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Summary In the literature on tests of normality, much concern has been expressed over
the problems associated with residual-based procedures. Indeed, the specialized tables of
critical points which are needed to perform the tests have been derived for the location-scale
model; hence, reliance on available significance points in the context of regression models
may cause size distortions. We propose a general solution to the problem of controlling the
size of normality tests for the disturbances of standard linear regressions, which is based on
using the technique of Monte Carlo tests. We study procedures based on 11 well-known test
statistics: the Kolmogorov–Smirnov, Anderson–Darling, Cram´er–von Mises, Shapiro–Wilk,
Jarque–Bera and D’Agostino criteria. Evidence from a simulation study is reported showing
that the usual critical values lead to severe size problems (over-rejections or under-rejections).
In contrast, we show that Monte Carlo tests achieve perfect size control for any design matrix
and have good power.

Keywords: Normality test; Linear regression; Exact test; Monte Carlo test; Bootstrap;
Kolmogorov–Smirnov; Anderson–Darling; Cramér–von Mises; Shapiro–Wilk; Jarque–Bera;
D’Agostino.

1. Introduction

The problem of testing normality is fundamental in both theoretical and empirical research. In-
deed, the validity of parametric statistical inference procedures in finite samples (in the sense
that their size is controlled) depends crucially on the underlying distributional assumptions. Con-
sequently, there has been extensive focus on whether hypothesized distributions are compatible
with the data. Tests of normality are particularly prevalent because the assumption of normality
is quite often made in statistical analysis, e.g. in econometric studies. In this respect, the reviews
by Mardia (1980), D’Agostino and Stephens (1986, Ch. 9) and Baringhauset al. (1989) report
nearly 40 different normality tests. For illustrative examples, see Fama (1976), Lee (1982), Beraet
al. (1984), Harris (1986), Afflecks-Graves and McDonald (1989), Hall (1990), Richardson and
Smith (1993), among others.
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Simulation-based finite sample normality tests in linear regressions 155

This paper will emphasize procedures applicable in the linear regression framework. We
specifically address the problem of obtaining valid tests of disturbance normality based on sev-
eral statistics already proposed in the literature. Eleven of the leading statistics are considered:
(i) Kolmogorov–Smirnov, (ii) Anderson–Darling, (iii) Cram´er–von Mises, (iv) Shapiro–Wilk,
(v) Shapiro–Francia, (vi) Weisberg–Bingham, (vii) D’Agostino, (viii) Filliben, and (ix) Jarque–
Bera; for a survey and references, see D’Agostino and Stephens (1986). These well-known tests
have non-standard null distributions. Thus, tables of approximate critical points are provided
for reference in practical applications. As most tables are derived from Monte Carlo calcula-
tions according to the location-scale model with independent and identically distributed (i.i.d.)
observations, the problem of adequate use in regression contexts has long been recognized.

It was shown by Pierce and Kopecky (1979) that standard tests of normality (which account
for an unknown mean and variance) are asymptotically valid when computed from regression
residuals. These authors essentially studied the convergence of the empirical process of residuals.
In location-scale contexts, the asymptotics of empirical processes and associated tests are well un-
derstood; see, for example, Durbin (1973a, b), Stephens (1976) and Pollard (1984). With respect
to the regression model, Pierce and Kopecky have proved that the limiting process is the same
for the least-squares residuals case as fori.i.d. observations. Consequently, statistics based on
the sample process of residuals have the same asymptotic null distribution as in the location-scale
model. Related findings were obtained independently by Loynes (1980) and Mukantseva (1977);
see also Meester and Lockhart (1988) for a discussion of the case of designs with many blocks.
These conclusions are based on finite dimensional asymptotics. In contrast, Mammen (1996)
reconsidered the limiting behavior of tests of fit and the underlying processes allowing the di-
mension of the model to increase with the sample size. This author showed that in such a setting,
residuals-based goodness-of-fit (GOF) procedures may break down in the following sense: even if
the null hypothesis is true, standard tests tend to reject with high probability. Further recent results
on empirical processes and associated tests in more general econometric models are available in
Andrews (1988a, b, 1994).

The finite sample performance of regression-based normality tests has also received attention
in the literature. From Monte Carlo experiments, Huang and Bolch (1974) and White and Mac-
Donald (1980) concluded that computation of normality tests from residuals does not invalidate
them. Yet Pierce and Gray (1982) and Weisberg (1980) have pointed out difficulties with the
representativeness of this result and recommend the use of considerable caution in practical ap-
plications. These authors emphasize that reported Monte Carlo results depend crucially on specific
experimental settings. The number of regressors, the sample size and the design matrix can all
affect the validity of residual-based tests, in the sense that size distortions are quite likely (see
the comments on the multiple regression case in D’Agostino and Stephens (1986, Section 9.6)).
Similar concerns about size control are expressed by Poirieret al. (1986), Jarque and Bera (1987),
Pfaffenberger and Dielman (1991) and Anderson (1994). Indeed, to obtain a valid power study,
Pfaffenberger and Dielman derive size-corrected significance points from independent simulations
pertaining to the particular regressor data sets considered.

Given the above, it seems clear that for the regression model, commonly tabulated critical
points of standard normality tests can be quite misleading and should be improved. In this
paper, we re-emphasize this fact and propose the use of the Monte Carlo (MC) test technique
(Dwass, 1957; Barnard, 1963; Birnbaum, 1974; J¨ockel, 1986; Dufour, 1995; Dufour and Kiviet,
1996, 1998; Kiviet and Dufour, 1997) in order to obtain finite samplep-values. In particular,
we implement the procedures in Dufour (1995) relating to test statistics that are not necessarily
continuous. This technique allows one to obtain exact (randomized) tests, in the sense that the
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156 J.-M. Dufouret al.

probability of a type I error is known, whenever the null distribution of a test statistic does not
depend on unknown parameters and can be simulated. Further, very small numbers of replications
of the test statistics are required for that purpose. On observing that all standard normality test
statistics are pivotal when applied to regression residuals, we suggest that MC testing provides
an attractive alternative to usual asymptotic approximations. Indeed, the latter become irrelevant.
Further, the proposed techniques can be extended easily to test other distributions (besides the
normal), but we shall not stress this possibility here.

These finite sample properties hold whenever the regressor matrix is fixed or is random but
independent of the disturbance vector (strict exogeneity). In the latter case, the results obtain
through conditioning upon the regressor matrix. Even though this setup extends considerably
earlier finite sample results in the area of testing normality (which are largely limited to testing
the normality ofi.i.d. observations), it is clear our regression model excludes many econometric
setups, such as models with lagged dependent variables (dynamic models), weakly exogenous
regressors or noni.i.d. disturbances (heteroskedasticity, serial correlation). However, it is worth-
while noting that the simulation-based procedure proposed here yield ‘asymptotically valid’ tests
whenever the test criterion used has a nuisance-parameter-free null distribution under a class of
data-generating processes which includes the (more restricted) ones considered here. For a related
discussion, the reader may consult Dufour and Kiviet (1998).

