wide array of models where nuisance
parameters problems show up: for example, inference in seemingly unrelated regressions [Dufour
and Khalaf (2003a)], simultaneous equations models [Dufour and Khalaf (2003b)], dynamic models
[Dufour and Jouini (2005), Dufour and Valéry (2005)], and models with limited dependent variables
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[Jouneau-Sion and Torrès (2004)]. It is clear many more applications are possible. The size and
power properties of the proposed procedures are also studied by simulation methods in this work.
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A. Appendix: Proofs

PROOF OF LEMMA 2.1 By condition (2.12), the variables y1, y2, ... , yN are all distinct with
probability 1, and the rank vector (R1, R2, . . . , RN )′ is with probability 1 a permutation of the
integers (1, 2, . . . , N). Furthermore, since the variables y1, y2, ... , yN are exchangeable, the N !
distinct permutations of (y1, y2, . . . , yN ) have the same probability 1/N !. Consequently, we have:

P(Rj = i) =
1
N

, i = 1, 2, . . . , N ,

P(Rj/N ≤ x) = I[xN ]/N , 0 ≤ x ≤ 1 ,

from which (2.13) follows and

P(Rj/N < x) = (I[xN ] − 1)/N , if xN ∈ Z+ ,
= I[xN ]/N , otherwise,

where Z+ is the set of the positive integers. Since, for any real number z,

I[N − z] = N − z , if z is an integer,
= N − I[z] − 1 , otherwise,

we then have, for 0 ≤ x ≤ 1,

P(Rj/N ≥ x) = 1 − P(RN/N < x) = (N − I[xN ] + 1)/N , if xN ∈ Z+ ,
= (N − I[xN ])/N otherwise,

hence
P [Rj/N ≥ x] = (I[(1 − x)N ] + 1)/N , if 0 < x ≤ 1 ,

= 1 , if x = 0 ,

from which we get (2.14).

PROOF OF PROPOSITION 2.2 Assuming there are no ties among S0, S1, . . . , SN (an event with
probability 1), we have

ĜN (S0) =
1
N

N∑
i=1

1 (Si ≥ S0) =
1
N

N∑
i=1

[1 − 1 (Si ≤ S0)] = 1 − 1
N

N∑
i=1

1 (Si ≤ S0)

= 1 − 1
N

[
− 1 +

N∑
i=0

1 (Si ≤ S0)
]

= (N + 1 − R0) /N

where R0 =
N∑

i=0
1 (Si ≤ S0) is the rank of S0 when the N +1 variables S0, S1, . . . , SN are ranked
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in nondecreasing order. Using (2.15) and Lemma 2.1, it then follows that

P
[
ĜN (S0) ≤ α1

]
= P

[
N + 1 − R0

N
≤ α1

]
= P

[
R0

N + 1
≥ (1 − α1)N + 1

N + 1

]
=

I[α1N ] + 1
N + 1

for 0 ≤ α1 ≤ 1 . Furthermore, F̂N (S0) = 1 − ĜN (S0) with probability 1, and (2.17) follows. We
then get (2.18) on observing that: F̂N (y) ≥ q ⇐⇒ y ≥ F̂−1

N (q) for y ∈ R and 0 < q < 1 [see
Reiss (1989, Appendix 1)]. Finally, to obtain (2.19), we note that

p̂N (S0) ≡
NĜN (S0) + 1

N + 1
≤ α ⇐⇒ ĜN (S0) ≤

α (N + 1) − 1
N

hence, since that 0 ≤ ĜN (S0) ≤ 1 and using (2.17),

P [p̂N (S0) ≤ α] = P
[
ĜN (S0) ≤

α (N + 1) − 1
N

]

=

⎧⎨
⎩

0 , if α < 1/ (N + 1) ,
I[α(N+1)−1]+1

N+1 = I[α(N+1)]
N+1 , if 1

N+1 ≤ α ≤ 1 ,

1 , if α > 1 ,

from which (2.19) follows on observing that I[α (N + 1)] = 0 for 0 ≤ α < 1/ (N + 1) .

