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ABSTRACT

The problem of statistical model selection in econometrics and statistics is reviewed. Model
selection is interpreted as a decision problem through which a statistical model is selected
in order to perform statistical analysis, such as estimation, testing, confidence set construc-
tion, forecasting, simulation, policy analysis, etc. Broad approaches to model selection
are described: (1) hypothesis testing procedures, including specification and diagnostic
tests; (2) penalized goodness-of-fit methods, such as information criteria; (3) Bayesian ap-
proaches; (4) forecast evaluation methods. The effect of model selection on subsequent
statistical inference is also discussed.

Key words: model selection, specification error, hypothesis test, specification test, infor-
mation criterion, Akaike, Bayesian statistics, forecast evaluation, endogeneity and exo-
geneity, forecasting, serial correlation, statistical inference, structural change, time series
analysis.
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The purpose of econometric analysis is to develop mathematical representations of ob-
servable phenomena, which we call models or hypotheses (models subject to restrictions).
Such models are then used to perform parameter estimation, test hypotheses, build confi-
dence sets, make forecasts, conduct simulations, analyze policies, etc. A central feature of
modelling activity is the fact that models are usually interpreted as stylized (or simplified)
representations that can perform certain tasks – such as prediction – but (eventually) not
others, and they are treated as if they were true for certain purposes. Indeed, summarizing
and stylizing observed phenomena can be viewed as essential components of modelling
activity, which make it useful. This feature is not specific to economics and is shared by
other sciences [see Cartwright (1983)].

Models can be classified as either deterministic or stochastic. Deterministic models,
which often claim to make arbitrarily precise predictions, can be useful in theoretical ac-
tivity. However, such models are rarely viewed as appropriate representations of observed
data; for example, unless they are highly complex or indeterminate, they are typically log-
ically inconsistent with data. For this reason, models used for econometric analysis are
usually stochastic (or statistical).

Formally, a statistical model is a family of probability distributions (or measures) which
are proposed to represent observed data. Model selection, in this context, is the task of se-
lecting a family of proposed probability distributions, which will then be used to analyze
data and perform other statistical inference operations (such as parameter estimation, hy-
pothesis testing, etc.).

A basic feature of probability models is that they are typically unverifiable: as for any
theory that makes an indefinite number of predictions, we can never be sure that the model
will not be at odds with new data. Moreover, they are logically unfalsifiable: in contrast
with deterministic models, a probabilistic model is usually logically compatible with all
possible observation sets. Consequently, model selection can depend on a wide array of
elements, such as the objectives of the model, (economic) theory, the data themselves, and
various conventions.

Features which are often viewed as desirable include: (1) simplicity or parsimony [Zell-
ner, Keuzenkamp and McAleer (2001)]; (2) the ability to deduce testable (or falsifiable)
hypotheses [Popper (1968)]; (3) the possibility of interpreting model parameters in terms
of economic theory, if not consistency with economic theory; (4) the ability to satisfactorily
perform the tasks for which the model is built (prediction, for example); (5) consistency
with observed data. It is important to note these characteristics depend (at least, partially)
on conventional elements, such as the objectives of the model, criteria upon which a model
will be deemed “satisfactory”, etc. For further discussions of these general issues, the
reader may consult Poirier (1994), Morgan and Morrison (1999), Keuzenkamp (2000),
Zellner et al. (2001) and Dufour (2003).

In this article, we focus on statistical methods for selecting a model on the basis of
the available data. Methods for that purpose can be classified in four broad (not mutually
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exclusive) categories;

1. hypothesis testing procedures, including specification and diagnostic tests;

2. penalized goodness-of-fit methods, such as information criteria;

3. Bayesian approaches;

4. forecast evaluation methods.

The three first approaches are meant to be applicable “in-sample”, while the last approach
stricto sensu requires observations that are not available when the model is selected, but
may lead to model revision.

For general reviews of the topic of statistical model selection in econometrics and
statistics, see Hocking (1976), Leamer (1978, 1983), Draper and Smith (1981), Judge,
Griffiths, Carter Hill, Lütkepohl and Lee (1985, Chapters 7 and 21), Sakamoto, Ishiguro
and Kitagawa (1985), Grasa (1989), Choi (1992), Gouriéroux and Monfort (1995, Chapter
22), Charemza and Deadman (1997), McQuarrie and Tsai (1998), Burnham and Anderson
(2002), Clements and Hendry (2002), Miller (2002), and Bhatti, Al-Shanfari and Hossain
(2006). It is also interesting to note that classification techniques in statistics contain results
that may be relevant to model selection. This topic, however, goes beyond the scope of the
present article; for further discussion, see Krishnaiah and Kanal (1982).

