SOME ROBUST EXACT RESULTS ON SAMPLE AUTOCORRELATIONS AND TESTS OF RANDOMNESS*

Jean-Marie DUFOUR and Roch ROY
Université de Montréal, Montréal, Québec, Canada H3C $3 J 7$

Received August 1984, final version received March 1985
Several exact results on the second moments of sample autocorrelations, for both Gaussian and non-Gaussian series, are presented. General formulae for the means, variances and covariances of sample autocorrelations are given for the case where the variables in a sequence are exchangeable. Bounds for the variances and covariances of sample autocorrelations from an arbitrary random sequence are derived. Exact and explicit formulae for the variances and covariances of sample autocorrelations from a Gaussian white noise are given It is observed that the latter results hold for all spherically symmetric distributions. A simulation experiment, with Gaussian series, indicates that normalizing each sample autocorrelation with its exact mean and variance, instead of the usual approximate moments, can improve considerably the accuracy of the asymptotic $N(0,1)$ distribution to obtain critical values for tests of randomness. The exact second moments of rank autocorrelations are also studied.

1. Introduction

Sample autocorrelations are one of the main instruments of time series analysis. They are especially useful to test the randomness of a time series and to assess dependence at various lags. Further, important economic hypotheses can be verified by testing the randomness of certain series: market efficiency [Fama (1970)], rational expectations [Kantor (1979)], the life cycle-permanent income hypothesis [Hall (1978)], etc. The efficiency of a speculative market, for example, may be assessed by testing whether first differences of relevant asset prices, like stock prices or exchange rates, are independent (the random walk hypothesis).

Several definitions of sample autocorrelations have been proposed. We consider here the most standard one, as it is used for example to identify time series models [Box and Jenkins (1976, p. 32)]: given n observations X_{1}, \ldots, X_{n},

[^0]the sample autocorrelation at lag k is
\[

$$
\begin{equation*}
r_{k}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i+k}-\bar{X}\right) / \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \quad 1 \leq k \leq n-1, \tag{1.1}
\end{equation*}
$$

\]

where $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ is the sample mean. We find especially important that the data be expressed in deviations from their sample mean because, in most practical situations, the true mean is unknown. This characteristic will play an important role below.

We will be concerned here by some exact distributional properties of sample autocorrelations, under the important null hypothesis of randomness. Both normal and non-normal distributions will be considered. Tests based on sample autocorrelations typically use critical values based on their asymptotic normal distribution [Bartlett (1946), Anderson (1971, ch. 8)]: both the moments of r_{k} (mean and variance) and the form of the distribution are usually approximate, especially when $k \geq 2$. Despite the fact that autocorrelation coefficients are widely applied in empirical research, few exact results have been published on their sampling properties, in particular for $k \geq 2$; see the reviews of Anderson (1971, ch. 6) and Kendall, Stuart and Ord (1983, ch. 48). Moran (1948) gave the exact mean of $r_{k}, k \geq 1$, for an arbitrary random series, and the exact variance of the first autocorrelation r_{1} for a normal random series; later [Moran (1967)], he obtained an upper bound on the variance of r_{1}, valid for all random series. Pan Jie Jian (1968) gave an expression for the distribution of r_{1} for the case of a normal white noise and Goldsmith (1977) tabulated it. Using the method of Sawa (1978), De Gooijer (1980) gave formulae that enable the numerical evaluation of the first four moments of each sample autocorrelation, when the data come from a general autoregressive moving-average Gaussian process: his formulae however are not explicit and require numerical integrations that may be expensive. Actually, no author has given exact and explicit formulae for the variances $\operatorname{var}\left(r_{k}\right), k \geq 2$, or the covariances between the different autocorrelations, even when the series is a normal white noise. The vast majority of the results available either deal with alternative definitions of autocorrelations (coefficients with known mean, circular definition, etc.) or remain approximate. ${ }^{1}$

In this paper, we present several exact results on the first and second moments of sample autocorrelations, for both normal and non-normal series, and discuss their application in testing the randomness of a time series. We consider in turn four wide classes of series: (A) series of exchangeable random variables, (B) random series (or random samples), i.e., independent and identically distributed (i.i.d.) random variables with an arbitrary

[^1]distribution, (C) series with a spherically symmetric distribution, (D) normal random series. Though we are most interested by the hypothesis of randomness (B or D), we will see that many results that hold for B or D actually hold under the more general assumptions A or C .

In section 2, we derive general formulae for the means, variances and covariances of sample autocorrelations, from an arbitrary series of exchangeable random variables, for all lags and sample sizes. Since random series belong to this class, these formulae hold for i.i.d. continuous random variables. An important case of variables that are exchangeable without being independent is the sequence of ranks from a sample of i.i.d. random variables. In the sequel, we apply and specialize these formulae. We obtain upper bounds on the variances as well as upper and lower bounds for the covariances of autocorrelation coefficients (at all lags) when the variables in the series are exchangeable. Consequently these hold for any sequence of i.i.d. variables, irrespective of the form of the distribution. The bounds are tight in the sense that they are very close to what one gets assuming the variables are i.i.d. normal. They can be used to obtain exact distribution-free conservative tests of randomness. In section 3, we specialize the general formulae to the case of rank autocorrelations obtained by replacing each observation in (1.1) by its rank. Previous studies of such coefficients gave only approximate expressions for $\operatorname{var}\left(r_{k}\right)$; see Wald and Wolfowitz (1943), Knoke (1977), Bartels (1982).

