Factor-Augmented VARMA Models with Macroeconomic Applications*

Jean-Marie Dufour ${ }^{\dagger}$
McGill University

Dalibor Stevanović ${ }^{\ddagger}$
Université du Québec à Montréal

First version: October 2008
Revised: December 2008, February 2013, April 2013, May 2013
This version: May 2013
Compiled: November 11, 2013, 11:20

[^0]
Abstract

We study the relationship between VARMA and factor representations of a vector stochastic process. We observe that, in general, vector time series and factors cannot both follow finite-order VAR models. Instead, a VAR factor dynamics induces a VARMA process, while a VAR process entails VARMA factors. We propose to combine factor and VARMA modeling by using factor-augmented VARMA (FAVARMA) models. This approach is applied to forecasting key macroeconomic aggregates using large U.S. and Canadian monthly panels. The results show that FAVARMA models yield substantial improvements over standard factor models, including precise representations of the effect and transmission of monetary policy.

Key words: factor analysis, VARMA process, forecasting, structural analysis. Journal of Economic Literature classification: C32, C51, C52, C53.

SUMMARY

We study the relationship between VARMA and factor representations of a vector stochastic process, and we propose to use factor-augmented VARMA (FAVARMA) models as an alternative to usual VAR models. We start by observing that vector time series and the associated factors do not both follow a finite-order VAR process, except in very special cases. When factors are defined as linear combinations of observable series, the observable series follows a VARMA process, not a finite-order VAR as typically assumed. Second, even if the factors follow a finite-order VAR model, this entails a VARMA representation for the observable series. In view of these observations, we propose to use a FAVARMA framework which combines two dimension reduction techniques in order to represent the dynamic interactions between a large number of time series: factor analysis and VARMA modeling. We apply this approach in two out-of-sample forecasting exercises using large U.S. and Canadian monthly panels. The results show that VARMA factors provide better forecasts for several key macroeconomic aggregates relative to standard factor models. Finally, we estimate the effect of monetary policy using the data and the identification scheme of Bernanke, Boivin and Eliasz (2005). We find that impulse responses from a parsimonious 6-factor FAVARMA(2,1) model give an accurate and plausible picture of the effect and transmission of monetary policy in the U.S. To get similar responses from a standard FAVAR model, the Akaike information criterion leads to a lag order of 14. The FAVARMA model requires the estimation of 84 coefficients in order to represent the system dynamics, while the corresponding FAVAR model includes 510 VAR parameters.

Contents

List of Assumptions, Propositions and Theorems iv

1. INTRODUCTION 1
2. FRAMEWORK 2
2.1. Linear transformations of vector stochastic processes 3
2.2. Identified VARMA models 4
3. VARMA AND FACTOR REPRESENTATIONS 5
4. FACTOR-AUGMENTED VARMA MODELS 7
5. ESTIMATION 8
6. FORECASTING 10
6.1. Forecasting models 11
6.2. Monte-Carlo simulations 12
7. APPLICATION: FORECASTING U.S. MACROECONOMIC AGGREGATES 13
8. APPLICATION: EFFECTS OF MONETARY POLICY SHOCKS 16
9. CONCLUSION 17
A. PROOFS 21
B. SIMULATION RESULTS: FAVARMA AND FAVAR FORECASTS 23
C. SIMULATION RESULTS: DIFFERENT FACTOR NUMBERS 25
D. FORECASTING MACROECONOMIC AGGREGATES IN A SMALL OPEN ECONOMY: CANADA 27
E. DATA 31

List of Tables

$1 \quad \mathrm{RMSE}$ relative to direct $\mathrm{AR}(p)$ forecasts 14
2 RMSE relative to $\operatorname{ARMA}(p, q)$ forecasts 15
3 MSE of FAVARMA relative to FAVAR forecasting models 16
1 Comparison between FAVARMA and FAVAR forecasts: Monte Carlo simulations 23
2 Comparison between FAVARMA and FAVAR forecasts for different factor num- bers: Monte Carlo simulations 26
3 RMSE relative to direct $\operatorname{AR}(p)$ forecasts 28
4 RMSE relative to $\operatorname{ARMA}(p, q)$ forecasts 29
5 MSE of FAVARMA relative to FAVAR forecasting models 30
List of Figures
1 FAVARMA-DMA impulse responses to monetary policy shock 18
2 Comparison between FAVAR and FAVARMA-DMA impulse responses 19
List of Assumptions, Propositions and Theorems
Definition 2.1 : Final AR equation form (FAR) 4
Definition 2.2 : Final MA equation form (FMA) 4
Definition 2.3 : Diagonal MA equation form (DMA) 4
Definition 2.4 : Diagonal AR equation form (DAR) 4
Theorem 3.1 : Observable process induced by finite-order VAR factors 5
Theorem 3.2 : Observable process induced by VARMA factors 6
Theorem 3.3 : Dynamic factor models associated with VARMA processes 6

1. INTRODUCTION

As information technology improves, the availability of economic and financial time series grows in terms of both time and cross-section size. However, a large amount of information can lead to a dimensionality problem when standard time series tools are used. Since most of these series are correlated, at least within some categories, their co-variability and information content can be approximated by a smaller number of variables. A popular way to address this issue is to use "large dimensional approximate factor analysis", an extension of classical factor analysis which allows for limited cross-section and time correlations among idiosyncratic components.

While factor models were introduced in macroeconomics and finance by Sargent and Sims (1977), Geweke (1977), and Chamberlain and Rothschild (1983), the literature on the large factor models starts with Forni, Hallin, Lippi and Reichlin (2000) and Stock and Watson (2002). Further theoretical advances were made, among others, by Bai and Ng (2002), Bai (2003), and Forni, Hallin, Lippi and Reichlin (2004). These models can be used to forecast macroeconomic aggregates [Stock and Watson (2002b), Forni, Hallin, Lippi and Reichlin (2005), Banerjee, Marcellino and Masten (2006)], structural macroeconomic analysis [Bernanke et al. (2005), Favero, Marcellino and Neglia (2005)], for nowcasting and economic monitoring [Giannone, Reichlin and Small (2008), Aruoba, Diebold and Scotti (2009)], to deal with weak instruments [Bai and Ng (2010), Kapetanios and Marcellino (2010)], and the estimation of dynamic stochastic general equilibrium models [Boivin and Giannoni (2006)].

Vector autoregressive moving-average (VARMA) models provide another way to obtain a parsimonious representation of a vector stochastic process. VARMA models are especially appropriate in forecasting, since they can represent the dynamic relations between time series while keeping the number of parameters low; see Lütkepohl (1987) and Boudjellaba, Dufour and Roy (1992). Further, VARMA structures emerge as reduced-form representations of structural models in macroeconomics. For instance, the linear solution of a standard dynamic stochastic general equilibrium model generally implies a VARMA representation on the observable endogenous variables [Ravenna (2006), Komunjer and Ng (2011), and Poskitt (2011)].

In this paper, we study the relationship between VARMA and factor representations of a vector stochastic process, and we propose a new class of factor-augmented VARMA models. We start by observing that, in general, multivariate time series and the associated factors do not typically both follow finite-order VAR processes. When the factors are obtained as linear combinations of observable series, the dynamic process obeys a VARMA model, not a finite-order VAR as usually assumed in the literature. Further, if the latent factors follow a finite-order VAR process, this implies a VARMA representation for the observable series. Consequently, we propose to combine two techniques for representing in a parsimonious way the dynamic interactions between a huge number of time series: dynamic factor reduction and VARMA modelling. Thus lead us to consider factor-augmented VARMA (FAVARMA) models.Besides parsimony, the class of VARMA models is closed under marginalization and linear transformations (in contrast with VAR processes). This represents an additional advantage if the number of factors is underestimated.

The importance of the factor process specification depends on the technique used to estimate the factor model and the research goal. In the two-step method developed by Stock and Watson (2002),
the factor process does not matter for the approximation of factors, but this might be an issue if we use a likelihood-based technique which relies on a completely specified process. Moreover, if predicting observable variables depends on factor forecasting, a reliable and parsimonious approximation of the factor dynamic process is important. In Deistler, Anderson, Filler, Zinner and Chen (2010), the authors study identification of the generalized dynamic factor model where the common component has a singular rational spectral density. Under the assumption that transfer functions are tall and zeroless (i.e., the number of common shocks is less than the number of static factors), they argue that static factors have a finite-order AR singular representation which can be estimated by generalized Yule-Walker equations. Note that Yule-Walker equations are not unique for such systems, but Deistler, Filler and Funovits (2011) propose a particular canonical form for estimation purposes.

After showing that FAVARMA models yield a theoretically consistent specification, we study whether VARMA factors can help in forecasting time series. We compare the forecasting performance (in terms of MSE) of four FAVARMA specifications, with standard $\operatorname{AR}(p), \operatorname{ARMA}(p, q)$ and factor models where the factor dynamics is approximated by a finite-order VAR. An out-of-sample forecasting exercise is performed using a U.S. monthly panel from Boivin, Giannoni and Stevanović (2009).

The results show that VARMA factors help in predicting several key macroeconomic aggregates, relative to standard factor models, and across different forecasting horizons. We find important gains, up to a reduction of 42% in MSE, when forecasting the growth rates of industrial production, employment and consumer price index inflation. In particular, the FAVARMA specifications generally outperform the VAR-factor forecasting models. We also report simulation results which show that VARMA factor modelling noticeably improves forecasting in finite samples.

Finally, we perform a structural factor analysis exercise. We estimate the effect of a monetary policy shock using the data and identification scheme of Bernanke et al. (2005). We find that impulse responses from a parsimonious 6 -factor $\operatorname{FAVARMA}(2,1)$ model give a precise and plausible picture of the effect and transmission of monetary policy in the U.S. To get similar responses from a standard FAVAR model, the Akaike information criterion leads to a lag order of 14. So we need to estimate 84 coefficients governing the factor dynamics in the FAVARMA framework, while the FAVAR model requires 510 VAR parameters.

In Section 2, we summarize some important results on linear transformations of vector stochastic processes and present four identified VARMA forms. In Section 3, we study the link between VARMA and factor representations. The FAVARMA model is proposed in Section 4, and estimation is discussed in Section 5. Monte Carlo simulations are discussed in Section 6. The empirical forecasting exercise is presented in Section 7, and the structural analysis in Section 8. Proofs and simulation results are reported in Appendix.

2. FRAMEWORK

In this section, we summarize a number of important results on linear transformations of vector stochastic processes, and we present four identified VARMA forms we will use in forecasting applications.

