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ABSTRACT

This paper develops tests of the null hypothesis of linearity in the context of autoregressive
models with Markov-switching means and variances. These tests are robust to the identification
failures that plague conventional likelihood-based inference methods. The approach exploits the
moments of normal mixtures implied by the regime-switching process and uses Monte Carlo test
techniques to deal with the presence of an autoregressive component in the model specification. The
proposed tests have very respectable power in comparison to the optimal tests for Markov-switching
parameters of Carrasco et al. (2014) and they are also quite attractive owing to their computational
simplicity. The new tests are illustrated with an empirical application to an autoregressive model
of U.S. output growth.

Keywords: Mixture distributions; Markov chains; Regime switching; Parametric bootstrap; Monte
Carlo tests; Exact inference.

JEL Classification: C12, C15, C22, C52



1 Introduction

The extension of the linear autoregressive model proposed by Hamilton (1989) allows the mean and
variance of a time series to depend on the outcome of a latent process, assumed to follow a Markov
chain. The evolution over time of the latent state variable gives rise to an autoregressive process
with a mean and variance that switch according to the transition probabilities of the Markov
chain. Hamilton (1989) applies the Markov-switching model to U.S. output growth rates and
argues that it encompasses the linear specification. This class of models has also been used to model
potential regime shifts in foreign exchange rates (Engel and Hamilton, 1990), stock market volatility
(Hamilton and Susmel, 1994), real interest rates (Garcia and Perron, 1996), corporate dividends
(Timmermann, 2001), the term structure of interest rates (Ang and Bekaert, 2002b), portfolio
allocation (Ang and Bekaert, 2002a), and government policy (Davig, 2004). A comprehensive
treatment of Markov-switching models and many references are found in Kim and Nelson (1999),
and more recent surveys of this class of models are provided by Guidolin (2011) and Hamilton
(2016).

A fundamental question in the application of such models is whether the data-generating pro-
cess is indeed characterized by regime changes in its mean or variance. Statistical testing of this
hypothesis poses serious difficulties for conventional likelihood-based methods because two impor-
tant assumptions underlying standard asymptotic theory are violated under the null hypothesis of
no regime change. Indeed, if a two-regime model is fitted to a single-regime linear process, the
parameters which describe the second regime are unidentified. Moreover, the derivative of the like-
lihood function with respect to the mean and variance are identically zero when evaluated at the
constrained maximum under both the null and alternative hypotheses. These difficulties combine
features of the statistical problems discussed in Davies (1977, 1987), Watson and Engle (1985), and
Lee and Chesher (1986). The end result is that the information matrix is singular under the null
hypothesis, and the usual likelihood-ratio test does not have an asymptotic chi-squared distribution
in this case. Conventional likelihood-based inference in the context of Markov-switching models
can thus be very misleading in practice. Indeed, the simulation results reported by Psaradakis and
Sola (1998) reveal just how poor the first-order asymptotic approximations to the finite-sample
distribution of the maximum-likelihood estimates can be.

Hansen (1992, 1996) and Garcia (1998) proposed likelihood-ratio tests specifically tailored to
deal with the kind of violations of the regularity conditions which arise in Markov-switching models.
Their methods differ in terms of which parameters are considered of interest and those taken as
nuisance parameters. Both methods require a search over the intervening nuisance parameter space
with an evaluation of the Markov-switching likelihood function at each considered grid point, which
makes them computationally expensive. Carrasco et al. (2014) derive asymptotically optimal tests
for Markov-switching parameters. These information matrix-type tests only require estimating the
model under the null hypothesis, which is a clear advantage over Hansen (1992, 1996) and Garcia
(1998). However, the asymptotic distribution of the optimal tests is not free of nuisance parameters,
so Carrasco et al. (2014) suggest a parametric bootstrap procedure to find the critical values.

In this paper, we propose new tests for Markov-switching models which, just like the Carrasco
et al. (2014) tests, circumvent the statistical problems and computational costs of likelihood-based
methods. Specifically, we first propose computationally simple test statistics – based on least-
squares residual moments – for the hypothesis of no Markov-switching (or linearity) in autoregres-
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sive models. The residual moment statistics considered include statistics focusing on the mean,
variance, skewness, and excess kurtosis of estimated least-squares residuals. The different statistics
are combined through the minimum or the product of approximate marginal p-values.

Second, we exploit the computational simplicity of the test statistics to obtain exact and asymp-
totically valid test procedures, which do not require deriving the asymptotic distribution of the test
statistics and automatically deal with the identification difficulties associated with such models.
Even if the distributions of these combined statistics may be difficult to establish analytically, the
level of the corresponding test is perfectly controlled. This is made possible through the use of
Monte Carlo (MC) test methods. When no new nuisance parameter appears in the null distribu-
tion of the test statistic, such methods allow one to control perfectly the level of a test, irrespective
of the distribution of the test statistic, as long as the latter can be simulated under the null hy-
pothesis; see Dwass (1957), Barnard (1963), Birnbaum (1974), and Dufour (2006). This feature
holds for a fixed number of replications, which can be quite small. For example, 19 replications of
the test statistic are sufficient to obtain a test with exact level .05. A larger number of replications
decreases the sensitivity of the test to the underlying randomization and typically leads to power
gains. Dufour et al. (2004), however, find that increasing the number of replications beyond 100
has only a small effect on power.

Further, when nuisance parameters are present – as in the case of linearity tests studied here –
the procedure can be extended through the use of maximized Monte Carlo (MMC) tests (Dufour,
2006). Two variants of this procedure are described: a fully exact version which requires maxi-
mizing a p-value function over the nuisance parameter space under the null hypothesis (here, the
autoregressive coefficients), and an approximate one based on a (potentially much smaller) consis-
tent set estimator of the autoregressive parameters. Both procedures are valid (in finite samples or
asymptotically) without any need to establish the asymptotic distribution of the fundamental test
statistics (here residual moment-based statistics) or the convergence of the empirical distribution
of the simulated test statistics toward the asymptotic distribution of the fundamental test statistic
used (as in bootstrapping).

When the nuisance-parameter set on which the p-values are computed is reduced to a single
point – a consistent estimator of the nuisance parameters under the null hypothesis – the MC test
can be interpreted as a parametric bootstrap. The implementation of this type of procedure is
also considerably simplified through the use of our moment-based test statistics. It is important to
emphasize that evaluating the p-value function is far simpler to do than computing the likelihood
function of the Markov-switching model, as required by the methods of Hansen (1992, 1996) and
Garcia (1998). The MC tests are also far simpler to compute than the information matrix-type tests
of Carrasco et al. (2014), which require a grid search for a supremum-type statistic (or numerical
integration for an exponential-type statistic) over a priori measures of the distance between po-
tentially regime-switching parameters and another parameter characterizing the serial correlation
of the Markov chain under the alternative.