PROOF OF LEMMA 2.3 From (2.23) and the continuity of the U (0, 1) distribution, we see
easily that P [(yi, Ui) = (yj, Uj)] ≤ P [Ui = Uj ] = 0 , for i 	= j , from which it follows that
P
[
R̃i = R̃j

]
= 0 for i 	= j and the rank vector (R̃1, R̃2, . . . , R̃N ) is with probability 1 a random

permutation of the integers (1, 2, . . . , N). Set Vi = (yi, Ui) , i = 1, . . . , N. By considering all
possible permutations (Vr1 , Vr2 , . . . , VrN

) of (V1, V2, ... , VN ), and since (Vr1 , Vr2 ... , VrN
) ∼

(V1, V2 , . . . , VN ) for all permutations (r1, r2 , . . . , rN ) of (1, 2, ... , N) [by the exchangeability
assumption], the elements of (R̃1, R̃2, . . . , R̃N ) are also exchangeable. The result then follows
from Lemma 2.1. The reader may note that an alternative proof could be obtained by modifying the
proof of Theorem 29A of Hájek (1969) to relax the independence assumption for y1, . . . , yN .

PROOF OF PROPOSITION 2.4 Since the pairs (Si , Ui) , i = 0, 1, . . . , N, are all distinct with
probability 1, we have almost surely:

G̃N (S0) =
1
N

N∑
i=1

1 [(Si, Ui) ≥ (S0, U0)] = 1 − 1
N

N∑
i=1

1 [(Si, Ui) ≤ (S0, U0)]

= 1 − 1
N

{
− 1 +

N∑
i=0

1 [(Si, Ui) ≤ (S0, U0)]
}

= (N + 1 − R̃0)/N

where R̃0 =
N∑

i=0
1 [(Si, Ui) ≤ (S0, U0)] is the randomized rank of S0 obtained when ranking in
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ascending order [according to (2.23)] the N +1 pairs (Si, Ui) , i = 0 , 1, ... N. Using Lemma 2.3,
it follows that

P[G̃N (S0) ≤ α1 ] = P[(N + 1 − R̃0)/N ≤ α1] = P

[
R̃0

N + 1
≥ (1 − α1) N + 1

N + 1

]

=

⎧⎨
⎩

0 , if α1 < 0 ,
I[α1N ]+1

N+1 , if 0 ≤ α1 ≤ 1 ,

1 , if α1 > 1 .

Since the pairs (Si, Ui) , i = 0, 1, . . . , N , are all distinct with probability 1, we also have
F̃N (S0) = 1 − G̃N (S0) with probability 1, hence using the inequalities (2.33) – (2.36),

P
[

ĜN (S0) ≤ α1

]
≤ P

[
G̃N (S0) ≤ α1

]
= P

[
F̃N (S0) ≥ 1 − α1

]
≤ P

[
F̂N (S0) ≥ 1 − α1

]
and (2.36) is established. The identity P[F̂N (S0) ≥ 1−α1] = P[S0 ≥ F̂−1

N (1 − α1)] follows from
the equivalence: F̂N (y) ≥ q ⇐⇒ y ≥ F̂−1

N (q) , ∀y ∈ R , 0 < q < 1 . Finally, to obtain (2.37),
we observe that

p̃N (S0) =
NG̃N (S0) + 1

N + 1
≤ α ⇐⇒ G̃N (S0) ≤

α (N + 1) − 1
N

hence, using (2.36),

P [p̃N (S0) ≤ α] = P

[
G̃N (S0) ≤

α (N + 1) − 1
N

]

=

{
0 , if α < 1/ (N + 1)
I[α(N+1)−1]+1

N+1 = I[α(N+1)]
N+1 , if 1

N+1 ≤ α ≤ 1

from which (2.19) follows on observing that I[α (N + 1)] = 0 for 0 ≤ α ≤ 1/ (N + 1) .

PROOF OF PROPOSITION 4.1 Since

ĜN [S0 | θ] ≥ 1 − F̂N [S0 | θ] , (A.1)

we have

P
[
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
inf{F̂N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1

]
.

