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1. Introduction

Let X1, X2, . . . , Xn be a time series of length n. In many situations, it is of interest to test whether

the Xt’s are independent against an alternative of serial dependence, say, at lag k (k ≥ 1) . If under

the null hypothesis the observations are assumed to be identically distributed with known mean μ, a

natural test consists in rejecting the null hypothesis for large or small values of the autocorrelation

coefficient

rk =
n−k∑
t=1

(Xt − μ) (Xt+k − μ) /

n∑
t=1

(X − μ)2 (1)

where 1 ≤ k ≤ n − 1. Under general regularity conditions, the distribution of rk is approximately

normal with mean zero and variance n−1; see Anderson (1971, chapter 8) or Brockwell and Davis

(1991, chapter 7).

When the observations are not identically distributed or their distributions are heavy-tailed, such

a procedure can clearly be inappropriate. In this paper, we study the null hypothesis H0 under which

the observations X1, . . . , Xn are independent but possibly nonidentically distributed, with distrib-

utions symmetric about known medians μt. No assumption about the existence of the moments of

X1, . . . , Xn is made, and the distribution of the observations can be discrete. Since Xt can be re-

placed by Xt −μt, we can, without loss of generality, assume that μ1 = · · · = μn = 0. Consequently,

we shall henceforth set μt = 0, t = 1, . . . , n.

The hypothesis H0 is “nonparametric” in the sense that no finite-dimensional parameter vector

can determine entirely the probability distribution of the observations X1, X2, . . . , Xn. Following

standard terminology [see Lehmann (1986, sections 3.1 and 3.5)], a test of H0 has level α if the

probability of rejecting H0 is not greater than α under any distribution of X = (X1, . . . , Xn)′

included in H0 (0 < α < 1) . If moreover the supremum of the rejection probabilities over H0 is equal

to α, one says that the test has size α. Since H0 covers a wide spectrum of probability distributions

and because of the “parametric origin” of the coefficient rk, the distribution of rk under H0 depends

on the form of the distributions of the observations. Without additional assumptions, it is unknown.

Consequently, no similar critical region of the type |rk| > c (where c is a nonstochastic critical point
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which depends on the level of the test) does exist: i.e., for 0 < c < 1, the probability of the event

|rk| > c is not constant over the set of data generating processes (DGP) in H0, and finding a valid

critical value involves bounding the distribution of rk over H0 or considering data-dependent critical

regions for rk. In particular, there is strictly no guarantee that the actual sizes of tests based on the

asymptotic (normal) distribution of rk will be less than or equal to their nominal level (as tests of

H0) in finite samples. The same will hold a fortiori for critical values obtained under parametric

assumptions, e.g., the assumption that X1, . . . , Xn are independent and identically distributed (i.i.d.)

random variables according to a N(0, σ2) distribution [in which case exact critical values may be

computed using Imhof’s algorithm]: such critical values – though they belong to daily practice –

simply do not yield valid tests of the nonparametric hypothesis H0.

The objective of this paper is to develop finite-sample (α-level) tests based on rk for the nonpara-

metric null hypothesis H0. In other words, we need to ensure that the probability of rejecting H0 is

not greater than α under any DGP in H0. This problem is quite distinct from the one where one tries

to approximate the distribution of rk under some specific distribution included in H0 (like the i.i.d.

Gaussian model). Following a classical nonparametric technique, we shall do this here by using an

appropriate conditioning. When X1, X2, . . . , Xn are absolutely continuous, the vector of absolute

values |X| = (|X1| , . . . , |Xn|)′ is a complete sufficient statistic for H0. Further, classical arguments

of similarity and Neyman structure lead one to consider tests that are conditional with respect to the

complete sufficient statistic |X|; see Lehmann (1986, chapter 4). Indeed, conditioning on |X| is a nec-

essary requirement to obtain a valid test under conditions of general heterogeneity (heteroskedasticity);

see Lehmann and Stein (1949), Pratt and Gibbons (1981, Section 5.10), Dufour and Hallin (1991, sec-

tion 1), and Dufour (2003, section 4.2)]. The conditional distribution of X = (X1, X2, . . . , Xn)′

given |X| is then determined by the distribution of the signs of X1, . . . , Xn. Since, under H0, the

signs are independent symmetric Bernoulli variables, the conditional distribution of rk (given the vec-

tor of absolute values |X|) may in principle be computed, e.g., by enumeration. In practice, however,

the conditional distribution of rk depends on each specific sample, because it is a function of |X|,

and so finding critical values may be difficult. This problem is also met in the well-known case of
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permutation t-tests; see Pratt and Gibbons (1981, chapter 4).

For the problem of testing H0 against location-shift alternatives, simple bounds for the conditional

and unconditional distributions of the t-statistic were provided in Edelman (1986, 1990) and Dufour

and Hallin (1991, 1993); similar bounds for general linear signed rank statistics have also been pro-

posed in Dufour and Hallin (1992). Beyond the important advantage of exactness for any sample

size, extensive comparisons in Dufour and Hallin (1991, 1992, 1993) indicate that the bounds studied

(exponential, Chebyshev-type, Eaton-type, Berry-Esséen) can be surprisingly tight, especially if one

takes the minimum of the various bounds.

In this paper, we give analogous results for tests of H0 based on rk against serial dependence

alternatives. Four types of bounds are presented: (1) exponential bounds (Proposition 1); (2) improved

Eaton bounds (Proposition 2); (3) Chebyshev-type bounds (Proposition 3); (4) Berry-Esséen-Zolotarev

bounds (Proposition 4). The exponential bounds are based on the conditional moment generating

function of rk (given |X|), the improved Eaton and Chebyshev-type bounds on conditional moments

of rk (a truncated third moment in the case of the Eaton bound), while the Berry-Esséen-Zolotarev

bound is based on the normal distribution function. The exponential, Eaton, Chebyshev and Berry-

Esséen bounds extend to the case of autocorrelation coefficients the bounds proposed in Dufour and

Hallin (1991, 1992, 1993).