Third, we conduct simulation experiments to examine the performance of the proposed tests
using the optimal tests of Carrasco et al. (2014) as the benchmark for comparisons. The new
moment-based tests are found to perform remarkably well when compared to the asymptotically
optimal ones, especially when the variance is subject to regime changes. Finally, the proposed
methods are illustrated by revisiting the question of whether U.S. real GNP growth can be described
as an autoregressive model with Markov-switching means and variances using the original Hamilton
(1989) data set from 1952 to 1984, as well as an extended data set from 1952 to 2010. We find that
the empirical evidence does not justify a rejection of the linear model over the period 1952–1984.
However, the linear autoregressive model is firmly rejected over the extended time period.

The paper is organized as follows. Section 2 describes the autoregressive model with Markov-
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switching means and variances. Section 3 presents the moments of normal mixtures implied by
the regime-switching process and the test statistics we propose to combine for capturing those
moments. Section 3 also explains how the MC test techniques can be used to deal with the presence
of an autoregressive component in the model specification. Section 4 examines the performance
of the developed MC tests in simulation experiments using the optimal tests for Markov-switching
parameters of Carrasco et al. (2014) as the benchmark for comparison purposes. Section 5 then
presents the results of the empirical application to U.S. output growth and Section 6 concludes.

2 Markov-switching model

We consider an autoregressive model with Markov-switching means and variances defined by

yt = µst
+

r
∑

k=1

φk(yt−k − µst−k
) + σstεt (1)

where the innovation terms {εt} are independently and identically distributed (i.i.d.) according to
the N(0, 1) distribution. The time-varying mean and variance parameters of the observed variable
yt are functions of a latent first-order Markov chain process {St}. The unobserved random variable
St takes integer values in the set {1, 2} such that Pr(St = j) =

∑2
i=1 pij Pr(St−1 = i), with

pij = Pr(St = j |St−1 = i). The one-step transition probabilities are collected in the matrix

P =

[

p11 p12

p21 p22

]

where
∑2

j=1 pij = 1 , for i = 1, 2. Furthermore, St and ετ are assumed independent for all t, τ .
The model in (1) can also be conveniently expressed as

yt =
2

∑

i=1

µiI[St = i] +
r

∑

k=1

φk

(

yt−k −
2

∑

i=1

µiI[St−k = i]
)

+
2

∑

i=1

σiI[St = i]εt (2)

where I[A] is the indicator function of event A, which is equal to 1 when A occurs and 0 otherwise.
Here µi and σ2

i are the conditional mean and variance given the regime St = i.
The model parameters are collected in the vector θ = (µ1, µ2, σ1, σ2, φ1, . . . , φr, p11, p22)

′. The
sample (log) likelihood, conditional on the first r observations of yt, is then given by

LT (θ) = log f(yT
1 |y0

−r+1; θ) =
T

∑

t=1

log f(yt |yt−1
−r+1; θ) (3)

where yt
−r+1 = {y−r+1, . . . , yt} denotes the sample of observations up to time t, and

f(yt |yt−1
−r+1; θ) =

2
∑

st=1

2
∑

st−1=1

...
2

∑

st−r=1

f(yt, St = st, St−1 = st−1, . . . , St−r = st−r |yt−1
−r+1; θ) .

Hamilton (1989) proposes an algorithm for making inferences about the unobserved state variable
St given observations on yt. His algorithm also yields an evaluation of the sample likelihood in (3),
which is needed to find the maximum likelihood (ML) estimates of θ.

The sample likelihood LT (θ) in (3) has several unusual features which make it notoriously
difficult for standard optimizers to explore. In particular, the likelihood function has several modes
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of equal height. These modes correspond to the different ways of reordering the state labels. There
is no difference between the likelihood for µ1 = µ∗

1 , µ2 = µ∗
2, σ1 = σ∗

1, σ2 = σ∗
2 and the likelihood

for µ1 = µ∗
2 , µ2 = µ∗

1, σ1 = σ∗
2, σ2 = σ∗

1. Rossi (2014, Ch. 1) provides a nice discussion of these
issues in the context of normal mixtures, which is a special case implied by (2) when the φ’s are
zero. He shows that the likelihood has numerous points where the function is not defined with an
infinite limit. Furthermore, the likelihood function also has saddle points containing local maxima.
This means that standard numerical optimizers are likely to converge to a local maximum and will
therefore need to be started from several points in a constrained parameter space in order to find
the ML estimates.

3 Tests of linearity

The Markov-switching model in (2) nests the following linear autoregressive (AR) specification as
a special case:

yt = c +
r

∑

k=1

φkyt−k + σ1εt, (4)

where c = µ1(1−
∑r

k=1 φk). Here µ1 and σ2
1 refer to the single-regime mean and variance parameters.

It is well known that the conditional ML estimates of the linear model can be obtained from an
ordinary least squares (OLS) regression (Hamilton, 1994, Ch. 5). A problem with the ML approach
is that the likelihood function will always increase when moving from the linear model in (4) to
the two-regime model in (2) as any increase in flexibility is always rewarded. In order to avoid
over-fitting, it is therefore desirable to test whether the linear specification provides an adequate
description of the data.

Given model (2), the null hypothesis of linearity can be expressed as either (µ1 = µ2, σ1 = σ2)
or (p11 = 1, p21 = 1) or (p12 = 1, p22 = 1). It is easy to see that if (µ1 = µ2, σ1 = σ2), then the
transition probabilities are unidentified. On the contrary, if (p11 = 1, p21 = 1) then it is µ2 and σ2

which become unidentified, whereas if (p12 = 1, p22 = 1) then µ1 and σ1 become unidentified. One
of the regularity conditions underlying the usual asymptotic distributional theory of ML estimates
is that the information matrix be nonsingular; see, for example, Gouriéroux and Monfort (1995, Ch.
7). Under the null hypothesis of linearity, this condition is violated since the likelihood function
in (3) is flat with respect to the unidentified parameters at the optimum. A singular information
matrix results also from another, less obvious, problem: the derivatives of the likelihood function
with respect to the mean and variance are identically zero when evaluated at the constrained
maximum; see Hansen (1992) and Garcia (1998).

