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A homogeneous random process on the circle {X(P): P c S) is a process whose mean 
is zero and whose covariance function depends only on the angular distance 6 between 
the points, i.e. E{X(P)} = 0 and E{X(P) X(Q)} = R(0). We assume that the homogeneous 
process X(P) is observed at a finite number of points, equally spaced on the circle. Given 
independent realizations of the process, we first propose unbiased estimates for the para- 
meters of the aliased spectrum and for the covariance function. We assume further that 
the process is Gaussian. The exact distribution of the spectral estimates and the asymp- 
totic distribution of the estimates of the covariance function are derived. Finally, it is 
shown that the estimates proposed are in fact the maximum likelihood estimates and that 
they have minimum variance in the class of unbiased estimates. 

1. Introduction 

Let (X(P): P E S} be a real-valued process on the unit circle S of the 
two-dimensional space R2, which has finite second-order moment and 
which is continuous in quadratic mean (q.m.). Under these conditions, 
the process X(P) can be expanded in a Fourier series which is convergent 
in q.m.: m 

x(p) = Co1 + nGl Cc,1 COS(nP) + Cn2 sin(nP)} , (1.1) 
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1 2n 

Co1 
=- 

s 
27T 0 

WY dP , 

c,, =L s” X(P) cos(nP) dP ) 12 2 1 , 
7r 0 
1 2n 

‘n2 =- s X(P) sin(rzP) dP , 12 > 1 . 
Tr 0 

(1.2) 

The integrals in (1.2) are defined in the q.m. sense and the series (1.1) 
converges in q.m. (see [8]). 

The process X(P) is said to be homogeneous if its first- and second- 
order moments are invariant under the group of rotations of the circle. 
This is equivalent to say that the mean E{X(P)} is constant (and in this 
paper we will assume that E{X(P)} = 0) and that the covariance function 
E{X(P) X(Q)} depends only on the angular distance 8, between the 
points P and Q. Obviously, E{X(P)} = 0 implies that E{C,,} = 0 and 
from [ 8, Theorem 51 (see [ 61 for a more elementary treatment) the res- 
triction on the covariance function of X(P) implies that the coefficients 
Cni are uncorrelated, i.e., 

E{Cni Cmj} = 6v 6n,n U, > 0 7 

for all possible values of i, j, PZ and m, where 6 is the Kronecker delta. 
From ( 1.1) and ( 1.31, it is easily deduced that 

WW’) x(Q)) = n(e,) = fi 
n=O 

11, cOs(rlepQ ) , &‘Q E 1% d , 

(1.4) 
where the spectral parameters a, are defined by (1.3) and satisfy 

00 
c 

n=O 
a,<-. 

The purpose of this paper is to develop a spectral analysis when the 
process is observed at N points equally spaced on the circle: 

X(W , r=O, l,..., N -- 1 , 

where 6 = 27r/N. The case of complete realizations has been studied in 
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[ 71. Now, when the process is observed at a finite number of equally 
spaced points, it is not possible to estimate the function R(O) for all 
values of 8. We have an aliasing phenomenon. More specifically, we can 
estimate K(8) only for the values of 8 which are a multiple of 6. In fact, 
for r = 0, 1, . . . . [$N] (where [;N] denotes the largest integer smaller 
than or equal to 1 N), eq. (1.4) gives us 

R( t;r) = kFo uk cos(k6r) . 

By writing k = /I + jN, it follows that 

N-l m 

Wr) = C C 
n=O j=O 

a,, + jN cos ((12 + iN)Sr} 

N- 1 

= c cos(dr) 5 a,, + jN 
n=O j= 0 

Now, let 

U,,=C.n~j~~) ~2 = 0, 1, . . . . N - 1 , 
j= 0 

A, = 
B 

B; ;BN--,? 

II = 0, $N 
) O<,,<& 

Then we obtain 

IN/2 

R(b) = ‘c 
PI = 0 

1 
A,, cos(dr) , r = 0, 1, . . . . [$“V] . (1.6) 

(1.5) 

So the only estimable parameters are A,, A 1 , . . . . A [N/2] . Note that eq. 
(1.5) applies to IZ = $N only when +N is an integer and this convention 
will be followed all along the paper. 