In section 4, we consider series of i.i.d. normal random variables and, more generally, series that obey a spherically symmetric (s.s.) distribution. We first remark that the distribution of sample autocorrelations is exactly the same under these two assumptions: accordingly, to study the latter case, we can assume normality. We then give exact and explicit formulae for the variances and covariances of sample autocorrelations, applicable to all lags and sample sizes. We observe that the exact variances in the normal case are remarkably close to the upper bounds given in section 2, except possibly when n is small ($n<20$). Finally, in section 5, we consider the standard problem of testing the randomness of a normal time series using sample autocorrelations. We suggest that each coefficient r_{k} can and should be normalized with the exact mean and variance given above, as opposed to the often used approximate mean (zero) and variance: through a Monte Carlo simulation, we find that exactly normalized sample autocorrelations have distributions that are generally better approximated by the asymptotic $\mathrm{N}(0,1)$ distribution and thus yield more accurate critical values; in many cases, the difference is important.

2. Results for exchangeable variables

2.1. Definitions and notations

Let X_{1}, \ldots, X_{n} be a sequence of exchangeable random variables: i.e., for any permutation $\left(d_{1}, \ldots, d_{n}\right)$ of the integers $(1, \ldots, n)$, the distribution of
($X_{d_{1}}, \ldots, X_{d_{n}}$) is the same as the distribution of (X_{1}, \ldots, X_{n}). Clearly, independent and identically distributed random variables are exchangeable. On the other hand, exchangeable variables are not necessarily independent. For example, random variables having a joint symmetric normal distribution [see Rao (1973, p. 196)] are exchangeable even if the correlation ρ between any two of them is large (e.g., $\rho=0.99$). The ranks of independent observations from a common continuous distribution have a uniform distribution and thus form a sequence of exchangeable variables; yet they are not independent. The same results on ranks actually hold if we only assume that the observations are exchangeable and have a continuous distribution, a common hypothesis in non-parametric statistics [see Hájek and Šidák (1967, p. 37)]. We will use below the following property of exchangeable variables: if $M=M\left(X_{1}, \ldots, X_{n}\right)$ is a permutation-symmetric function of the observations, i.e.,

$$
M\left(X_{d_{1}}, \ldots, X_{d_{n}}\right)=M\left(X_{1}, \ldots, X_{n}\right)
$$

for any permutation $\left(d_{1}, \ldots, d_{n}\right)$ of $(1, \ldots, n)$, then the variables $X_{1}-M, \ldots$, $X_{n}-M$ are also exchangeable [see Fligner, Hogg and Killeen (1976)]. For further details on the notion of exchangeability, see Galambos (1982) and the references therein.

If we define

$$
Z_{i}=X_{i}-\bar{X}, \quad i=1, \ldots, n
$$

where \bar{X} is the mean of the X_{i} 's, we can write

$$
\begin{equation*}
r_{k}=\sum_{i=1}^{n-k} Z_{i} Z_{i+k} / \sum_{i=1}^{n} Z_{i}^{2}, \quad 1 \leq k \leq n-1 \tag{2.1}
\end{equation*}
$$

If the X_{i} 's are exchangeable, the Z_{i} 's are also exchangeable since \bar{X} is a permutation-symmetric function of X_{1}, \ldots, X_{n}.

Assuming $\mathrm{P}\left[X_{1}=X_{2}=\cdots=X_{n}\right]=0$, we will now derive results on the variances and covariances of the sample autocorrelations that hold under the mere assumption of exchangeability of the variables X_{1}, \ldots, X_{n}. In particular, they hold whenever X_{1}, \ldots, X_{n} are i.i.d. with an arbitrary continuous distribution.

2.2. Variance of r_{k}

Under the assumption that X_{1}, \ldots, X_{n} are i.i.d. (with a continuous distribution), it is possible to show that

$$
\begin{equation*}
\mathrm{E}\left[r_{k}\right]=-\frac{(n-k)}{n(n-1)}, \quad 1 \leq k \leq n-1 \tag{2.2}
\end{equation*}
$$

see Moran (1948), Kendall, Stuart and Ord (1983, p. 551). However, one sees easily that the proof of this result depends only on the exchangeability of Z_{1}, \ldots, Z_{n} and thus the result holds whenever X_{1}, \ldots, X_{n} are exchangeable. We require $\mathrm{P}\left[X_{1}=X_{2}=\cdots=X_{n}\right]=0$ to ensure that r_{k} exists with probability 1.

To obtain the variance of r_{k}, we first observe that the numerator of r_{k}^{2} can be written as

$$
\begin{aligned}
\left(\sum_{i=1}^{n-k} Z_{i} Z_{i+k}\right)^{2}= & \sum_{i=1}^{n-k} Z_{i}^{2} Z_{i+k}^{2}+2 \sum_{i=1}^{n-2 k} Z_{i} Z_{i+k}^{2} Z_{i+2 k} \\
& +\sum_{*} Z_{i} Z_{i+k} Z_{j} Z_{j+k}
\end{aligned}
$$

where Σ_{*} denotes summation over $i, j=1, \ldots, n-k$ such that $i, i+k, j$ and $j+k$ are all distinct. From the exchangeability of Z_{1}, \ldots, Z_{n}, we can write

$$
\begin{aligned}
\mathrm{E}\left[r_{k}^{2}\right]= & \mathrm{E}\left[(\sum _ { i = 1 } ^ { n } Z _ { i } ^ { 2 }) ^ { - 2 } \left\{(n-k) Z_{1}^{2} Z_{2}^{2}+2(n-2 k) Z_{1}^{2} Z_{2} Z_{3}\right.\right. \\
& \left.\left.+\left((n-k)^{2}-2(n-2 k)-(n-k)\right) Z_{1} Z_{2} Z_{3} Z_{4}\right\}\right] \\
= & \mathrm{E}\left[(\sum _ { i = 1 } ^ { n } Z _ { i } ^ { 2 }) ^ { - 2 } \left\{\frac{(n-k)}{n(n-1)} \sum^{*} Z_{i}^{2} Z_{j}^{2}+\frac{2(n-2 k)}{n(n-1)(n-2)} \sum^{*} Z_{i}^{2} Z_{j} Z_{l}\right.\right. \\
& \left.\left.+\frac{\left((n-k)^{2}-2(n-2 k)-(n-k)\right)}{n(n-1)(n-2)(n-3)} \sum^{*} Z_{i} Z_{j} Z_{l} Z_{m}\right\}\right]
\end{aligned}
$$