All these bounds are exact in finite samples and simple to compute. They are applicable despite the

presence of general forms of nonnormality and heteroskedasticity (provided the symmetry hypothesis

holds). In particular, no assumption on the existence of moments is required, and the variables con-

sidered may have continuous or discrete distributions. None of the bounds given uniformly dominates

the others. While the three first classes of bounds are especially useful to obtain upper bounds for

small tail areas, the Berry-Esséen bounds can be tighter for larger tail areas (i.e., tails associated with

points that are closer to the center of the distribution) and yield lower bounds on tail areas as well.

Conservative conditional (given |X|) as well as unconditional conservative p-values, or critical points,

for tests based on rk can be obtained from any one of these bounds. Since all the bounds are simple to

compute, the obvious strategy here is to take the smallest p-value yielded by the different bounds (or,
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equivalently, the tightest critical point). Such p-values provide a useful nonparametric check on the

significance of tests based on autocorrelation coefficients.

The exponential bounds are described in section 2, the Eaton and Chebyshev bounds are given

in section 3, while the Berry-Esséen bounds are derived in section 4. In section 5, simulation results

on the performance of the bounds are presented. In section 6, we illustrate the use of the bounds by

applying them to data on commercial paper interest rates in the U.S. We conclude in section 7.

2. Exponential bounds

In the following proposition, we derive exponential bounds for the tail areas of the conditional distri-

bution of rk given |X| under the null hypothesis that X1, . . . , Xn are independent with distributions

symmetric about zero. The notation a.s. means almost surely, while the symbol “:=” represents a

definition. The proofs of the propositions appear in appendix A.

Proposition 1 EXPONENTIAL BOUNDS. Let X1, . . . , Xn be independent random variables with

distributions symmetric about zero, |X| = (|X1| , . . . , |Xn|)′, and

rk :=
n−k∑
t=1

XtXt+k /

n∑
t=1

X2
t , 1 ≤ k ≤ n − 1, (2)

wkt := |XtXt+k| /

( n−k∑
τ=1

X2
τ X2

τ+k

)1/2

, t = 1, . . . , n − k, (3)

where we use the convention 0/0 = 0. Then the conditional distribution of rk given |X| is symmetric

about zero and

P
[
rk ≥ y | |X|

]
≤ Bk (yk, |X|) ≤ exp

(
−y2

k

) n−k∏
t=1

cosh (wktyk)

≤ exp
(
−y2

k

) [
cosh

(
yk /

√
n∗

k

)]n∗
k ≤ exp

(
−y2

k / 2
)

(4)

a.s., for all y > 0 and 1 ≤ k ≤ n − 1, where yk := y/Dk (|X|) , cosh (x) :=
(
ex + e−x

)
/2,
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n∗
k := card ({t : |XtXt+k| �= 0, 1 ≤ t ≤ n − k}) is the number of products XtXt+k different from

zero,

Dk (|X|) :=
( n−k∑

t=1

X2
t X2

t+k

)1/2

/

( n∑
t=1

X2
t

)
, (5)

Bk (y, |X|) := inf
z≥0

{
exp (−zy)

n−k∏
t=1

cosh (wktz)
}

(6)

and the four bounds in (4) are set equal to zero when Dk (|X|) = 0.

From the symmetry of the conditional distribution of rk, it is clear that P [|rk| ≥ y | |X|] =

2P [rk ≥ y | |X|] = 2P [rk ≤ −y | |X|] a.s., so that (4) can also be used to bound P [rk ≤ −y] and

P [|rk| ≥ y | |X|] for any y > 0. In (4), four bounds on the tail areas P [rk ≥ y | |X|] are given. De-

note them by E1k ≤ E2k ≤ E3k ≤ E4k in ascending order. These bounds are increasingly looser,

but the larger ones are easier to compute. In particular, E2k, E3k and E4k only require information

about the second empirical moments of the sample (rk and
∑

X2
t ), which may be useful when the

complete observation vector X = (X1, . . . , Xn)′ is not available to an investigator. The exponential

bound E4k = exp
(
−y2

k/2
)

is similar to a bound given by Edelman (1986) and Efron (1969) for the

case of t-statistics; for an earlier related result, see also Hoeffding (1963). In contrast with the case of

t-statistics, however, this bound now explicitly depends on |X| through Dk (|X|). The second largest

bound E3k = exp
(
−y2

k

) [
cosh

(
yk/

√
n∗

k

)]n∗
k uniformly improves the latter by explicitly taking into

account the sample size and the lag. It is based on a result given by Eaton (1970) for linear com-

binations of independent Bernoulli variables. For example, for n − k = 10 and yk = 3, we have

E3k = 0.0064 while E4k = 0.0111. Similarly, the bound E2k = exp
(
−y2

k

) ∏n−k
t=1 cosh (wktyk)

improves the two previous ones by explicitly taking into account the weights wkt, t = 1, . . . , n − k.

When the weights are equal, i.e., wkt = 1/
√

n∗
k, t = 1, . . . , n−k, the bounds E2k and E3k coincide.

In the other cases, E2k can yield substantial improvements over E3k, especially when the data contain

a large outlier. For example, if wkt → 0, n∗
k = 10 and yk = 3, the ratio E2k/E3k converges to 0.1933.

Finally, the smallest bound E1k ≡ Bk (yk, |X|) is obtained by finding the infimum of the function
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Mk (z) = exp (−zyk)
∏n−k

t=1 cosh (wktz) for z ≥ 0. E4k and can yield substantial improvement over

the previous bounds. The function Bk (y, |X|) has the following more explicit expression:

Bk (y, |X|) = 0 , if
n−k∑
t=1

wkt < y ,

=
(

1
2

)n∗
k , if

n−k∑
t=1

wkt = y ,

= exp (−z∗ky)
n−k∏
t=1

cosh(wktz
∗
k) , if

n−k∑
t=1

wkt > y ,

(7)

where z∗k is the unique positive number that solves the equation

n−k∑
t=1

wkt

[(
1 − e−2wktz

∗
k
)
/
(
1 + e−2wktz

∗
k
)]

= y . (8)

It is fairly easy to compute Bk (y, |X|) by numerical methods; for further discussion, see Dufour and

Hallin (1992, pp. 315-317).