MC tests are closely related to the parametric bootstrap, although with a fundamental differ-
ence. Whereas bootstrap tests are on the whole asymptotic (as the number of simulated samples
goes to infinity), MC test methods yield provably exact tests, in the sense that the number of
replications used is explicitly taken into account. Bootstrap methods have recently been sug-
gested for GOF problems; see, for example, Stuteet al. (1993) and Henze (1996). These authors
present the bootstrap as an alternative asymptotic approach to treat empirical processes with es-
timated parameters. Monte Carlo studies were carried out for various parametric models with
the conclusions that bootstrap Kolmogorov–Smirnov and Cram´er–von Mises tests achieve level
control. Although Stuteet al. examined normality tests in the location-scale context as a special
case, the problem has not apparently been considered from a finite sample perspective. Several
authors have also advocated the use of the bootstrap for different (although related) specification
tests in non-linear contexts; see, for example, Andrews (1997), Beran and Miller (1989) and
Linton and Gozalo (1997). For further discussion of bootstrap methods, the reader may consult
Efron (1982), Efron and Tibshirani (1993), Hall (1992), Jeong and Maddala (1993), Vinod (1993)
and Shao and Tu (1995).

We also investigate the size and power of suggested tests in a Monte Carlo study across six
error distributions. We consider several choices for the sample size, the number of regressors and
the design matrix. In addition, we examine the effect on power of increasing the number of MC
replications. The results show that MC tests overcome the usual size problems and achieve good
power, even with small numbers of MC replications.

The paper is organized as follows. In Section 2, we set notation and review the test statistics
under consideration. In Section 3, we discuss the pivotal character of the test statistics and present
the MC test procedure. Section 4 reports the results of the simulation experiment. We conclude
in Section 5.

2. Model and test statistics

We consider normality tests in the context of the linear regression model:
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Y = Xβ + u, (2.1)

whereY = (y1, . . . , yn)
′ is a vector of observations on the dependent variable,X is the matrix of

n observations onk regressors,β is a vector of unknown coefficients andu is ann-dimensional
vector ofi.i.d. disturbances; further,X is fixed or independent ofu. The problem is to test

H0 : f (u) = ϕ(u;0, σ ), σ > 0, (2.2)

where f (u) is the unknown probability density function (p.d.f.) andϕ(u;µ, σ) is the normal p.d.f.
with meanµ and standard deviationσ . The assumption thatu has mean zero is not restrictive
when X includes a constant termιn = (1, . . . ,1)′. When X = ιn the above regression model
reduces to the location-scale model. In this context, we shall consider normality tests based on
the least-squares residual vector

û = y− Xβ̂ = MXu, (2.3)

whereβ̂ = (X′X)−1X′y andMX = In − X(X′X)−1X′. Let û1n ≤ û2n ≤ · · · ≤ ûnn denote the
order statistics of the residuals, and

s2 = (n− k)−1
n∑

i=1

û2
in, σ̂ 2 = n−1

n∑
i=1

û2
in . (2.4)

The tests we shall study can be grouped into three categories: empirical distribution function
(EDF) tests, moment tests and correlation tests.

2.1. EDF tests

EDF tests are based on a measure of discrepancy between the empirical and hypothesized distribu-
tions. The most familiar EDF tests are: the Kolmogorov–Smirnov (K S) test (Kolmogorov, 1933;
Smirnov, 1939), the Cram´er–von Mises (V M) test (Cram´er, 1928) and the Anderson–Darling
(AD) test (Anderson and Darling, 1954). The finite sample distributions of theAD andV M
statistics are quite complicated but an asymptotic theory is available. For theK S statistic, the
exact and limiting distributions are non-standard and even asymptotic points must be estimated;
this fact was first observed by Lilliefors (1967) who gave significance points by Monte Carlo cal-
culations. To improve performance in finite samples, Stephens (1974) has proposed modifying
the EDF statistics through multiplication by an appropriate correction factor; this author supplies
adjustment formulas and approximate critical points for use with modified criteria. Revised sig-
nificance points are also available in D’Agostino and Stephens (1986, Table 4.7). As pointed out
above these pertain to the location-scale model.

The statistics are defined as follows:

K S= max(D+, D−), (2.5)

whereD+ = max1≤i≤n{(i /n)− ẑi } andD− = max1≤i≤n{ẑi − (i − 1)/n},

V M =
n∑

i=1

{ẑi − (2i − 1)/2n}2+ (1/12n), (2.6)
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AD = −n− n−1
n∑

i=1

(2i − 1){ln ẑi + ln(1− ẑn+1−i )}, (2.7)

whereẑi = 8(ûin/s), i = 1, . . . ,n, and8(.) denotes the cumulativeN(0,1) distribution func-
tion. In this article, we study both standard and modified (following Stephens) statistics; the
modified statistics will be denotedK Ss, V Ms andADs.

2.2. Moment tests

Moment tests derive from the recognition that the third and fourth moments of theN(0,1)
distribution are equal to 0 and 3, respectively. Hence, deviations from normality may be assessed
using the sample moments, i.e. the coefficients of skewness (Sk) and kurtosis (Ku):

Sk= n−1
n∑

i=1

û3
in/(σ̂

2)3/2, Ku = n−1
n∑

i=1

û4
in/(σ̂

2)2. (2.8)

The literature on the null distributions of these statistics and their joint density is vast. Although
very few finite sample results are known, asymptotic theory is well developed and tables have
been available for some time (see D’Agostino and Stephens (1986, Ch. 6)). The skewness and
kurtosis tests may be implemented as two distinct tests. Procedures involvingSkandKu jointly
are also in common use. One popular example is the Jarque–Bera (J B) test (Jarque and Bera,
1980, 1987) based on a Lagrange multiplier criterion:

J B= n

{
1

6
(Sk)2+ 1

24
(Ku− 3)2

}
. (2.9)

As pointed out by Jarque and Bera (1987, p. 165), their method was independently suggested
by Bowman and Shenton (1975) as an omnibus procedure combiningSk and Ku in one test
statistic. Jarque and Bera have shown that the test derives from the LM principle in the context
of the Pearson family of probability density functions. Under the null and appropriate regularity
conditions, theJ B statistic is asymptotically distributed asχ2(2). As is typically the case with
the various normality tests, the exact distribution is intractable. We have also considered moment
tests wherêσ 2 is replaced bys2, which we denoteSkk, Kuk andJ Bk, respectively.