3.1 Mixture model

We begin by considering the mean-variance switching model:

yt = µ1I[St = 1] + µ2I[St = 2] +
(

σ1I[St = 1] + σ2I[St = 2]
)

εt, (5)

where εt ∼ i.i.d. N(0, 1). The Markov chain governing St is assumed ergodic and we denote the
ergodic probability associated with state i by πi. Note that a two-state Markov chain is ergodic
provided that p11 < 1, p22 < 1, and p11 + p22 > 0 (Hamilton, 1994, p. 683). As we already
mentioned, the null hypothesis of linearity (no regime changes) can be expresses as

H0(µ, σ) : µ1 = µ2 and σ1 = σ2,
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and a relevant alternative hypothesis states that the mean and/or variance is subject to first-order
Markov-switching. The tests of H0(µ, σ) we develop exploit the fact that the marginal distribution
of yt is a mixture of two normal distributions. Indeed, under the maintained assumption of an
ergodic Markov chain we have:

yt ∼ π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2), (6)

where π1 = (1 − p22)/(2 − p11 − p22) and π2 = 1 − π1. In the spirit of Cho and White (2007) and
Carter and Steigerwald (2012, 2013), the suggested approach ignores the Markov property of St.

The marginal distribution of yt given in (6) is a weighted average of two normal distributions.
Timmermann (2000) shows that the mean (µ), unconditional variance (σ2), skewness coefficient
(
√

b1), and excess kurtosis coefficient (b2) associated with (6) are given by

µ = π1µ1 + π2µ2, (7)

σ2 = π1σ
2
1 + π2σ

2
2 + π1π2(µ2 − µ1)

2, (8)

√

b1 =
π1π2(µ1 − µ2)

{

3(σ2
1 − σ2

2) + (1 − 2π1)(µ2 − µ2
1)

2
}

(

π1σ2
1 + π2σ2

2 + π1π2(µ2 − µ1)
2
)3/2

, (9)

b2 =
a

b
, (10)

where
a = 3π1π2(σ

2
2 − σ2

1)
2 + 6(µ2 − µ1)

2π1π2(2π1 − 1)(σ2
2 − σ2

1)

+π1π2(µ2 − µ1)
4(1 − 6π1π2),

b =
(

π1σ
2
1 + π2σ

2
2 + π1π2(µ2 − µ1)

2
)2

.

When compared to a bell-shaped normal distribution, the expressions in (7)–(10) imply that
a mixture distribution can be characterized by any of the following features: the presence of two
peaks, right or left skewness, or excess kurtosis. The extent to which these characteristics will
be manifest depends on the relative values of π1 and π2 by which the component distributions
in (6) are weighted, and on the distance between the component distributions. This distance can
be characterized by either the separation between the respective means, ∆µ = µ2 − µ1, or by
the separation between the respective standard deviations, ∆σ = σ2 − σ1, where we adopt the
convention that µ2 > µ1 and σ2 > σ1. For example, if ∆σ = 0, then the skewness and relative
difference between the two peaks of the mixture distribution depends on ∆µ and the weights π1 and
π2. When π1 = π2, the mixture distribution is symmetric with two modes becoming more distinct
as ∆µ increases. On the contrary, if ∆µ = 0 then the mixture distribution will have heavy tails
depending on the difference between the component standard deviations and their relative weights.
See Hamilton (1994, Ch. 22), Timmermann (2000), and Rossi (2014, Ch. 1) for more on these
effects.

To test H0(µ, σ), we propose a combination of four test statistics based on the theoretical
moments in (7)–(10). The four individual statistics are computed from the residual vector ε̂ =
(ε̂1, ε̂2, . . . , ε̂T )′ comprising the residuals ε̂t = yt − ȳ, themselves computed as the deviations from
the sample mean. Each statistic is meant to detect a specific characteristic of mixture distributions.
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The first of these statistics is

M(ε̂) =
|m2 − m1|
√

s2
2 + s2

1

, (11)

where

m2 =

∑T
t=1 ε̂tI[ε̂t > 0]

∑T
t=1 I[ε̂t > 0]

, s2
2 =

∑T
t=1(ε̂t − m2)

2
I[ε̂t > 0]

∑T
t=1 I[ε̂t > 0]

,

and

m1 =

∑T
t=1 ε̂tI[ε̂t < 0]

∑T
t=1 I[ε̂t < 0]

, s2
1 =

∑T
t=1(ε̂t − m1)

2
I[ε̂t < 0]

∑T
t=1 I[ε̂t < 0]

.

The statistic in (11) is a standardized difference between the means of the observations situated
above the sample mean and those below the sample mean. The next statistic partitions the obser-
vations on the basis of the sample variance σ̂2 = T−1

∑T
t=1 ε̂2

t . Specifically, we consider

V (ε̂) =
v2(ε̂)

v1(ε̂)
, (12)

where

v2 =

∑T
t=1 ε̂2

t I[ε̂
2
t > σ̂2]

∑T
t=1 I[ε̂2

t > σ̂2]
, v1 =

∑T
t=1 ε̂2

t I[ε̂
2
t < σ̂2]

∑T
t=1 I[ε̂2

t < σ̂2]
,

so that v2 > v1. Note that we partition on the basis of average values because (6) is a two-component
mixture. The last two statistics are the absolute values of the coefficients of skewness and excess
kurtosis:

S(ε̂) =

∣

∣

∣

∣

∣

∑T
t=1 ε̂3

t

T (σ̂2)3/2

∣

∣

∣

∣

∣

(13)

and

K(ε̂) =

∣

∣

∣

∣

∣

∑T
t=1 ε̂4

t

T (σ̂2)2
− 3

∣

∣

∣

∣

∣

, (14)

which were also considered in Cho and White (2007). Observe that the statistics in (11)–(14) can
only be non-negative and are each likely to be larger in value under the alternative hypothesis.
Taken together, they constitute a potentially useful battery of statistics to test H0(µ, σ) by captur-
ing characteristics of the first four moments of normal mixtures. As one would expect, the power
of the tests based on (11)–(14) will generally be increasing with the frequency of regime changes.

It is easy to see that the statistics in (11)–(14) are exactly pivotal as they all involve ratios and
can each be computed from the vector of standardized residuals ε̂/σ̂, which are scale and location
invariant under the null of linearity. That is, the vector of statistics (M(ε̂), V (ε̂), S(ε̂), K(ε̂))′

is distributed like
(

M(η̂), V (η̂), S(η̂), K(η̂)
)′

, where η ∼ N(0, IT ) and η̂ = η − η̄. The null
distribution of the proposed test statistics can thus be simulated to any degree of precision, thereby
paving the way for an MC test as follows.