2.1. Linear transformations of vector stochastic processes

Exploring the features of transformed processes is important since data are often obtained by temporal and spatial aggregation, and/or transformed through linear filtering techniques, before they are used to estimate models and evaluate theories. In macroeconomics, researchers model dynamic interactions by specifying a multivariate stochastic process on a small number of economic indicators. Hence, they work on marginalized processes, which can be seen as linear transformations of the original series. Finally, dimension-reduction methods, such as principal components, lead one to consider linear transformations of the observed series. Early contributions on these issues include Zellner and Palm (1974), Rose (1977), Wei (1978), Abraham (1982), and Lütkepohl (1984).

The central result we shall use focuses on linear transformations of a N-dimensional, stationary, strictly indeterministic stochastic process. Suppose X_{t} satisfies the model

$$
\begin{equation*}
X_{t}=\sum_{j=0}^{\infty} \Psi_{j} \varepsilon_{t-j}=\Psi(L) \varepsilon_{t}, \quad \Psi_{0}=I_{K}, \tag{2.1}
\end{equation*}
$$

where ε_{t} is a weak white noise, with $E\left(\varepsilon_{t}\right)=0, E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\Sigma_{\varepsilon}$, $\operatorname{det}\left[\Sigma_{\varepsilon}\right]>0, E\left(X_{t} X_{t}^{\prime}\right)=\Sigma_{X}$, $E\left(X_{t} X_{t+h}^{\prime}\right)=\Gamma_{X}(h), \Psi(L)=\sum_{i=0}^{\infty} \Psi_{i} L^{i}$ and $\operatorname{det}[\Psi(z)] \neq 0$ for $|z|<1$. (2.1) can be interpreted as the Wold representation of X_{t}, in which case $\varepsilon_{t}=X_{t}-P_{L}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]$ and $P_{L}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]$ is the best linear forecast of X_{t} based on its own past (i.e., ε_{t} is the innovation process of X_{t}). Consider the following linear transformation of X_{t} :

$$
\begin{equation*}
F_{t}=C X_{t} \tag{2.2}
\end{equation*}
$$

where C is a $K \times N$ matrix of rank K. Then F_{t} is also stationary, indeterministic and has zero mean, so it has an MA representation of the form:

$$
\begin{equation*}
F_{t}=\sum_{j=0}^{\infty} \Phi_{j} v_{t-j}=\Phi(L) v_{t}, \quad \Phi_{0}=I_{K}, \tag{2.3}
\end{equation*}
$$

where v_{t} is K-dimensional white noise with $E\left(v_{t} v_{t}^{\prime}\right)=\Sigma_{v}$. These properties hold whenever X_{t} is a vector stochastic process with an MA representation. If it is invertible, finite and infinite-order VAR processes are covered.

In practice, only a finite number of parameters can be estimated. Consider the MA (q) process

$$
\begin{equation*}
X_{t}=\varepsilon_{t}+M_{1} \varepsilon_{t-1}+\cdots+M_{q} \varepsilon_{t-q}=M(L) \varepsilon_{t} \tag{2.4}
\end{equation*}
$$

with $\operatorname{det}[M(z)] \neq 0$ for $|z|<1$ and nonsingular white noise noise covariance matrix Σ_{ε}, and a $K \times N$ matrix C with rank K. Then, the transformed process $F_{t}=C X_{t}$ has an invertible MA $\left(q_{*}\right)$ representation

$$
\begin{equation*}
F_{t}=v_{t}+N_{1} v_{t-1}+\cdots+N_{q_{*}} v_{t-q_{*}}=N(L) v_{t} \tag{2.5}
\end{equation*}
$$

with $\operatorname{det}[N(z)] \neq 0$ for $|z|<1$, where v_{t} is a K-dimensional white noise with nonsingular matrix Σ_{v}, each N_{i} is a $K \times K$ coefficient matrix, and $q_{*} \leq q$.

Some conditions in the previous results can be relaxed. The nonsingularity of the covariance matrix Σ_{ε} and the full rank of C are not necessary so there may be exact linear dependencies among the components of X_{t} and F_{t} [see Lütkepohl (1984b)]. It is also possible that $q_{*}<q$.

It is well known that weak VARMA models are closed under linear transformations. Let X_{t} be an N-dimensional, stable, invertible VARMA (p, q) process

$$
\begin{equation*}
\Phi(L) X_{t}=\Theta(L) \varepsilon_{t} \tag{2.6}
\end{equation*}
$$

and let C be a $K \times N$ matrix of rank $K<N$. Then $F_{t}=C X_{t}$ has a $\operatorname{VARMA}\left(p_{*}, q_{*}\right)$ representation with $p_{*} \leq(N-K+1) p$ and $q_{*} \leq(N-K) p+q$; see Lütkepohl (2005, Corollary 11.1.2). A linear transformation of a finite-order VARMA process still has a finite-order VARMA representation, but with possibly higher autoregressive and moving-average orders.

When modeling economic time series, the most common specification is a finite-order VAR. Therefore, it is important to notice that this class of models is not closed with respect to linear transformations reducing the dimensions of the original process.

2.2. Identified VARMA models

An identification problem arises since the VARMA representation of X_{t} is not unique. There are several ways to identify the process in (2.6). In the following, we state four unique VARMA representations: the well-known final-equation form and three representations proposed in Dufour and Pelletier (2013).

Definition 2.1 FInAl AR EQUATION FORM (FAR). The VARMA representation in (2.6) is said to be in final AR equation form if $\Phi(L)=\phi(L) I_{N}$, where $\phi(L)=1-\phi_{1} L-\cdots-\phi_{p} L^{p}$ is a scalar polynomial with $\phi_{p} \neq 0$.

Definition 2.2 Final MA Equation form (FMA). The VARMA representation in (2.6) is said to be in final MA equation form if $\Theta(L)=\theta(L) I_{N}$, where $\theta(L)=1-\theta_{1} L-\cdots-\theta_{q} L^{q}$ is a scalar polynomial with $\theta_{q} \neq 0$.

Definition 2.3 DIAGONAL MA EQUATION FORM (DMA). The VARMA representation in (2.6) is said to be in diagonal MA equation form if $\Theta(L)=\operatorname{diag}\left[\theta_{i i}(L)\right]=I_{N}-\Theta_{1} L-\cdots-\Theta_{q} L^{q}$, where $\theta_{i i}(L)=1-\theta_{i i, 1} L-\cdots-\theta_{i i, q_{i}} L^{q_{i}}, \theta_{i i, q_{i}} \neq 0$, and $q=\max _{1 \leq i \leq N}\left(q_{i}\right)$.

Definition 2.4 DIAGONAL AR EQUATION FORM (DAR). The VARMA representation in (2.6) is said to be in diagonal $A R$ equation form if $\Phi(L)=\operatorname{diag}\left[\phi_{i i}(L)\right]=I_{N}-\Phi_{1} L-\cdots-\Phi_{p} L^{p}$, where $\phi_{i i}(L)=1-\phi_{i i, 1} L-\cdots-\phi_{i i, p_{i}} L^{p_{i}}, \phi_{i i, p_{i}} \neq 0$, and $p=\max _{1 \leq i \leq N}\left(p_{i}\right)$.
The identification of these VARMA representations is discussed in Dufour and Pelletier (2013, Section 3). In particular, the identification of diagonal MA form is established under the simple assumption of no common root.

From standard results on the linear aggregation of VARMA processes [see, e.g., Zellner and Palm (1974), Rose (1977), Wei (1978), Abraham (1982), and Lütkepohl (1984)], it is easy to see
that an aggregated process such as F_{t} also has an identified VARMA representation in final AR or MA equation form. But this type of representation may not be attractive for several reasons. First, it is far from the usual VAR model, because it excludes lagged values of other variables in each equation. Moreover, the AR coefficients are the same in all equations, which typically leads to a high-order AR polynomial. Second, the interaction between different variables is modeled through the MA part of the model, and may be difficult to assess in empirical and structural analysis.

The diagonal MA form is especially appealing. In contrast with the echelon form [Deistler and Hannan (1981), Hannan and Deistler (1988), and Lütkepohl (1991, Chapter 7)], it is relatively simple and intuitive. In particular, there is no complex structure of zero off-diagonal elements in the AR and MA operators. For practitioners, this is quite appealing since adding lags of $\varepsilon_{i t}$ to the $i^{t h}$ equation is a simple natural extension of the VAR model. The MA operator has a simple diagonal form, so model nonlinearity is reduced and estimation becomes numerically simpler.

3. VARMA AND FACTOR REPRESENTATIONS

In this section, we study the link between VARMA and factor representations of a vector stochastic process X_{t}, and the dynamic process of the factors. In the theorems below, we suppose that X_{t} is a N dimensional regular (strictly indeterministic) discrete-time process in $\mathbb{R}^{N}: X=\left\{X_{t}: t \in \mathbb{R}^{N}, t \in \mathbb{Z}\right\}$ with Wold representation (2.1). In Theorem 3.1, we postulate a factor model for X_{t} where factors follow a finite-order VAR process:

$$
\begin{equation*}
X_{t}=\Lambda F_{t}+u_{t} \tag{3.1}
\end{equation*}
$$

where Λ is an $N \times K$ matrix of factor loadings with rank K, and u_{t} is a (weak) white noise process with covariance matrix Σ_{u} such that

$$
\begin{equation*}
\mathrm{E}\left[F_{t} u_{t}^{\prime}\right]=0 \text { for all } t . \tag{3.2}
\end{equation*}
$$

We now show that finite-order VAR factors induce a finite-order VARMA process for the observable series. Proofs are supplied in the Appendix.

Theorem 3.1 Observable process induced by finite-order VAR factors. Suppose X_{t} satisfies the assumptions (3.1)-(3.2) and F_{t} follows the $\operatorname{VAR}(p)$ process

$$
\begin{equation*}
F_{t}=\Phi(L) F_{t-1}+a_{t} \tag{3.3}
\end{equation*}
$$

such that $e_{t}=\left[u_{t} \vdots a_{t}\right]^{\prime}$ is a (weak) white noise process with

$$
\begin{equation*}
\mathrm{E}\left[F_{t-j} e_{t}^{\prime}\right]=0 \text { for } j \geq 1, \forall t, \tag{3.4}
\end{equation*}
$$

$\Phi(L)=\Phi_{1} L-\cdots-\Phi_{p} L^{p}$, and the equation $\operatorname{det}\left[I_{K}-\Phi(z)\right]=0$ has all its roots outside the unit circle. Then, for all $t, \mathrm{E}\left[X_{t-j} e_{t}^{\prime}\right]=0$ for $j \geq 1$, and X_{t} has the following representations:

$$
\begin{equation*}
A(L) X_{t}=B(L) e_{t}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
A(L) X_{t}=\bar{\Psi}(L) \varepsilon_{t} \tag{3.6}
\end{equation*}
$$

where $A(L)=\left[I-\Lambda \Phi(L)\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime} L\right], B(L)=[A(L) \vdots \Lambda], \bar{\Psi}(L)=\sum_{j=0}^{p+1} \bar{\Psi}_{j} L^{j}$ with $\bar{\Psi}_{j}=\sum_{i=0}^{p+1} A_{i} \Psi_{j-i}$, the matrices Ψ_{j} are the coefficients of the Wold representation (2.1), and ε_{t} is the innovation process of X_{t}.