1. Model selection and specification errors
Most model selection methods deal in different ways with a trade-off between model real-
ism – which usually suggests considering relatively general, hence complex models – and
parsimony. From the viewpoint of estimation, for example, a model which is too simple
(or parsimonious) involves specification errors and biases in parameter estimation, while
too complex a model leads to parameter estimates with large variances. If the objective is
forecasting, it is usually unclear which effect dominates.

For example, let us consider a linear regression model of the form:

yt = xt1β1 + xt2β2 + · · ·+ xtkβk + ut , t = 1, . . . , T, (1.1)

where yt is a dependent variable and xt1, . . . , xtk are explanatory variables, ut is a random
disturbance which is typically assumed to be independent of (or uncorrelated with) the
explanatory variables. In the classical linear model, it is assumed that the regressors can
be taken as fixed and that the disturbances u1, . . . , uT are independent and identically
distributed (i.i.d) according to a N(0, σ2) distribution. In this context, model selection
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typically involves selecting the regressors to be included as well as various distributional
assumptions to be made upon the disturbances.

An especially important version of (1.1) is the autoregressive model:

yt = β0 + β1yt−1 + · · ·+ βpyt−p + ut , t = 1, . . . , T. (1.2)

Then a central model selection issue consists in setting the order p of the process. In
such models, there is typically little theoretical guidance on the order, so data-based order
selection rules can be quite useful. A related setup where model selection is usually based
on statistical methods is the class of autoregressive-moving-average models (ARMA):

yt = β0 + ϕ1yt−1 + · · ·+ ϕpyt−p + ut − θ1ut−1 + · · ·+ θ1ut−q , (1.3)

where the orders p and q must be specified.
By considering the simple linear regression model, it is easy to see that excluding irrel-

evant variables can lead to biases in parameter estimates [Theil (1957)]. On the other hand,
including irrelevant regressors raises the variances of the estimators. The overall effect on
the mean square error (MSE) of the estimator and, more generally, how closely it will tend
to approach the parameter value may be ambiguous. It is well known that a biased estima-
tor may have lower MSE than an unbiased estimator. This may be particularly important in
forecasting where a simple “false” model may easily provide better forecasts than a com-
plicated “true” model, because the latter may be affected by imprecise parameter estimates
[Allen (1971)].

2. Hypothesis testing approaches
Since hypothesis tests are based on a wide body of statistical theory [see Lehmann (1986),
Gouriéroux and Monfort (1995)], such procedures are widely used for assessing, compar-
ing and selecting models. Furthermore, econometric models are also based on economic
theory which suggests basic elements that can be used for specifying models. This entails a
form of asymmetry, in which restrictions suggested by economic theory will be abandoned
only if “sufficient evidence” becomes available. Although significance tests are meant to
decide whether a given hypothesis (which usually takes the form of a restricted model) is
compatible with the data, such procedures can also be used for model selection. It is in-
teresting to note that the methodology originally proposed by Box and Jenkins (1976) for
specifying ARMA models was almost exclusively based on significance tests (essentially,
autocorrelation tests).

There are two basic ways of using hypothesis tests for that purpose. The first one is
forward or specific-to-general approach, in which one starts from a relatively simple model
and then checks whether the model can be deemed “satisfactory”. This typically involves
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various specification tests, such as:

1. residual-based tests, including tests for heteroskedasticity, autocorrelation, outliers,
distributional assumptions (e.g., normality), etc.;

2. tests for unit roots and/or stationarity, to decide whether corrections for integrated
variables may be needed;

3. tests for the presence of structural change;

4. exogeneity tests, to decide whether corrections for endogeneity – such as instrumen-
tal variable (IV) methods – are required;

5. tests for the addition of explanatory variables;

6. tests of the functional form used (e.g., linearity vs. nonlinearity).

There is a considerable literature on specification tests in econometrics; see Godfrey
(1988), MacKinnon (1992) and Davidson and MacKinnon (1993). Systematic procedures
for adding variables are also know in statistics as forward selection or stepwise regression
procedures [Draper and Smith (1981)].