where \sum^{*} denotes summation over all distinct suffixes varying from 1 to n. Denote the power sums by

$$
S_{r}=\sum_{i=1}^{n} Z_{i}^{r}, \quad r \geq 1
$$

Using the following identities [Kendall, Stuart and Ord (1983, p. 708)],

$$
\begin{aligned}
& \dot{\sum} Z_{i}^{2} Z_{j}^{2}=S_{2}^{2}-S_{4} \\
& \dot{\sum} Z_{i}^{2} Z_{j} Z_{l}=2 S_{4}-S_{2}^{2} \\
& \stackrel{*}{\dot{\sum}} Z_{i} Z_{j} Z_{l} Z_{m}=3 S_{2}^{2}-6 S_{4}
\end{aligned}
$$

we get that

$$
\begin{align*}
\mathrm{E}\left[r_{k}^{2}\right]= & \frac{(n-k)}{n(n-1)}\left(1-\mathrm{E}\left[S_{4} / S_{2}^{2}\right]\right) \\
& +\frac{\{2 n(n-2 k)-3(n-k)(n-k-1)\}}{n(n-1)(n-2)(n-3)}\left(2 \mathrm{E}\left[S_{4} / S_{2}^{2}\right]-1\right) \\
= & \frac{1}{n(n-1)(n-2)(n-3)} \\
& \times\left[\left\{-n^{3}+(k+3) n^{2}-k(n+6 k)\right\} \mathrm{E}\left[S_{4} / S_{2}^{2}\right]\right. \\
& \left.+\left\{n^{2}(n-k-4)+3(n-k)+3 k(n+k)\right\}\right] \tag{2.3}
\end{align*}
$$

The variance then follows from the familiar formula $\operatorname{var}\left(r_{k}\right)=\mathrm{E}\left[r_{k}^{2}\right]-\left(\mathrm{E}\left[r_{k}\right]\right)^{2}$, where $\mathrm{E}\left[r_{k}\right]$ is given by (2.2). In order to obtain an explicit formula for $\operatorname{var}\left(r_{k}\right)$, all we need is $\mathrm{E}\left[S_{4} / S_{2}^{2}\right]$.

When $\mathrm{E}\left[S_{4} / S_{2}^{2}\right]$ cannot be evaluated analytically, the approximation discussed by Moran $(1967,1970)$ can be useful. Further, using Cauchy's inequality, it is easy to see that $S_{4} / S_{2}^{2} \geq 1 / n$ for any probability distribution on the Z_{i} 's [Moran (1967, p. 397)]. ${ }^{2}$ Then, if we notice that the coefficient of $\mathrm{E}\left[S_{4} / S_{2}^{2}\right]$ in (2.3) is negative for all k (whenever $n>3$), we get an upper bound for $\operatorname{var}\left(r_{k}\right)$ by replacing $\mathrm{E}\left[S_{4} / S_{2}^{2}\right]$ by $1 / n$:

$$
\begin{equation*}
\operatorname{var}\left(r_{k}\right) \leq \frac{n^{4}-(k+7) n^{3}+(7 k+16) n^{2}+2\left(k^{2}-9 k-6\right) n-4 k(k-4)}{n(n-1)^{2}(n-2)(n-3)} \tag{2.4}
\end{equation*}
$$

where $k \geq 1$ and $n>3$. For $k=1$, we retrieve the result of Moran (1967): $\operatorname{var}\left(r_{1}\right) \leq(n-2) / n(n-1)$. The bound (2.4) can be used to obtain exact upper limits on critical values for tests of randomness based on sample autocorrelations, without any assumption on the form of the distribution (except continuity). This can be done easily, for example, by using Chebyshev's inequality; for details, see Dufour and Roy (1984).

[^2]
2.3. Covariance between r_{k} and r_{h}

Let $k<h$. The numerator of $r_{k} r_{h}$ can be written as

$$
\begin{aligned}
\sum_{i=1}^{n-k n-h} \sum_{j=1}^{n} Z_{i} Z_{i+k} Z_{j} Z_{j+h}= & \sum_{i=1}^{n-h} Z_{i}^{2} Z_{i+k} Z_{i+h}+\sum_{j=1}^{n-h-k} Z_{j+h}^{2} Z_{j+h+k} Z_{j} \\
& +\sum_{i=1}^{n-h-k} Z_{i} Z_{i+k}^{2} Z_{i+h+k} \\
& +\sum_{j=1}^{n-h} Z_{j+(h-k)} Z_{j+h}^{2} Z_{j}+\sum_{*} Z_{i} Z_{i+k} Z_{j} Z_{j+h}
\end{aligned}
$$

where \sum_{*} denotes summation over $i=1, \ldots, n-k$ and $j=1, \ldots, n-h$ such that $i, i+k, j$ and $j+h$ are all distinct. By a development similar to the one used to obtain $\mathrm{E}\left[r_{k}^{2}\right]$, we find (for $k<h$)

$$
\begin{align*}
\mathrm{E}\left[r_{k} r_{h}\right]= & \mathrm{E}\left[S _ { 2 } ^ { - 2 } \left\{[2(n-h)+2(n-h-k)] Z_{1}^{2} Z_{2} Z_{3}\right.\right. \\
& \left.\left.+[(n-k)(n-h)-4(n-h)+2 k] Z_{1} Z_{2} Z_{3} Z_{4}\right\}\right] \\
= & \mathrm{E}\left[S _ { 2 } ^ { - 2 } \left\{\frac{[4(n-h)-2 k]}{n(n-1)(n-2)}\left(2 S_{4}-S_{2}^{2}\right)\right.\right. \\
& \left.\left.+\frac{[(n-h)(n-k-4)+2 k]}{n(n-1)(n-2)(n-3)}\left(3 S_{2}^{2}-6 S_{4}\right)\right\}\right] \\
= & \frac{\{(n-h)(n+k)-2 k h\}}{n(n-1)(n-2)(n-3)}\left(2 \mathrm{E}\left[S_{4} / S_{2}^{2}\right]-1\right) \tag{2.5}
\end{align*}
$$