This result can be extended to the case where the factors have VARMA representations. It is not surprising that the induced process for X_{t} is again a finite-order VARMA, though possibly with a different MA order. This is summarized in the following theorem.

Theorem 3.2 ObSERVABLE PRocess induced by VARMA factors. Suppose X_{t} satisfies the assumptions (3.1)- (3.2) and F_{t} follows the $\operatorname{VARMA}(p, q)$ process

$$
\begin{equation*}
F_{t}=\Phi(L) F_{t-1}+\Theta(L) a_{t} \tag{3.7}
\end{equation*}
$$

where $e_{t}=\left[u_{t} \vdots a_{t}\right]^{\prime}$ is a (weak) white noise process which satisfies the orthogonality condition (3.4), $\Phi(L)=\Phi_{1} L-\cdots-\Phi_{p} L^{p}, \Theta(L)=I_{K}-\Theta_{1} L-\cdots-\Theta_{q} L^{q}$, and the equation $\operatorname{det}\left[I_{K}-\Phi(z)\right]=0$ has all its roots outside the unit circle. Then X_{t} has representations of the form (3.5) and (3.6), with $B(L)=[A(L) \vdots \Lambda \Theta(L)], \bar{\Psi}(L)=\sum_{j=0}^{p_{*}} \bar{\Psi}_{j} L^{j}, \bar{\Psi}_{j}=\sum_{i=0}^{p_{*}} A_{i} \Psi_{j-i}$, and $p_{*}=\max (p+1, q)$.

Note that the usual invertibility assumption on the factor VARMA process (3.7) is not required. The next issue we consider concerns the factor representation of X_{t}. What are the implications of the underlying structure of X_{t} on the representation of latent factors when the latter are calculated as linear transformations of X_{t} ? This is summarized in the following theorem.

Theorem 3.3 Dynamic factor models associated with VARMA processes. Suppose $F_{t}=C X_{t}$, where C is a $K \times N$ full row rank matrix. Then the following properties hold:
(i) if X_{t} has a $\operatorname{VARMA}(p, q)$ representation as in (2.6), then F_{t} has $\operatorname{VARMA}\left(p_{*}, q_{*}\right)$ representation with $p_{*} \leq(N-K+1) p$ and $q_{*} \leq q+(N-K) p$;
(ii) if X_{t} has a $\operatorname{VAR}(p)$ representation, then F_{t} has $\operatorname{VARMA}\left(p_{*}, q_{*}\right)$ representation with $p_{*} \leq N p$ and $q_{*} \leq(N-1) p$;
(iii) if X_{t} has an MA representation as in (2.4), then F_{t} has an $M A\left(q_{*}\right)$ representation with $q \leq q_{*}$.

From the Wold decomposition of common components, Deistler et al. (2010) argue that latent variables can have ARMA or state-space representations, but given the singularity and zero-free nature of transfer functions, they can also be modeled as finite-order singular AR processes. Theorem 3.3 does not assume the existence of a dynamic factor structure, so it holds for any linear aggregation of X_{t}.

Arguments in favor of using a FAVARMA specification can be summarized as follows.
(i) Whenever X_{t} follows a VAR or a VARMA process, the factors defined through a linear crosssectional transformation (such as principal components) follow a VARMA process. Moreover, a VAR or VARMA-factor structure on X_{t} entails a VARMA structure for X_{t}.
(ii) VARMA representations are more parsimonious, so they easily lead to more efficient estimation and tests. As shown in Dufour and Pelletier (2013), the introduction of the MA operator allows for a reduction of the required AR order so we can get more precise estimates. Moreover, in terms of forecasting accuracy, VARMA models have theoretical advantages over the VAR representation [see Lütkepohl (1987)].
(iii) The use of VARMA factors can be viewed from two different perspectives. First, if we use factor analysis as a dimension-reduction method, a VARMA specification is a natural process for factors (Theorem 3.3). Second, if factors are given a deep ("structural") interpretation, the factor process has intrinsic interest, and a VARMA specification on factors - rather than a finite-order VAR - is an interesting generalization motivated by usual arguments of theoretical coherence, parsimony, and marginalization. In particular, even if F_{t} has a finite-order VAR representation, subvectors of F_{t} typically follow a VARMA process.

4. FACTOR-AUGMENTED VARMA MODELS

We have shown that the observable VARMA process generally induces a VARMA representation for factors, not a finite-order VAR. Following these results, we propose to consider factor-augmented VARMA (FAVARMA) models. Following the notation of Stock and Watson (2005), the dynamic factor model (DFM) where factors have a finite-order $\operatorname{VARMA}\left(p_{f}, q_{f}\right)$ representation can be written as

$$
\begin{align*}
X_{i t} & =\tilde{\lambda}_{i}(L) f_{t}+u_{i t} \tag{4.1}\\
u_{i t} & =\delta_{i}(L) u_{i, t-1}+v_{i t}, \tag{4.2}\\
f_{t} & =\Gamma(L) f_{t-1}+\Theta(L) \eta_{t}, \quad i=1, \ldots, N, \quad t=1, \ldots, T, \tag{4.3}
\end{align*}
$$

where f_{t} is $q \times 1$ factor vector, $\tilde{\lambda}_{i}(L)$ is a $1 \times q$ vector of lag polynomials, $\tilde{\lambda}_{i}(L)=$ $\left(\tilde{\lambda}_{i 1}(L), \ldots, \tilde{\lambda}_{i q}(L)\right), \tilde{\lambda}_{i j}(L)=\sum_{k=0}^{p_{i, j}} \tilde{\lambda}_{i, j, k} L^{k}, \delta_{i}(L)$ is a $p_{x, i}$-degree lag polynomial, $\Gamma(L)=\Gamma_{1} L+$ $\cdots+\Gamma_{p_{f}} L^{p_{f}}, \Theta(L)=I-\Theta_{1} L-\cdots-\Theta_{q_{f}} L^{q_{f}}$, and $v_{i t}$ is a N-dimensional white noise uncorrelated with the q-dimensional white noise process η_{t}. The exact DFM is obtained if the following assumption is satisfied:

$$
\mathrm{E}\left(u_{i t} u_{j s}\right)=0, \forall i, j, t, s, \quad i \neq j .
$$

We obtain the approximate DFM by allowing for cross-section correlations among the idiosyncratic components as in Stock and Watson (2005). We assume the idiosyncratic errors $v_{i t}$ are uncorrelated with the factors f_{t} at all leads and lags.

On premultiplying both sides of (4.1) by $1-\delta_{i}(L)$, we get the DFM with serially uncorrelated idiosyncratic errors:

$$
\begin{equation*}
X_{i t}=\lambda_{i}(L) f_{t}+\delta_{i}(L) X_{i t-1}+v_{i t} \tag{4.4}
\end{equation*}
$$

where $\lambda_{i}(L)=\left[1-\delta_{i}(L) L\right] \tilde{\lambda}_{i}(L)$. Then, we can rewrite the DFM in the following form:

$$
\begin{align*}
X_{t} & =\lambda(L) f_{t}+D(L) X_{t-1}+v_{t}, \tag{4.5}\\
f_{t} & =\Gamma(L) f_{t-1}+\Theta(L) \eta_{t}, \tag{4.6}
\end{align*}
$$

where

$$
\lambda(L)=\left[\begin{array}{c}
\lambda_{1}(L) \\
\vdots \\
\lambda_{n}(L)
\end{array}\right], \quad D(L)=\left[\begin{array}{ccc}
\delta_{1}(L) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \delta_{n}(L)
\end{array}\right], \quad v_{t}=\left[\begin{array}{c}
v_{1 t} \\
\vdots \\
v_{n t}
\end{array}\right] .
$$

To obtain the static version, we suppose that $\lambda(L)$ has degree $p-1$, and let $F_{t}=$ $\left[f_{t}^{\prime}, f_{t-1}^{\prime}, \ldots, f_{t-p+1}^{\prime}\right]^{\prime}$, where the dimension of F_{t} is K, with $q \leq K \leq q p$. Then,

$$
\begin{align*}
X_{t} & =\Lambda F_{t}+u_{t}, \tag{4.7}\\
u_{t} & =D(L) u_{t-1}+v_{t}, \tag{4.8}\\
F_{t} & =\Phi(L) F_{t-1}+G \Theta(L) \eta_{t}, \tag{4.9}
\end{align*}
$$

where Λ is a $N \times K$ matrix where the i-th row consists of coefficients of $\tilde{\lambda}_{i}(L), \Phi(L)$ contains coefficients of $\Gamma(L)$ and zeros, and G is a $K \times q$ matrix which loads (structural) shocks η_{t} to static factors (it consists of 1's and 0 's). Note that if $\Theta(L)=I$ we obtain the static factor model which has been used to forecast time series [Stock and Watson (2002b), Stock and Watson (2006), Boivin and Ng (2005)] and study the impact of monetary policy shocks in a FAVAR model [Bernanke et al. (2005), Boivin et al. (2009)].

5. ESTIMATION

Several estimation methods have been proposed for factor models and VARMA processes (separately). One possibility is to estimate the system (4.7)-(4.9) simultaneously after making distributional assumptions on the error terms. This method is already computationally difficult when the factors have a simple VAR structure. Adding the MA part to the factor process makes this task even more difficult, for estimating VARMA models is typically not easy.

We use here the two-step Principal Component Analysis (PCA) estimation method; see Stock and Watson (2002) and Bai and Ng (2008) for theoretical results concerning the PCA estimator. In the first step, \hat{F}_{t} are computed as K principal components of X_{t}. In the second step, we estimate the VARMA representation (4.9) on \hat{F}_{t}. The number of factors can be estimated through different procedures proposed by Amengual and Watson (2007), Bai and Ng (2002), Bai and Ng (2007), Hallin and Liska (2007), and Onatski (2009). In forecasting we estimate the number of factors using the Bayesian information criterion as in Stock and Watson (2002b), while the number of factors in the structural FAVARMA model is the same as in Bernanke et al. (2005).