The inverse of the relation ( 1.6) is given by 

A,, = (cY,#) rco a, R(h) cos(rdr) , rz = 0, 1, . . . . [+A/] , 
(1.7) 

where 
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To verify (1.7), let 

I A 
D, = fin’, 

n=O,iN, 
O<n<iN, 

iAN-n 7 +N<n<N-I. 

This allows us to write 

N-l 

R(h) = ngo D, cos(n6r) , 

(1.8) - 

(1.9) 

and extending the definition of R(b) to r = 0, 1, . . . . N - 1 by the natu- 
ral relation 

R(6(N - r)) = R(6r) , 

it follows, after some algebraic operations, that 

N- 1 

R(G) = c Dne-inbr, r = 0, 1, . . . . N - 1 . 
n=O 

Now, from [2, eq. (3.4.17)], we have 

1 
N- 1 

Dn 
=- c einhr R(h) , n = 0, 1, . . . . N - 1 . 

n r=O 

Since D, is real-valued, 

N- 1 

Im(D,) = c R(b) sin(n6r) = 0 , 
r= 0 

and using (1.8), the relation (1.7) follows directly, 
So, from ( 1.7), we see that the estimation of the parameters A, is 

equivalent to the estimation of the parameters R(6r). 
Estimates of the parameters A, were first proposed by Hannan [4]. 

In Section 2 of this paper, these estimates are studied in more detail. 
They are shown to be unbiased and in the case of a Gaussian process 
their exact distribution is derived. Also estimates of R(h), r = 0, 1, . . . . 
[+N] , are proposed. 

In Section 3 it is shown that the estimates considered, again in the 
Gaussian case, are in fact the maximum likelihood estimates and have mi- 
nimum variance among unbiased estimates. 
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2. Construction of the estimates 

The basic statistic to be used for the estimation of the spectral para- 
meters is the finite Fourier transform 

. 
N- 1 

dp(X) = rFo X(6r) e-irh , XE R , 

where X(O), X(S), . . . . X(6(N - 1)) are observations belonging to the 
same realization of the Gaussian process X(P). The frequencies of inte- 
rest in this case are those of the form an, n = 0, 1, . . . . [i N] . In the fol- 
lowing, %!(1-(, a2) will denote a real normal variable with mean p and 
variance u2. Similarly, %c(p, a2) will denote a complex normal variable 
with mean I-( and variance 02. 

Theorem 2.1. Let X(P) be a Gaussian homogeneous process with mean 
zero. Then the random variables dp(Sn), n = 0, 1, . . . . [+N] , are mutual- 
ly independent with dp(Sn) being distributed as a cMc(O, iN2An) for 
O<n<+Nandasa Vl(0,N2An)forn=0,3N. 

Proof. This theorem can be proven by showing that the cumulants of the 
finite Fourier transform are those associated with the alleged distribu- 
tions. For an analogous proof, see [ 2, Theorem 4.4.11. The main differ- 
ence here consists in the fact that we obtain the exact distribution rather 
than the asymptotic one; this is particular to a process on the circle. 
This point is explained by looking at the behavior of the covariance struc- 
ture of the finite Fourier transform. Since E{dp(Sn)} = 0, n = 0, 1, . . . . 
rfN], we have 

Cov(dF)(Gq), dp(Sn2)) = 

= E{dp(6nl) d$?Sn,)) 

N-lN-1 
= c c exP[-ia(V-V)]E{X(6r) X(&Y)} 

r=O s=O 

N- 1 N-l 

= c exP[-ib(nl - n2)Sl s=o 
c exp[-i&nl(r-s)] R(6 Ir-sl) . 

r=O I 
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Writing zl = Y - S, using the fact that R(6(N -- II)) = R(Grr) and eq. (1.9), 
it follows that 

N- 1 N-l 

c exp[-i6q(r-s)] R(Slr-sl) = c exp[-ib~zlzl] R(h) 
r= 0 u=o 

= N Dnl . 