Since they depend on |X| only through Dk (|X|), the two largest bounds E3k and E4k in (4) also

yield simple unconditional bounds: for all y > 0,

P
[
rk ≥ yDk (|X|)

]
≤ exp

(
−y2

) [
cosh

(
y/

√
n − k

)]n−k ≤ exp
(
−y2/2

)
. (9)

However, in most practical cases, the weights wkt are known so that the better bounds E1k and E2k

are available: conditional critical values based on the latter always yield less conservative tests (both

conditionally and unconditionally).

3. Bounds based on moments

The exponential bounds described in Proposition 1 are based on the conditional moment generating

function of rk given |X| . In this section, we give two sets of bounds based on considering appropriate

conditional moments of rk. The first one applies results from Eaton (1970), Pinelis (1994) and Dufour
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and Hallin (1993), and is based on minimizing a truncated third order moment. We denote by ϕ (y) =

(2π)−1/2 exp
(
−y2/2

)
and Φ (y) the N(0, 1) density and distribution functions, and by (y)+ the

positive part of any real number y, i.e., (y)+ = max (0, y) .

Proposition 2 IMPROVED EATON-PINELIS BOUNDS. Under the assumptions and notations of

Proposition 1, we have:

P
[
rk ≥ y | |X|

]
≤ min

{
BE (yk; n∗

k) , 0.5 y−2
k , 0.5

}
:= B∗

EP (yk; n∗
k)

≤ min
{
BE (yk) , 0.5 y−2

k , 0.5
}

:= BEP (yk) (10)

a.s., for all y > 0, where

BE (y; m) := (0.5) inf
0≤c<y

{
(0.5)m

m∑
j=0

(
m

j

)
fc

[(
j − (m/2)

)
/ (m/4)1/2 ]

/ (y − c)3
}

, (11)

fc (x) :=
[
(|x| − c)+

]3
,

(
m
j

)
:= m!/ [j! (m − j)!] , and

BE (y) := inf
0≤c<y

∫ ∞

c

(
z − c

y − c

)3

ϕ (z) dz

= inf
0≤c<y

{
[ϕ (c)

(
2 + c2

)
− (1 − Φ (c))

(
c3 + 3c

)
]/ (y − c)3

}
. (12)

Calculation of the bounds, B∗
EP (y; m) and BEP (y) is discussed in Dufour and Hallin (1993),

where the associated (conservative) critical values for standard significance levels are also reported. It

is of interest to note that the bound BEP enjoys an optimality property in the sense that it is tightest

among all bounds based on expectations of convex functions of a standard normal variable; see Pinelis

(1994) and Dufour and Hallin (1993). Note also that the function BE (y; m) is monotonic increasing

in m, i.e., BE (y; m) ≤ BE (y; m + 1) for y > 0.

Another related method consists in bounding the tail areas of rk with Chebyshev-type inequalities.

As observed in Dufour and Hallin (1992), such bounds can be quite tight, especially if they are based

on higher-order moments (i.e., moments of order greater than 2). We summarize these in the following
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proposition.

Proposition 3 GENERALIZED CHEBYSHEV BOUNDS. Let the assumptions and notations of Propo-

sition 1 hold. Then, for any positive even integer p and for any y > 0,

P
[
rk ≥ y | |X|

]
≤

E
(
rp
k | |X|

)
2yp

≤
Dk (|X|)p E

[
Y (n∗

k)
p ]

2yp

≤
[
(p − 1) (p − 3) · · · 3 · 1

2yp

]
Dk (|X|)p (13)

and

P
[
rk ≥ y | |X|

]
≤

[
(p∗k − 1) (p∗k − 3) · · · 3 · 1

2yp∗k

]
Dk (|X|)p∗k (14)

a.s., where Y (m) refers to a Bin (m, 0.5) random variable, p∗k = max {2, p̄k} and p̄k is the largest

even integer such that p̄k < 1 + y2
k.

To implement the first bound in (13), we need the conditional moments of rk given |X|. These can

be established easily from (24), (25) and (26) in the proof of Proposition 1 and equations (3.2) to (3.6)

in Dufour and Hallin (1992); the appropriate expressions are given in Appendix B. Even moments

E
[
rp
k | |X|

]
of order greater than 12 can be established by analogous methods, but the algebra is

correspondingly more involved. These moments as well as well as higher order ones can also be

established by using symbolic manipulation programs. The standardized binomial moments can be

computed up to any desired order from formulae (3.8) and (3.9) in Dufour and Hallin (1992), and so

the two larger bounds in (13) above can be obtained easily for any value of p. Clearly, the bounds in

(13) can be computed for several values of p and the minimum of these bounds again provides a valid

bound. The bound (14) is the explicit solution of this minimization process (over all even values of

p ≥ 2) based on the third bound in (13), which is based on the moments of a N(0, 1) distribution.
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4. Berry-Esséen-Zolotarev bounds

The results of the two previous sections yield upper bounds on the tail areas of autocorrelation coef-

ficients under the null hypothesis of independence, and they can therefore be used to check whether

we can safely reject the null hypothesis at a given level under relatively weak nonparametric assump-

tions. Further, these bounds are reasonably tight only when y is not too small (say, y > 1.5). In

many cases, it would also be helpful to have a lower bound which could be used to decide whether an

autocorrelation coefficient unambiguously lies in the acceptance region of the (conditional) test based

on rk.

Unfortunately, it appears much more difficult to obtain lower bounds similar to the upper bounds

previously given. In order to obtain such lower bounds as well as upper bounds whose behavior may

be more satisfactory for lower values of y, we will consider bounds of the Berry-Esséen type. More

precisely, in the following proposition, we combine results of van Beek (1972) and Zolotarev (1965)

to bound the difference between the conditional distribution of rk and the standard normal one.