The second way is the backward or general-to-specific approach, in which one starts
from a relatively comprehensive model which includes all the relevant variables. This
model is then simplified by checking which variables are significant. Backward selection
procedures in statistics [Draper and Smith (1981)] and the general-to-specific approach in
econometrics [Davidson, Hendry, Srba and Yeo (1978), Charemza and Deadman (1997)]
can be viewed as illustrations of this approach.

In practical work, the backward and forward approaches are typically combined. Both
involve a search for a model which is both parsimonious and consistent with the data.
However, the results may differ. Specifying a model through significance tests involves
many judgments and depends on idiosyncratic decisions. Further, standard hypothesis tests
involve the use of typically conventional levels (such as the commonly used 5% level). The
powers of the tests can also have a strong influence on the results.

3. Penalized goodness-of-fit criteria
As pointed out by Akaike (1974), it is not clear that hypothesis testing is a good basis
for model selection. Instead, the problem of model selection may be better interpreted as
an estimation problem involving a well-defined loss function. This leads to the topic of
goodness-of-fit criteria.
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A common way of assessing the performance of a regression model, such as (1.1),
consists in computing the coefficient of determination, i.e. the proportion of the dependent
variable variance which is “explained” by the model:

R2 = 1− V̂ (u)

V̂ (y)
(3.1)

where V̂ (u) =
∑T

t=1 û2
t /T, V̂ (y) =

∑T
t=1 (yt − y)2 /T, y =

∑T
t=1 yt/T and û1, . . . , ûT

are least squares residuals. This measure, however, has the inconvenient feature that it
always increases when a variable is added to the model, even if it is completely irrelevant,
and it can be made equal to its maximal value of one by including a sufficient number of
regressors (for example, using any set of T linearly independent regressors).

An early way of avoiding this problem was proposed by Theil (1961, p. 213) who
suggested that V̂ (u) and V̂ (y) be replaced by the corresponding unbiased estimators s2 =∑T

t=1 û2
t /(T − k) and s2

y =
∑T

t=1 (yt − y)2 /(T − 1) . This yields the adjusted coefficient
of determination:

R
2

= 1− s2

s2
y

= 1− T − 1

T − k

(
1−R2

)
= R2 − k − 1

T − k

(
1−R2

)
.

It is easy to see that R
2

may increase when the number of regressors increases. Note that
maximizing R

2
is equivalent to minimizing the “unbiased estimator” s2 of the disturbance

variance. Further, if two regression models (which satisfy the assumptions of the classical
linear model) are compared, and if one of these is the “true” model, then the value of s2

associated with the true model is smaller on average than the one of the other model [see
Theil (1961, p. 543)]. On the other hand, in large samples, the rule which consists in
maximizing R

2
does not select the true model with a probability converging to one, i.e. it

is not consistent [see Gouriéroux and Monfort (1995, section 2.3)].
Another approach consists in evaluating the “distance” between the selected model and

the true (unknown) model. Let f (y) the density associated with the postulated model and
fo (y) the density of the true model, where Y = (y1, . . . , yT )′ . One such distance is the
Kullback distance:

I (f, fo) =

∫
log [fo (y) /f (y)] fo (y) dy

= E
fo

{log [fo (Y ) /f (Y )]}
= E

fo

{log [fo (Y )]} − E
fo

{log [f (Y )]} .

Minimizing I (f, fo) with respect to f is equivalent to minimizing −E
fo

{log [f (Y )]} . We
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obtain an information criterion by selecting an “estimator” of E
fo

{log [f (Y )]} .

For the case where the model is estimated by maximizing a likelihood function LT (θ)
over a K × 1 parameter vector θ, Akaike (1973) suggests that L(θ̂) can be viewed as a
natural estimator of E

fo

{log [f (Y )]} . However, the fact that θ has been estimated introduces

a bias. This bias is (partially) corrected – using an expansion argument – by subtracting the
number K from L(θ̂). This suggests the following information criterion:

AICL(θ̂T ) = −2LT (θ̂T ) + 2K (3.2)

where K is the dimension of θ (the number of estimated parameters) and multiplication
by 2 is introduced to simplify the algebra. Among a given set of models, the one with the
lowest AIC is selected.