First, compute each of the statistics in (11)–(14) with the actual data to obtain
(M(ε̂), V (ε̂), S(ε̂), K(ε̂))′. Then generate N − 1 mutually independent T × 1 vectors ηi, i =
1, . . . , N −1, where ηi ∼ N(0, IT ). For each such vector compute η̂i = (η̂i1, η̂i2, . . . , η̂iT )′ with typi-
cal element η̂it = ηit−ηi, where ηi is the sample mean, and compute the statistics in (11)–(14) based
on η̂i so as to obtain N − 1 statistics vectors (M(η̂i), V (η̂i), S(η̂i), K(η̂i))

′, i = 1, . . . , N − 1. Let ξ
denote any one of the above four statistics, ξ0 its original data-based value, and ξi, i = 1, . . . , N−1,
the corresponding simulated values. The individual MC p-values are then given by

Gξ[ξ0; N ] =
N + 1 − Rξ[ξ0; N ]

N
, (15)
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where Rξ[ξ0; N ] is the rank of ξ0 when ξ0, ξ1, . . . , ξN−1 are placed in increasing order. The associ-
ated MC critical regions are defined as

W
(ξ)
N =

{

Rξ[ξ0; N ] ≥ cN (αξ)
}

with
cN (αξ) = N − I[Nαξ] + 1,

where I[x] denotes the largest integer not exceeding x. These MC critical regions are exact for any
given sample size, T . Further discussion and applications of the MC test technique can be found
in Dufour and Khalaf (2001) and Dufour (2006).

Note that the MC p-values GM [M(ε̂); N ], GV [V (ε̂); N ], GS [S(ε̂); N ], and GK [K(ε̂); N ] are not
statistically independent and may in fact have a complex dependence structure. Nevertheless, if
we choose the individual levels such that αM + αV + αS + αK = α then, for TS = {M, V, S, K},
we have by the Boole-Bonferroni inequality:

Pr





⋃

ξ∈TS

W
(ξ)
N



 ≤ α,

so the induced test, which consists in rejecting H0(µ, σ) when any of the individual tests rejects, has
level α. For example, if we set each individual test level at 2.5%, so that we reject if Gξ[ξ0; N ] ≤ 2.5%
for any ξ ∈ {M, V, S, K}, then the overall probability of committing a Type I error does not exceed
10%. Such Bonferroni-type adjustments, however, can be quite conservative and lead to power
losses; see Savin (1984) for a survey of these issues.

In order to resolve these multiple comparison issues, we propose an MC test procedure based
on combining individual p-values. The idea is to treat the combination like any other (pivotal) test
statistic for the purpose of MC resampling. As with double bootstrap schemes (MacKinnon, 2009),
this approach can be computationally expensive since it requires a second layer of simulations to
obtain the p-value of the combined (first-level) p-values. Here though we can ease the computational
burden by using approximate p-values in the first level. A remarkable feature of the MC test
combination procedure is that it remains exact even if the first-level p-values are only approximate.
Indeed, the MC procedure implicitly accounts for the fact that the p-value functions may not be
individually exact and yields an overall p-value for the combined statistics which itself is exact. For
this procedure, we make use of approximate distribution functions taking the simple logistic form:

F̂ [x] =
exp(γ̂0 + γ̂1x)

1 + exp(γ̂0 + γ̂1x)
, (16)

whose estimated coefficients are given in Table 1 for selected sample sizes. These coefficients
were obtained by the method of non-linear least squares (NLS) applied to simulated distribution
functions comprising a million draws for each sample size. The approximate p-value of, say, M(ε̂)
is then computed as ĜM [M(ε̂)] = 1− F̂M [M(ε̂)], where F̂M [x] is given by (16) with associated γ̂’s
from Table 1. The other p-values ĜV , ĜS , ĜK are computed in a similar way.

We consider two methods for combining the individual p-values. The first one rejects the null
when at least one of the p-values is sufficiently small so that the decision rule is effectively based
on the statistic

Fmin(ε̂) = 1 − min
{

ĜM [M(ε̂)], ĜV [V (ε̂)], ĜS [S(ε̂)], ĜK [K(ε̂)]
}

. (17)

The criterion in (17) was suggested by Tippett (1931) and Wilkinson (1951) for combining inferences
obtained from independent studies. The second method, suggested by Fisher (1932) and Pearson
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(1933), again for independent test statistics, is based on the product (rather than the minimum)
of the p-values:

F×(ε̂) = 1 − ĜM [M(ε̂)] × ĜV [V (ε̂)] × ĜS [S(ε̂)] × ĜK [K(ε̂)]. (18)

The MC p-value of the combined statistic in (17), for example, is then given by

GFmin
[Fmin(ε̂); N ] =

N + 1 − RFmin
[Fmin(ε̂); N ]

N
, (19)

where RFmin
[Fmin(ε̂); N ] is the rank of Fmin(ε̂) when Fmin(ε̂), Fmin(η̂1), . . . , Fmin(η̂N−1) are placed

in ascending order. Although the statistics which enter into the computation of (17) and (18) may
have a rather complex dependence structure, the MC p-values computed as in (19) are provably
exact. See Dufour et al. (2004) and Dufour et al. (2014) for further discussion and applications of
these test combination methods.

3.2 Autoregressive dynamics

In this section we extend the proposed MC tests to Markov-switching models with state-independent
autoregressive dynamics. To keep the presentation simple, we describe in detail the test procedure
in the case of models with a first-order autoregressive component. Models with higher-order au-
toregressive components are dealt with by a straightforward extension of the AR(1) case. For
convenience, the Markov-switching model with AR(1) component that we treat is given here as

yt = µst
+ φ(yt−1 − µst−1

) + σstεt (20)

where

µst
= µ1I[St = 1] + µ2I[St = 2],

σst = σ1I[St = 1] + σ2I[St = 2].

The tests exploit the fact that, given the true value of φ, the simulation-based procedures of the
previous section can be validly applied to a transformed model. The idea is that if φ in (20) were
known we could test whether zt(φ) = yt − φyt−1, defined for t = 2, . . . , T , follows a mixture of at
least two normals.

Indeed, when µ1 6= µ2 (µ1, µ2 6= 0), the random variable zt(φ) follows a mixture of two normals
(when φ = 0), three normals (when |φ| = 1), or four normals otherwise. That is, when φyt−1 is
subtracted on both sides of (20), the result is a model with a mean that switches between four
states according to

zt(φ) = µ∗
1I[S

∗
t = 1] + µ∗

2I[S
∗
t = 2] + µ∗

3I[S
∗
t = 3] + µ∗

4I[S
∗
t = 4] +

(

σ1I[St = 1] + σ2I[St = 2]
)

εt

where
µ∗

1 = µ1(1 − φ), µ∗
2 = µ2 − φµ1, µ∗

3 = µ1 − φµ2, µ∗
4 = µ2(1 − φ) (21)

and S∗
t is a first-order, four-state Markov chain with transition probability matrix

P =









p11 p12 0 0
0 0 p21 p22

p11 p12 0 0
0 0 p21 p22









.
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If µ1 6= µ2, the quantities in (21) admit either two distinct values (when φ = 0), three distinct values
(when φ = 1 or −1), or four distinct values otherwise. Under H0(µ, σ), the filtered observations
zt(φ), t = 2, . . . , T , are i.i.d. when evaluated at the true value of the autoregressive parameter.