2.3. Correlation tests

Correlation tests are based on the ratio of two estimates of scale obtained from order statistics: a
weighted least-squares estimate given that the population is normally distributed and the unbiased
estimate of scale for any population, i.e. the sample variance. The weights originally proposed
for the Shapiro–Wilk (SW) test (Shapiro and Wilk, 1965) are the optimal weights in the sense of
GLS estimation and are difficult to compute:

SW= (
∑n

i=1 ai ûin)
2

(n− k)s2 ,a′ = (a1, . . . ,an) = c′V−1

(c′V−2c)1/2
(2.10)

wherec = (c1, . . . , cn)
′ andV are respectively the vector of expected values and the covariance

matrix of standard normal order statistics. Shapiro and Wilk (1965) supply a table of weights and
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significance points for location-scale models withn ≤ 50; these are reproduced in D’Agostino
and Stephens (1986, Tables 5.4 and 5.5). For large samples, Shapiro and Francia (1972) suggest
ignoring the covariance term in the formulae for deriving the weights; in other words, the Shapiro–
Francia (SF) test treats the ordered observations as if they were independent:

SF= (
∑n

i=1 bi ûin)
2

(n− k)s2 ,b′ = (b1, . . . ,bn) = c′

(c′c)1/2
. (2.11)

The SF statistic may also be interpreted as the correlation coefficient betweenc and the order
statistics of the residuals. Shapiro and Francia supplied the weights and significance points for
location-scale models withn < 100; D’Agostino and Stephens (1986, Table 5.2) provides the
critical values ofn(1− SF) for location-scale models withn ≤ 1000. Royston (1982a, b, c) has
also published algorithms for computing the distribution of theSWstatistic, but these only apply
to simple location-scale models.

D’Agostino (1971) proposed considering a linear combination of the ordered observations that
does not require a table of weights. The D’Agostino (D) statistic may be computed as follows:

D =
∑n

i=1 ûin{i − (n+ 1)/2}
n3/2{(n− k)s2}1/2 . (2.12)

D’Agostino (1971, 1972) provide significance points for location-scale models withn ≤ 2000;
these are reproduced in D’Agostino and Stephens (1986, Table 9.7). Several other modifiedSF
statistics have been suggested. We consider the Weisberg–Bingham (W B) test (Weisberg and
Bingham, 1975) and the Filliben (FB) test (Filliben, 1975). TheW B statistic derives from the
SF statistic substituting the following forc:

ĉi = 8−1
{

i − (3/8)
n+ (1/4)

}
, i = 1, . . . ,n, (2.13)

where8−1 refers to the inverse of the standard normal cumulative distribution function. The
critical values of the test are those of theSF test. TheFB criterion may be viewed as the
correlation coefficient between the ordered residuals and the order statistics medians from the
standard normal distribution. Filliben produced weights and critical points for the location-scale
model withn ≤ 100.

3. Monte Carlo tests for normality

All of the existing tables of critical points described above were generally derived from Monte
Carlo simulations following thei.i.d. location-scale model. As an alternative to these, we shall
employ the technique of MC tests. To provide necessary background, we first discuss relevant
invariance properties of the statistics considered. The MC test procedure is described next.

3.1. Pivotal property of standardized residuals

From (2.5) to (2.12), we see that all the test statistics can be computed from the standardized
residual vector̂u/s. Using (2.3), we can write:

û/s= û

(û′û/(n− k))1/2
= (n− k)1/2

MXu

(u′MXu)1/2
= (n− k)1/2

MXw

(w′MXw)1/2
, (3.14)
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where the components ofw = u/σ arei.i.d. N(0,1) whenu ∼ N(0, σ 2In), so thatû/s follows
a nuisance-parameter free distribution. The distribution of the scaled vectorû/s depends on the
(known) regressor matrixX, but not on the regression parametersβ andσ . WhenX is fixed, this
entails that̂u/s follows a nuisance-parameter-free distribution. WhenX is viewed as random but
remains independent ofu, the marginal distribution of̂u/s may depend on the parameters of the
distribution ofX, but its conditional distribution givenX only depends onX. Consequently, in
both situations, residual-based test statistics are location and scale invariant, and their exact null
distributions can be simulated easily.

3.2. Monte Carlo test procedure

Let T be a real-valued test statistic such that a null hypothesis of interestH0, e.g. model (2.1)
with u ∼ N(0, σ 2In), is rejected whenT is large, i.e. whenT ≥ c, where the constantc depends
on the level of the test, and supposeT is pivotal. In other words, given a statistical model
(�,A,P) where� is a sample space,A is aσ−algebra of subsets of� andP is a family of
probability measures onA which include the setP0 ⊆ P of measures compatible withH0, we
assumeT = T(ω) is a mapping from� to R (T : � → R) such that the survival function
G(x) ≡ P(T ≥ x) ≡ P[{ω ∈ � : T(ω) ≥ x}], or equivalently the distribution function
F(x) = P(T ≤ x), is the same for allP ∈ P0 (so that the critical regionT ≥ c is similar). Note
the functionG : R→ [0, 1] does not depend onω and must be viewed as fixed (hence independent
of any random variable defined on�) in the present context. ThenG(c) = α is the size of the
critical regionT ≥ c. Further, for anyA-measurable random variableT0 = T0(ω0), ω0 ∈ �, the
transformed random variableG(T0) ≡ G{T0(ω0)}, ω0 ∈ �, satisfiesP{G(T0) ≤ α} = α, where
P{G(T0) ≤ x} ≡ P[ω0 ∈ � : G{T(ω0)} ≤ x] for any x ∈ R. Note the random variableG(T0)

can be interpreted as the conditional probabilityP(T ≥ T0|T0) whenT andT0 arei.i.d. (defined
on the appropriate product measure space) each with the survival functionG(x); further, if T0
denotes the test statistic computed from data (a random variable) andT0 the observed value of
T0 based on specific realized data (taken as given (fixed)),G(T0) = P(T ≥ T0|T0 = T0) is the
‘realized’ p-value of the test statisticT0.

Now suppose we can generateN independent realizationsT1, . . . , TN , from which we can
compute an empiricalp-value function:

p̂N(x) = NĜN(x)+ 1

N + 1
(3.15)

where

ĜN(x) = 1

N

N∑
i=1

1[0,∞)(Ti − x),1A(x) =
{

1, x ∈ A
0, x /∈ A

. (3.16)

The associated MC critical region is a randomized critical region defined as

p̂N(T0) ≤ α (3.17)

where p̂N(T0) may be interpreted as an estimate ofG(T0). When the distribution ofT0 is
continuous, we have:

P{ p̂N(T0) ≤ α} = I {α(N + 1)}
N + 1

, for 0≤ α ≤ 1, (3.18)
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where I [x] denotes the largest integer less than or equal tox; see Dufour (1995), Dufour and
Kiviet (1996, 1998) or Kiviet and Dufour (1997). GivenT0 = T0, the quantityp̂N(T0) may be
interpreted as a (randomized) ‘realized’p-value associated withT0. Thus, ifN is chosen such that
α(N+1) is an integer, the critical region (3.17) has the same size as the critical regionG(T0) ≤ α.
The MC test so obtained is theoretically exact, irrespective of the numberN of replications used.

The above procedure is closely related to a parametric bootstrap, but with a fundamental
difference. Bootstrap tests are, in general, provably valid forN → ∞. In contrast, we see
from (3.18) thatN is explicitly taken into consideration in establishing the validity of MC tests.
Although the value ofN has no incidence on size control, it may have an impact on power which
typically increases withN.