The above criterion has also been generalized by various authors leading the following
general class of criteria:

ICL(θ̂T ) = −2LT (θ̂T ) + c(T, K)K (3.3)

where c(T, K) is a function of T and K. In the case of Gaussian likelihoods, such as (1.1)
or (1.2) with i.i.d. N(0, σ2) disturbances, we have LT (θ̂T ) = −(T/2) ln(σ̂2

T ) + dT , where
dT is a constant which only depends on T, so that minimizing ICL(θ̂T ) is equivalent to
minimizing

IC(θ̂T ) = ln(σ̂2
T ) + c(T, K)

K

T
. (3.4)

Alternative values of c(T, K) which have been proposed include:

1. c(T, K) = 2 [Akaike (1969)], which yields what is usually called the AIC criterion;

2. c(T, K) = ln(T ) [Schwarz (1978)];

3. c(T, K) = 2δT ln(ln T ) where lim sup
T→∞

δT > 1 [Hannan and Quinn (1979)];

4. c(T, K) = 2 + 2K(K+1)
T−K−1

[Hurvitch and Tsai (1989)], which leads to the AICc crite-
rion.

An especially convenient feature of such information criteria is the fact that they can be
applied to both regression models [through (3.4)] as well as to various nonlinear models
[using (3.3)].

Other related rules include: (1) criteria based on an estimate of the final prediction
error, which try to estimate the mean square prediction error taking into account estimation
uncertainty [Akaike (1969, 1970), Mallows (1973), Amemiya (1980)]; (2) the criterion
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autoregressive transfer (CAT) function proposed by Parzen (1977) for selecting the order
of an autoregressive process; (3) Sawa’s (1978) Bayesian information criterion (BIC).

By far, the information criteria are the most widely used in practice. Some theoretical
(non-)optimality properties have been established. In particular, when one of the models
compared is the “true” one, it was observed by Shibata (1976) that Akaike’s criterion is
not consistent, in the sense that it does not select the most parsimonious true model with
probability converging to one (as the sample size goes to infinity). Instead, even in large
samples, it has a high probability of picking a model with “too many parameters”. By con-
trast, the criterion proposed by Hannan and Quinn (1979) is consistent under fairly general
conditions, which also entails that Schwarz’s (1978) criterion also leads to consistent model
selection. On the other hand, the AIC criterion has a different optimality property, in the
sense that it tends minimize the one-step expected quadratic forecast error [Shibata (1980)].

On consistency, it is also interesting to observe that consistent model selection rules
can be obtained provided each model is tested through a consistent test procedure (against
all the other models considered) and the level of the test declines with the sample size at
an appropriate rate (which depends on the asymptotic behavior of the test statistic); see
Pötscher (1983).

Model selection criteria of the information type have the advantage of being fairly me-
chanical. On the other hand, they can be become quite costly to apply in practice when the
number of models considered is large.

4. Bayesian model selection
Bayesian model selection involves comparing models through their “posterior probabil-
ities” giving observed data. Suppose we have two models M1 and M2 each of which
postulates that the observation vector y follows a probability density which depends on
a parameter vector: py(y|θ1,M1) under M1, and py(y|θ2,M2) under M2, where θ1 and
θ2 are unknown parameter vectors (which may have different dimensions). Further, each
one of the parameter vector is assigned a “prior distribution” [p(θ1|M1) and p(θ2|M2)], and
each model a “prior probability” [p(M1) and p(M2)]. Then one may compute the “posterior
probability” of each model given the data:

p(Mi|y) =p(Mi)

∫
py(y|θi, M1)p(θi|Mi) dθi , i = 1, 2. (4.1)

This posterior probability of each model provides a direct measure of the “plausibility” of
each model. In such contexts, the ratio

K12 =
p(M1|y)

p(M2|y)
(4.2)
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is called the “posterior odds ratio” of M1 relative to M2.
A rational decision rule for selecting between M1 and M2 then emerges if we can spec-

ify a loss function such as:

L(i, j) = cost of choosing Mj when Mi is true. (4.3)

If L(i, i) = 0 for i = 1, 2, expected loss is minimized by choosing M1 when

K12 ≥ L(2, 1)

L(1, 2)
, (4.4)

and M2 when otherwise. In particular, if L(1, 2) = L(2, 1), expected loss is minimized by
choosing the model with the highest posterior probability. Such rules can be extended to
problems where more than two models are compared.

The Bayesian approach automatically introduces a penalty for non-parsimony and eas-
ily allows the use of decision-theoretic considerations. The main difficulty consists in as-
signing prior distributions on model parameters and prior probabilities to competing mod-
els. For further discussion, see Zellner (1971, Chapter X), Leamer (1978, 1983), Gelman,
Carlin, Stern and Rubin (2003) and Lancaster (2004).