The standard estimation methods for VARMA models are maximum likelihood and nonlinear least squares. Unfortunately, these methods require nonlinear optimization, which may not be feasible when the number of parameters is large. Here, we use the GLS method proposed in Du-
four and Pelletier (2013), which generalizes the regression-based estimation method introduced by Hannan and Rissanen (1982). Consider a K-dimensional zero mean process Y_{t} generated by the $\operatorname{VARMA}(p, q)$ model:

$$
\begin{equation*}
A(L) Y_{t}=B(L) U_{t} \tag{5.1}
\end{equation*}
$$

where $A(L)=I_{K}-A_{1} L-\cdots-A_{p} L^{p}, B(L)=I_{K}-B_{1} L-\cdots-B_{q} L^{q}$, and U_{t} is a weak white noise. Assume $\operatorname{det}[A(z)] \neq 0$ for $|z| \leq 1$ and $\operatorname{det}[B(z)] \neq 0$ for $|z| \leq 1$ so the process Y_{t} is stable and invertible. Set $A_{k}=\left[a_{1 \bullet, k}^{\prime}, \ldots, a_{K \bullet, k}^{\prime}\right]^{\prime}, k=1, \ldots, K$, where $a_{j \bullet, k}$ is the j-th row of A_{k}, and $B(L)=\operatorname{diag}\left[b_{11}(L), \ldots, b_{K K}(L)\right], b_{j j}(L)=1-b_{j j, 1} L-\cdots-b_{j j, q_{j}} L^{q_{j}}$, when $B(L)$ is in MA diagonal form. Then, when the model is in diagonal MA form, we can write the parameters of the VARMA model as a vector $\gamma=\left[\gamma_{1}, \gamma_{2}\right]^{\prime}$ where γ_{1} contains the AR parameters and γ_{2} the MA parameters, as follows:

$$
\begin{gather*}
\gamma_{1}=\left[a_{1 \bullet, 1}, \ldots, a_{1 \bullet, p}, \ldots, a_{K \bullet, 1}, \ldots, a_{K \bullet, p}\right] \tag{5.2}\\
\gamma_{2}=\left[b_{11,1}, \ldots, b_{11, q_{1}}, \ldots, b_{K K, 1}, \ldots, b_{K K, q_{K}}\right] . \tag{5.3}
\end{gather*}
$$

The estimation method involves three steps.

Step 1. Estimate a $\operatorname{VAR}\left(n_{T}\right)$ model by least squares, where $n_{T}<T /(2 K)$, and compute the residuals:

$$
\begin{equation*}
\hat{U}_{t}=Y_{t}-\sum_{l=1}^{n_{T}} \hat{\Pi}_{l}\left(n_{T}\right) Y_{t-l} \tag{5.4}
\end{equation*}
$$

Step 2. From the residuals of step 1 , compute $\hat{\Sigma}_{U}=\frac{1}{T} \sum_{t=n_{T}+1}^{T} \hat{U}_{t} \hat{U}_{t}^{\prime}$, i.e. the corresponding estimate of the covariance matrix of U_{t}, and apply GLS to the multivariate regression

$$
\begin{equation*}
A(L) Y_{t}=\left[B(L)-I_{K}\right] \hat{U}_{t}+e_{t} \tag{5.5}
\end{equation*}
$$

to get estimates $\tilde{A}(L)$ and $\tilde{B}(L)$. The estimator is

$$
\begin{equation*}
\hat{\gamma}=\left[\sum_{t=l}^{T} \hat{Z}_{t-1}^{\prime} \hat{\Sigma}_{U}^{-1} \hat{Z}_{t-1}\right]^{-1} \sum_{t=l}^{T} \hat{Z}_{t-1}^{\prime} \hat{\Sigma}_{U}^{-1} Y_{t} \tag{5.6}
\end{equation*}
$$

with $l=n_{T}+\max (p, q)+1$. Setting

$$
\begin{gather*}
\mathbf{Y}_{t-1}(p)=\left[y_{1, t-1}, \ldots, y_{K, t-1}, \ldots, y_{1, t-p}, \ldots, y_{K, t-p}\right] \tag{5.7}\\
\hat{\mathbf{U}}_{t-1}=\left[\hat{u}_{1, t-1}, \ldots, \hat{u}_{K, t-1}, \ldots, \hat{u}_{1, t-q}, \ldots, \hat{u}_{K, t-q}\right], \hat{\mathbf{u}}_{k, t-1}=\left[\hat{u}_{k, t-1}, \ldots, \hat{u}_{k, t-q_{k}}\right] \tag{5.8}
\end{gather*}
$$

the matrix \hat{Z}_{t-1} is defined as

$$
\hat{Z}_{t-1}=\left[\begin{array}{cccccc}
\mathbf{Y}_{t-1}(p) & \cdots & 0 & \hat{\mathbf{u}}_{1, t-1} & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \mathbf{Y}_{t-1}(p) & 0 & \cdots & \hat{\mathbf{u}}_{K, t-1}
\end{array}\right]
$$

Step 3. Using the second step estimates, form new residuals

$$
\tilde{U}_{t}=Y_{t}-\sum_{i=1}^{p} \tilde{A}_{i} Y_{t-i}+\sum_{j=1}^{q} \tilde{B}_{j} \tilde{U}_{t-j}
$$

with $\tilde{U}_{t}=0$ for $t \leq \max (p, q)$, and define

$$
X_{t}=\sum_{j=1}^{q} \tilde{B}_{j} X_{t-j}+Y_{t}, W_{t}=\sum_{j=1}^{q} \tilde{B}_{j} W_{t-j}+\tilde{U}_{t}, \tilde{V}_{t}=\sum_{j=1}^{q} \tilde{B}_{j} \tilde{V}_{t-j}+\tilde{Z}_{t},
$$

where $X_{t}=W_{t}=0$ for $t \leq \max (p, q)$, and \tilde{Z}_{t} is defined like \hat{Z}_{t} in step 2, with \hat{U}_{t} replaced by \tilde{U}_{t}. Then, compute a new estimate of $\Sigma_{U}, \hat{\Sigma}_{U}=\frac{1}{T} \sum_{t=\max (p, q)+1}^{T} \tilde{U}_{t} \tilde{U}_{t}^{\prime}$, and regress by GLS $\tilde{U}_{t}+X_{t}-W_{t}$ on \tilde{V}_{t-1} to obtain the following estimate of γ :

$$
\begin{equation*}
\hat{\gamma}=\left[\sum_{t=\max (p, q)+1}^{T} \tilde{V}_{t-1}^{\prime} \tilde{\Sigma}_{U}^{-1} \tilde{V}_{t-1}\right]^{-1}\left[\sum_{t=\max (p, q)+1}^{T} \tilde{V}_{t-1}^{\prime} \tilde{\Sigma}_{U}^{-1}\left[\tilde{U}_{t}+X_{t}-W_{t}\right]\right] . \tag{5.9}
\end{equation*}
$$

The consistency and asymptotic normality of the above estimators are established in Dufour and Pelletier (2013). In the previous steps, the orders of the AR and MA operators are taken as known. In practice, they are usually estimated by statistical methods or suggested by theory. Dufour and Pelletier (2013) propose an information criterion to be applied in the second step of the estimation procedure. For all $p_{i} \leq P$ and $q_{i} \leq Q$ compute

$$
\begin{equation*}
\log \left[\operatorname{det}\left(\tilde{\Sigma}_{U}\right)\right]+\operatorname{dim}(\gamma) \frac{(\log T)^{1+\delta}}{T}, \quad \delta>0 \tag{5.10}
\end{equation*}
$$

Choose \hat{p}_{i} and \hat{q}_{i} as the set which minimizes the information criteria (5.10). The properties of estimators \hat{p}_{i} and \hat{q}_{i} are given in the paper.

6. FORECASTING

In this section, we study whether the introduction of VARMA factors can improve forecasting. We consider a simplified version of the static model (4.7)-(4.9) where F_{t} is scalar:

$$
\begin{align*}
X_{i t} & =\lambda_{i} F_{t}+u_{i t} \tag{6.1}\\
u_{i t} & =\delta_{i u_{i t-1}+v_{i t}, i, \ldots, N,}^{F_{t}} \tag{6.2}
\end{align*}=\phi F_{t-1}+\eta_{t}-\theta \eta_{t-1} .
$$

On replacing F_{t} and $u_{i t}$ in the observation equation (6.1) with the expressions in (6.2)- (6.3), we get the following forecast equation for $X_{i, T+1}$ based on the information available at time T :

$$
X_{i, T+1 \mid T}=\delta_{i} X_{i T}+\lambda_{i}\left(\phi-\delta_{i}\right) F_{T}-\lambda_{i} \theta \eta_{T} .
$$

Suppose $\lambda_{i} \neq 0$, i.e. there is indeed a factor structure applicable to $X_{i t}$, and $\phi \neq \delta_{i}$, i.e. the common and specific components do not have the same dynamics. With the additional assumption that F_{t} follows an $\mathrm{AR}(1)$ process, Boivin and $\mathrm{Ng}(2005)$ show that taking into account the factor F_{t} allows one to obtain better forecasts of $X_{i t}$ [in terms of the mean squared error (MSE)]. We allow here for an MA component in the dynamic process of F_{t}, which provides a parsimonious way of representing an infinite-order AR structure for the factor.

Forecast performance depends on the way factors are estimated as well as the choice of forecasting model. Boivin and Ng (2005) consider static and dynamic factor estimation along with three types of forecast equations: (1) unrestricted, where $X_{i, T+h}$ is predicted using $X_{i T}, F_{T}$ and their lags; (2) direct, where F_{T+h} is first predicted using its dynamic process, a forecast then used to predict $X_{i, T+h}$ with the factor equation (6.3); (3) nonparametric, where no parametric assumption is made on factor dynamics and its relationship with observables. The simulation and empirical results of Boivin and Ng (2005) show that the unrestricted forecast equation with static factors generally yields the best performance in terms of MSE.