Note that (3.18) holds for tests based on statistics with continuous distributions. In the case of
the K Scriterion, ties have non-zero probability. Nevertheless, the technique of MC tests can be
adapted for discrete distributions by appeal to the following randomized tie-breaking procedure
(see Dufour (1995)).

Draw N+1 uniformly distributed variatesW0,W1, . . . ,WN , independently ofTj and arrange
the pairs(Tj ,Wj ) following the lexicographic order:

(Ti ,Wi ) ≥ (Tj ,Wj )⇔ {Ti > Tj or (Ti = Tj andWi ≥ Wj )}. (3.19)

Then, proceed as in the continuous case and compute

p̃N(x) = NG̃N(x)+ 1

N + 1
, (3.20)

where

G̃N(x) = 1− 1

N

N∑
i=1

1[0,∞)(x − Ti )+ 1

N

N∑
i=1

1[0](Ti − x)1[0,∞)(Wi −W0). (3.21)

The resulting critical regioñpN(T0) ≤ α has the same level as the regionG(T0) ≤ α, again
providedα(N + 1) is an integer. More precisely,

P{ p̂N(T0) ≤ α} ≤ P{ p̃N(T0) ≤ α} = I {α(N + 1)}
N + 1

, for 0≤ α ≤ 1.

If T0, T1, . . . , TN are all distinct,p̃N(T0) = p̂N(T0).
The procedures discussed in this section can be readily extended to other GOF hypotheses.

Indeed, the central properties we have exploited here are the following: (i) the standardized error
vector has a known null distribution, and (ii) the test statistics depend only on the empirical
distribution function of residuals. These properties are preserved for: (i) all error distribution
functions which are completely specified up to a scale parameter, and (ii) any relevant GOF
criterion based on the empirical process of residuals. The latter generalization allows for a natural
class of GOF statistics, although others may be worth consideration. Of course, the choice of
which statistic to employ depends on the specific hypothesis at hand.

4. Simulation experiment

The simulation experiment was performed as follows. The model used was (2.1). For each
disturbance distribution, the tests were applied to the residual vector, obtained asû = Mxu.
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Table 1.1.List of abbreviations

Notation Test Reference

K S Kolmogorov–Smirnov Equation (2.5)

K Ss Modified KS D’Agostino and Stephens (1986, Table 4.7)

V M Cramér–von Mises Equation (2.6)

V Ms Modified VM D’Agostino and Stephens (1986, Table 4.7)

AD Anderson–Darling Equation (2.7)

ADs Modified AD D’Agostino and Stephens (1986, Table 4.7)

J B Jarque–Bera Equations (2.9) and (2.4)

J Bk Jarque–Bera (usings2) Equations (2.9) and (2.4)

SW Shapiro–Wilk Equation (2.10)

SF Shapiro–Francia Equation (2.11)

W B Weisberg–Bingham Equations (2.11) and (2.13)

D D’Agostino Equation (2.12)

FB Filliben Filliben (1975)

Table 1.2.Critical points for standard normality tests

Test Reference Sample size

25 50 100 300

K S Lilliefors (1967) 0.173 0.886/
√

n 0.886/
√

n 0.886/
√

n

V M D’Agostino and Stephens (1986, Table 4.10) 0.12125 0.1225 0.125 0.126

AD D’Agostino and Stephens (1986, Table 4.10) 0.71625 0.7285 0.742 0.752

K Ss D’Agostino and Stephens (1986, Table 4.7) 0.895 0.895 0.895 0.895

V Ms D’Agostino and Stephens (1986, Table 4.7) 0.126 0.126 0.126 0.126

ADs D’Agostino and Stephens (1986, Table 4.7) 0.752 0.752 0.752 0.752

SF D’Agostino and Stephens (1986, Table 5.2) 1.99 2.31 2.56 2.67

W B D’Agostino and Stephens (1986, Table 5.2) 1.99 2.31 2.56 2.67

SW D’Agostino and Stephens (1986, Table 5.5) 0.918 0.947 n.a. n.a.

D D’Agostino and Stephens (1986, Table 9.7)−2.97 −2.74 −2.54 −2.316

0.74 1.06 1.31 1.528

FB Filliben (1975) 0.958 0.977 0.987 n.a.

In the presented table, asterisks indicate the highest computed power achieved in each column. The
modified EDF statisticsK Ss, V Ms andADs are monotonic transformations of the original criteriaK S,
V M and AD, respectively, and so yield the same MCp-values. The result for tests based on standard
critical values may not be reported in a few cases (likeSWandFB in Table 3) because the required
critical values have not apparently been tabulated for the regression design considered.

Hence, there was no need to specify the coefficient vectorβ. The matrixX included a constant
term, a set ofk1 dummy variables and a set of independent standard normal variates. Formally,

X =
{
ιn
... X(1)

... X(2)

}
, X(1) =

{
Ik1

0(n−k1,k1)

}
(4.22)
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Table 2. Empirical size and power of normality tests;i.i.d. observations