From this relation we deduce that 

N- 1 

Cov(d~)@q ), dp(6r17)) = ND C exp[ --i8(trI -- 1z2)s] nl s=() 

since 

N2 Dnl ifrlr = 11~ , 
= 

0 if rzl # r12 , 

N- 1 
iss = 

I 

N ifs= O(modN), 
0 ifsf O(modN). Gw 

In the same manner it is seen that 

E{dp(6rr, ) d!f)(&z,)} = 0 , 

if IQ, 122 E { 1, 2, . . . . [+N]} with IQ, 1z2 f +A’, and this completes the 
proof of the theorem. 

From Theorem 2.1 we see that an unbiased estimate of A, is given by 

A,, = I 
(1/N2) id$?(6r1)12 , tz = 0, &V, 
(2/N2) Idp( , 0 < iz < +h’ . 

The distribution of 2, is given by: 

(2.2) 

(here the symbol - is used for “distributed as” and xi denotes a chi- 
square random variable with 11 degrees of freedom). 

Given T independent realizations {X,(&r): Y = 0, 1, . . . . N - 1, t = 1, 
***, T}, of the process X(P) and if A n t is the estimate (2.2) correspond- 
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ing to the tth realization, then a simple unbiased estimate of A, is given 
bY 

A;? =(1/T) 6 i,, , II = 0, 1, . . . . [p’] . (2.3) 
t=l ’ 

By the independence of the realizations of the process X(P) it follows 
that the estimates Ain are mutually independent and that 

From this we see that 

Var(AtT)) = 
I 

2A;/T, 11 = 0, +N , 
n 

A;/T, 0<1z<;N, 

which means that Ai? is consistent (as T -+ m) for A,, . 
In order to construct an estimate of the covariance function R(G) 

suppose for a while that only one realization of the process X(P) is avail- 
able. Then we consider 

k(h) = c in COS(H~Y) , Y = 0, 1, . . . . [&N] , (2.4) 
n=O 

with 2, being given by (2.2). 
For a Gaussian process X(P), I?(k) is unbiased for R( 6~) and 

W/2 1 
Cov(k(Gr), k(b)) = n:, &A; cos(rz6r) cos(~~6s) , 

Y, s = 0, 1, . . . . [%N], where 

p,= ;7 
I 

iz = 0, $N , 
, O<n<+N. 

The estimate k(&) can be written in a more familiar form, from which 
we can show that it is unbiased for any homogeneous process. For this 
we need the following lemma. 

Lemma 2.2. Let { Y(r): Y = 0, 1, . . . . N --- 1) be a sequence of N real num- 
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bers. Then 

N-l-r r- 1 

sFo Y(s + r) Y(s) + c Y(s + N - Y) Y(s) 
s=o 

= ! N:’ ld~(6s)l2 cos(6sr) , (2.5) n s=o 

for r = 0, 1, . . . . [i N ] , where 6 = 2nlN. (The second term in the left-hand 
side of (2.5) is taken to be zero when r = 0.) 

This lemma can be proven first by expanding the right-hand side of 
(2.5) using the fact that 

N- 1 N- 1 

c ldy(6s)12 cos(&sr)= c ld$?)(6s)l2 eihsr 9 
s=o 

(2.6) 
s=o 

and taking advantage of the relation (2.1). Eq. (2.6) is obtained by using 
the property ldr)(S(N - s)) I = ldp(6s) I. 

Now, from Lemma 2.2, it follows that 

N-l-r 

X( 6(s + r)) X(&s) 

r- 1 

+ ,go X(6(s + N - r))X(Gs) , r = 0, 1, . . . . [iNI . (2.7) 

For any homogeneous process X(P) (not necessarily Gaussian), we de- 
duce from this last relation that k(C) is unbiased for R(&r), r = 0, 1, . . . . 
[:Nl . 

Also, since the estimates k(6r), r = 0, 1, . . . . [$N], are related to the 
estimates k,, ?2 = 0, 1, . . . , [iNI, by the same one-to-one correspondence 
that relates the parameters R(C) and A, (see (1.6), ( 1.7) and (2.4)), we 
have also 

VW 

Al =$ c cy, k(6r) cos(rz6r) , IZ = 0, 1, . . . . [+N] , (2.8) 
r 0 
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which allows us to conclude that A, is unbiased for A,, n = 0, 1, . . . . 
KiNI. 