6.1. Forecasting models

A popular way to evaluate the predictive power of a model is to conduct an out-of-sample forecasting exercise. Here, we compare the FAVARMA approach with common factor-based methods. The forecast equations are divided in two categories. First, we consider methods where no explicit dynamic factor model is used, such as diffusion-index (DI) and diffusion autoregressive (DI-AR) models [Stock and Watson (2002b)]:

$$
X_{i, T+h \mid T}=\alpha^{(h)}+\sum_{j=1}^{m} \beta_{i j}^{(h)} F_{T-j+1}+\sum_{j=1}^{p} \rho_{i j}^{(h)} X_{i, T-j+1}
$$

In this case, three variants are studied: (1) "unrestricted" (with $m \geq 1$ and $p \geq 0$); (2) "DI" (with $m=1$ and $p=0$); (3) "DI-AR" (with $m=1$). Second, we consider two-step methods where common and specific components are first predicted from their estimated dynamic processes, and then combined to forecast the variables of interest using the estimated observation equation. Moreover, we distinguish between sequential (or iterative) and direct methods to calculate forecasts [see Marcellino, Stock and Watson (2006) for details]:

$$
X_{i, T+h \mid T}=\lambda_{i}^{\prime} F_{T+h \mid T}+u_{i, T+h \mid T}
$$

where $u_{i, T+h \mid T}$ is obtained after fitting an $\operatorname{AR}(p)$ process on $u_{i t}$, while the factor forecasts are obtained using "sequential" $\left[F_{T+h \mid T}=\hat{\Phi}_{T+h-1}(L) F_{T+h-1 \mid T}\right]$ or "direct" methods $\left[F_{T+h \mid T}=\right.$ $\left.\hat{\Phi}_{T}^{(h)}(L) F_{T}\right]$.

In this exercise, the factors are defined as principal components of X_{t}. Thus, only the second type of forecast method is affected by allowing for VARMA factors. We consider four identified VARMA forms labeled: "Diag MA", "Diag AR", "Final MA" and "Final AR". The FAVARMA
forecasting equations have the form:

$$
X_{i, T+h \mid T}=\lambda_{i}^{\prime} F_{T+h \mid T}+u_{i, T+h \mid T}, \quad F_{T+h \mid T}=\hat{\Phi}_{T+h-1}(L) F_{T+h-1 \mid T}+\hat{\Theta}_{T+h-1}(L) \eta_{T+h-1 \mid T} .
$$

Our benchmark forecasting model is an $\operatorname{AR}(p)$ model, as in Stock and Watson (2002b) and Boivin and Ng (2005). However, given the postulated factor structure, a finite-order autoregressive model is only an approximation of the process of $X_{i t}$. From Theorem 3.1, the marginal process for each element of X_{t} typically has an ARMA form. If the MA polynomial has roots close to the non-invertibility region, a long autoregressive model may be needed to approximate the process. For this reason, we also consider ARMA models as benchmarks, to see how they fare with respect to AR and factor-based models.

6.2. Monte-Carlo simulations

To assess the performance of our approach, we performed a Monte Carlo simulation comparing the forecasts of FAVARMA models (in four identified forms) with those of FAVAR models. The data were simulated using a static factor model with MA(1) factors and idiosyncratic components similar to the ones considered by Boivin and Ng (2005) and Onatski (2009b):

$$
\begin{gathered}
X_{i t}=\lambda_{i} F_{t}+u_{i t}, F_{t}=\eta_{t}-B \eta_{t-1} \\
u_{i t}=\rho_{N} u_{i-1, t}+\xi_{i t}, \xi_{i t}=\rho_{T} \xi_{i, t-1}+\varepsilon_{i t}, \quad \varepsilon_{i t} \sim N(0,1), i=1, \ldots, N, t=1, \ldots, T
\end{gathered}
$$

where $\eta_{t} \stackrel{\text { iid }}{\sim} N(0,1), \rho_{N} \in\{0.1,0.5,0.9\}$ determines the cross-sectional dependence, $\rho_{T} \in\{0.1,0.9\}$ the time dependence, the number of factors is $2, B=\operatorname{diag}[0.5,0.3], N=\{50,100,130\}$, and $T \in$ $\{50,100,600\}$. VARMA orders are estimated as in Dufour and Pelletier (2013), the AR order for idiosyncratic component is 1 , and the lag order in VAR approximation of factors dynamics is set to 6.

The results from this simulation exercise are presented in Appendix (Table 1). The numbers represent the MSE of four FAVARMA identified forms over the MSE of FAVAR direct forecasting models. When the number of time periods is small $(T=50)$, FAVARMA models strongly outperform FAVAR models, especially at long horizons. The huge improvement at horizons 24 and 36 is due to the small sample size. When compared to the iterative FAVAR model (not reported), FAVARMA models still produce better forecasts in terms of MSE, but the improvement is smaller relative to the multi-step-ahead VAR-based forecasts. When the number of time periods increases ($T=100,600$), the improvement of VARMA-based models is moderate, but the latter still yield better forecasts, especially at longer horizons. Another observation of interest is that FAVARMA models perform better when the factor structure is weak, i.e. in cases where the cross-section size is relatively small ($N=50$ compared to $N=100$) and idiosyncratic components are correlated.

We performed additional simulation exercises (not reported), which also demonstrate a better performance of FAVARMA-based forecasts when the number of factors increases. The description and results are available in the appendix.

7. APPLICATION: FORECASTING U.S. MACROECONOMIC AGGREGATES

In this section, we present an out-of-sample forecasting exercise using a balanced monthly panel from Boivin et al. (2009) which contains 128 monthly U.S. economic and financial indicators observed from 1959M01 to 2008M12. The series were initially transformed to induce stationarity.

The MSE results relative to benchmark $\operatorname{AR}(p)$ models are presented in Table 1. The out-ofsample evaluation period is 1988M01-2008M12. In the forecasting models "unrestricted", "DI", and "DI-AR", the number of factors, the number of lags for both factors and $X_{i t}$ are estimated with BIC, and are allowed to vary over the whole evaluation period. For "unrestricted" model the number of factors is $3, m=1$ and $p=0$. In the case of "DI-AR" and "DI", 6 factors are used, plus 5 lags of $X_{i t}$ within "DI-AR" representation.

In the FAVAR and FAVARMA models, the number of factors is set to 4 . For all evaluation periods and forecasting horizons the estimated VARMA orders (AR and MA respectively) are low: 1 and $[1,1,1,1]$ for DMA form, $[1,2,1,1]$ and 1 for DAR, 1 and 2 for FMA, and $[2-4]$ and 1 for FAR form. The estimated VAR order is most of the time equal to 2 , while the lag order of each idiosyncratic $\operatorname{AR}(p)$ process is between 1 and 3. In robustness analysis, the VAR order has been set to 4,6 and 12, but the results did not change substantially. Both univariate ARMA orders are estimated to 1 , while the number of lags in the benchmark AR model fluctuates between 1 and 2 .

The results in Table 1 show that VARMA factors improve the forecasts of key macroeconomic indicators across several horizons. For industrial production growth, the diffusion-index model exhibits the best performance at the one-month horizon, while diagonal MA and final MA FAVARMA models outperform the other methods for horizons of 2, 4 and 6 months. Finally, univariate ARMA models yield the smallest RMSE for the long-term forecasts. When forecasting employment growth, three FAVARMA forms outperform all other factor-based models for short and mid-term horizons. ARMA models still produce the smallest RMSE for most of the long-term horizons.

For CPI inflation, the DI model provides the smallest MSE at horizon 1, while the final AR FAVARMA models do a better job at horizons 2, 4 and 6 . Several VARMA-based models perform the best for longer horizons (18,24 and 48 months), while sequential and DI approaches dominate in forecasting 12 and 36 months ahead.

From Theorem 3.1, it is easy to see that each component of X_{t} follows a univariate ARMA process. The forecasts based on factor and univariate ARMA models are not in general equivalent, because different information sets are used. Even though multivariate models (such as factor models) use more variables, univariate ARMA models tend to be more parsimonious in practice, which may reduce estimation uncertainty. So these two modelling strategies can produce quite different forecasts. In Table 2 we present MSE of all factor model predictions relative to ARMA forecasts. Boldface numbers highlight cases where the ARMA model outperforms the factor-based alternatives in terms of MSE.

For industrial production, ARMA specifications do better than all diffusion-index and FAVAR models (except at the one-month horizon). For employment, the conclusion is quite similar relative to FAVARMA, while diffusion-index models perform better than ARMA at horizons 1, 2, 4, and 48. Finally, in the case of CPI inflation, ARMA model seem to be a better choice for most of

Table 1: RMSE relative to direct $\operatorname{AR}(p)$ forecasts

Industrial production growth rate: total										
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR	ARMA
1	0.8706	0.8457	0.8958	0.9443	0.9443	0.8971	0.9019	0.9132	0.8985	0.9700
2	1.0490	0.9938	1.0106	1.0157	1.0665	0.9074	0.9202	0.9112	0.9123	1.0026
4	1.1934	1.0411	1.0527	1.0711	1.2214	0.8947	0.9906	0.8970	0.9481	0.9710
6	1.1496	1.0238	1.0245	1.1743	1.3528	0.9248	1.0494	0.9202	0.9847	0.9918
12	1.2486	1.0445	1.0389	1.0933	1.3682	1.0008	1.2215	1.0075	1.0371	0.9713
18	1.0507	1.0048	1.0207	1.0662	1.2508	1.0511	1.5098	1.0615	1.1206	0.9910
24	1.0393	1.0628	1.0748	1.0128	1.0863	0.9858	1.7920	0.9959	1.1061	0.9604
36	1.0092	1.0906	1.1437	1.2364	1.0421	0.9855	3.0304	0.9883	1.1795	0.9826
48	1.0147	1.1110	1.1212	1.1063	1.0355	0.9921	5.5321	0.9922	1.1681	0.9856
Civilian labor force growth rate: employed. total										
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR	ARMA
1	0.8264	0.8832	0.8451	0.8202	0.8202	0.8004	0.8075	0.8027	0.8008	1.0496
2	0.9407	0.9391	0.9381	0.9477	0.9591	0.8931	0.8805	0.8961	0.8852	1.0422
4	0.9766	0.9739	0.9937	1.0204	1.0551	0.9213	0.8997	0.9200	0.8991	0.9993
6	1.0776	1.0799	1.0937	1.0714	1.1550	0.9667	0.9526	0.9636	0.9455	1.0032
12	1.0741	1.0742	1.0722	1.0137	1.1654	0.9718	0.9912	0.9704	0.9558	0.9507
18	1.0471	1.0488	1.0472	0.9735	1.1391	1.0073	1.1386	1.0096	1.0391	0.9721
24	1.0237	1.0580	1.0268	0.9641	1.1002	1.0154	1.2806	1.0177	1.0856	0.9893
36	0.9573	0.9099	0.9703	0.9507	0.9477	0.9070	1.5452	0.9043	1.0098	0.8957
48	0.9227	0.9236	0.9250	0.9576	0.9989	0.9652	2.4022	0.9624	1.0482	0.9550
Consumer price index growth rate: all items										
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR	ARMA
1	0.8806	0.8700	0.8700	0.9228	0.9228	0.9144	0.9432	0.8856	0.9072	1.0143
2	0.9866	0.9942	0.9942	0.9612	0.9730	0.9309	0.9427	0.9274	0.9170	0.9856
4	1.0656	1.0732	1.0732	1.0398	1.0170	1.0007	1.0665	0.9895	0.9792	1.0129
6	1.1343	1.1334	1.1334	1.0349	1.0101	0.9946	1.0752	0.9939	0.9928	1.0364
12	1.1173	1.1279	1.1279	1.0821	0.9513	0.9572	1.1958	0.9553	1.0408	1.0297
18	1.0311	1.0379	1.0379	1.0430	0.9654	0.8894	1.1021	0.8909	0.9673	0.9391
24	0.9644	1.0712	1.0712	0.9510	0.9980	0.8819	1.1851	0.8791	0.9713	0.8805
36	0.7645	0.7627	0.7627	0.9870	0.9470	0.8329	1.4591	0.8385	0.9126	0.8619
48	0.8663	0.8488	0.8488	0.9361	0.9536	0.8292	2.2640	0.8335	0.8864	0.8511