To deal with the fact that φ in unknown, we use the extension of the MC test technique
proposed in Dufour (2006) to deal with the presence of nuisance parameters. Treating φ as a
nuisance parameter means that the proposed test statistics become functions of ε̂t(φ), where ε̂t(φ) =
zt(φ) − z̄(φ). Let Ωφ denote the set of admissible values for φ which are compatible with the null
hypothesis. Depending on the context, the set Ωφ may be R itself, the open interval (−1, 1), the
closed interval [−1, 1], or any other appropriate subset of R. In light of a minimax argument
(Savin, 1984), the null hypothesis may then be viewed as a union of point null hypotheses, where
each point hypothesis specifies an admissible value for φ. In this case, the statistic in (19) yields a
test of H0(µ, σ) with level α if and only if

GFmin
[Fmin(ε̂); N ] ≤ α, ∀φ ∈ Ωφ ,

or, equivalently,
sup

φ∈Ωφ

GFmin
[Fmin(ε̂); N ] ≤ α .

In words, the null is rejected whenever for all admissible values of φ under the null, the corresponding
point null hypothesis is rejected. Therefore, if Nα is an integer, we have under H0(µ, σ),

Pr
[

sup
{

GFmin
[Fmin(ε̂); N ] : φ ∈ Ωφ

}

≤ α
]

≤ α ,

i.e. the critical region sup{GFmin
[Fmin(ε̂); N ] : φ ∈ Ωφ} ≤ α has level α. This procedure is called

a maximized MC (MMC) test. It should be noted that the optimization is done over Ωφ holding
fixed the values of the simulated T × 1 vectors ηi, i = 1, . . . , N − 1, with ηi ∼ N(0, IT ) – from
which the simulated statistics are obtained.

The maximization involved in the MMC test can be numerically challenging for Newton-type
methods since the simulated p-value function is discontinuous. Search methods for non-smooth
objectives which do not rely on gradients are therefore necessary. A computationally simplified
procedure can be based on a consistent set estimator CT of φ; i.e., one for which limT→∞ Pr[φ ∈
CT ] = 1. For example, if φ̂T is a consistent point estimate of φ and c is any positive number, then
the set

CT =
{

φ ∈ Ωφ : ‖φ̂T − φ‖ < c
}

is a consistent set estimator of φ; i.e., limT→∞ Pr[‖φ̂T − φ‖ < c] = 1, ∀c > 0. Under H0(µ, σ), the
critical region based on (19) satisfies

lim
T→∞

Pr
(

sup
{

GFmin
[Fmin(ε̂); N ] : φ ∈ CT

}

≤ α
)

≤ α .

The procedure may even be based on the singleton set CT = {φ̂T }, which yields a local MC (LMC)
test based on a consistent point estimate. See Dufour (2006) for additional details.

4 Simulation evidence

This section presents simulation evidence on the performance of the proposed MC tests using model
(20) as the data-generating process (DGP). As a benchmark for comparison purposes, we take the
optimal tests for Markov-switching parameters developed by Carrasco et al. (2014) (CHP). To
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describe these tests, let ℓt = ℓt(θ0) denote the log of the predictive density of the tth observation
under the null hypothesis of a linear model. For model (20), the parameter vector under the null
hypothesis becomes θ0 = (c, φ, σ2)′ and we have

ℓt = −1

2
log(2πσ2) − (yt − c − φyt−1)

2

2σ2
.

Let θ̂0 denote the conditional maximum likelihood estimates under the null hypothesis (which can
be obtained by OLS) and define

ℓ
(1)
t =

∂ℓt

∂θ

∣

∣

∣

θ=θ̂0

and ℓ
(2)
t =

∂2ℓt

∂θ∂θ′

∣

∣

∣

θ=θ̂0

.

The CHP information matrix-type tests are calculated with

Γ∗
T = Γ∗

T (h, ρ) =
∑

t

µ∗
2,t(h, ρ)/

√
T

where

µ∗
2,t(h, ρ) =

1

2
h′

[

ℓ
(2)
t + ℓ

(1)
t ℓ

(1)′
t + 2

∑

s<t

ρt−sℓ
(1)
t ℓ(1)′

s

]

h .

Here the elements of vector h are a priori measures of the distance between the corresponding
switching parameters under the alternative hypothesis and the scalar ρ characterizes the serial
correlation of the Markov chain. To ensure identification, the vector h needs to be normalized
such that ‖h‖ = 1. For given values of h and ρ, let ε̂∗ = ε̂∗(h, ρ) denote the residuals of an OLS

regression of µ∗
2,t(h, ρ) on ℓ

(1)
t .

Following the suggestion in CHP, h in the case of model (20) is a 3-vector whose first and third
elements (corresponding to a switching mean and variance) are generated uniformly over the unit
sphere, and ρ takes values in the interval [ρ, ρ̄] = [−0.7, 0.7]. The nuisance parameters in h and ρ
can be dealt with in two ways. The first is with a supremum-type test statistic:

supTS = sup
{h,ρ : ‖h‖=1,ρ<ρ<ρ̄}

1

2

(

max

(

0,
Γ∗

T√
ε̂∗′ε̂∗

))2

and the second is with an exponential-type statistic (based on an exponential prior):

expTS =

∫

{‖h‖=1,ρ<ρ<ρ̄}
Ψ(h, ρ) dh dρ

where

Ψ(h, ρ) =







√
2π exp

[

1
2

(

Γ∗
T√

ε̂
∗′
ε̂
∗ − 1

)2
]

Φ
(

Γ∗
T√

ε̂
∗′
ε̂
∗ − 1

)

if ε̂∗′ε̂∗ 6= 0 ,

1 otherwise.

Here Φ(·) stands for the standard normal cumulative distribution. CHP suggest using a parametric
bootstrap to assess the statistical significance of these statistics because their asymptotic distri-
butions are not free of nuisance parameters. This is done by generating data from the linear AR
model with θ̂0 and calculating supTS and expTS with each artificial sample. We implemented this
procedure using 500 bootstrap replications.

In the following tables, LMC and MMC stand for the local and maximized MC procedures,
respectively. The first-level p-values are computed from the estimated distribution functions in
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Table 1, and the subscript “min” is used to indicate that the first-level p-values are combined via
their minimum, while the subscript “×” indicates that they are combined via their product. The
MC tests were implemented with N = 100 and the MMC test was performed by maximizing the
MC p-value by grid search over an interval defined by taking two standard errors on each side of
φ̂0, the OLS estimate of φ. The simulation experiments are based on 1000 replications of each DGP
configuration.

For a nominal 5% level, Table 2 reports the empirical size (in percentage) of the LMC, MMC,
supTS, and expTS tests for φ = 0.1, 0.9 and T = 100, 200. The MMC tests are seen to perform
according to the developed theory with empirical rejection rates ≤ 5% under the null hypothesis.
The LMC tests based on φ̂0 perform remarkably well, revealing an empirical size close to the
nominal 5% level in each case. The same can be said about the bootstrap supTS and expTS tests
even though they seem to be less stable than the LMC tests.