The covariance follows from the familiar formula

$$
\operatorname{cov}\left(r_{k}, r_{h}\right)=\mathrm{E}\left[r_{k} r_{h}\right]-\mathrm{E}\left[r_{k}\right] \mathrm{E}\left[r_{h}\right]
$$

It is possible to find bounds on the covariances by using the following inequality on S_{4} / S_{2}^{2} : for any sequence of real numbers Z_{1}, \ldots, Z_{n},

$$
\begin{equation*}
1 / n \leq S_{4} / S_{2}^{2} \leq 1 \tag{2.6}
\end{equation*}
$$

The lower bound was given above. To get the upper bound, set

$$
W_{i}=Z_{i} /\left(\sum_{j=1}^{n} Z_{j}^{2}\right)^{1 / 2}, \quad i=1, \ldots, n
$$

It is then immediate that

$$
S_{4} / S_{2}^{2}=\sum_{i=1}^{n} W_{i}^{4} \leq \sum_{i=1}^{n} W_{i}^{2}=1
$$

We obtain bounds for $\mathrm{E}\left[r_{k} r_{h}\right]$ and $\operatorname{cov}\left(r_{k}, r_{h}\right)$ from (2.5) and (2.6). If $(n-h)(n+k)-2 k h \geq 0$ (this inequality holds if $k, h \leq n / 2$), we have (for $k<h$)

$$
\begin{equation*}
-\frac{\{(n-h)(n+k)-2 k h\}}{n^{2}(n-1)(n-3)} \leq \mathrm{E}\left[r_{k} r_{h}\right] \leq \frac{\{(n-h)(n+k)-2 k h\}}{n(n-1)(n-2)(n-3)} \tag{2.7}
\end{equation*}
$$

Bounds for $\operatorname{cov}\left(r_{k}, r_{h}\right)$ follow by subtracting $\mathrm{E}\left[r_{k}\right] \mathrm{E}\left[r_{h}\right]$ from each member of (2.7). Up to order n^{-3}, the bounds are (for $k<h$)

$$
\begin{equation*}
-\frac{2(n-h+3)}{n^{3}}+\mathrm{O}\left(n^{-4}\right) \leq \operatorname{cov}\left(r_{k}, r_{h}\right) \leq \frac{2(k+2)}{n^{3}}+\mathrm{O}\left(n^{-4}\right) \tag{2.8}
\end{equation*}
$$

For $(n-h)(n+k)-2 k h<0$, upper and lower bounds in (2.7) are interchanged.

3. Rank serial correlations

Let X_{1}, \ldots, X_{n} be exchangeable continuous random variables and let (R_{1}, \ldots, R_{n}) be the corresponding vector of ranks. Then

$$
\mathrm{P}\left[\left(R_{1}, \ldots, R_{n}\right)=\left(d_{1}, \ldots, d_{n}\right)\right]=1 / n!
$$

for any permutation $\left(d_{1}, \ldots, d_{n}\right)$ of $(1, \ldots, n)$, and thus the ranks are also exchangeable variables. The rank serial correlation at lag k is defined by

$$
\begin{equation*}
\imath_{k}=\sum_{i=1}^{n-k}\left(R_{i}-\bar{R}\right)\left(R_{i+k}-\bar{R}\right) / \sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)^{2}, \quad 1 \leq k \leq n-1 \tag{3.1}
\end{equation*}
$$

where

$$
\bar{R}=\frac{1}{n} \sum_{i=1}^{n} R_{i}=\frac{n+1}{2}
$$

In this case, the denominator of ι_{k} is constant so that it is equivalent to study the rank serial covariances

$$
C_{k}=\sum_{i=1}^{n-k}\left(R_{i}-\bar{R}\right)\left(R_{i+k}-\bar{R}\right), \quad 1 \leq k \leq n-1
$$

Wald and Wolfowitz (1943) proposed to use a circular version of r_{k} to test randomness and proved its asymptotic normality. Rank serial correlations, in circular and non-circular form, were studied further or compared with other tests by various authors; e.g., Stuart (1956), Knoke (1977), Dufour (1981), Bartels (1982).

In order to obtain the exact variance-covariance structure of the rank (non-circular) autocorrelations, we need to evaluate $\mathrm{E}\left[S_{4} / S_{2}^{2}\right]$. In this situation, we see easily that

$$
\begin{equation*}
S_{2}=\frac{n(n+1)(n-1)}{12}, \quad S_{4}=\frac{n\left(n^{2}-1\right)\left(3 n^{2}-7\right)}{240} \tag{3.2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\frac{S_{4}}{S_{2}^{2}}=\frac{3}{5} \frac{\left(3 n^{2}-7\right)}{n\left(n^{2}-1\right)} \tag{3.3}
\end{equation*}
$$

$\operatorname{Var}\left(\imath_{k}\right)$ and $\operatorname{cov}\left(\imath_{k}, \imath_{h}\right)$ can be obtained directly by substituting (3.3) in (2.3) and (2.5). For example, the variance of r_{1} is

$$
\begin{equation*}
\operatorname{var}\left(\iota_{1}\right)=\left(5 n^{3}-19 n^{2}+10 n+16\right) /\left[5 n^{2}(n-1)^{2}\right] \tag{3.4}
\end{equation*}
$$

4. Results for normal and spherically symmetric distributions

We will now specialize the above results to the case of a normal random sample. Since results obtained under the normality assumption remain exactly valid for the more general class of spherically symmetric distributions, we will cast them in this framework.