Note - The numbers in bold character present the model producing the best forecasts in terms of MSE.
the horizons relatively to diffusion-index and FAVAR alternatives. On the other hand, FAVARMA models do much better, e.g. the final MA form beats the ARMA models at all horizons.

Based on these results, ARMA models appears to be a very good alternative to standard factorbased models at long horizons. This is not surprising since ARMA models are very parsimonious. However, FAVARMA models outperform ARMA models in most cases.

It is also of interest to see more directly how FAVARMA forecasts compare to those from FAVAR models. In Table 3, we present MSE of FAVARMA forecasting models relative to Direct and Sequential FAVAR specifications. The numbers in bold character present cases where the FAVARMA model performs better than the FAVAR.

Most numbers in Table 3 are boldfaced, i.e. FAVARMA models outperform standard FAVAR specifications at most horizons. This is especially the case for industrial production, where both MA VARMA forms produce smaller MSE at all horizons. At best, the FAVARMA model improves the forecasting accuracy by 32% at horizon 12. In the case of Civilian labor force, VARMA factors do improve the predicting power, but the Direct FAVAR model performs better for longer horizons.

Table 2: RMSE relative to $\operatorname{ARMA}(p, q)$ forecasts

Industrial production growth rate: total									
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR
1	0.8975	0.8719	0.9235	0.9735	0.9735	0.9248	0.9298	0.9414	0.9263
2	1.0463	0.9912	1.0080	1.0131	1.0637	0.9050	0.9178	0.9088	0.9099
4	1.2290	1.0722	1.0841	1.1031	1.2579	0.9214	1.0202	0.9238	0.9764
6	1.1591	1.0323	1.0330	1.1840	1.3640	0.9324	1.0581	0.9278	0.9928
12	1.2855	1.0754	1.0696	1.1256	1.4086	1.0304	1.2576	1.0373	1.0677
18	1.0602	1.0139	1.0300	1.0759	1.2622	1.0606	1.5235	1.0711	1.1308
24	1.0822	1.1066	1.1191	1.0546	1.1311	1.0264	1.8659	1.0370	1.1517
36	1.0271	1.1099	1.1640	1.2583	1.0606	1.0030	3.0841	1.0058	1.2004
48	1.0295	1.1272	1.1376	1.1225	1.0506	1.0066	5.6129	1.0067	1.1852
Civilian labor force growth rate: employed. total									
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR
1	0.7873	0.8415	0.8052	0.7814	0.7814	0.7626	0.7693	0.7648	0.7630
2	0.9026	0.9011	0.9001	0.9093	0.9203	0.8569	0.8448	0.8598	0.8494
4	0.9773	0.9746	0.9944	1.0211	1.0558	0.9219	0.9003	0.9206	0.8997
6	1.0742	1.0765	1.0902	1.0680	1.1513	0.9636	0.9496	0.9605	0.9425
12	1.1298	1.1299	1.1278	1.0663	1.2258	1.0222	1.0426	1.0207	1.0054
18	1.0772	1.0789	1.0773	1.0014	1.1718	1.0362	1.1713	1.0386	1.0689
24	1.0348	1.0694	1.0379	0.9745	1.1121	1.0264	1.2945	1.0287	1.0973
36	1.0688	1.0159	1.0833	1.0614	1.0581	1.0126	1.7251	1.0096	1.1274
48	0.9662	0.9671	0.9686	1.0027	1.0460	1.0107	2.5154	1.0077	1.0976
Consumer price index growth rate: all items									
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR
1	0.8682	0.8577	0.8577	0.9098	0.9098	0.9015	0.9299	0.8731	0.8944
2	1.0010	1.0087	1.0087	0.9752	0.9872	0.9445	0.9565	0.9409	0.9304
4	1.0520	1.0595	1.0595	1.0266	1.0040	0.9880	1.0529	0.9769	0.9667
6	1.0945	1.0936	1.0936	0.9986	0.9746	0.9597	1.0374	0.9590	0.9579
12	1.0851	1.0954	1.0954	1.0509	0.9239	0.9296	1.1613	0.9277	1.0108
18	1.0980	1.1052	1.1052	1.1106	1.0280	0.9471	1.1736	0.9487	1.0300
24	1.0953	1.2166	1.2166	1.0801	1.1334	1.0016	1.3459	0.9984	1.1031
36	0.8870	0.8849	0.8849	1.1451	1.0987	0.9664	1.6929	0.9729	1.0588
48	1.0179	0.9973	0.9973	1.0999	1.1204	0.9743	2.6601	0.9793	1.0415

Note - The numbers in bold character present cases where the ARMA model outperforms the factor-based alternatives in terms of MSE.

Finally, both diagonal and final MA FAVARMA specifications provide smaller MSEs over all horizons in predicting CPI inflation. The improvement increases with the forecast horizons, and reaches a maximum of 15%.

We performed a similar exercise with a Canadian data set from Boivin, Giannoni and Stevanović (2009b). We found that VARMA factors help in predicting several key Canadian macroeconomic aggregates, relative to standard factor models, and at many forecasting horizons. The description and results are available in the Appendix.

Table 3: MSE of FAVARMA relative to FAVAR forecasting models

Horizon	Industrial production growth rate: total							
	VARMA/Direct				VARMA/Sequential			
	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9500	0.9551	0.9671	0.9515	0.9500	0.9551	0.9671	0.9515
2	0.8934	0.9060	0.8971	0.8982	0.8508	0.8628	0.8544	0.8554
4	0.8353	0.9248	0.8375	0.8852	0.7325	0.8110	0.7344	0.7762
6	0.7875	0.8936	0.7836	0.8385	0.6836	0.7757	0.6802	0.7279
12	0.9154	1.1173	0.9215	0.9486	0.7315	0.8928	0.7364	0.7580
18	0.9858	1.4161	0.9956	1.0510	0.8403	1.2071	0.8487	0.8959
24	0.9733	1.7694	0.9833	1.0921	0.9075	1.6496	0.9168	1.0182
36	0.7971	2.4510	0.7993	0.9540	0.9457	2.9080	0.9484	1.1318
48	0.8968	5.0005	0.8969	1.0559	0.9581	5.3424	0.9582	1.1281
	Civilian labor force growth rate: employed. total VARMA/Direct VARMA/Sequential							
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9759	0.9845	0.9787	0.9763	0.9759	0.9845	0.9787	0.9763
2	0.9424	0.9291	0.9456	0.9341	0.9312	0.9180	0.9343	0.9229
4	0.9029	0.8817	0.9016	0.8811	0.8732	0.8527	0.8720	0.8521
6	0.9023	0.8891	0.8994	0.8825	0.8370	0.8248	0.8343	0.8186
12	0.9587	0.9778	0.9573	0.9429	0.8339	0.8505	0.8327	0.8201
18	1.0347	1.1696	1.0371	1.0674	0.8843	0.9996	0.8863	0.9122
24	1.0532	1.3283	1.0556	1.1260	0.9229	1.1640	0.9250	0.9867
36	0.9540	1.6253	0.9512	1.0622	0.9571	1.6305	0.9542	1.0655
48	1.0079	2.5086	1.0050	1.0946	0.9663	2.4048	0.9635	1.0494
	Consumer price index growth rate: all items VARMA/Direct VARMA/Sequential							
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9909	1.0221	0.9597	0.9831	0.9909	1.0221	0.9597	0.9831
2	0.9685	0.9808	0.9648	0.9540	0.9567	0.9689	0.9531	0.9424
4	0.9624	1.0257	0.9516	0.9417	0.9840	1.0487	0.9730	0.9628
6	0.9611	1.0389	0.9604	0.9593	0.9847	1.0644	0.9840	0.9829
12	0.8846	1.1051	0.8828	0.9618	1.0062	1.2570	1.0042	1.0941
18	0.8527	1.0567	0.8542	0.9274	0.9213	1.1416	0.9228	1.0020
24	0.9273	1.2462	0.9244	1.0213	0.8837	1.1875	0.8809	0.9732
36	0.8439	1.4783	0.8495	0.9246	0.8795	1.5408	0.8854	0.9637
48	0.8858	2.4185	0.8904	0.9469	0.8695	2.3742	0.8741	0.9295

Note - The numbers in bold character present cases where the FAVARMA model performs better than the FAVAR.

8. APPLICATION: EFFECTS OF MONETARY POLICY SHOCKS

In the recent empirical macroeconomic literature, structural factor analysis has become popular: using hundreds of observable economic indicators appears to overcome several difficulties associated with standard structural VAR modelling. In particular, bringing more information, while keeping the model parsimonious, may provide corrections for omitted and measurement errors; see Bernanke et al. (2005) and Forni, Giannone, Lippi and Reichlin (2009).