If T independent realizations are available, a consistent estimate of 
R( 6r) will be given by 

(2.9) 

where &(Sr) is the estimate (2.4) corresponding to the tfh realization. 
From (2.9) we see that (Ro(O), R(T)(6), . . . . R(n( [i N] 6))’ forms an 
asymptotically normal vector. 

3. Optimality of the estimates 

The estimation of the covariance function R@r), r = 0, 1, . . . . [+N] is 
equivalent to the estimation of the covariance matrix C of the vector 
x = (X(O), X(6), . ..) X(6(N - 1)))’ knowing that I= has the form 

where 

a(Ir-sl)=o(N- Ir-sl) if Ir-sl> +N. (3.1) 

Identity (3.1) implies that Z is a circulant matrix. 
Keeping to X(P) Gaussian, if T realizations of the process X(P) are 

available, the matrix ZZ is to be estimated from the T vectors 

X, = (X,(O), X,(6), . . . . X,((N - 1)6))’ , t =l, . . . . T, 

which are independent and identically distributed %(O, Z), where 0 de- 
notes the vector (0, . . . . 0)‘. 

For Z non-singular, we first obtain that the estimates previously de- 
fined are the maximum likelihood estimates of the corresponding para- 
meters. 

Lemma 3.1. A sufficient condition for the matrix Z to be non-singular 
is that 

A, > 0, n = 0, 1, . . . . [fN] . (3.2) 
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Proof. Since Z is a covariance matrix, to show that C. is non-singular is 
equivalent to show that Z is positive definite. By (1.9), one can write 
forr,s=O, l,..., N-- 1, 

N- 1 

o(lr -~ sl) = nGo D,, cos(n6lr - sl) 

where the D,, ‘s are defined by (1.8). 
Now for any vector a = (a0 , aI , . . . . aN _ , ) ’ it is not difficult to see that 

N- 1 

a’Za = c D, lb,, 1 2 , 
n=O 

where 
N- 1 

b,,= c r=O are-in6r , n=O, l,..., N- 1 . 

If b = (b,, b 1 , . . . . b, _ 1 )‘, then one can write b = Fa, where the matrix 
F which is defined by 

F= (e-i6rs)r,s=o 7 I,..., N- 1 , 

is non-singular. Then a f 0 implies that b f 0, and it follows that 
a’I=a > 0. Thus the proof is complete. 

Theorem 3.2. Ij’X(P) is a Gaussian homogeneous process whose mean is 
zero arId ij’22 is /roll-singular, then the vectors (R@‘)(O), . . . . R(n( [;N] 6))’ 
arld (A in , -**, A(73 I,4r/2 I )’ are the masimrrm likelihood estimates of (R(O), 
“‘Y R( [;N] 6))’ am1 (A,, . . . . A IN/21 )‘, respectively. 

Proof. Since C is non-singular, the likelihood function of the vectors 
x,, t = 1, . ..) T, is given by 

L(x, , . . . . XT ; z) = 
ICI-T/2 

(27$vT/2 
exp(-k trCIA}, (3.3) 

where 

A = c xtx; , 
t= 1 

(see [ 1, p. 45 I ). 
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From the fact that the inverse of a circulant matrix is circulant (see 
[ 31 ), it follows that 2-l is a circulant matrix and since C - 1 is also sym- 
metric, we deduce that C--l has the form 

L:-’ = Cd(Ir - “l>>r,s=(). I,..., ,v- 1 7 

. where 

d(u) = d(h’ - II) if II > $N . (3.4) 

Now we have 

T N-lN-1 

tr C-l A = tFl rZjo ,Fo d(Ir - sl)X,(Sr) X,(&T). 

Setting u = II” - sl, we obtain 

N-lN-1 

c 
r= 0 

c d( IY - sl) X1(&-) Xl(&) 
S=O 

ni- 1 N- 1 N-l-u 

= d(0) rlo x;(6r) + 2 El d(u) c 
r= 0 

X,(w+~wq(w , 

and using (3.4) this last expression reduces to 

N- 1 N- 1-u u- 1 

+ uFl d(lr){ rFo x,(w+mq(Sr>+ r~oxt(G(r+h’--z,))xt(~~)} . 