Tables 3 and 4 report the empirical power (in percentage) of the tests for φ = 0.1 and φ = 0.9,
respectively. The DGP configurations vary the separation between the means ∆µ = µ2 − µ1 and
standard deviations ∆σ = σ2 − σ1 as (∆µ,∆σ) = (2, 0), (0, 1), (2, 2); the sample size as T = 100,
200; and the transition probabilities as (p11, p22) = (0.9, 0.9), (0.9, 0.5), (0.9, 0.1).

As expected, the power of the proposed tests increases with ∆µ and ∆σ, and the sample size.
For given values of ∆µ and ∆σ, test power tends to increase with the frequency of regime switches.
For example, when ∆µ = 2 and ∆σ = 1, the power of the MC tests increases when p22 decreases
(increase) from 0.9 (0.1) to 0.5. Comparing the LMCmin and MMCmin to LMC× and MMC×,
respectively, reveals that there is a power gain in most cases from using the product rule to combine
the first-level p-values in the MC procedure. Not surprisingly, the LMC procedures (based on the
point estimate φ̂0) have better power than the MMC procedures, which maximize the MC p-value
over a range of admissible values for φ in order to hedge the risk of committing a Type I error.

The supTS and expTS generally tend to be more powerful than the MC tests, particularly when
there are regimes only in the mean (e.g. ∆µ = 2, ∆σ = 0). Nevertheless, it is quite remarkable that
the LMC tests have power approaching that of the supTS and expTS tests as soon as the variance
is also subject to regime changes. In some cases, the LMC tests even appears to outperform the
optimal CHP tests. For instance this can be observed in the middle portion of Table 3, where
∆µ = 0, ∆σ = 1. Another important remark is that the proposed moment-based MC tests are far
easier to compute than the information matrix-type bootstrap tests.

5 Empirical illustration

In this section, we present an application of our test procedures to the study by Hamilton (1989)
who suggested modelling U.S. output growth with a Markov-switching specification as in (2) with
r = 4 and where only the mean is subject to regime changes. With this model specification,
business cycle expansions and contractions can be interpreted as a process of switching between
states of high and low growth rates. Hamilton estimated his model by the method of maximum
likelihood with quarterly data ranging from 1952Q2 to 1984Q4. Probabilistic inferences on the
state of the economy were then calculated and compared to the business-cycle dates as established
by the National Bureau of Economic Research. On the basis of simulated residual autocorrelations,
Hamilton argued that his Markov-switching model encompasses the linear AR(4) specification.

We applied our proposed MC procedures to formally test the linear AR(4) specification. In this
context, the LMC and MMC procedures are based on the filtered observations

zt(φ) = yt − φ1yt−1 − φ2yt−2 − φ3yt−3 − φ4yt−4,

11



where yt is 100 times the change in the logarithm of U.S. real GNP. Following Carrasco et al.
(2014), we considered Hamilton’s original data set (135 observations of yt) and an extended data
set including observations from 1952Q2 to 2010Q4 (239 observations of yt). The φ values used in
zt(φ) for the LMC procedure are obtained by an OLS regression of yt on a constant and four of its
lags. The MMC test procedure maximizes the MC p-value by grid search over a four-dimensional
box defined by taking 2 standard errors on each side of the OLS parameter estimates. To ensure
stationarity of the solutions, we only considered grid points for which the roots of the autoregressive
polynomial 1−φ1z−φ2z

2−φ3z
3−φ4z

4 = 0 lie outside the unit circle. The number of MC replications
was set as N = 100.

Table 5 shows the test results for the LMC and MMC procedures based on the minimum
and product combination rules. For the MMC statistics the table reports the maximal MC p-
value, the φ values that maximized the p-value function, and the smallest modulus of the roots of
1 − φ1z − φ2z

2 − φ3z
3 − φ4z

4 = 0. These points on the grid with the highest MMC p-values can
be interpreted as Hodges-Lehmann-stye estimates of the autoregressive parameters (Hodges and
Lehmann, 1963). In the case of the LMC statistics, the reported φ values are simply the OLS point
estimates.

For Hamilton’s data, the results clearly show that the null hypothesis of linearity cannot be
rejected at usual levels of significance. Furthermore, the retained values of the autoregressive
component yield covariance-stationary representations of output growth. This shows that the
GNP data from 1952 to 1984 is entirely compatible with a linear and stationary autoregressive
model. It is interesting to note from Table 5 that the MMCmin and MMC× procedures find φ

values yielding p-values = 1 for the period 1952Q2–1984Q4. Our MC tests, however, reject the
stationary linear AR(4) model with p-values ≤ 0.06 over the extended sample period from 1952 to
2010, which agrees with the findings of Carrasco et al. (2014). The results presented here are also
consistent with the evidence in Kim and Nelson (1999) and McConnell and Perez-Quiros (2000)
about a structural decline in the volatility of business cycle fluctuations starting in the mid-1980’s
– the so-called Great Moderation.

6 Conclusion

We have shown how the MC test technique can be used to obtain provably exact and useful tests
of linearity in the context of autoregressive models with Markov-switching means and variances.
The developed procedure is robust to the identification issues that plague conventional likelihood-
based inference methods, since all the required computations are done under the null hypothesis.
Another advantage of our MC test procedure is that it is easy to implement and computationally
inexpensive.

The suggested test statistics exploit the fact that, under the Markov-switching alternative,
the observations unconditionally follow a mixture of at least two normal distributions once the
autoregressive component is properly filtered out. Four statistics, each ones meant to detect a
specific feature of normal mixtures, are combined together either through the minimum or the
product of their individual p-values. Of course, one may combine any subset of the proposed
test statistics, or even include others not considered here. As long as the individual statistics are
pivotal under the null of linearity, the proposed MC test procedure will control the overall size of
the combined test.

The provably exact MMC tests require the maximization of a p-value function over the space
of admissible values for the autoregressive parameters. A simplified version (LMC test) limits the
maximization to a consistent set estimator. Strictly speaking, the LMC tests are no longer exact
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in finite samples. Nevertheless, the level constraint will be satisfied asymptotically under much
weaker conditions than those typically required for the bootstrap. In terms of both size and power,
the LMC tests based on a consistent point estimate of the autoregressive parameters were found
to perform remarkably well in comparison to the bootstrap tests of Carrasco et al. (2014).

The developed approach can also be extended to allow for non-normal mixtures. Indeed, it
is easy to see that the standardized residuals ε̂/σ̂ remain pivotal under the null of linearity as
long as εt in (5) has a completely specified distribution. As in Beaulieu et al. (2007), the MMC
test technique can be used to further allow the distribution of εt to depend on unknown nuisance
parameters. Such extensions go beyond the scope of the present paper and are left for future work.