We reconsider the empirical study of Bernanke et al. (2005) with the same data, the same method to extract factors (principal components) and the same observed factor (Federal Funds Rate). So we set $D(L)=0$ and $G=I$ in equations (4.8)-(4.9). The difference is that we estimate VARMA dynamics on static factors instead of imposing a finite-order VAR representation. The monetary
policy shock is identified from the Cholesky decomposition of the residual covariance matrix in (4.9), where the observed factor is ordered last. We consider all four identified VARMA forms, but retain only the diagonal MA representation. The number of latent factors is set to five, and we estimate a VARMA (2.1) model [these orders were estimated using the information criterion in Dufour and Pelletier (2013)].

In Figure 1, we present FAVARMA (2,1)-based impulse responses, with 90% confidence intervals (computed from 5000 bootstrap replications). A contractionary monetary policy shock generates a significant and very persistent economic downturn. The confidence intervals are more informative than those from FAVAR models. We conclude that impulse responses from a parsimonious 6 -factor $\operatorname{FAVARMA}(2,1)$ model provide a precise and plausible picture of the effect and transmission of monetary policy in the U.S.

In Figure 2, we compare the impulse responses to a monetary policy shock estimated from FAVAR and FAVARMA-DMA models. The FAVAR impulse coefficients were computed for several VAR orders. To get similar responses from a standard FAVAR model, the Akaike information criterion leads to a lag order of 14 . So we need to estimate 84 coefficients governing the factors dynamics in the FAVARMA framework, while the FAVAR model requires 510 VAR parameters.

The approximation of the true factor process could be important when choosing the parametric bootstrap procedure to obtain statistical inference on objects of interest. The confidence intervals are produced as follows [see Yamamoto (2011) for theoretical justification of this bootstrap procedure]. Step 1 Shuffle the time periods, with replacement, of the residuals in (4.9) to get the bootstrap sample $\tilde{\eta}_{t}$. Then, resample static factors using estimated VARMA coefficients:

$$
\tilde{F}_{t}=\hat{\Phi}(L) \tilde{F}_{t-1}+\hat{\Theta} \tilde{\eta}_{t} .
$$

Step 2 Shuffle the time periods, with replacement, of the residuals in (4.7) to get the bootstrap sample \tilde{u}_{t}. Then resample the observable series using \tilde{F}_{t} and the estimated loadings:

$$
\tilde{X}_{t}=\hat{\Lambda} \tilde{F}_{t}+\tilde{u}_{t} .
$$

Step 3 Estimate FAVARMA model on \tilde{X}_{t}, identify structural shocks and produce impulse responses.

9. CONCLUSION

In this paper, we have studied the relationship between VARMA and factor representations of a vector stochastic process and proposed the FAVARMA model. We started by observing that multivariate time series and their associated factors cannot in general both follow a finite-order VAR process. When the factors are obtained as linear combinations of observable series, the dynamic process of the latter has a VARMA structure, not a finite-order VAR form. In addition, even if the factors follow a finite-order VAR process, this implies a VARMA representation for the observable series. As a result, we proposed the FAVARMA framework, which combines two parsimonious methods to represent the dynamic interactions between a large number of time series: factor analysis and VARMA modeling.

To illustrate the performance of the proposed approach, we performed Monte Carlo simulations

∞

Figure 1: FAVARMA-DMA impulse responses to monetary policy shock

Figure 2: Comparison between FAVAR and FAVARMA impulse responses to a monetary policy shock
and found that VARMA modelling is quite helpful, especially in small samples cases - where the best improvement occurred at long horizons - but also in cases where the sample size is comparable to the one in our empirical data.

We applied our approach in an out-of-sample forecasting exercises based on a large U.S. monthly panel. The results show that VARMA factors help predict several key macroeconomic aggregates relative to standard factor models. In particular, FAVARMA models generally outperform FAVAR forecasting models, especially if we use MA VARMA-factor specifications.

Finally, we estimated the effect of monetary policy using the data and the identification scheme of Bernanke et al. (2005). We found that impulse responses from a parsimonious 6 -factor FAVARMA (2.1) factor model yields a precise and plausible picture of the effect and the transmission of monetary policy in the U.S. To get similar responses from a standard FAVAR model, the Akaike information criterion leads to a lag order of 14 . So we need to estimate 84 coefficients governing the factors dynamics in the FAVARMA framework, while the FAVAR model requires 510 parameters

APPENDIX

A. PROOFS

Proof of Theorem 3.1 Since Λ has full rank, we can multiply (3.1) by $\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime}$ to get

$$
\begin{equation*}
F_{t-1}=\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime} X_{t-1}-\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime} u_{t-1} . \tag{A.1}
\end{equation*}
$$

If we now substitute F_{t-1} in (3.3), we see that

$$
F_{t}=\Phi(L)\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime} X_{t-1}-\Phi(L)\left(\Lambda^{\prime} \Lambda^{-1} \Lambda^{\prime} u_{t-1}+a_{t}\right.
$$

hence, on substituting the latter expression for F_{t} in (3.1), and defining $A_{1}(L)=\Lambda \Phi(L)\left(\Lambda^{\prime} \Lambda^{-1} \Lambda^{\prime}\right.$, $X_{t}=\Lambda F_{t}+u_{t}=A_{1}(L) X_{t-1}+u_{t}-A_{1}(L) u_{t-1}+\Lambda a_{t}=A_{1}(L) X_{t-1}+A(L) u_{t}+\Lambda a_{t}=A_{1}(L) X_{t-1}+B(L) e_{t}$
where $A(L)=I-A_{1}(L) L$ and $e_{t}=\left[u_{t} \vdots a_{t}\right]^{\prime}$. This yields the representation (3.5).
We will now show that X_{t} can can be written as a VARMA process where the noise is the innovation process of X_{t}. Since X_{t} is regular strictly indeterministic weakly stationary process, it has a moving-average representation of the form (2.1) where $\varepsilon_{t}=X_{t}-P_{L}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]$ and $P_{L}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]$ is the best linear forecast of X_{t} based on its own past, $\Sigma_{\varepsilon}=E\left[\varepsilon_{t} \varepsilon_{t}^{\prime}\right]$ and $\operatorname{det}\left[\Sigma_{\varepsilon}\right]>0$. Using the assumptions (3.2) and (3.4), it is easy to see that

$$
\begin{equation*}
\mathrm{E}\left[X_{t-j} u_{t}^{\prime}\right]=\mathrm{E}\left[X_{t-j} a_{t}^{\prime}\right]=\mathrm{E}\left[u_{t} \varepsilon_{t-j}^{\prime}\right]=\mathrm{E}\left[a_{t} \varepsilon_{t-j}^{\prime}\right]=0 \text { for } j \geq 1 \tag{A.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
A(L) X_{t}=A(L) \Psi(L) \varepsilon_{t}=\bar{\Psi}(L) \varepsilon_{t}=\sum_{j=0}^{\infty} \bar{\Psi}_{j} \varepsilon_{t-j} \tag{A.3}
\end{equation*}
$$

where $\bar{\Psi}_{j}=\sum_{i=0}^{p+1} A_{i} \Psi_{j-i}$ and $\Psi_{s}=0$ for $s<0, s=j-i$. Let us now multiply $A(L) X_{t}$ by $\varepsilon_{t-k}^{\prime}$ and take the expected value: using (A.3) and (3.5), we get

$$
\begin{align*}
\mathrm{E}\left[A(L) X_{t} \varepsilon_{t-k}^{\prime}\right] & =\sum_{j=0}^{\infty} \bar{\Psi}_{j} \mathrm{E}\left[\varepsilon_{t-j} \varepsilon_{t-k}^{\prime}\right]=B_{j} \Sigma_{\varepsilon} \tag{A.4}\\
& =\mathrm{E}\left[\left(A(L) u_{t}+\Lambda a_{t}\right) \varepsilon_{t-k}^{\prime}\right]=0 \text { for } k>p+1 \tag{A.5}
\end{align*}
$$

hence $\bar{\Psi}_{j}=0$ for $k>p+1$, so that X_{t} has the following $\operatorname{VARMA}(p+1, p+1)$ representation:

$$
\begin{equation*}
A(L) X_{t}=\bar{\Psi}(L) \varepsilon_{t} \tag{A.6}
\end{equation*}
$$

where $\bar{\Psi}(L)=\sum_{j=0}^{p+1} \bar{\Psi}_{j} L^{j}$.

Proof of Theorem 3.2 To obtain the representations of X_{t}, we follow the same steps as in the previous proof except we substitute (A.1) for F_{t-1} in (3.7), which yields

$$
X_{t}=\Lambda \Phi(L)\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime} X_{t-1}+u_{t}-\Lambda \Phi(L)\left(\Lambda^{\prime} \Lambda\right)^{-1} \Lambda^{\prime} u_{t-1}+\Lambda \Theta(L) a_{t} .
$$

Defining $A(L)$ and e_{t} as above, with $B(L)=[A(L) \vdots \Lambda \Theta(L)]$, gives the representation as in (3.5). Then, remark that (A.5) becomes

$$
\begin{equation*}
\mathrm{E}\left[\left(A(L) u_{t}+\Lambda \Theta(L) a_{t}\right) \varepsilon_{t-k}^{\prime}\right]=0 \text { for } k>\max (p+1, q), \tag{A.7}
\end{equation*}
$$

so X_{t} has a $\operatorname{VARMA}(p+1, \max (p+1, q))$.
Proof of Theorem 3.3 $F_{t}=C X_{t}$, where C is a $K \times N$ full row rank matrix. Properties (i) and (ii) are easily proved using Lütkepohl (2005, Corollaries 11.1.1 and 11.1.2). For (iii), if X_{t} has an MA representation as in (2.1) or (2.4), the result is obtained using Lütkepohl (1987, Propositions 4.1 and 4.2).

B. SIMULATION RESULTS: FAVARMA AND FAVAR FORECASTS

Table 1 contains the results of the Monte Carlo simulation exercise presented in Section 6.2. The numbers represent the MSE of four FAVARMA identified forms over the MSE of FAVAR direct forecasting models.