5. Forecast evaluation
In view of the fact that forecasting is one of the most common objectives for building
econometric models, alternative models are often assessed by studying post-sample fore-
casts. Three types of assessments are typically considered in such contexts: (1) tests of
predictive failure; (2) descriptive measures of forecast performance, which can be com-
pared across models; (3) tests of predictive ability.

A test of predictive failure involves testing whether the prediction errors associated
with a model are consistent with the model. This suggests testing whether forecasts are
“unbiased” or “too large” to be consistent with the model. The well-known predictive test
for structural change proposed by Chow (1960) is an early example of such an approach.
For further discussion and extensions, see Box and Tiao (1976), Dufour (1980), Pesaran,
Smith and Yeo (1985), Dufour, Ghysels and Hall (1994), Dufour and Ghysels (1996) and
Clements and Hendry (1998).

Common measures of forecast performance involve mean errors, mean square errors,
mean absolute errors, etc.; see Theil (1961) and Diebold (2004). Although commonly used,
such measures are mainly descriptive. They can usefully be complemented by tests of
predictive ability. Such procedures test whether the difference between expected measures
of forecast performance is zero (or less than zero) against an alternative where it is different
from zero (or larger than zero). Tests of this type were proposed, among others, by Meese

8



and Rogoff (1988), Diebold and Mariano (1995), Harvey, Leybourne and Newbold (1997),
West (1996), West and McCracken (1998) and White (2000); for reviews, see also Mariano
(2002) and McCracken and West (2002).

It is important to note that predictive performance and predictive accuracy depend on
two features: first, whether the theoretical model used is close to the unknown data distribu-
tion and second, the ability to estimate accurately model parameters (hence on sample size
available for estimating these). For a given sample size, a false but parsimonious model
may well have better predictive ability than the “true” model.

6. Post-model selection inference
An important issue often raised in relation with model selection is its effect on the validity
of inference – such as estimation, tests and confidence sets – obtained after a process of
model selection (or pre-testing). This issue is subtle and complex. Not surprisingly, both
positive and negative assessments can be found.

On the positive side, it has been observed that pre-testing (or model selection) does
allow one to produce so-called “superefficient” (or Hodges) estimators, whose asymptotic
variance can be at least as low as the Cramér-Rao efficiency bound and lower at certain
points; see Le Cam (1953). This may be viewed as a motivation for using consistent pre-
testing.

Furthermore, consistent model selection does not affect the asymptotic distributions of
various estimators and test statistics, so the asymptotic validity of inferences based on a
model selected according to such a rule is maintained; see Pötscher (1991) and Dufour
et al. (1994).

On the negative side, it is important to note that these are only asymptotic results. In
particular, these are pointwise convergence results, not uniform convergence results, so they
may be quite misleading concerning what happens in finite samples; for some examples,
see Dufour (1997) and Pötscher (2002). For estimation, there is a considerable literature
on the finite-sample distribution of pre-test estimators, which can be quite different of their
limit distributions [Judge and Bock (1978), Danilov and Magnus (2004)]. For a critical dis-
cussion of the effect of model selection on tests and confidence sets, see Leeb and Pötscher
(2005).

7. Conclusion
The problem of model selection is one of the most basic and challenging problems of statis-
tical analysis in econometrics. Much progress has been done in recent years in developing
better model selection procedures and for understanding the consequences of model selec-
tion.
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But model building remains largely an art in which subjective judgements play a central
role. Developing procedures applicable to complex models, which may involve a large
number of candidate variables, and allowing for valid statistical inference in the presence of
model selection remain difficult issues to which much further research should be devoted.

See also: Bayesian statistics; econometrics; endogeneity and exogeneity; forecasting; het-
eroskedasticity and autocorrelation corrections; linear models; models; serial correlation;
specification problems in econometrics; statistical decision theory; statistical inference;
structural change; testing; time series analysis.

Index terms: ARMA models; autocorrelation; Bayesian statistics; deterministic mod-
els; econometrics; endogeneity; forecasting; forecast evaluation; heteroskedasticity; lin-
ear models; model selection; models; parsimony; probability models; serial correlation;
specification problems in econometrics; statistical decision theory; statistical inference;
stochastic models; structural change; testing; time series analysis.
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