13



References

Ang, A. and G. Bekaert (2002a). International asset allocation with regime shifts. Review of
Financial Studies 15, 1137–1187.

Ang, A. and G. Bekaert (2002b). Regime switches in interest rates. Journal of Business and
Economic Statistics 20, 163–182.

Barnard, G. (1963). Comment on ‘the spectral analysis of point processes’ by m.s. bartlett. Journal
of the Royal Statistical Society (Series B) 25, 294.

Beaulieu, M.-C., J.-M. Dufour, and L. Khalaf (2007). Multivariate tests of mean-variance efficiency
with possible non-Gaussian errors: an exact simulation-based approach. Journal of Business and
Economic Statistics 25, 398–410.

Birnbaum, Z. (1974). Computers and unconventional test-statistics. In F. Proschan and R. Serfling
(Eds.), Reliability and Biometry, pp. 441–458. SIAM, Philadelphia.

Carrasco, M., L. Hu, and W. Ploberger (2014). Optimal test for Markov switching parameters.
Econometrica 82 (2), 765–784.

Carter, A. and D. Steigerwald (2012). Testing for regime switching: a comment. Econometrica 80,
1809–1812.

Carter, A. and D. Steigerwald (2013). Markov regime-switching tests: asymptotic critical values.
Journal of Econometric Methods 2, 25–34.

Cho, J. and H. White (2007). Testing for regime switching. Econometrica 75, 1671–1720.

Davies, R. (1977). Hypothesis testing when a nuisance parameter is present only under the alter-
native. Biometrika 64, 274–254.

Davies, R. (1987). Hypothesis testing when a nuisance parameter is present only under the alter-
native. Biometrika 74, 33–43.

Davig, T. (2004). Regime-switching debt and taxation. Journal of Monetary Economics 51, 837–
859.

Dufour, J.-M. (2006). Monte Carlo tests with nuisance parameters: A general approach to finite-
sample inference and nonstandard asymptotics in econometrics. Journal of Econometrics 133,
443–477.

Dufour, J.-M. and L. Khalaf (2001). Monte Carlo test methods in econometrics. In B. Baltagi
(Ed.), Companion to Theoretical Econometrics. Basil Blackwell, Oxford, UK.

Dufour, J.-M., L. Khalaf, J.-T. Bernard, and I. Genest (2004). Simulation-based finite-sample tests
for heteroskedasticity and arch effects. Journal of Econometrics 122, 317–347.

Dufour, J.-M., L. Khalaf, and M. Voia (2014). Finite-sample resampling-based combined hypothesis
tests, with applications to serial correlation and predictability. Communications in Statistics -
Simulation and Computation 44, 2329–2347.

Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. Annals of Mathe-
matical Statistics 28, 181–187.

14



Engel, C. and J. Hamilton (1990). Long swings in the dollar: Are they in the data and do markets
know it? American Economic Review 80, 689–713.

Fisher, R. (1932). Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.

Garcia, R. (1998). Asymptotic null distribution of the likelihood ratio test in Markov switching
models. International Economic Review 39, 763–788.

Garcia, R. and P. Perron (1996). An analysis of the real interest rate under regime shifts. Review
of Economics and Statistics 78, 111–125.

Gouriéroux, C. and A. Monfort (1995). Statistics and Econometric Models, Volume 1. Cambridge
University Press.

Guidolin, M. (2011). Markov switching models in empirical finance. In D. Drukker (Ed.), Missing
Data Methods: Time-Series Methods and Applications (Advances in Econometrics, Volume 27
Part 2). Emerald Group Publishing Limited.

Hamilton, J. (1989). A new approach to the economic analysis of nonstationary time series and
the business cycle. Econometrica 57, 357–384.

Hamilton, J. (1994). Time Series Analysis. Princeton University Press, Princeton, New Jersey.

Hamilton, J. (2016). Macroeconomic regimes and regime shifts. In J. Taylor and H. Uhlig (Eds.),
Handbook of Macroeconomics, Vol. 2. Elsevier Science Publishers B.V.

Hamilton, J. and R. Susmel (1994). Autoregressive conditional heteroskedasticity and changes in
regime. Journal of Econometrics 64, 307–333.

Hansen, B. (1992). The likelihood ratio test under nonstandard conditions: Testing the Markov
switching model of GNP. Journal of Applied Econometrics 7, S61–S82.

Hansen, B. (1996). Erratum: The likelihood ratio test under nonstandard conditions: Testing the
Markov switching model of GNP. Journal of Applied Econometrics 11, 195–198.

Hodges, J. and E. Lehmann (1963). Estimates of location based on rank tests. The Annals of
Mathematical Statistics 35, 598–611.

Kim, C. and C. Nelson (1999). Has the U.S. economy become more stable? a Bayesian approach
based on a Markov-switching model of the business cycle. Review of Economic and Statistics 81,
608–616.

Lee, L.-F. and A. Chesher (1986). Specification testing when score statistics are identically zero.
Journal of Econometrics 31, 121–149.

MacKinnon, J. (2009). Bootstrap hypothesis testing. In D. Belsley and J. Kontoghiorghes (Eds.),
Handbook of Computational Econometrics, pp. 183–213. Wiley.

McConnell, M. and G. Perez-Quiros (2000). Output fluctuations in the United States: What has
changed since the early 1980’s? American Economic Review 90, 1464–1476.

Pearson, K. (1933). On a method of determining whether a sample of size n supposed to have been
drawn from a parent population having a known probability integral has probably been drawn
at random. Biometrika 25, 379–410.

15



Psaradakis, Z. and M. Sola (1998). Finite-sample properties of the maximum likelihood estimator
in autoregressive models with Markov switching. Journal of Econometrics 86, 369–386.

Rossi, P. (2014). Bayesian Non- and Semi-parametric Methods and Applications. Princeton Uni-
versity Press.

Savin, N. (1984). Multiple hypothesis testing. In Z. Griliches and M. Intriligator (Eds.), Handbook
of Econometrics, pp. 827–879. North-Holland, Amsterdam.

Timmermann, A. (2000). Moments of Markov switching models. Journal of Econometrics 96,
75–111.

Timmermann, A. (2001). Structural breaks, incomplete information and stock prices. Journal of
Business and Economic Statistics 19, 299–315.

Tippett, L. (1931). The Method of Statistics. Williams & Norgate, London.

Watson, M. and R. Engle (1985). Testing for regression coefficient stability with a stationary AR(1)
alternative. Review of Economics and Statistics 67, 341–346.

Wilkinson, B. (1951). A statistical consideration in psychological research. Psychology Bulletin 48,
156–158.