Proposition 4 BERRY-ESSÉEN-ZOLOTAREV BOUNDS. Under the assumptions and notations of

Proposition 1 and provided XtXt+k �= 0 for at least one t (1 ≤ t ≤ n − k), we have

∣∣P[
rk ≥ y | |X|

]
− Φ [y / Dk (|X|)]|

≤ Δ := min
{

0.7975
n∑

t=1

|wkt|3 , 0.366145
( n∑

t=1

|wkt|3
)1/4}

≤ 0.366145 (15)

for all y, where Φ (y) denotes the N(0, 1) distribution function.

It is clear that inequality (15) can provide both upper and lower bounds on the tail areas of rk:

BEL := 1 − Φ [y / Dk (|X|)] − Δ ≤ P [rk ≥ y | |X|]

≤ 1 − Φ [y / Dk (|X|)] + Δ := BEU a.s. (16)
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This implies that the normal approximation is good when
∑

|wkt|3 is small. It also follows from (15)

that the conditional distribution of rk given |X| – hence also its unconditional distribution – converges

to a normal distribution when
∑

|wkt|3 goes to zero. But, of course, the main interest of (15) lies in

the fact that it is an operational finite-sample approximation result, not a convergence theorem.

5. Simulation experiment

In order to provide some evidence on the size and power of the proposed bounds, we considered an

AR(1) process of the form:

Xt = ϕXt−1 + ut , t = 1, . . . , n, (17)

ut = dt vt , t = 1, . . . , n, (18)

where the variables vt , t = 1, . . . , n, are i.i.d., the dt’s are scale parameters which determine the

form of the heteroskedasticity, and Xt = 0 (fixed). Two types of distributions for vt were considered:

(G) vt
i.i.d.
∼ N(0, 1), t = 1, . . . , n, (19)

(C) vt
i.i.d.
∼ Cauchy, t = 1, . . . , n. (20)

For the error heterogeneity, the patterns described in Table 1 were studied.

Results of our simulation are reported in Tables 2 - 4. In these tables, the statistics |t(r1)|, |t̃(r1)|,

|t(ρ̂k)| and |t̄(ρ̂k)| represent four alternative ways of standardizing traditional (parametric) autocorre-

lation coefficients, while E11 is the best exponential bound. The autocorrelation statistics are:

|t(rk)| = |
√

n rk| , |t̃(rk)| = | rk/σk| , (21)

|t(ρ̂k)| = |
√

n ρ̂k| , |t̄(ρ̂k)| = |(ρ̂k − μk)/σk| , (22)

10



where rk is defined in (2),

ρ̂k =
n−k∑
t=1

(Xt − X̄)(Xt+k − X̄) /

n∑
t=1

(Xt − X̄)2 (23)

is the usual “centered” autocorrelation coefficient, while μk = −(n − k)/[n(n + 1)] and σ2
k = (n −

k)/[n(n + 2)] are the adjusted mean and variance suggested in Dufour and Roy (1985) for the case of

a sequence of i.i.d. observations.

For each of the above parametric statistics, we also report the results of tests based on four ways of

computing critical values: (1) standard asymptotic normal critical values; (2) critical points based on

the Imhof algorithm assuming the observations are i.i.d. Gaussian (the Imhof critical values were also

cross-checked by simulation); (3) critical values obtained by simulation under each specific distrib-

ution and heteroskedasticity pattern considered; (4) critical values based on the largest critical point

that we found over the set of distributions and heteroskedasticity patterns considered – i.e. models

M1 -M8 with vt following a N(0, 1) or a Cauchy distribution – which are all included in the null

hypothesis of independence. Of course, the second method is the best choice under the assumptions

made by the Imhof algorithm, but will not control the level (in the sense of ensuring that the probabil-

ity of rejecting the null hypothesis of independence is not larger than the level) in other cases covered

by the null hypothesis of independence (e.g., with heteroskedasticity); for further discussion of the

Imhof algorithm, see Imhof (1961), Koerts and Abrahamse (1969) and Dufour and King (1991). The

third method provides a theoretical benchmark that cannot be achieved in practice, because the het-

eroskedasticity pattern is not specified by the null hypothesis of independence. The fourth method is

the one closest to what one would like to do for a distribution-free test that is robust to non-normality

and heteroskedasticity of unknown form, based on these statistics. It is not clear, however, that the

(marginal) distributions of these statistics can be bounded in a useful way under the (very wide) null

hypothesis considered by the conditional bounds we propose [for further of discussion of this point,

see Pratt and Gibbons (1981, chapter 4), Dufour and Hallin (1991, section 1), Dufour (2003, section

4.2)]. We do not have a way of producing provably valid critical values for these tests. So the “size-
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corrected” critical values used for the unconditional tests remain too “small” and the powers presented

overestimate the true power of these procedures for the nonparametric null hypothesis studied.

All tests are performed at the 0.05 nominal level. Sample sizes n = 30, 60 were considered.

Results on empirical frequencies of type I errors (empirical level) appear in Table 2, while powers

for ϕ = 0.2, 0.9 appear in tables 3 - 4.1 Size and power frequencies were evaluated using 10000

replications. Critical values for the “size-corrected” tests were obtained out of a preliminary simulation

involving 100000 replications. Most calculations were performed with Fortran 90 programs (Sun

Workshop Compiler Fortran 90 4.2) on a Unix server. Critical values based on the Imhof algorithm

were obtained using the SHAZAM computer program [version 9, Whistler, White, Wong and Bates

(2001)].

We see from these results that the bounds constitute the only method that allows one to control

the level of the test for all the patterns considered, in the sense that the probability of type I error is

never larger than the nominal level 0.05 of the test. By contrast, the probability of type I error can

get as large as 0.54 for n = 30 and 0.65 for n = 60 in the limited number cases considered in this

experiment, so the size of the tests considered is at least as large as these numbers, even though the

nominal size is 0.05.2 In particular, tests based on exact critical values designed for i.i.d. Gaussian

observations behave very poorly in such circumstances.