Standard Tests MC Tests

N B C 0 Ln t N B C 0 Ln t

n = 25

K S 5.3 7.2 90.2 39.6 98.5 14.8 5.2 7.3 90.0 38.5 98.4 14.6

K Ss 5.2 7.0 90.5 39.3 98.5 14.7 5.2 7.3 90.0 38.5 98.4 14.6

V M 5.6 8.7 93.6 51.6 99.7 18.6 5.1 8.3 93.0 49.4 99.6 17.2

V Ms 5.2 8.1 93.3 50.4 99.7 17.9 5.1 8.3 93.0 49.4 99.6 17.2

AD 5.6 9.1 93.7 57.5 99.9 20.2 5.2 8.6 93.0 54.8 99.8 19.2

ADs 5.1 8.3 93.4 55.8 99.9 19.4 5.2 8.6 93.0 54.8 99.8 19.2

J B 2.9 0.9 89.5 37.8 95.9 21.2 5.2 2.1 91.4 47.8 97.5 26.3∗

J Bk 1.8 0.4 87.2 31.6 94.1 17.4 5.2 3.0 91.0 51.2 98.2 25.6

SW 5.2 8.4 92.2 64.2 100 21.1 5.4 8.7∗ 92.0 63.3∗ 99.9∗ 21.3

SF 5.8 5.1 94.0 61.5 99.9 26.5 5.2 4.6 93.7 58.3 99.8 25.5

W B 5.7 5.1 94.0 61.5 99.9 26.4 5.3 4.7 93.7 58.4 99.8 25.1

D 5.4 7.1 93.4 33.1 97.3 22.4 5.2 7.0 92.6 30.7 96.5 21.3

FB 5.3 4.4 94.0 59.4 99.9 26.1 5.2 4.3 93.8∗ 57.7 99.8 25.4

n = 50

K S 4.6 11.5 99.4 68.0 100 20.5 4.9 11.7 99.3 67.7 100∗ 20.8

K Ss 4.8 12.0 99.4 69.1 100 21.2 4.9 11.7 99.3 67.7 100∗ 20.8

V M 5.4 15.5 99.7 83.7 100 27.8 5.0 14.7 99.7 81.8 100∗ 26.8

V Ms 5.1 14.9 99.7 83.0 100 27.2 5.0 14.7 99.7 81.8 100∗ 26.8

AD 5.3 18.1 99.7 89.1 100 31.0 5.0 16.9 99.7 87.6 100∗ 29.8

ADs 5.0 17.2 99.7 88.5 100 30.2 5.0 16.9 99.7 87.6 100∗ 29.8

J B 3.7 0.8 99.5 76.0 100 39.4 4.8 3.0 99.5 79.8 99 41.8∗

J Bk 2.7 0.5 99.4 72.7 100 36.1 4.9 4.9 99.5 82.9 100∗ 41.0

SW 4.3 26.2 99.4 94.8 100 26.4 5.0 27.8∗ 99.4 94.8∗ 100∗ 27.2

SF 5.1 10.3 99.8 91.9 100 41.3 5.0 10.0 99.8∗ 90.9 99 40.5

W B 5.1 10.1 99.8 91.8 100 41.5 5.0 9.9 99.8∗ 90.8 100∗ 40.5

D 5.3 13.7 99.8 56.4 100 39.0 5.2 13.1 99.7 53.6 100∗ 36.9

FB 5.6 9.9 99.8 91.9 100 43.4 5.0 8.8 99.7 90.0 100∗ 41.1

(cont.)

where 0(i, j ) denotes an(i, j ) matrix of zeros,X(2) includesk− k1− 1 regressors drawn asi.i.d.
standard normal. Sample sizes ofn = 25,50,100 (and 300 in certain cases) were used,k was set
as the largest integer less than or equal to

√
n andk1 = 0,2,4, . . . , k−1. We have also examined

the cases where (i)X = ιn, i.e. the location-scale model, and (ii)X includes a constant term and
k− 1 regressors drawn from a Cauchy distribution. As mentioned earlier, the regressors here are
treated as fixed across replications, which excludes many cases of interest in econometrics such
as lagged dependent variables (dynamic models).
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Table 2. Continued

Standard Tests MC Tests

N B C 0 Ln t N B C 0 Ln t

n = 100

K S 5.0 23.5 100 95.4 100 33.5 4.8 22.7 100∗ 94.5 100∗ 31.9

K Ss 4.9 23.2 100 95.2 100 33.1 4.8 22.7 100∗ 94.5 100∗ 31.9

V M 4.8 32.0 100 99.1 100 42.8 4.9 31.4 100∗ 99.0 100∗ 42.1

V Ms 4.9 32.3 100 99.1 100 43.1 4.9 31.4 100∗ 99.0 100∗ 42.1

AD 5.0 40.7 100 99.8 100 48.1 4.8 39.1∗ 100∗ 99.7 100∗ 47.1

ADs 4.9 40.0 100 99.8 100 47.9 4.8 39.1∗ 100∗ 99.7 100∗ 47.1

J B 3.9 4.7 100 99.1 100 62.8 5.0 12.6 100∗ 98.6 100∗ 63.8

J Bk 3.4 5.2 100 99.0 100 60.2 4.9 19.2 100∗ 99.1 100∗ 62.9

SF 4.6 33.3 100 99.9 100 61.7 4.8 32.6 100∗ 99.9∗ 100∗ 61.4

W B 4.7 32.4 100 99.9 100 62.2 4.8 31.4 100∗ 99.9∗ 100∗ 61.6

D 5.1 29.0 100 82.5 100 62.9 5.2 26.3 100∗ 79.8 100∗ 60.5

FB 4.9 29.1 100 99.9 100 63.1 4.8 28.0 100∗ 99.9∗ 100∗ 62.1

The disturbances were generated from several distributions: standard normal, Cauchy, log-
normal, beta(2,3), gamma(2,1) (denotedN,C, L N, B, 0 respectively) and Studentt (5). We
assessed the performance of all the tests reviewed above at the nominal size of 5%. With the
exception of theD test, all were treated as one-sided tests; the relevant critical points for the
standard tests are given in Table 1.2. Tables 2 to 5 report the rejection percentages among 10 000
replications.

The MC procedures illustrated in Tables 2 to 4 are based on 99 simulated samples (79 in the
case of theD statistic). We have also examined the effect on power of increasing the number
of simulated samples. Results for these experiments are presented in Table 5, whereN =
19,29, . . . ,99,199, . . . ,499. For theD statistic, N was set to 39,79,199 and 399. In the
presented tables, asterisks indicate the highest computed power achieved in each column. The
modified EDF statisticsK Ss,V Ms andADs are monotonic transformations of the original criteria
K S,V M and AD, respectively, and so yield the same MCp-values. The results for tests based
on standard critical values may not be reported in a few cases (likeSW and FB in Table 3)
because the required critical values have not apparently been tabulated for the regression design
considered. More complete results (with graphs) are available in a technical report (Dufouret al.,
1997). Our conclusions may be summarized as follows.

4.1. Test size

The location-scale model. For the simple location-scale model, all the tests except theJ B
procedure control size reasonably well (see Table 2). The EDF, theSWand theD tests appear
adequate. While theSF, W B and FB tests tend to over-reject, the distortions are not severe.
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Table 3. Empirical size of normality tests based on regression residuals