16



Table 1. Coefficients of approximate distribution functions

F̂M F̂V F̂S F̂K

γ̂0 γ̂0 γ̂0 γ̂0 γ̂0 γ̂0 γ̂0 γ̂0

T=50 -16.178 8.380 -7.700 0.879 -1.944 8.423 -2.191 5.106

T=100 -23.041 12.125 -10.923 1.253 -1.975 11.614 -2.101 6.538

T=150 -28.289 14.961 -13.394 1.539 -1.995 14.128 -2.068 7.690

T=200 -32.719 17.348 -15.484 1.781 -2.012 16.311 -2.051 8.680

T=250 -36.653 19.463 -17.312 1.992 -2.021 18.197 -2.046 9.597

Note: The entries are the coefficients of the approximate distribution functions in (16) used to

compute the first-level p-values in the test combination procedure. The coefficients are obtained

by NLS with one million simulated samples for each sample size, T .

Table 2. Empirical size of tests for Markov-switching

φ = 0.1 φ = 0.9

Test T = 100 T = 200 T = 100 T = 200

LMCmin 5.3 4.6 4.9 4.4

LMC× 5.2 4.9 4.7 4.4

MMCmin 0.6 0.6 0.8 1.0

MMC× 0.2 0.5 0.9 1.2

supTS 4.8 5.1 6.0 4.5

expTS 6.8 6.2 5.4 6.9

Note: The DGP is an AR(1) model and the nominal level is 5%. LMC and MMC stand for the

local and maximized MC procedures, respectively. The subscript “min” means that the first-level

p-values are combined via their minimum, while the subscript “×” means that they are combined

via their product. The supTS and expTS tests refer to the supremum-type and exponential-type

tests of Carrasco et al. (2014).
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Table 3. Empirical power of tests for Markov-switching with φ = 0.1

(p11, p22) = (0.9, 0.9) (p11, p22) = (0.9, 0.5) (p11, p22) = (0.9, 0.1)

Test T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

∆µ = 2, ∆σ = 0

LMCmin 5.8 4.7 14.4 26.7 20.1 39.2

LMC× 6.8 4.6 12.5 23.4 19.0 36.6

MMCmin 0.4 0.3 1.9 7.6 2.8 15.5

MMC× 0.6 0.3 2.3 7.1 3.1 13.9

supTS 24.3 49.9 23.8 47.0 24.4 45.6

expTS 15.6 25.4 24.6 47.1 28.9 52.3

∆µ = 0, ∆σ = 1

LMCmin 39.4 62.0 48.4 72.6 40.0 55.7

LMC× 42.6 64.3 49.4 73.2 41.3 55.5

MMCmin 15.5 39.0 28.1 55.2 21.2 40.7

MMC× 17.1 43.2 27.3 52.8 19.9 39.8

supTS 32.4 58.0 29.9 46.4 22.8 30.4

expTS 40.1 62.6 43.9 68.3 34.4 52.4

∆µ = 2, ∆σ = 1

LMCmin 52.3 84.0 82.1 98.8 78.5 96.3

LMC× 46.6 75.4 82.8 98.9 80.0 96.3

MMCmin 21.7 51.9 57.0 92.5 57.1 89.5

MMC× 23.0 49.0 61.3 93.5 59.6 90.2

supTS 72.7 96.2 80.8 96.9 65.5 89.7

expTS 75.6 97.0 86.6 99.4 78.2 96.2

Note: The DGP is model (20) with φ = 0.1 and the nominal level is 5%. LMC and MMC stand

for the local and maximized MC procedures, respectively. The subscript “min” means that the

first-level p-values are combined via their minimum, while the subscript “×” means that they

are combined via their product. The supTS and expTS tests refer to the supremum-type and

exponential-type tests of Carrasco et al. (2014).
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Table 4. Empirical power of tests for Markov-switching with φ = 0.9

(p11, p22) = (0.9, 0.9) (p11, p22) = (0.9, 0.5) (p11, p22) = (0.9, 0.1)

Test T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

∆µ = 2, ∆σ = 0

LMCmin 15.5 21.8 14.5 22.2 14.8 24.5

LMC× 15.2 23.0 14.4 20.9 14.9 25.9

MMCmin 3.8 7.9 3.7 6.9 3.3 7.9

MMC× 3.6 7.4 3.8 9.1 3.2 9.7

supTS 8.4 12.5 11.9 18.2 20.7 45.6

expTS 21.7 32.6 22.1 33.5 25.6 43.2

∆µ = 0, ∆σ = 1

LMCmin 37.8 64.7 48.1 70.9 38.9 61.7

LMC× 40.9 68.1 48.5 72.8 40.1 62.7

MMCmin 17.1 42.2 27.8 55.5 22.6 47.3

MMC× 19.9 43.8 28.1 55.4 22.2 45.2

supTS 32.2 67.4 30.0 50.3 20.0 34.1

expTS 54.1 84.7 52.8 78.6 41.9 65.3

∆µ = 2, ∆σ = 1

LMCmin 40.9 64.4 65.7 88.8 70.9 89.0

LMC× 42.1 65.8 67.6 91.2 72.0 90.6

MMCmin 16.8 37.5 41.8 76.6 50.2 77.3

MMC× 19.3 44.1 46.4 83.2 53.3 82.1

supTS 34.6 62.9 53.2 79.8 58.6 82.3

expTS 53.9 77.9 75.1 94.7 77.4 94.2

Note: The DGP is model (20) with φ = 0.9 and the nominal level is 5%. LMC and MMC stand

for the local and maximized MC procedures, respectively. The subscript “min” means that the

first-level p-values are combined via their minimum, while the subscript “×” means that they

are combined via their product. The supTS and expTS tests refer to the supremum-type and

exponential-type tests of Carrasco et al. (2014).
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Table 5. MC test results: U.S. real GNP growth

Test p-value φ1 φ2 φ3 φ4 |z|

1952Q2 – 1984Q4

LMCmin 0.57 0.31 0.13 -0.12 -0.09 1.50

LMC× 0.57 0.31 0.13 -0.12 -0.09 1.50

MMCmin 1.00 0.48 0.20 -0.23 -0.16 1.23

MMC× 1.00 0.38 0.30 -0.28 -0.09 1.32

1952Q2 – 2010Q4

LMCmin 0.01 0.34 0.12 -0.08 -0.07 1.59

LMC× 0.01 0.34 0.12 -0.08 -0.07 1.59

MMCmin 0.05 0.43 0.09 0.05 0.05 1.33

MMC× 0.06 0.46 0.08 0.05 0.02 1.41

Note: LMC and MMC stand for the local and maximized MC procedures, respectively. The

subscript “min” means that the first-level p-values are combined via their minimum, while the

subscript “×” means that they are combined via their product. Entries under |z| are the smallest

moduli of the roots of the autoregressive polynomial for the corresponding line.
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