When θ0 ∈ Ω0, it is also clear that: inf
θ∈Ω0

F̂N [S0 | θ] ≥ 1 − α1 ⇒ F̂N [S0 | θ0] ≥ 1 − α1 . Thus,

using Proposition 2.2,

P
[
inf{F̂N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1

]
≤ P

[
F̂N [S0 | θ0] ≥ 1 − α1

]
=

I[α1N ] + 1
N + 1

.
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Furthermore,

inf
θ∈Ω0

F̂N [S0 | θ] ≥ 1 − α1 ⇐⇒ F̂N [S0 | θ] ≥ 1 − α1,∀θ ∈ Ω0

⇐⇒ S0 ≥ F̂−1
N [1 − α1 | θ] , ∀θ ∈ Ω0 ⇐⇒ S0 ≥ sup

θ∈Ω0

F̂−1
N [1 − α1 | θ] (A.2)

so that, using Proposition 2.2,

P
[
S0 ≥ sup{F̂−1

N [1 − α1 | θ0] : θ ∈ Ω0}
]

= P[inf{F̂N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1]

≤ I[α1N ] + 1
N + 1

and (4.20) is established. (4.21) follows in the same way on observing that sup
θ∈Ω0

p̃N [S0 | θ] ≤

sup
θ∈Ω0

p̂N [S0 | θ] and

sup
θ∈Ω0

p̃N [S0 | θ] ≤ α ⇒ p̃N [S0 | θ0] ≤ α , when θ0 ∈ Ω0 .

PROOF OF PROPOSITION 4.2 Using (2.32) - (2.33), we have:

1 − F̂N [S0 | θ] ≤ G̃N [S0 | θ] ≤ ĜN [S0 | θ] , ∀θ ,

1 − ĜN [S0 | θ] ≤ F̃N [S0 | θ] ≤ F̂N [S0 | θ] ,

hence

sup
θ∈Ω0

G̃N [S0 | θ] ≤ sup
θ∈Ω0

ĜN [S0 | θ] ,

1 − sup
θ∈Ω0

ĜN [S0 | θ] = inf
θ∈Ω0

{1 − ĜN [S0 | θ]} ≤ inf
θ∈Ω0

F̃N [S0 | θ] ,

sup
θ∈Ω0

p̃N [S0 | θ] ≤ sup
θ∈Ω0

p̂N [S0 | θ] .

Furthermore, when θ0 ∈ Ω0 ,

sup
θ∈Ω0

G̃N [S0 | θ] ≤ α1 ⇒ G̃N [S0 | θ0] ≤ α1 ,

inf
θ∈Ω0

F̃N [S0 | θ] ≥ 1 − α1 ⇒ F̃N [S0 | θ0] ≥ 1 − α1 ,

sup
θ∈Ω0

p̃N [S0 | θ] ≤ α1 ⇒ p̃N [S0 | θ0] ≤ α1 ,
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hence, using Proposition 2.4, for 0 ≤ α1 ≤ 1 and for 0 ≤ α ≤ 1,

P
[
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
sup{G̃N [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
G̃N [S0 | θ0] ≤ α1

]
=

I[α1N ] + 1
N + 1

,

P
[
sup{ĜN [S0 | θ] : θ ∈ Ω0} ≤ α1

]
≤ P

[
inf{F̃N [S0 | θ] : θ ∈ Ω0} ≥ 1 − α1

]
≤ P

[
F̃N [S0 | θ0] ≥ 1 − α1

]
=

I[α1N ] + 1
N + 1

,

P
[
sup {p̂N [S0 | θ] : θ ∈ Ω0} ≤ α

]
≤ P

[
sup {p̃N [S0 | θ] : θ ∈ Ω0} ≤ α

]
≤ P

[
p̃N [S0 | θ0] ≤ α

]
=

I[α(N + 1)]
N + 1

.

PROOF OF PROPOSITION 5.1 Using arguments similar to the ones in the proof of Proposition 4.2
[see (A.1) - (A.2)], it is easy to see that

P
[
sup{ĜTN [ST0 | θ] : θ ∈ CT } ≤ α1

]
≤ P

[
inf{F̂TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1

]
= P

[
ST0 ≥ sup{F̂−1

TN [1 − α1 | θ] : θ ∈ CT }
]
.

Further,

P
[
inf{F̂TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1

]
= P

[
inf{F̂TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1 and θ0 ∈ CT

]
+ P

[
inf{F̂TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1 and θ0 /∈ CT

]
≤ P

[
F̂TN [ST0 | θ0] ≥ 1 − α1

]
+ P[θ0 /∈ CT ] =

I[α1N ] + 1
N + 1

+ P[θ0 /∈ CT ]

where the last identity follows from Proposition 2.2, hence, since lim
T→∞

P [θ0 /∈ CT ] = 0 ,

lim
T→∞

P
[
inf{F̂TN [ST0 | θ] : θ ∈ CT } ≥ 1 − α1

]
≤ I[α1N ] + 1

N + 1
+ lim

T→∞
P[θ0 /∈ CT ]

=
I[α1N ] + 1

N + 1
,

.from which (5.9) and (5.10) follow.