Once standard tests are corrected for size, the bounds can lead to substantial power gains. This

holds despite the fact that our “size corrections” are incomplete, so the powers of the tests that are not

based on bounds are overestimated. The adjustments required to correct the size of these procedures

are simply too “large” to yield useful tests of the nonparametric hypothesis considered. This shows

clearly that the distribution-free bounds presented in this paper can at least provide a useful check on

the reliability of serial dependence tests that are not provably distribution-free.

1More complete results are available from the discussion paper version of this article [Dufour, Farhat and Hallin (2004)].
In particular, these include results for three sample sizes (n = 30, 60, 100) and a larger set of values of the autoregressive
coefficient (ϕ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9).

2Under a sufficiently important heteroskedasticity, it is not clear that traditional test statistics have the usual asymptotic
normal distribution, so there is no presumption that standard asymptotic theory will work well here or exhibit convergence.
This can be contrasted with the fact that the conditional distribution-free tests proposed here are provably exact under in
same crcumstances.
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We also observed that the tightest exponential bound E11 = B1 (y1, |X|) yields the best results in

terms of power (for a level of 0.05), with a performance that is very close to the one provided by the

minimum value over all the bounds (which may be supplied by a different bound, depending on the

sample).

6. Application to commercial paper rate

In this section, we illustrate how the bounds derived above can be used by applying them to U.S.

data on interest rates. We will study the autocorrelation structure of the first and second differences

of the logarithm of the commercial paper rate [denoted by ln (rt)] from 1951 to 1983 (quarterly, 132

observations). The source of the data is Balke and Gordon (1986, pp. 789-808).

For these two series, we report in Tables 5 and 6 the usual centered version of traditional autocor-

relations ρ̂k [defined in (23)] and the uncentered autocorrelations rk [in (2)], for k = 1, . . . , 20.

Since both series have means very close to zero, there is very little difference between the two

sets of autocorrelation coefficients (see also the t-statistics reported in the tables). Even though

we are mostly interested by the minimal upper bound on the p-value for testing independence, we

also report the individual bounds for the sake of comparison (but one would not normally report

all this information). The bounds reported are for two-sided tests, i.e., we compute bounds on

P
[
|rk| ≥ y | |X|

]
= 2P

[
rk ≥ |y| | |X|

]
at y = r̂k (observed value of rk). The upper bounds

on P [rk ≥ |y| | |X|] computed are based on the four exponential bounds E1k ≤ E2k ≤ E3k ≤ E4k

from (4), the improved Eaton-Pinelis-type bounds B∗
EP and BEP from (10), Chebyshev bounds based

on the exact conditional even moments of rk, binomial moments and normal moments as given in

(13) - (14), and the Berry-Esséen-Zolotarev type bound BEU given by (16). The Chebyshev bound

(C) based on the exact moments of rk is the minimal value yielded by the six first even moments

(p = 2, 4, . . . , 12), the one based on the binomial moments is the best over the first 15 even mo-

ments (p = 2, 4, . . . , 30), while the normal moment bound is based on (14). We also report the

Berry-Esséen lower bound obtained from (16). All the upper bounds we consider (except B∗
EP and

BEP ) can take values larger than 1.0 : since a probability cannot be greater than 1.0, any one of these
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bounds can be improved by taking the minimum given by the bound and 1.0. Consequently, when an

upper bound exceeds one, we report 1.0 in the table. Similarly, when the lower bound is less than zero,

we report 0.0 in the table.

From the results in Table 5, we see that the series Xt = (1 − B) ln (rt) = ln (rt) − ln (rt−1)

exhibits four autocorrelations rk (at lags k = 1, 2, 6, 7) whose absolute values exceed two asymptotic

standard errors
(
|rk| ≥ 2/

√
n = 2/

√
131 = 0.175

)
. Among these, three (k = 1, 6, 7) are clearly

significant at level 0.05 under the assumption that X1, . . . , Xn have distributions symmetric about

zero. It is also of interest to note that the autocorrelations at lags k = 3, 5, 8, 9, 12, 13, 14, 18 are

clearly not significant at level 0.05. Depending on cases, the best upper bound is obtained by using

either a Chebyshev (C), Eaton-type (B∗
EP ) or Berry-Esséen bound.

The autocorrelations for the second differences Xt = (1 − B)2 ln (rt) in Table 6 exhibit only

one autocorrelation (at k = 2) whose absolute value is greater than two asymptotic standard errors(
|rk| ≥ 2/

√
n = 2/

√
130 = 0.175

)
. The nonparametric upper bound on the p-value for |r2| indicates

that this is significant even for a level as low as 0.00002; the best upper bound is given here by the

exponential bound E1. In this case, all the upper bounds (except the Berry-Esséen one) indicate that

this is significant at level 0.005. The Berry-Esséen lower bound indicates that the autocorrelations at

lags k = 5, 12, 13 are clearly not significant at level 0.05. Overall the second differences of ln (rt)

seem to have a simpler autocorrelation structure than the first differences (1 − B) ln (rt) .

7. Conclusion

In this paper, we suggested several ways of bounding the distribution of serial correlation coefficients,

under a nonparametric null hypothesis of serial independence, allowing for both discrete and contin-

uous distributions as well as general heterogeneity of unknown form. As required in the case of a

sufficiently general heteroskedasticity, the proposed technique is based on the conditional distribution

of the autocorrelations given the absolute values of the observations, which is then bounded by consid-

ering the distribution of the signs. The bounds proposed are valid for any sample size and do not rely

on asymptotic approximations. In order to do that we assumed that the observations have symmetric
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(non-identical) distributions with respect to known medians.

These are, of course, real restrictions. But minimal distributional assumptions are needed to get

testable hypotheses. The symmetry assumption is quite common in econometrics and statistics and

holds for many important distributional families [e.g., Gaussian distributions, Cauchy distributions,

a wide class a stable laws, etc.]. Relaxing it will require the introduction of alternative assumptions,

such as i.i.d. observations (which precludes heteroskedasticity); see Dufour and Roy (1985) and Hallin

and Puri (1992). Of course, which set of restrictions is most appropriate will depend on the context.