n = 25, k = 5 n = 50, k = 7

Standard tests MC tests Standard tests MC tests

k1: 0 2 4 0 2 4 0 2 4 6 0 2 4 6

K S 5.2 11.6 28.6 5.2 5.3 5.2 5.3 7.9 15.7 29.4 5.2 5.0 5.1 5.0

K Ss 5.0 11.4 28.2 5.2 5.3 5.2 5.5 8.1 16.3 30.1 5.2 5.0 5.1 5.0

V M 6.8 12.7 28.3 5.2 5.2 5.0 7.4 10.5 18.9 33.9 5.1 5.0 4.9 4.9

V Ms 6.4 12.0 27.1 5.2 5.2 5.0 6.9 9.9 17.9 32.5 5.1 5.0 4.9 4.9

AD 6.4 10.5 22.0 5.2 5.2 5.3 7.2 9.5 15.9 26.9 5.2 5.0 4.8 4.8

ADs 5.7 9.7 20.7 5.2 5.2 5.3 6.7 8.9 14.9 25.7 5.2 5.0 4.8 4.8

SF 5.7 8.4 14.6 5.3 5.2 5.0 5.2 6.5 9.2 13.7 5.0 5.3 5.2 4.8

SW 5.1 6.2 10.2 5.5 5.3 5.2 4.2 4.1 5.0 6.9 4.9 5.0 5.0 4.8

W B 5.7 8.4 14.5 5.4 5.2 5.0 5.2 6.5 9.2 13.8 5.0 5.3 5.2 4.8

D 5.0 6.6 11.4 5.0 5.3 5.1 5.1 5.7 7.6 12.4 5.0 5.1 4.8 5.2

FB 5.2 7.9 13.9 5.4 5.1 5.1 5.7 7.3 10.3 15.3 5.1 5.3 5.2 4.7

J B 2.9 4.8 6.7 5.2 5.2 4.8 3.9 5.1 6.4 8.4 5.0 5.1 5.0 4.7

J Bk 0.1 0.2 0.4 5.1 5.0 5.1 0.3 0.5 0.8 1.0 4.8 5.1 4.9 5.0

n = 100, k = 11

Standard tests MC tests

k1 0 2 4 6 8 10 0 2 4 6 8 10

K S 5.6 8.0 13.3 20.1 32.6 47.6 4.7 5.0 5.0 4.7 4.7 5.0

K Ss 5.5 7.9 13.1 19.7 32.2 47.2 4.7 5.0 5.0 4.7 4.7 5.0

V M 7.4 9.6 15.0 21.8 33.1 48.8 4.9 4.8 4.8 4.9 4.8 5.0

V Ms 7.6 9.7 15.1 22.2 33.4 49.3 4.9 4.8 4.8 4.9 4.8 5.0

AD 7.8 9.8 13.5 18.9 27.9 39.9 4.8 4.7 5.0 4.9 4.7 4.9

ADs 7.6 9.5 13.2 18.5 27.6 39.4 4.8 4.7 5.0 4.9 4.7 4.9

SF 4.8 5.1 6.6 8.6 11.2 15.4 5.0 4.5 4.9 5.0 4.6 4.8

W B 4.9 5.2 6.8 8.8 11.4 15.7 5.0 4.5 4.9 5.0 4.7 4.9

D 5.1 5.3 6.3 7.9 10.8 15.4 5.3 4.8 5.1 5.1 4.9 5.1

FB 4.9 5.3 7.0 9.0 11.9 16.2 5.0 4.5 4.9 5.1 4.7 4.8

J B 4.1 4.7 5.8 7.1 8.9 10.2 4.8 4.8 4.8 4.9 4.9 5.1

J Bk 2.1 1.6 1.5 1.4 1.3 1.5 5.2 4.7 5.0 5.0 4.8 4.7

(cont.)

However, theJ B test substantially under-rejects. The sizes of all MC tests correspond closely to
the nominal value of 5%.

The regression model. From the results in Table 3, we can see that the test performances in
the regression context can be much worse than for the location-scale model. Although the tests
appear adequate when the explanatory variables are generated as standard normal, the sizes of all
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Table 3. Continued

n = 300, k = 17 Cauchy regressors

Standard tests Standard tests:(n, k) =
k1 0 2 4 6 8 10 12 14 16 (25,6) (50,8) (100,11) (300,17)

K S 6.7 8.1 9.9 12.7 16.6 21.8 27.9 35.2 43.9 10.9 11.3 11.1 10.7

K Ss 6.2 7.6 9.3 12.0 15.9 20.8 26.6 34.0 42.7 10.7 11.8 10.8 10.1

V M 7.0 8.3 10.3 12.9 16.1 20.5 26.9 33.5 42.3 14.8 15.3 14.7 12.5

V Ms 7.0 8.9 10.4 13.0 16.2 20.6 27.1 33.6 42.4 13.8 14.5 14.5 12.5

AD 7.4 8.5 9.9 12.0 14.5 17.9 22.4 28.0 34.4 12.9 13.6 14.4 12.5

ADs 7.5 7.1 10.0 12.1 14.6 18.1 22.5 28.2 34.6 11.9 12.9 14.2 12.6

SF 6.3 7.3 7.2 8.3 8.4 10.1 11.8 13.5 16.2 10.3 9.1 7.9 8.8

SW — — — — — — — — — 7.3 5.0 — —

W B 6.4 5.1 7.5 8.5 8.6 10.4 12.1 13.8 16.6 10.3 9.2 8.2 9.1

D 4.6 5.3 5.2 5.7 6.7 7.6 9.2 10.8 13.2 8.3 7.5 7.5 6.5

FB — — — — — — — — — 9.9 10.2 8.5 —

J B 4.5 5.1 5.5 5.8 6.5 7.1 8.2 8.8 9.8 6.1 7.3 7.8 7.6

J Bk 8.0 7.1 6.0 5.3 4.9 4.5 4.1 3.8 3.7 0.3 0.8 1.5 5.1

tests vary substantially from the nominal 5% for all other designs, irrespective of the sample size.
More specifically, (i) the EDF tests consistently over-reject and the modified versions over-reject
by the same magnitude, (ii) the correlation tests over-reject but to a lesser extent, (iii) the moment
tests based ons are severely undersized and, (iv) the moment tests based onσ̂ under-reject when
the number of dummy variables relative to normal regressors is small and over-reject otherwise.
In contrast, all MC tests achieve perfect size control for all sample sizes.

An interesting experiment that bears on this problem is reported in Weisberg (1980). Weisberg
had pointed out that in the context of normality tests, Monte Carlo results based on data sets
where all explanatory variables are drawn from the uniform or standard normal distribution are
not representative and that size problems may occur. He demonstrated this with a specific data set
for the SW test withn = 20. The analysis here extends this observation in two important ways.
First, we show that problems can occur forall conventional tests. Second, the design matrices
we consider involve samples as large as 100 and 300 and are quite likely to be encountered in
econometric practice. An intuitive explanation for the effect of dummy variables on test size is
the following. Residuals based on normal regressors may mimic ani.i.d. series ifk is small
enough, relative ton. The appended indicator variables causek1 residuals to be zero, and these
should be excluded from the test procedure (but are not). This provides a simple example where
standard distributional theory fails, while our approach works without any difficulty. Regressors
drawn form a Cauchy distribution (see Table 3) provide another although less extreme example
of such situations. Note, finally, that in Table 3 the level does not appear to be better controlled
as the sample size increases. This is simply due to the fact that, in this experiment, the number
of regressors increases with sample size.
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Table 4. Empirical power of MC normality tests based on regression residuals