By (2.7) and (2.9) we see that 

T N-l 

tr Z-l A =N c c d(zl) k,(&l) 
t=l u=o 
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N- 1 iv- 1 
= T c c d(Ir-sl)R(n(W-sl) 

r=O s=O 

=TtrE-l%, 

where the matrix 2 is defined by 

Thus the likelihood function can be rewritten 

L(x, , . . . . XT ; EC) = 
Im-T/2 

(2.rryyTl2 
exp{-;T tr Z-l%} . (3.5) 

If A,~ *-*T A[N/2, are positive, arguing as in the proof of Lemma 3.1, one 
can show that C is positive definite with probability 1. Then, from [ 1, 
Lemma 3.2.21, the likelihood function (3.5) attains its maximum with 
respect to Z when Z = 2. Since the matrix 2 has the same form as the 
matrix Z, i.e. 

2 = (R(n(&r - sl)) , 

where R(n(&u) = R(73(S(N - u)) if u > fN, it follows that (R(n(O), . . . . 
R(n( [+NlW ’ is the maximum likelihood estimate of (R(O), . . . . 
R( [3NlW’. 

Finally, since the estimates Ain, n = 0, 1, . . . . [+N], are related to the 
estimates R(n( 6r), Y = 0, 1, . . . . [f iv], by the same one-to-one correspon- 
dence that k-elates the parameters A, and R(h) (see (1.6), (1.7) and 
(2.8)), we can also conclude that (AT, . . . . Alg,21 )’ is the maximum like- 
lihood estimate of (A,, . . . . A [N/~] )‘. Thus the proof is complete. 

In the following we shall show that the estimates considered have mi- 
nimum variance among unbiased estimates. 

Theorem 3.3. Under the assumptions of Theorem 3.2, the estimates 
RQ(Gr)and Ano are uniformly of minimum variance in the class of un- 
biased estimates of R(k) and A, respectively, r, n = 0, 1, . . . . [$ N] . 

Proof. Let the true value of R(6r) be R,@r). From Section 2 we know 
that Var(RQ(6r) I Ro(6r)) < 00. Now let f(X, , . . . . XT) be an unbiased 
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estimate of zero such that VarCf(X1, . . . . XT) 1 R,(h)) < 00. In order to 
show that R(T)(h) has minimum variance at the value R(b) = R,( 6r), 
it is sufficient to prove that 

Covcf(X1, . . . . XT), R(n(6r) I Ro(Sr)) = 0 , (3.6) 

(see [5, p. 3171). 
The joint density function of X, , . . . . XT is the function L defined by 

eq. (3.3). Given R(k) = R,(h), since f(x,, . . . . XT) is an unbiased esti- 
mate of zero, we have 

s fLdp=O, (3.7) 

where p denotes the Lebesgue measure on the TN-dimensional euclidian 
space. Now, arguing as in [ 5, p. 3 181 we differentiate (3.7) with respect 
to d(r). Permuting the differentiation and integration signs, we obtain 

s 3L 
f- 

a d(r) 
dp=O. 

From (3.5) we find 

i3L -L+TL 
Wr) 

However, we have 

IZl-l 

(3.8) 

(3.9) 

N-l 

tr E-l f: = N U.. d(u) R(n(6u) 

[N/21 
=N uqo a, d(u) R”(W, 

by (3.4) and from the fact that R(n(h(N - u)) = RQ(Gu). Since the 
values d(u), u = 0, 1, . . . , [$N] are not functionally related, we obtain 

8 trV2 
ad(r) 

= N CY, R(7‘Qr) . (3.10) 
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Replacing now U/ad(r) by its expression in (3.7), we deduce that 

s fR(n(6r) L dp = 0, 

and (3.6) follows. 
Moreover, since the proof is valid whatever the chosen value R,(b), 

we can conclude that R(n(hr) is uniformly of minimum variance in the 
class of unbiased estimates of R(b), r = 0, 1, . . . . [;N] . 

Finally, using (1.6) and (2.8), it follows from result (e) in [ 5, p. 3 181 
that AiF is also of minimum variance for A,, tz = 0, 1, . . . . [+N]. 
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