The assumption that the observations have known medians can be relaxed more easily. For ex-

ample, if we assume that the observations have the same median, it is possible to obtain an exact

confidence interval for this unknown median (which plays the role of a nuisance parameter), for ex-

ample by inverting a sign test or the nonparametric t test described in Dufour and Hallin (1991). One

can then test test serial independence by using use a two-stage confidence procedure similar to the

ones proposed in Dufour (1990), Campbell and Dufour (1997) and Dufour and Kiviet (1998) in other

contexts. Designing such a procedure, or alternative ones that would deal such nuisance parameters,

goes beyond the scope of the present article and will be considered in a subsequent paper.
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A. Appendix: Proofs

PROOF OF PROPOSITION 1 Let Zkt = XtXt+k, t = 1, . . . , n − k, and let sgn (x) be the sign

function: sgn (x) = −1 if x < 0, 0 if x = 0, and 1 if x > 0.Then we can write

rk = Dk (|X|)
n−k∑
t=1

wktSkt = Dk (|X|)Rk (24)

where Skt = sgn (Zkt), t = 1, . . . , n− k, Rk =
∑n−k

t=1 wktSkt, and
∑

w2
kt = 1. When Zk1 = · · · =

Zk,n−k = 0, we have rk = Dk (|X|) = 0, so that P
[
rk ≥ y | |X|

]
= 0, a.s., and the result holds triv-

ially. We now suppose that Zkt �= 0 for at least one t. Let Ak (|X|) = {t : |Xt| �= 0, 1 ≤ t ≤ n − k}

and Bk (|X|) = {t : |XtXt+k| �= 0, 1 ≤ t ≤ n − k}. Clearly, t ∈ Bk (|X|) if and only if t ∈

Ak (|X|) and t + k ∈ Ak (|X|) , hence

Rk =
n−k∑
t=1

wktSkt =
∑

t∈Bk(|X|)
wktSkt . (25)

By the independence of X1, . . . , Xn and by the symmetry assumption, the variables in the

set {sgn (Xt) : t ∈ Ak (|X|)} are independent conditional on |X|, with P [sgn (Xt) = −1 | |X|] =

P [sgn (Xt) = 1 | |X|] = 0.5. Further, since sgn (Zkt) = sgn (Xt) sgn (Xt+k), it is easy to see that

the variables in the set {Skt : t ∈ Bk (|X|)} are independent conditional on |X| with

P
[
Skt = −1 | |X|

]
= P

[
Skt = 1 | |X|

]
= 0.5 ; (26)

see Dufour (1981). It is clear from (24) - (26) that the conditional distribution of rk given |X| is sym-

metric about zero. Further, using Markov’s inequality and observing that cosh (wktz) = cosh (0) = 1

for t /∈ Bk (|X|), we have:

P
[
Rk ≥ y | |X|

]
≤ E [exp (z Rk | |X|)] / exp (zy) =

n−k∏
t=1

cosh (wktz) / exp (zy) (A.4)
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for all z ≥ 0 and for all y. Consequently, for all y > 0,

P
[
Rk ≥ y | |X|

]
≤ inf

z≥0

{
exp (−zy)

n−k∏
t=1

cosh (wktz)
}
≤ exp

(
−y2

) n−k∏
t=1

cosh (wkty)

= exp
(
− y2

) ∏
t∈Bk(|X|)

cosh (wkty) ≤ exp
(
−y2

) {
cosh

(
y/

√
n∗

k

)}n∗
k

< exp
(
− y2

){
exp

[(
y/

√
n∗

k

)2
/2

]}n∗
k = exp

(
−y2/2

)
(27)

where the second inequality is obtained by taking z = y in (A.4), the third one follows from Corollary

1 and Example 2 of Eaton (1970), and the last one is obtained by noting that cosh (x) < exp
(
x2/2

)
for x > 0 [Edelman (1986)]. Inequality (4) follows from (A.4) on observing that rk = Dk (|X|)Rk.

�

PROOF OF PROPOSITION 2 When XtXt+k = 0, for t = 1, . . . , n − k, we have rk = 0 and

(10) clearly holds. When XtXt+k �= 0 for some t, the result follows from (24) to (26), and then by

applying Proposition 1 from Dufour and Hallin (1993) to Rk in (25). �

PROOF OF PROPOSITION 3 When XtXt+k = 0, for t = 1, . . . , n − k, we have rk = 0, and

(13)–(14) clearly hold. Otherwise, the result follows from (24) to (26), and Proposition 2 in Dufour

and Hallin (1992). �

PROOF OF PROPOSITION 4 The result is immediate from (24) to (26) and Proposition 3 from

Dufour and Hallin (1992). �

B. Appendix: Conditional moments of the autocorrelations

The conditional moments E
(
rp
k | |X|

)
in (13) can be computed by noting that

E
(
rp
k | |X|

)
= Dk (|X|)p E

(
Rp

k | |X|
)

(28)
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where, provided Dk (|X|) �= 0 (otherwise, rk = 0), E
(
R2

k | |X|
)

= 1 and, for p = 4, 6, . . . , 12,

E
(
Rp

k | |X|
)

is given by the following formulae: setting Wkp =
∑n−k

t=1 wp
kt,

E
(
R4

k | |X|
)

= 3 − 2 Wk4 , (29)

E
(
R6

k | |X|
)

= 15 − 30 Wk4 + 16 Wk6 , (30)

E
(
R8

k | |X|
)

= 105 − 420 Wk4 + 140 W 2
k4 + 448 Wk6 − 272 Wk8 , (31)

E
(
R10

k | |X|
)

= 945 − 6300 Wk4 + 6300 W 2
k4 + 10080 Wk6 − 6720 Wk6Wk4

− 12240 Wk8 + 7936 Wk, 10 , (32)

E
(
R12

k | |X|
)