4.1. Spherically symmetric distributions

Let \boldsymbol{X} and μ be $n \times 1$ vectors with \boldsymbol{X} random and μ fixed. The vector \boldsymbol{X} has a spherically symmetric (s.s) distribution about μ if and only if $G(X-\mu)$ has the same distribution as $\boldsymbol{X}-\boldsymbol{\mu}$ for all orthogonal $n \times n$ matrices G. Chmielewski (1981) provides an extensive bibliography on this class of distributions. Statistical applications are discussed by Kariya and Eaton (1977) and King (1979, 1980).

The density of a vector \boldsymbol{X} with a s.s. distribution, if it exists, is a function of the norm of $\boldsymbol{X}-\boldsymbol{\mu}$ only and its characteristic function $\phi(t)$ is of the form $\phi(t)=\psi\left(t^{\prime} t\right) \exp \left(i t^{\prime} \boldsymbol{\mu}\right)$, where $t=\left(t_{1}, \ldots, t_{n}\right)^{\prime} \in \mathbb{R}^{n}$. The class of s.s. distributions includes such distributions as the multivariate normal and the multivariate Student-t with covariance matrix $\sigma^{2} I_{n}$, a multivariate Cauchy, a multivariate exponential, etc.

Let $X=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ and $\mu=\mu 1$, where $1=(1, \ldots, 1)^{\prime}$ is $n \times 1$. Denote $Z_{i}=X_{i}-\bar{X}, i=1, \ldots, n$, and $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}$. We can write

$$
\begin{equation*}
Z=M X \tag{4.1}
\end{equation*}
$$

where $M=I_{n}-(1 / n) I I^{\prime}$ is a $n \times n$ symmetric idempotent matrix of rank $n-1$. Further we can find a $n \times n$ orthogonal matrix P such that

$$
P^{\prime} M P=\left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & 0
\end{array}\right)
$$

Let $P=\left(P_{1}, P_{2}\right)$ where P_{1} is $n \times(n-1)$ and P_{2} is $n \times 1$. Then, if \boldsymbol{X} has a s.s. distribution about μ, the vector $\boldsymbol{W}=\boldsymbol{Z} /\|\boldsymbol{Z}\|$ has a distribution identical to the one of the vector $P_{1}(\boldsymbol{U} /\|\boldsymbol{U}\|)$, where \boldsymbol{U} has a multinormal distribution $\mathrm{N}\left(0, I_{n}\right) ;\|\cdot\|$ denotes the Euclidean norm. We can see this as follows. Let $v=P^{\prime} \boldsymbol{X}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)^{\prime}$, where $v_{1}=P_{1}^{\prime} \boldsymbol{X}$ and $v_{2}=P_{2}^{\prime} \boldsymbol{X}$. It is then simple to check that

$$
\begin{equation*}
\boldsymbol{Z}=\boldsymbol{P}_{1} \boldsymbol{v}_{1}, \quad \boldsymbol{Z}^{\prime} \boldsymbol{Z}=\boldsymbol{v}_{1}^{\prime} \boldsymbol{v}_{1}, \quad \boldsymbol{W}=P_{1}\left(\boldsymbol{v}_{1} /\left\|\boldsymbol{v}_{1}\right\|\right) \tag{4.2}
\end{equation*}
$$

where $P_{1}^{\prime} P_{1}=I_{n-1}$ and $P_{1}^{\prime} \boldsymbol{I}=\boldsymbol{0}$. Further, by considering the characteristic function of \boldsymbol{v}_{1}, we can see easily that \boldsymbol{v}_{1} has a s.s. distribution about zero. The result then follows by applying Theorem 2.1 of Kariya and Eaton (1977).

A useful consequence of this property is the following: any statistic of the form $T(W)$ has a distribution which is independent of the functional form of the s.s. distribution of X, provided $\mu=\mu 1$. We can thus study its distribution assuming X is $N\left(\mu I, I_{n}\right)$. In particular, from the definition of sample autocorrelations, we have

$$
r_{k}=\sum_{i=1}^{n-k} W_{i} W_{i+k}, \quad 1 \leq k \leq n-1
$$

where $\boldsymbol{W}=\left(W_{1}, \ldots, W_{n}\right)^{\prime}$. Therefore, the vector of sample autocorrelations has the same distribution whenever X has a s.s. distribution with $\mu=\mu 1$: we can study its distribution by assuming \boldsymbol{X} is $\mathrm{N}\left(\mu 1, I_{n}\right) .^{3}$

4.2. Exact variances and covariances

To obtain explicit formulae for $\operatorname{var}\left(r_{k}\right)$ and $\operatorname{cov}\left(r_{k}, r_{h}\right)$, we need $\mathrm{E}\left[S_{4} / S_{2}^{2}\right]$. Since

$$
S_{4} / S_{2}^{2}=\sum_{i=1}^{n} W_{i}^{4}
$$

where $\boldsymbol{W}=\boldsymbol{Z} /\|\boldsymbol{Z}\|$, we know from the previous section that the distribution of S_{4} / S_{2}^{2} is the same for all s.s. distributions. Assuming normality, Moran (1948) found that

$$
\begin{equation*}
\mathrm{E}\left[S_{4} / S_{2}^{2}\right]=\frac{3(n-1)}{n(n+1)} \tag{4.3}
\end{equation*}
$$