PROOF OF PROPOSITION 5.2 The result follows from arguments similar to the ones used in the
proofs of Propositions 4.1 and 5.2 (with Ω0 replaced by CT ).

28



In order to prove Proposition 6.1, it will be convenient to first demonstrate the following two
lemmas

Lemma A.1 CONTINUITY OF p-VALUE FUNCTION. Under the assumptions and notations (5.1),
(5.2), (5.4), (5.5), (5.14) - (5.16) and (6.1), set

QTN (θ, x, u0, α1) = P
[
G̃TN [x | θ] ≤ α1 | U0 = u0

]
, (A.3)

Q̄TN (θ, x, α1) = P
[
ĜTN [x | θ] ≤ α1

]
, 0 ≤ α1 ≤ 1 , (A.4)

and suppose U0 is independent of ST (N, θ) . For any θ, θ0 ∈ Ω, x ∈ R and u0, α1 ∈ [0, 1] , the
inequality ∣∣FT [y | θ] − FT [y | θ0]

∣∣ ≤ ε , ∀y ∈ (x − δ, x + δ) ,

where δ > 0, entails the inequalities:

|QTN (θ, x, u0, α1) − QTN (θ0, x, u0, α1)| ≤ 3C (N, α1) ε , (A.5)∣∣Q̄TN (θ, x, α1) − Q̄TN (θ0, x, u0)
∣∣ ≤ 3C (N, α1) ε , (A.6)

where C (N, α1) = N
I[α1N ]∑

k=0

(
N
k

)
.

PROOF. It is easy to see [as in (3.3)] that

QTN (θ, x, u0, α1) = P
[
G̃TN (x | θ) ≤ α1 | U0 = u0

]
=

I[α1N ]∑
k=0

(
N
k

)
ḠT (x, u0 | θ)k [1 − ḠT (x, u0 | θ)]N−k

where

ḠT (x, u0 | θ) = P (1 [(ST i (θ) , Ui) ≥ (x, u0)] = 1)
= P [ST i (θ) > x] + P [ST i (θ) = x]P [Ui ≥ u0]
= 1 − FT [x | θ] + gT (x | θ) (1 − u0) , 1 ≤ i ≤ T .

Note also that gT (x | θ) = FT [x | θ] − lim
δ0→0+

FT [y − δ0 | θ] . Then the inequality

∣∣FT [y | θ] − FT [y | θ0]
∣∣ ≤ ε , ∀y ∈ (x − δ , x + δ) ,

entails the following inequalities:

|1 − FT [x | θ] − 1 + FT [x | θ0]| ≤ ε ,

∣∣gT (x | θ) − gT (x | θ0)
∣∣ =

∣∣ {1 − FT [x | θ]} − {1 − FT [x | θ0]}
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+ lim
δ0→0+

{FT [y − δ0 | θ] − FT [y − δ0 | θ0]}
∣∣

≤
∣∣FT [x | θ] − FT [x | θ0]

∣∣ + lim
δ0→0+

∣∣FT [y − δ0 | θ] − FT [y − δ0 | θ0]
∣∣ ≤ 2ε ,

hence, for all u0 ∈ [0, 1] ,∣∣ḠT (x, u0 | θ) − ḠT (x, u0 | θ0)
∣∣ ≤

∣∣FT [x | θ] − FT [x | θ0]
∣∣

+
∣∣1 − u0

∣∣∣∣gT (x | θ) − gT (x | θ0)
∣∣ ≤ 3ε , ∀u0 ∈ [0, 1] ,

|QTN (θ, x, u0, α1) −QTN (θ0, x, u0, α1) |

≤
∣∣∣[Nα1]∑

k=0

{ (
N
k

)
ḠT (x, u0|θ)k [1 − ḠT (x, u0|θ)]N−k

− ḠT (x, u0|θ0)
k [1 − ḠT (x, u0|θ0)]N−k

}∣∣∣
≤

[Nα1]∑
k=0

(
N
k

) ∣∣∣ḠT (x, u0 | θ)k − ḠT (x, u0 | θ0)
k
∣∣∣

+
∣∣∣[1 − ḠT (x, u0 | θ)]N−k − [1 − ḠT (x, u0 | θ0)]N−k

∣∣∣
≤

[Nα1]∑
k=0

{ (
N
k

)
k

∣∣ḠT (x, u0 | θ) − ḠT (x, u0 | θ0)
∣∣

+ (N − k)
∣∣ḠT (x, u0 | θ) − ḠT (x, u0 | θ0)