= 10395 − 103950 Wk4 + 207900 W 2
k4 − 46200 W 3

k4 + 221760 Wk6

− 443520 Wk6Wk4 + 118272 W 2
k6 − 403920 Wk8

+ 269280 Wk8Wk4 + 523776 Wk, 10 − 353792 Wk, 12 . (33)
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Table 1. Heteroskedasticity patterns studied

Type

M1 Homoskedasticity dt = 1 , t = 1, ..., n

M2 One outlier I dt = 10 , if t = n/2

= 1 , otherwise

M3 One outlier II dt = 100 , if t = n/2

= 1 , otherwise

M4 Exponential I dt = et/10 , t = 1, ..., n

M5 Exponential II dt = et/2 , t = 1, ..., n

M6 Two outliers I dt = 10 , if t = n
2 or n

2 + 1

= 1 , otherwise

M7 Two outliers II dt = 100 , if t = n
2 or n

2 + 1

= 1 , otherwise

M8 Two outliers III dt = 106 , if t = n
2 or n

2 + 1

= 1 , otherwise



Table 2. Empirical levels of serial dependence tests at nominal level α = 0.05

Sample size: n = 30 Asymptotic tests and bounds

Error distribution (vt) N(0, 1) Cauchy

Heteroskedasticity type M1 M2 M5 M7 M8 M1 M2 M5 M7 M8

|t(r1)| 3.90 1.67 33.60 49.46 51.32 2.47 2.43 18.68 23.44 34.36
|t̃(r1)| 4.96 2.20 36.17 52.26 54.42 2.95 2.88 20.34 25.86 36.92
|t(ρ̂k)| 4.22 1.91 31.78 47.29 49.11 2.43 2.32 17.58 21.91 32.69
|t̄(ρ̂k)| 4.65 2.17 34.45 49.90 51.95 2.88 2.62 19.15 23.93 34.90
E11 0.95 0.87 2.28 0.86 0.00 1.10 1.33 2.84 1.68 0.01

Best bound 1.11 1.00 2.28 0.87 0.00 1.16 1.36 2.84 1.68 0.01

Tests based on Imhof critical values

|t(r1)| 5.09 2.30 36.59 52.75 54.88 3.04 2.96 20.77 26.34 37.30
|t̃(r1)| 5.45 2.49 37.39 53.71 55.65 3.21 3.17 21.41 27.13 37.97
|t(ρ̂k)| 5.57 2.53 35.01 50.98 52.37 2.95 3.10 19.91 24.78 35.58
|t̄(ρ̂k)| 5.20 2.47 35.74 51.34 53.54 3.08 2.82 20.05 25.48 36.12

Tests based on global size correction

|t(r1)| 0.02 0.00 5.07 0.00 0.00 0.03 0.00 1.73 0.12 0.00
|t̃(r1)| 0.02 0.00 5.07 0.00 0.00 0.03 0.00 1.73 0.12 0.00
|t(ρ̂k)| 0.02 0.00 4.86 0.00 0.00 0.02 0.00 1.60 0.12 0.00
|t̄(ρ̂k)| 0.03 0.00 5.10 0.00 0.00 0.02 0.01 1.74 0.18 0.00

Tests based on model-specific size correction

|t(r1)| 4.86 5.01 5.07 5.10 5.30 5.17 5.15 5.24 4.94 5.01
|t̃(r1)| 4.86 5.01 5.07 5.10 5.30 5.17 5.15 5.24 4.94 5.01
|t(ρ̂k)| 4.80 4.73 4.86 4.90 5.17 5.15 5.23 5.35 5.22 4.87
|t̄(ρ̂k)| 4.60 4.93 5.10 5.29 4.77 5.11 5.04 5.22 5.10 5.28

Sample size: n = 60 Asymptotic tests and bounds

|t(r1)| 4.20 2.83 50.90 65.69 66.21 2.88 2.92 30.90 30.08 48.90
|t̃(r1)| 4.89 3.22 51.92 66.58 67.12 3.07 3.09 31.61 30.75 49.77
|t(ρ̂k)| 4.24 2.81 49.98 65.08 65.57 2.84 2.88 30.30 29.55 48.09
|t̄(ρ̂k)| 4.77 3.05 51.27 65.82 66.49 2.95 3.13 31.19 30.39 49.12
E11 0.72 0.91 2.31 0.62 0.00 1.15 1.08 2.95 1.45 0.00

Best bound 1.01 1.21 2.31 0.62 0.00 1.24 1.10 2.95 1.45 0.00

Tests based on Imhof critical values

|t(r1)| 4.99 3.29 52.05 66.69 67.23 3.12 3.12 31.75 30.90 49.87
|t̃(r1)| 5.20 3.48 52.33 66.96 67.59 3.21 3.19 31.93 31.12 50.17
|t(ρ̂k)| 5.12 3.34 51.29 66.19 66.70 3.09 3.09 31.25 30.51 49.13
|t̄(ρ̂k)| 4.95 3.16 51.85 66.29 66.91 3.07 3.20 31.57 30.81 49.55

Tests based on global size correction

|t(r1)| 0.00 0.00 5.09 0.00 0.00 0.00 0.00 1.86 0.08 0.00
|t̃(r1)| 0.00 0.00 5.09 0.00 0.00 0.00 0.00 1.86 0.08 0.00
|t(ρ̂k)| 0.00 0.00 5.20 0.00 0.00 0.00 0.00 1.88 0.08 0.00
|t̄(ρ̂k)| 0.00 0.00 5.03 0.00 0.00 0.00 0.00 1.88 0.07 0.00

Tests based on model-specific size correction

|t(r1)| 4.72 5.26 5.07 5.19 4.83 5.12 4.99 5.42 4.83 4.65
|t̃(r1)| 4.72 5.26 5.07 5.19 4.83 5.12 4.99 5.42 4.83 4.65
|t(ρ̂k)| 4.59 5.09 5.11 5.34 4.96 5.03 4.85 5.35 4.85 5.03
|t̄(ρ̂k)| 4.67 5.28 5.07 5.16 4.95 5.07 4.98 5.35 4.61 4.93