If we substitute (4.3) into (2.3), we find after some algebra:

$$
\begin{equation*}
\operatorname{var}\left(r_{k}\right)=\frac{n^{4}-(k+3) n^{3}+3 k n^{2}+2 k(k+1) n-4 k^{2}}{(n+1) n^{2}(n-1)^{2}} \tag{4.4}
\end{equation*}
$$

where $1 \leq k \leq n-1$. With $k=1$, we retrieve the result of Moran (1948),

$$
\operatorname{var}\left(r_{1}\right)=(n-2)^{2} /\left[n^{2}(n-1)\right]
$$

For large n, the exact variance for a normal sample, say $\sigma_{k N}^{2}$, is almost identical to the upper bound $\sigma_{k U}^{2}$ obtained for exchangeable random variables. Since

$$
\sigma_{k N}^{2}=\frac{n-(k+2)}{n^{2}}+O\left(n^{-3}\right), \quad \sigma_{k U}^{2}=\frac{n-k}{n^{2}}+O\left(n^{-3}\right)
$$

it is immediate that

$$
\lim _{n \rightarrow \infty} \sigma_{k U}^{2} / \sigma_{k N}^{2}=1
$$

We computed the exact ratio $\sigma_{k U}^{2} / \sigma_{k N}^{2}$ for various values of k and n. We

[^3]found that the upper bound is nearly attained in the normal case even for samples as small as 20 . With $n \geq 25$, the ratio is smaller than or equal to 1.10 for $k \leq 20$ and, with $n \geq 40$, the ratio is smaller than or equal to 1.05 for $k \leq 25$.

Similarly, we derive the covariance between r_{k} and r_{h} and get

$$
\begin{equation*}
\operatorname{cov}\left(r_{k}, r_{h}\right)=\frac{2\left\{k h(n-1)-(n-h)\left(n^{2}-k\right)\right\}}{(n+1) n^{2}(n-1)^{2}} \tag{4.5}
\end{equation*}
$$

where $1 \leq k<h \leq n-1$. Developing up to order n^{-2}, we have

$$
\operatorname{cov}\left(r_{k}, r_{h}\right)=-2 / n^{2}+\mathrm{O}\left(n^{-3}\right)
$$

which is in agreement with a result of Fuller (1976, p. 242).
Another statistic considered by Knoke (1977) is $T=\sum_{j=1}^{n-1} r_{j} / j$; critical values were determined from a normal approximation with the exact mean obtained from (2.2) and an empirical variance. If we use the formula

$$
\operatorname{var}(T)=\sum_{j=1}^{n-1} \sum_{k=1}^{n-1} \operatorname{cov}\left(r_{j}, r_{k}\right) / j k
$$

and substitute the expressions (4.4) and (4.5) of this paper, we get the exact variance of T. For example, for $n=10,16,32$, and 64 , the exact variances are $0.0455,0.0394,0.0278$ and 0.0174 , respectively, while the empirical variances obtained by Knoke were $0.041,0.036,0.027$ and 0.018 .

5. Monte Carlo results

Tests of randomness that use sample autocorrelations r_{k} are usually based on an asymptotic normal distribution. Further, even though the exact mean of r_{k} and the variance of r_{1} (in the normal case) have been available for some time [Moran (1948)], many authors still use or recommend using the approximate mean zero and the approximate standard errors $n^{-1 / 2}$ [Box and Pierce, (1970), Box and Jenkins (1976, ch. 6)] or $\{(n-k) / n(n+2)\}^{1 / 2}$ [Ljung and Box (1978)]. The latter standard error is correct when the sample mean is not subtracted from the observations and the true mean is zero, but is not exact when the observations are centered. It is worthwhile to see what is the gain realized by replacing the approximate mean and variance by the exact mean in (2.2) and the exact variance in (4.4).

To investigate this issue, we conducted the following Monte Carlo experiment. For each of five different series lengths ($n=10,20,30,50,100$), 10,000 independent realizations of a normal white noise were generated using the
Table 1
Empirical levels of tests based on sample autocorrelations for different normalizations (in percentage). ${ }^{\text {a }}$

Table 1 (continued)

Test	\% level	Side	$n=50$						$n=100$						
			k						k						
			1	3	5	10	15	25	1	3	5	10	15	25	50
S1	5	R	3.1	2.8	2.9	2.1	1.7	0.5	3.8	3.6	3.5	3.4	3.0	2.1	1.0
		L	6.1	5.4	5.0	3.8	2.8	1.0	5.6	5.6	5.3	5.1	4.2	3.3	1.2
		B	4.2	3.9	3.3	2.6	1.7	0.3	4.1	4.6	3.9	3.9	3.2	2.3	0.6
	10	R	7.2	6.5	6.4	5.5	5.1	2.3	7.6	7.7	7.8	7.3	6.8	5.6	3.1
		L	12.1	11.3	10.4	9.3	7.2	4.2	11.6	11.0	10.8	10.6	9.6	8.0	3.9
		B	9.1	8.1	7.9	5.8	4.5	1.4	9.4	9.2	8.8	8.4	7.1	5.3	2.1
	20	R	16.1	14.8	15.1	13.2	13.8	9.8	16.7	16.8	16.5	16.3	15.5	14.2	11.2
		L	23.1	23.3	22.0	20.8	18.2	14.3	23.2	22.2	22.5	22.0	20.7	19.0	13.1
		B	19.3	17.8	16.8	14.8	12.3	6.6	19.3	18.7	18.6	17.9	16.4	13.6	7.0
S2	5	R	3.4	3.3	3.8	3.8	4.4	4.1	3.9	3.9	3.9	4.3	4.2	3.9	4.9
		L	6.7	6.4	6.4	6.5	6.1	6.5	6.0	6.0	6.2	6.3	5.9	6.1	5.7
		B	4.9	4.8	4.9	4.8	5.0	5.0	4.5	5.1	4.8	5.2	5.1	4.7	5.3
	10	R	7.8	7.5	7.6	7.7	9.0	8.6	8.0	8.3	8.5	8.5	8.5	8.3	9.8
		L	13.0	12.6	12.4	12.7	11.8	12.8	12.0	11.6	11.7	12.3	12.0	11.7	11.6
		B	10.1	9.7	10.2	10.3	10.4	10.6	9.9	9.9	10.1	10.6	10.1	10.0	10.6
	20	R	16.8	15.8	16.6	15.7	17.8	17.8	17.0			17.8	17.6	17.5	19.0
		L	23.8	24.7	23.9	24.0	23.7	23.6	23.7	22.8	23.5	23.5	23.2	22.9	21.9
		B	20.7	20.1	20.0	20.4	20.8	21.5	20.0	19.8	20.2	20.8	20.5	20.0	21.3
S3	5	R	5.0	4.6	4.9	5.0	5.6	5.0				5.3	5.1		5.5
		L	4.8	4.8	4.8	4.9	4.6	5.1	4.7	5.1	4.9	5.2	4.8	4.9	4.8
		B	4.6	4.7	4.7	4.7	4.9	4.5	4.6	5.0	4.8	5.1	5.0	4.6	5.2
	10	R	10.1	9.7		9.9		10.2	9.9	9.9	10.1	10.2	10.0	9.9	10.8
		L	9.9	9.8	9.7	10.0	9.6	10.5	10.2	9.9	9.9	10.3	10.2	10.1	10.0
		B	9.9	9.5	9.8	9.9	10.2	10.0	9.5	9.9	9.8	10.4	9.9	9.7	10.3
	20	R	20.5	19.8	20.3	19.5	21.1	20.4	19.7	20.1	20.4	20.3	20.5	19.8	21.0
		L	19.7	20.2	19.7	20.4	19.9	20.5	20.4	20.2	20.2	20.8	20.3	20.2	19.8
		B	20.0	19.4	19.7	19.9	20.3	20.7	20.1	19.7	20.1	20.5	20.2	20.0	20.9