B C 0 Ln t B C 0 Ln t

K S n= 25 4.5 74.3 22.6 79.8 12.7 n = 25 3.6 80.8 24.6 84.1 14.9

V M k= 5 4.2 81.0 28.6 87.4 15.2 k = 5 2.9 86.6 28.4 91.0 18.1

AD k1 = 0 4.5 82.7 31.7 89.3 16.6 k1 = 2 3.3 87.4 33.3 92.9 19.5

SF 3.8 83.7 34.9 90.7∗ 18.6 3.0 87.1 37.5 94.0 21.0

SW 6.0 80.1 35.8∗ 90.7∗ 15.4 4.8 85.3 42.1∗ 95.1∗ 19.0

W B 3.8 83.7 34.9 90.7∗ 18.5 3.0 87.1 37.6 94.0 21.0

D 5.3 81.3 19.9 81.4 15.3 6.4 84.0 21.4 84.2 16.2

FB 3.6 84.0∗ 34.4 90.6 18.8 2.9 87.3∗ 37.0 93.8 21.2

J B 2.5 83.5 32.3 88.8 19.9∗ 2.1 85.2 34.0 90.2 21.6∗

J Bk 9.8∗ 69.4 20.4 80.3 9.8 9.8∗ 76.1 32.4 91.0 13.6

K S n= 25 4.0 86.6 27.7 90.9 14.5

V M k= 5 2.1 91.5 26.7 94.6 20.1

AD k1 = 4 2.2 91.8 33.0 96.6 21.6

SF 2.4 91.5 40.5 97.7 23.6∗

SW 3.6 91.0 46.4∗ 98.7∗ 22.2

W B 2.4 91.5 40.5 97.7 23.6

D 7.5 88.4 22.3 88.8 17.9

FB 2.2 91.6∗ 39.9 97.6 23.6

J B 1.9 87.9 36.8 93.0 23.4

J Bk 9.0∗ 82.7 43.5 97.8 18.1

K S n= 50 6.2 96.9 47.2 99.0 20.4 n = 50 4.5 97.7 47.6 99.2 21.6

V M k= 7 5.9 98.6 59.6 99.8 26.1 k = 7 3.9 98.9 59.4 99.8 28.7

AD k1 = 0 6.7 98.8∗ 65.9 99.8 28.9 k1 = 2 4.6 99.1 67.1 99.9∗ 31.4

SF 5.9 98.7 71.5 99.9∗ 33.1 4.8 99.0 73.8 99.9∗ 34.8

SW 15.2 97.0 73.2∗ 99.9∗ 21.6 15.0 98.1 78.5∗ 99.9∗ 25.1

W B 5.9 98.7 71.3 99.9∗ 33.2 4.7 99.0 73.8 99.9∗ 34.8

D 8.8 98.6 39.1 98.8 29.1 10.0 98.9 40.6 99.9∗ 30.1

FB 5.3 98.8∗ 70.7 99.9∗ 33.7 4.3 99.1∗ 73.0 99.9∗ 35.1

J B 2.1 98.6 64.1 99.7 35.0∗ 1.7 98.7 65.5 99.8 35.8∗

J Bk 18.3∗ 95.4 59.9 99.5 19.9 19.2∗ 96.6 69.1 98.8 23.3

(cont.)

4.2. Test Power

The location-scale model. It is evident from Table 2 that MC tests correct for size and achieve
good power. Overall, we do not observe any significant power loss for tests having comparable
size. When interpreting the power of the correlation tests, keep in mind that the standardSF,
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Table 4. Continued

B C 0 Ln t B C 0 Ln t

K S n= 50 4.5 98.2 48.9 99.6 20.8 n = 50 5.2 98.9 52.8 99.8 20.0

V M k= 7 2.8 99.3 56.2 99.8 31.2 k = 7 2.1 99.6 53.8 100∗ 32.4

AD k1 = 4 3.5 99.4∗ 65.8 99.9 34.0 k1 = 6 2.6 99.7∗ 64.9 100∗ 36.1

SF 3.6 99.4∗ 75.9 99.9 38.0 2.8 99.6 77.5 100∗ 40.6

SW 12.8 98.9 83.1∗ 100∗ 29.8 11.9 99.4 87.3∗ 100∗ 33.4

W B 3.5 99.3 75.7 99.9 38.1 2.7 99.6 77.3 100∗ 40.6

D 10.8 99.2 40.3 99.3 31.3 13.1 99.4 40.9 99.5 32.9

FB 3.1 99.4∗ 74.9 99.9 38.4∗ 2.6 99.6 76.4 100∗ 40.8∗

J B 1.4 98.9 65.9 99.8 38.2 1.1 99.1 66.6 99.8 40.0

J Bk 18.6∗ 97.4 77.3 99.9 27.9 17.3∗ 98.3 82.8 100∗ 32.4

K S n= 100 9.7 100∗ 80.6 100∗ 33.1 n = 100 7.4 100∗ 80.2 100∗ 34.0

V M k= 11 9.8 100∗ 91.1 100∗ 43.8 k = 11 7.2 100∗ 90.8 100∗ 46.1

AD k1 = 0 12.5 100∗ 94.6 100∗ 48.3 k1 = 2 10.0 100∗ 94.6 100∗ 50.7

SF 16.0 100∗ 97.2∗ 100∗ 52.7 14.0 100∗ 97.5∗ 100∗ 55.4

W B 15.4 100∗ 97.2∗ 100∗ 52.9 13.5 100∗ 97.5∗ 100∗ 55.5

D 17.1 100∗ 66.6 100∗ 50.7 19.5 100∗ 67.2 100∗ 51.9

FB 13.6 100∗ 96.9 100∗ 53.9 12.0 100∗ 97.2 100∗ 56.0

J B 6.7 100∗ 94.1 100∗ 55.3∗ 4.6 100∗ 93.9 100∗ 57.0∗

J Bk 42.1∗ 99.9 93.8 100∗ 32.9 45.1∗ 99.9 95.8 100∗ 36.2

K S n= 100 6.8 100∗ 80.2 100∗ 33.2 n = 100 6.7 100∗ 80.4 100∗ 31.3

V M k= 11 5.0 100∗ 90.1 100∗ 48.0 k = 11 3.7 100∗ 88.5 100∗ 48.9

AD k1 = 4 7.2 100∗ 94.6 100∗ 52.6 k1 = 6 5.5 100∗ 94.3 100∗ 53.9

SF 11.7 100∗ 97.8∗ 100∗ 57.6 9.9 100∗ 98.0 100∗ 59.1

W B 11.3 100∗ 97.8∗ 100∗ 57.8 9.6 100∗ 98.0 100∗ 59.3

D 21.0 100∗ 67.9 100∗ 52.8 22.7 100∗ 67.7 100∗ 54.2

FB 9.8 100∗ 97.6 100∗ 58.3 8.3 100∗ 97.7 100∗ 59.3

J B 3.0 100∗ 93.8 100∗ 58.4∗ 2.0 100∗ 93.5 100∗ 59.7∗

J Bk 46.8∗ 99.9 97.5 100∗ 39.7 48.4∗ 100∗ 98.2∗ 100∗ 43.1

W Band theFB tests are slightly oversized. Note also that the modified EDF (i.e. size corrected
following Stephens (1974)) and the MC tests demonstrate similar power for all sample sizes
across all the distributions examined. Most important is the effect of the MC procedure on the
moment tests. Indeed, the effective power of theJ B tests improves appreciably forn ≤ 100.
This is expected since the standardJ B test is severely undersized.