Table 3. Empirical powers of serial dependence tests at level α = 0.05
Xt = 0.2Xt−1 + ut

Sample size: n = 30 Asymptotic tests and bounds

Error distribution (vt) N (0, 1) Cauchy

Test \ Model M1 M2 M5 M7 M8 M1 M2 M5 M7 M8
E11 4.81 7.15 3.51 19.51 48.06 13.37 14.59 7.29 19.78 44.49

Best bound 5.66 7.54 3.51 19.52 48.06 13.59 14.72 7.29 19.78 44.49

Tests based on global size correction

|t(r1)| 0.22 0.02 7.77 0.19 0.00 0.08 0.11 2.98 0.66 0.00
|t̃(r1)| 0.22 0.02 7.77 0.19 0.00 0.08 0.11 2.98 0.66 0.00
|t(ρ̂k)| 0.12 0.02 6.61 0.03 0.00 0.03 0.08 2.36 0.25 0.00
|t̄(ρ̂k)| 0.37 0.05 8.57 0.60 0.00 0.10 0.13 3.48 0.83 0.00

Tests based on model-specific size correction

|t(r1)| 18.71 23.05 7.77 24.77 25.27 16.03 16.16 8.59 14.08 16.75
|t̃(r1)| 18.71 23.05 7.77 24.77 25.27 16.03 16.16 8.59 14.08 16.75
|t(ρ̂k)| 12.36 13.78 6.61 20.38 20.32 10.95 10.72 7.37 11.67 13.63
|t̄(ρ̂k)| 17.73 21.54 8.57 24.93 25.26 15.71 15.91 8.99 14.90 17.42

Sample size: n = 60 Asymptotic tests and bounds

E11 11.54 13.92 3.54 21.85 49.02 26.04 25.75 7.40 25.78 44.41
Best bound 13.71 15.26 3.55 21.85 49.02 26.32 26.09 7.40 25.79 44.41

Tests based on global size correction

|t(r1)| 0.00 0.00 8.00 0.11 0.00 0.01 0.00 3.16 0.33 0.00
|t̃(r1)| 0.00 0.00 8.00 0.11 0.00 0.01 0.00 3.16 0.33 0.00
|t(ρ̂k)| 0.00 0.00 7.54 0.00 0.00 0.00 0.00 2.88 0.25 0.00
|t̄(ρ̂k)| 0.01 0.00 8.33 0.20 0.00 0.02 0.00 3.37 0.36 0.00

Tests based on model-specific size correction

|t(r1)| 33.22 41.38 8.00 24.79 25.42 43.25 42.27 8.66 12.34 17.18
|t̃(r1)| 33.22 41.38 8.00 24.79 25.42 43.25 42.27 8.66 12.34 17.18
|t(ρ̂k)| 27.21 33.31 7.54 22.97 23.38 29.29 27.99 8.14 11.11 16.55
|t̄(ρ̂k)| 32.26 39.92 8.33 25.20 25.75 41.73 41.69 9.00 12.50 18.09



Table 4. Empirical powers of serial dependence tests at level α = 0.05
Xt = 0.9Xt−1 + ut

Sample size: n = 30 Asymptotic tests and bounds

Error distribution (vt) N (0, 1) Cauchy

Test \ Model M1 M2 M5 M7 M8 M1 M2 M5 M7 M8

E11 97.94 97.95 19.45 83.83 84.70 94.39 94.67 35.89 90.42 89.65
Best bound 98.20 98.18 19.45 84.21 85.06 94.55 94.92 35.95 90.81 89.97

Tests based on global size correction

|t(r1)| 92.69 97.09 40.57 79.63 79.43 93.46 94.40 56.06 88.42 86.01
|t̃(r1)| 92.69 97.09 40.57 79.63 79.43 93.46 94.40 56.06 88.42 86.01
|t(ρ̂k)| 80.15 90.72 40.76 71.37 71.49 86.36 87.83 54.99 81.97 80.07
|t̄(ρ̂k)| 85.21 93.59 47.30 73.70 73.76 89.35 90.57 61.06 84.20 81.78

Tests based on model-specific size correction

|t(r1)| 99.65 99.95 40.57 84.29 83.85 98.99 99.09 71.44 92.65 88.98
|t̃(r1)| 99.65 99.95 40.57 84.29 83.85 98.99 99.09 71.44 92.65 88.98
|t(ρ̂k)| 98.52 99.71 40.76 77.68 77.46 98.28 98.41 71.21 88.70 84.87
|t̄(ρ̂k)| 99.06 99.84 47.30 79.27 79.06 98.59 98.64 77.24 89.86 85.98

Sample size: n = 60 Asymptotic tests and bounds

E11 100 100 18.45 86.29 85.85 99.09 99.15 35.00 96.03 90.32
Best bound 100 100 18.45 86.55 86.23 99.11 99.18 35.10 96.28 90.52

Tests based on global size correction

|t(r1)| 99.11 99.55 39.31 80.56 80.27 97.93 98.15 55.43 92.95 86.61
|t̃(r1)| 99.11 99.55 39.31 80.56 80.27 97.93 98.15 55.43 92.95 86.61
|t(ρ̂k)| 97.54 98.57 40.00 76.78 75.75 97.02 97.44 55.51 90.50 83.31
|t̄(ρ̂k)| 98.11 98.92 42.82 77.46 76.66 97.43 97.68 58.09 91.07 83.98

Tests based on model-specific size correction

|t(r1)| 100 100 39.31 84.95 84.35 99.68 99.62 70.70 96.31 89.96
|t̃(r1)| 100 100 39.31 84.95 84.35 99.68 99.62 70.70 96.31 89.96
|t(ρ̂k)| 100 100 40.00 81.52 81.11 99.58 99.57 70.87 94.98 87.73
|t̄(ρ̂k)| 100 100 42.82 82.35 81.69 99.60 99.59 74.26 95.35 88.13
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