∣∣ }
= C (N, α1)

∣∣ḠT (x, u0 | θ) − ḠT (x, u0 | θ0)
∣∣ ≤ 3C (N, α1) ε ,

where C (N, α1) = N
I[α1N ]∑

k=0

(
N
k

)
, from which (A.5) follows. The inequality (A.6) follows in a

similar way on noting that Q̄TN (θ, x, α1) =
I[α1N ]∑
k=0

(
N
k

)
GT (x | θ)k [1 − GT (x | θ)]N−k, where

GT (x | θ) = Pθ [ST i (θ) ≥ x] , 1 ≤ i ≤ N .

Lemma A.2 CONVERGENCE OF BOOTSTRAP p-VALUES. Under the assumptions and notations
of Lemma A.1, suppose that (6.2) and (6.3) also hold. If θ̂T −→

T→∞
θ0 in probability and condition

(6.4) or (6.5) - (6.7) holds, then

sup
0≤u0≤1

∣∣QTN (θ̂T , ST0, u0, α1) − QTN (θ0, ST0, u0, α1)
∣∣ p−→

T→∞
0 , (A.7)

Q̄TN (θ̂T , ST0, α1) − Q̄TN (θ0, ST0, α1)
p−→

T→∞
0 . (A.8)
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We can now prove the following proposition.

PROOF. Let α1 ∈ [0, 1] , ε > 0 and ε0 > 0 and suppose first that (6.4) holds. Then, using Lemma
A.1, we can find δ > 0 and T1 such that

x ∈ DT0 (ε0) , ‖θ − θ0‖ ≤ δ and T > T1

⇒ |FT [x | θ] − FT [x | θ0]| ≤ ε1 ≡ ε / [3C (N, α1)]
⇒

∣∣QTN

(
θ, x, u0, α1

)
− QTN

(
θ0, x, u0, α1

)∣∣ ≤ ε , ∀u0 ∈ [0, 1] .

Thus
ST0 ∈ DT0 (ε0) and ‖ θ̂T − θ0 ‖≤ δ ⇒ ΔTN

(
θ̂T , θ0, ST0, α1

)
≤ ε

where ΔTN

(
θ̂T , θ0, ST0, α1

)
≡ sup

0≤u0≤1

∣∣∣QTN

(
θ̂T , ST0, u0, α1

)
− QTN

(
θ0, x, u0, α1

)∣∣∣ ,

hence

P[ΔTN

(
θ̂T , θ0, ST0, α1

)
≤ ε] ≥ P[ST0 ∈ DT0 (ε0) and ‖ θ̂T − θ0 ‖≤ δ]

≥ 1 − P [ST0 /∈ DT0 (ε0)] − P[‖ θ̂T − θ0 ‖> δ]
= P [ST0 ∈ DT0 (ε0)] − P[‖ θ̂T − θ0 ‖> δ] .

Since θ̂T
p→ θ0 , it follows that

lim inf
T→∞

P[ΔTN

(
θ̂T , θ0, ST0, α1

)
≤ ε] ≥ lim inf

T→∞
P [ST0 ∈ DT0 (ε0)] ≥ 1 − ε0

for any ε0 > 0 , hence lim
T→∞

P[ΔTN

(
θ̂T , θ0, ST0, α1

)
≤ ε] = 1 . Since the latter identity holds for

any ε > 0, (A.7) is established. (A.8) follows in a similar way upon using (A.6).
Suppose now (6.5) - (6.7) hold instead of (6.4). Then,

(
ST0, θ̂T

) p−→
T→∞

(
S0, θ0

)
and

(
ST̄k

, θ̂T̄k

) p−→
T→∞

(
S0, θ0

)
, (A.9)

for any subsequence {
(
ST̄k

, θ̂T̄k

)
: k = 1, 2, . . . } of {

(
ST , θ̂T

)
: T ≥ I0}. Since ST0 and θ̂T ,

T ≥ I0, are random variables (or vectors) defined onZ , we can write ST0 = ST0 (ω) , θ̂T = θ̂T (ω)
and S0 = S0 (ω) , ω ∈ Z . By (6.6), the event