${ }^{\mathrm{a}}$ Tests are based on asymptotic $\mathrm{N}(0,1)$ approximation of $R_{k}=\left(r_{2}-\mu_{k}\right) / \sigma_{k}$, where $\mu_{k}=0$ for S1 and S2, $\mu_{k}=-(n-k) /\{n(n-1)\}$ for S3,
$\sigma_{k}=n^{-1 / 2}$ for S1, $\sigma_{k}=\{(n-k) / n(n+2)\}^{1 / 2}$ for S2, and $\sigma_{k}=\left\{\operatorname{var}\left(r_{k}\right)\right\}^{1 / 2}$ from formula (4.4) for S3. R and L refer to one-sided tests against positive and negative dependence, respectively. B refers to a two-sided test. The standard error of the empirical levels is 0.2% for the nominal level 5%, 0.3% for 10% and 0.4% for 20%.
subroutine GGUBS of IMSL (1980), and for each realization, sample autocorrelations r_{k} at several lags were computed. We then examined the quality of the asymptotic $\mathrm{N}(0,1)$ approximation for three different versions of the normalized statistics $R_{k}=\left(r_{k}-\mu_{k}\right) / \sigma_{k}$. The three normalizations S1, S2 and S3 were defined as follows: for S1, $\mu_{k}=0$ and $\sigma_{k}=n^{-1 / 2}$; for S2, $\mu_{k}=0$ and $\sigma_{k}=\{(n-k) / n(n+2)\}^{1 / 2}$; for S3, μ_{k} is the exact mean in (2.2) and σ_{k} the exact standard error from (4.4). To appreciate the accuracy of the $N(0,1)$ approximation, we examined the empirical frequencies of rejection of the null hypothesis of randomness by tests with three different nominal levels (5,10 and 20 percent). Further, for each value of n and k, we considered three types of tests: one-sided tests against positive serial dependence (R), one-sided tests against negative serial dependence (L) and two-sided tests (B).

The results of the experiment are presented in table 1 . We make the following observations. First, for S 1 , the $\mathrm{N}(0,1)$ distribution provides a relatively poor approximation, even for series of 100 observations. Second, the approximation is better for $S 2$, but the empirical significance levels of the one-sided tests remain appreciably different from the theoretical levels (at least for short series of 50 observations or less). Third, the best results are obtained with the normalization S3: the agreement between the empirical and the theoretical levels is very good both for one-sided and two-sided tests and the approximation is satisfactory even for series of 10 observations. These results clearly suggest that the normalization based on the exact mean and variance of r_{k} is preferable to the approximate normalizations often used. Further, it is easy to implement the exact formulae in computer programs. We thus strongly recommend to use the exact means and variances when testing randomness with sample autocorrelations.

Note finally that tail probabilities for sample autocorrelations (in the normal case) can in principle be obtained by using the methods of Imhof (1961) or Pan Jie Jian (1968); see Goldsmith (1977), Sneek (1983), Ali (1984). This remains, however, relatively costly and no table of exact critical values for sample autocorrelations is yet available (for $k \geq 2$). Clearly, simple improvements in the quality of the asymptotic normal approximation, as described above, remain an attractive practical alternative.