The powers of the MC tests are broadly in the following order. TheSW (when feasible) and
theSFapproximations are among the most powerful against practically all alternatives. TheW B
seems a sensible choice for it does not rely on any table of weights. However, forn = 25, theSF,
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Table 5. The effect of the number of Monte Carlo replications on power

Location-scale model,n = 25

MC reps. 19 39 59 79 99 199 299 399 499

K S B 7.2 7.3 7.4 7.4 7.3 7.3 7.2 7.2 7.2

C 88.1 89.3 89.8 90.0 90.5 90.5 90.5 90.6 90.6

0 34.0 36.9 37.4 38.2 38.5 38.7 39.0 39.2 39.2

Ln 96.8 97.9 98.1 98.3 98.4 98.5 98.5 98.6 98.5

t 13.6 14.4 14.5 14.6 14.6 14.8 14.7 14.7 14.8

V M B 8.2 8.2 8.3 8.2 8.3 8.3 8.2 8.4 8.4

C 91.7 92.6 93.0 93.0 93.0 93.2 93.2 93.3 93.3

0 44.7 47.6 48.4 49.1 49.4 49.8 48.9 50.1 50.1

Ln 99.1 99.5 99.5 99.6 99.6 99.7 99.7 99.7 99.7

t 16.3 17.1 17.1 17.3 17.2 17.4 17.8 17.8 17.7

AD B 8.7 8.5 8.7 8.6 8.6 8.7 8.6 8.7 8.7

C 91.8 92.5 93.0 93.1 93.0 93.4 93.3 93.4 93.4

0 49.9 52.9 54.0 54.7 54.8 55.5 55.8 56.0 55.9

Ln 99.5 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9

t 17.8 18.8 19.0 19.2 19.2 19.5 19.6 19.7 19.7

SF B 5.0 4.9 4.7 4.7 4.6 4.5 4.6 4.6 4.7

C 92.3 93.3 93.5 93.6 93.7 93.7 93.8 93.8 93.8

0 52.9 55.9 57.3 57.9 58.3 59.5 59.5 59.7 59.8

Ln 99.4 99.7 99.8 99.8 99.9 99.9 99.9 99.9 99.9

t 23.0 24.3 24.7 24.9 25.1 25.3 25.5 25.7 25.7

W B B 5.0 4.9 4.7 4.7 4.7 4.6 4.6 4.6 4.7

C 92.4 93.2 93.5 93.6 93.7 93.7 93.8 93.8 93.8

0 53.0 56.0 57.4 58.0 58.4 59.5 59.5 59.8 59.9

Ln 99.4 99.7 99.8 99.8 99.8 99.9 99.9 99.9 99.9

t 22.9 24.2 24.6 24.9 25.1 25.3 25.4 25.6 25.7

D B — 6.7 — 7.0 — 6.9 — 7.1 —

C — 91.7 — 92.6 — 93.0 — 93.2 —

0 — 29.4 — 30.7 — 32.2 — 32.3 —

Ln — 95.6 — 96.5 — 97.0 — 97.2 —

t — 20.3 — 21.3 — 21.9 — 22.2 —

FB B 4.7 4.5 4.4 4.4 4.3 4.2 4.2 4.2 4.3

C 92.5 93.4 93.6 93.7 93.8 93.8 93.9 93.8 93.9

0 52.2 55.4 56.4 57.1 57.7 58.4 58.5 58.8 58.9

Ln 99.3 99.7 99.8 99.8 99.8 99.9 99.8 99.9 99.9

t 23.3 24.7 25.0 25.1 25.4 25.6 25.9 26.0 26.1

(cont.)
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Table 5. Continued

Location-scale model,n = 25

MC reps. 19 39 59 79 99 199 299 399 499

J B B 3.1 2.5 2.2 2.2 2.1 1.9 1.9 2.0 2.0

C 89.2 90.8 91.2 91.4 91.4 91.6 91.7 91.7 91.7

0 43.2 45.6 46.6 47.4 47.8 48.5 48.6 48.6 48.8

Ln 94.3 96.3 97.1 97.3 97.5 97.9 97.9 98.0 98.0

t 23.8 25.1 25.8 26.1 26.3 26.6 26.5 26.8 26.7

J Bk B 4.5 3.8 3.2 3.1 3.0 2.6 2.6 2.6 2.5

C 88.8 90.3 90.7 90.8 91.0 91.3 91.3 91.3 91.4

0 45.5 48.8 50.0 50.6 51.2 52.0 52.2 52.4 52.4

Ln 94.9 97.0 97.7 98.0 98.2 98.7 98.8 98.8 99.0

t 22.8 24.2 25.0 25.4 25.6 26.0 26.0 26.2 26.1

(cont.)

W B andFB are biased in the case of the beta distribution. Although theD test typically shows
less power than the other tests in its class, it is not biased in small samples, unlike theSF-type
counterparts. TheAD outperforms all EDF statistics, compares favorably to the moment tests
and has no bias problems. While it is biased against the beta distribution forn = 25, theJ B
almost achieves maximum power against the Cauchy, lognormal and Studentt(5) distribution; it
is outperformed by theAD statistic in the case of the0 distribution whenn ≤ 50. As expected, all
MC tests have very good power when the errors follow the Cauchy and the lognormal distribution
even in small samples. Finally, from Table 5, we observe that the number of replications beyond
99 has no significant effect on the power of MC tests.

The regression model. From the results in Table 4, it can be seen that the performance of the
regression-based tests can be greatly affected by the design matrix especially for samples of size
less than 100. However, it appears that the design matrix has little effect on the ranking of the tests.
Furthermore, the results on relative power across tests seem to agree with our findings regarding
the location-scale model. In general, theSW-type criteria appear to be the best available; theD
statistic is on the whole less powerful than these but is consistently unbiased. The most powerful
EDF statistic is theAD; it performs well in comparison with the correlation statistics except
perhaps in the0(2,1) case. TheJ B-type tests based on eithers or σ̂ compare favorably to the
correlation tests. However, there is no clear indication as to which estimate ofσ should be used
in practice. The MLE-basedJ B criterion performs better against the Cauchy, lognormal and the
t (5) alternatives, whileJ Bk appears better for other distributions and is consistently unbiased.
For the beta(2,3) alternative, theJ B criterion is severely biased for all samples sizes, yetJ Bk

performs best in comparison with all tests.
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5. Conclusion

In this paper, we have proposed simulation-based procedures to derive exactp-values for several
well-known normality tests in linear regression models. Most conventional test procedures were
derived in location-scale contexts yet remain asymptotically valid when computed from regression
residuals. Here, we have exploited the fact that standard test criteria are pivotal under the null,
which allows one to apply the technique of MC tests. The feasibility of the approach suggested
was illustrated through a simulation experiment. The results show that asymptotic normality tests
are indeed highly unreliable; in contrast MC tests achieve perfect size control and have good
power. It is important to emphasize that MC test procedures are not, with modern computer
facilities, computationally expensive.

The above findings mean that tables of critical points are no longer required to implement
normality tests. Much of the theoretical work in this context has focused on deriving these tables;
the reason is clearly the intractable nature of the relevant null distributions. Here we showed that
the technique of MC tests easily solves this problem and yields much more reliable procedures.
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