A0 = {ω : S0 (ω) ∈ D0 and ST0 (ω) ∈ D0 , for T ≥ I0}

has probability one. Furthermore, by (A.9), the subsequence
(
ST̄k

, θ̂
′
T̄k

)′
contains a further subse-

quence
(
STk0, θ̂

′
Tk

)′
, k ≥ 1 such that

(
STk0, θ̂

′
Tk

)′ −→
T→∞

(
S0, θ′0

)′
a.s. (where T1 < T2 < · · · );

see Bierens (1994, pp. 22-23). Consequently, the set

C0 = {ω ∈ Z : S0 (ω) ∈ D0 , lim
k→∞

STk0 (ω) = S0 (ω) and lim
k→∞

θ̂Tk
(ω) = θ0}
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has probability one. Now, let ε > 0 . By (6.7), for any x ∈ D0 , we can find δ (x, ε) > 0 ,
T (x, ε) > 0 and an open neighborhood B (x, ε) of x such that

‖ θ − θ0 ‖≤ δ (x, ε) and T > T (x, ε) ⇒
∣∣FT [y | θ] − FT [y | θ0]

∣∣ ≤ ε , ∀y ∈ B (x, ε) ∩ D0 .

Furthermore, for ω ∈ C0 , we can find k0 such that

k ≥ k0 ⇒ STk0 (ω) ∈ B
(
S0 (ω) , ε

)
∩ D0 and ‖ θ̂Tk

− θ0 ‖≤ δ
(
S0 (ω) , ε

)
,

so that Tk > max
{
T

(
S0 (ω) , ε

)
, Tk0

}
entails

∣∣FTk
[STk0 (ω) | θTk

(ω)] − FTk
[STk0 (ω) | θ0]

∣∣ ≤
ε . Thus lim

k→∞
{FTk

[STk0 (ω) | θTk
(ω)]−FTk

[STk0 (ω) | θ0]} = 0 for ω ∈ C0 , hence, using Lemma

A.1, lim
k→∞

ΔTkN

(
θ̂Tk

(ω) , θ0, STk0 (ω) , α1

)
= 0 and ΔTkN

(
θ̂Tk

, θ0, STk0, α1

)
−→
k→0

0, a.s. This

shows that any subsequence of the sequence ΔTN

(
θ̂T , θ0, ST0, α1

)
, T ≥ I0 , contains a further

subsequence which converge a.s. to zero. It follows that ΔTN

(
θ̂T , θ0, ST0, α1

) p−→
T→∞

0 and (A.7)

is established. The proof of (A.8) under the condition (6.5) - (6.7) is similar.

PROOF OF PROPOSITION 6.1 Using the fact that θ̂T , ST0 and U0 are independent of ST (N , θ),
we can write

P
[
G̃TN [ST0 | θ̂T ] ≤ α1

]
− P

[
G̃TN [ST0 | θ0] ≤ α1

]
= E

{
P
[
G̃TN [ST0 | θ̂T ] ≤ α1 |

(
θ̂T , ST0, U0

)]
− P

[
G̃TN [ST0 | θ0] ≤ α1 |

(
θ̂T , ST0, U0

)]}
= E

[
QTN

(
θ̂T , ST0, U0, α1

)
− QTN

(
θ0, ST0, U0, α1

)]
.

From Lemma A.1 and using the Lebesgue dominated convergence theorem, we then get∣∣P[
G̃TN [ST0 | θ̂T ] ≤ α1

]
− P

[
G̃TN [ST0 | θ0] ≤ α1

]∣∣
=

∣∣E[
QTN

(
θ̂T , ST0, U0, α1

)
− QTN

(
θ0, ST0, U0, α1

)]∣∣
≤ E

{∣∣QTN

(
θ̂T , ST0, U0, α1

)
− QTN

(
θ0, ST0, U0, α1

)∣∣}
≤ E

[
sup

0≤u0≤1

∣∣QTN (θ̂T , ST0, u0, α1) − QTN (θ0, ST0, u0, α1)
∣∣] −→

T→∞
0 .

We can show in a similar way that∣∣P[
Ĝ[ST0 | θ̂T ] ≤ α1

]
− P

[
G[ST0 | θ0] ≤ α1

]∣∣ −→
T→∞

0 ,

from which we get (6.8). (6.9) then follows from the definitions of p̃TN (x | θ) and p̂TN (x | θ) .
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