References

[^4]Bartlett, M.S., 1946, On the theoretical specification and sampling properties of autocorrelated time-series, Journal of the Royal Statistical Society Suppl. 8, 27-41, 85-97 (Corrigenda, 1948, 10,200).
Box, G.E.P. and G.M. Jenkins, 1976, Time series analysis, forecasting and control, 2nd ed. (Holden-Day, San Francisco, CA).
Box, G.E.P. and D.A. Pierce, 1970, Distribution of residual autocorrelations in autoregressiveintegrated moving average time series models, Journal of the American Statistical Association 65, 1509-1526.
Chmielewski, M.A., 1981, Elliptically symmetric distributions: A review and bibliography, International Statistical Review 49, 75-93.
De Gooijer, J.G., 1980. Exact moments of the sample autocorrelations from series generated by general ARIMA processes of order (p, d, q), $d=0$ or 1, Journal of Econometrics 14, 365-379.
Dufour, J.-M., 1981, Rank tests for serial dependence, Journal of Time Series Analysis 2, 117-128.
Dufour, J.-M. and R. Roy, 1984, Some robust exact results on sample autocorrelations and tests of randomness, Technical report (Département de Science Économique et Département d'Informatique et de Recherche Opérationnelle, Université de Montréal).
Evans, G.B.A. and N.E. Savin, 1981, Testing for unit roots - I, Econometrica 49, 753-779.
Fama, E.F., 1970, Efficient capital markets: A review of theory and empirical work, Journal of Finance 25, 383-417.
Fligner, M., R. Hogg and T. Killeen, 1976, Some distribution - free rank - like statistics having the Mann-Whitney-Wilcoxon null distribution, Communications in Statistics - Theory and Methods A5, 373-376.
Fuller, W.A., 1976, Introduction to statistical time series (Wiley, New York).
Galambos, J., 1982, Exchangeability, in: S. Kotz, N.L. Johnson and C.B. Read, eds., Encyclopedia of statistical sciences, Vol. 2 (Wiley, New York) 573-577.
Goldsmith, H., 1977, The exact distributions of the serial correlation coefficients and an evaluation on some approximate distributions, Journal of Statistical Computation and Simulation 5, 115-134.
Hajek, J. and Z. Šidák, 1967, Theory of ranks tests (Academic Press, New York).
Hall, R.E., 1978, Stochastic implications of the life cycle-permanent income hypothesis: Theory and evidence, Journal of Political Economy 86, 971-987.
Imhof, P., 1961, Computing the distribution of quadratic forms in normal variates, Biometrika 48, 419-426.
Kantor, B., 1979, Rational expectations and economic thought, Journal of Economic Literature 17, 1422-1441.
Kariya, T. and M.L. Eaton, 1977, Robust tests for spherical symmetry, Annals of Statistics 5, 206-215.
Kendall, M.G., A. Stuart and J.K. Ord, 1983, The advanced theory of statistics, Vol. 3, 4th ed. (Griffin, London).
King, M.L., 1979, Some aspects of statistical inference in the linear regression model, Ph.D. thesis (University of Canterbury, Christchurch).
King. M.L., 1980, Robust tests for spherical symmetry and their application to least squares regression, Annals of Statistics 8, 1265-1271.
Knoke, J.D., 1977, Testing for randomness against autocorrelation: Alternative tests, Biometrika 64, 523-529.
Knoke, J.D., 1979, Normal approximations for serial correlation coefficients, Biometrics 35, 491-495.
Ljung, G.M. and G.E.P. Box, 1978, On a measure of lack of fit in time series models, Biometrika 65, 297-303.
Moran, P.A.P., 1948, Some theorems on time series, II: The significance of the serial correlation coefficient, Biometrika 35, 255-260.
Moran, P.A.P., 1967, Testing for serial correlation with exponentially distributed variates, Biometrika 54, 395-401.
Moran, P.A.P., 1970, A note on serial correlation coefficients, Biometrika 57, 670-673.
Pan Jie Jian, 1968, Distributions of the noncircular serial correlation coefficients, American Mathematical Society and Institute of Mathematical Statistics Selected Translations in Probability and Statistics 7, 281-291.

Phillips, P.C.B., 1978, Edgeworth and saddlepoint approximations in the fitst-order noncircular autoregression, Biometrika 65, 91-98.
Rao, C.R., 1973, Linear statistical inference and its applications. 2nd ed. (Wiley, New York).
Sawa, T., 1978, The exact moments of the least squares estimator for the autoregressive model. Journal of Econometrics 8, 159-172.
Sneek, J.M., 1983, Some approximations to the exact distribution of sample autocorrelations for autoregressive moving average models, in: O.D. Anderson, ed., Time series analysis: Theory and practice 3 (North-Holland, Amsterdam) 265-289.
Stuart, A., 1956, The efficiencies of tests of randomness against normal regression, Journal of the American Statistical Association 51, 285-287.
Tanaka, K., 1983, Asymptotic expansions associated with the AR(1) model with unknown mean. Econometrica 51, 1221-1231.
Wald, A. and J. Wolfowitz, 1943, An exact test for randomness in the non-parametric case based on serial correlation, Annals of Mathematical Statistics 14, 378-388.

[^0]: *This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the Fondation FCAC (Government of Quebec) and the Centre de Recherche et Développement en Économique (Université de Montréal). The authors thank Pierre Cholette, Keith Ord, David Prescott, Jacques Raynauld, Francis Zwiers, an associate editor and three anonymous referees for several useful comments. Pierre Dupuis and Normand Ranger provided excellent programming assistance.

[^1]: ${ }^{1}$ See, for example, T.W. Anderson (1971, ch. 6), O.D. Anderson (1982), Evans and Savin (1981), Kendall, Stuart and Ord (1983, ch. 48), Knoke (1977,1979), Phillips (1978), Tanaka (1983).

[^2]: ${ }^{2}$ When $Z_{i}=0, i=1, \ldots, n$, we adopt the convention $S_{4} / S_{2}^{2}=1$.

[^3]: ${ }^{3}$ This result can also be derived from an unpublished theorem given by King (1979, ch. 5) in the context of linear regression models.

[^4]: Ali, M.M., 1984, Distributions of the sample autocorrelations when observations are from a stationary autoregressive-moving-average process, Journal of Business and Economic Statistics 2, 271-278.
 Anderson, O.D., 1982, Sampled serial correlations from ARIMA processes, in: O.D. Anderson and M.R. Perryman, eds. Applied time series analysis (North-Holland, Amsterdam) 5-14.

 Anderson, T.W., 1971, The statistical analysis of time series (Wiley, New York).
 Bartels, R., 1982, The rank version of von Neumann's ratio test for randomness, Journal of the American Statistical Association 77, 40-46.