Table 1: Comparison between FAVARMA and FAVAR forecasts: Monte Carlo simulations

	$\rho_{T}=0.9, \rho_{N}=0.5$							
Horizon	$T=50, N=50$				$T=50, N=100$			
	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	1.0078	1.1405	0.9235	1.3858	1.0061	1.0945	0.9084	1.4722
2	1.0199	1.0852	0.9483	1.3189	1.0302	1.0762	0.9383	1.3660
4	0.8872	0.9459	0.8350	1.0746	0.9338	1.0242	0.8745	1.1542
6	0.8122	0.9181	0.7635	0.9536	0.8514	0.9375	0.7954	1.0010
12	0.6311	0.8392	0.6072	0.7198	0.6857	0.9278	0.6533	0.8036
18	0.4913	0.7186	0.4754	0.5339	0.5181	0.8285	0.4955	0.5744
24	0.3762	0.6192	0.3706	0.4237	0.3846	0.7215	0.3788	0.4291
36	0.1394	0.2429	0.1369	0.1480	0.1445	0.3006	0.1422	0.1560
	$T=100, N=50$				$T=600, N=130$			
1	1.0761	1.1170	1.0004	1.6656	1.0130	1.0126	1.0093	1.0070
2	1.0865	1.1495	1.0193	1.5676	0.9962	0.9956	0.9952	0.9951
4	1.0537	1.0890	1.0038	1.4432	0.9945	0.9950	0.9947	0.9947
6	1.0168	1.0392	0.9686	1.3060	0.9945	0.9954	0.9946	0.9946
12	0.9183	0.9915	0.8960	1.2573	0.9871	0.9883	0.9873	0.9873
18	0.8886	0.9848	0.8552	1.1123	0.9831	0.9880	0.9832	0.9832
24	0.8643	0.9706	0.8198	1.1203	0.9831	0.9830	0.9828	0.9828
36	0.8078	0.9754	0.7956	1.0742	0.9863	0.9846	0.9847	0.9847
	$\rho_{T}=0.9, \rho_{N}=0.1$							
	$T=50, N=50$				$T=50, N=100$			
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	1.0203	1.0656	0.8897	1.2688	0.9977	1.0303	0.9026	1.3464
2	0.9689	1.0113	0.8982	1.1708	1.0013	1.0406	0.9038	1.1735
4	0.9142	0.9508	0.8616	1.0391	0.9032	0.9166	0.8461	1.0029
6	0.8420	0.8656	0.7851	0.9213	0.8841	0.8798	0.8054	0.9182
12	0.6401	0.7487	0.6235	0.7038	0.7042	0.8089	0.6850	0.7582
18	0.5208	0.6774	0.5133	0.5609	0.5469	0.6970	0.5296	0.5742
24	0.4095	0.5979	0.4124	0.4322	0.4380	0.5724	0.4282	0.4499
36	0.1417	0.2169	0.1402	0.1447	0.1453	0.2152	0.1424	0.1535
		$T=10$	$N=50$			$T=600$	$N=130$	
1	1.0622	1.0751	0.9990	1.3846	0.9978	0.9980	0.9984	0.9927
2	1.0578	1.0368	0.9913	1.2818	0.9935	0.9951	0.9935	0.9933
4	1.0254	1.0088	0.9729	1.2141	0.9890	0.9894	0.9891	0.9891
6	1.0058	0.9720	0.9477	1.1812	0.9892	0.9892	0.9892	0.9892
12	0.9480	0.9163	0.8819	1.0303	0.9919	0.9918	0.9919	0.9919
18	0.9371	0.9068	0.8823	1.0173	0.9784	0.9784	0.9784	0.9784
24	0.9441	0.8755	0.8626	1.0214	0.9807	0.9807	0.9807	0.9807
36	0.8591	0.8376	0.8013	0.9264	0.9796	0.9796	0.9796	0.9796

Table B.1: Monte Carlo simulation results (continued)

	$\rho_{T}=0.1, \rho_{N}=0.9$							
	$T=50, N=50$				$T=50, N=100$			
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.8978	0.9108	0.8924	0.9362	0.9329	0.8880	0.8585	0.9208
2	0.8522	0.8716	0.8606	0.9168	0.8289	0.8194	0.8228	0.8642
4	0.8381	0.8420	0.8524	0.8601	0.8195	0.8213	0.8187	0.8238
6	0.8213	0.8227	0.8225	0.8210	0.7852	0.7806	0.7799	0.7795
12	0.7923	0.7906	0.7905	0.7907	0.7630	0.7569	0.7567	0.7568
18	0.6803	0.6770	0.6771	0.6772	0.6582	0.6576	0.6577	0.6577
24	0.5367	0.5363	0.5364	0.5364	0.4865	0.4864	0.4863	0.4862
36	0.0946	0.0956	0.0944	0.0944	0.0801	0.0799	0.0799	0.0800
	$T=100, N=50$				$T=600, N=130$			
1	0.9680	0.9676	0.9560	0.9515	0.9931	0.9995	0.9926	0.9921
2	0.9332	0.9304	0.9306	0.9310	0.9881	0.9929	0.9882	0.9878
4	0.9338	0.9261	0.9257	0.9257	0.9882	0.9895	0.9893	0.9894
6	0.9467	0.9350	0.9351	0.9351	0.9831	0.9831	0.9830	0.9830
12	0.9358	0.9359	0.9359	0.9359	0.9825	0.9825	0.9825	0.9825
18	0.9297	0.9298	0.9297	0.9297	0.9874	0.9873	0.9873	0.9873
24	0.9140	0.9142	0.9143	0.9143	0.9887	0.9886	0.9886	0.9886
36	0.9044	0.9047	0.9043	0.9043	0.9929	0.9930	0.9930	0.9930
	$\rho_{T}=0.1, \rho_{N}=0.1$							
	$T=50, N=50$				$T=50, N=100$			
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9439	0.8761	0.7969	0.9618	0.9289	0.8919	0.8155	0.9675
2	0.8029	0.7863	0.7764	0.8459	0.7888	0.7900	0.7736	0.8569
4	0.7894	0.7542	0.7533	0.7742	0.7513	0.7533	0.7525	0.7687
6	0.7580	0.7420	0.7409	0.7438	0.7477	0.7488	0.7446	0.7458
12	0.6773	0.6751	0.6751	0.6754	0.6575	0.6604	0.6560	0.6613
18	0.5757	0.5700	0.5701	0.5761	0.5741	0.5753	0.5704	0.5728
24	0.4106	0.4074	0.4073	0.4084	0.4329	0.4303	0.4304	0.4317
36	0.0726	0.0721	0.0721	0.0721	0.0719	0.0722	0.0721	0.0721
		$T=100$	$N=50$			$T=600$	$N=130$	
1	0.9702	0.9672	0.9290	0.9316	0.9838	0.9874	0.9868	0.9840
2	0.8998	0.9053	0.8985	0.8993	0.9816	0.9904	0.9811	0.9811
4	0.9095	0.9003	0.9000	0.8997	0.9891	0.9894	0.9891	0.9891
6	0.8806	0.8771	0.8767	0.8767	0.9821	0.9822	0.9821	0.9821
12	0.8855	0.8841	0.8839	0.8839	0.9778	0.9778	0.9778	0.9778
18	0.8725	0.8704	0.8702	0.8702	0.9852	0.9852	0.9852	0.9852
24	0.8711	0.8707	0.8709	0.8709	0.9815	0.9815	0.9815	0.9815
36	0.8183	0.8185	0.8183	0.8183	0.9790	0.9790	0.9790	0.9790

C. SIMULATION RESULTS: DIFFERENT FACTOR NUMBERS

The simulation exercise in this section studies how FAVARMA-based forecasts have a performance when the number of factors increases. shows that FAVARMA-based forecasts have a performance when the number of factors increases. The simulation design is described in following:

- time dimension: $T=100$;
- cross-section dimension: $N=100$;
- number of factors: $K \in\{3,4,6\}$;
- idiosyncratic component dynamics: $u_{i t}=\kappa v_{i t}, v_{i t} \sim N\left(0, \sigma_{v_{i}}^{2}\right)$ such that the common component explains a fraction ϑ of the variance of X_{t}; following Boivin and $\mathrm{Ng}(2005), \vartheta$ is set to 0.5 while for the first series in panel X_{t}, the one that is forecasted: $\operatorname{var}\left(\lambda_{1} F_{t}\right) / \operatorname{var}\left(X_{1 t}\right)=0.75$;
- MA coefficients matrices:
$-K=3$

$$
B=\left[\begin{array}{ccc}
0.2350 & 0 & 0 \\
0 & 0.2317 & 0 \\
0 & 0 & 0.5776
\end{array}\right]
$$

$-K=4$

$$
B=\left[\begin{array}{cccc}
0.3365 & 0 & 0 & 0 \\
0 & 0.2420 & 0 & 0 \\
0 & 0 & 0.0610 & 0 \\
0 & 0 & 0 & 0.4735
\end{array}\right]
$$

$-K=6$

$$
B=\left[\begin{array}{cccccc}
0.1558 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.4827 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.4525 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5320 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.6604 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.2763
\end{array}\right]
$$

- VAR order: 4;
- VARMA orders: estimated as in Dufour and Pelletier (2013);
- AR order for idiosyncratic component: 1.

The results are presented in Table 2 and demonstrate that FAVARMA-based forecasts have a better performance as the number of factors increases.

Table 2: Comparison between FAVARMA and FAVAR forecasts for different factor numbers
Monte Carlo simulations

		RELATIVE MSE TO FAVAR(4) DIRECT MODEL											
N	Horizon	$K=3$				$K=4$				$K=6$			
		Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
	1	0.9638	0.9643	0.9285	0.9330	0.9194	0.9182	0.8866	0.8927	0.7282	0.6615	0.6905	0.6907
	2	0.9085	0.9174	0.9076	0.9133	0.8792	0.8901	0.8805	0.8866	0.8261	0.8615	0.8244	0.8385
	4	0.8971	0.8966	0.8965	0.8961	0.8764	0.8775	0.8764	0.8769	0.8030	0.8030	0.8010	0.8072
	6	0.9038	0.9037	0.9035	0.9036	0.8548	0.8549	0.8548	0.8549	0.9182	0.9180	0.9182	0.9204
	12	0.8808	0.8807	0.8807	0.8807	0.8416	0.8418	0.8418	0.8418	0.7983	0.7997	0.7983	0.7983
	18	0.8831	0.8831	0.8831	0.8831	0.8455	0.8454	0.8454	0.8454	0.9393	0.9383	0.9393	0.9393
	24	0.8757	0.8756	0.8756	0.8756	0.8425	0.8425	0.8425	0.8425	0.7287	0.7286	0.7287	0.7287
	36	0.8344	0.8343	0.8343	0.8343	0.7930	0.7932	0.7932	0.7932	0.5466	0.5466	0.5466	0.5466
		RELATIVE MSE TO FAVAR(4) ITERATIVE MODEL											
		$K=3$				$K=4$				$K=6$			
	Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
	1	0.9638	0.9643	0.9285	0.9330	0.9194	0.9182	0.8866	0.8927	0.7282	0.6615	0.6905	0.6907
	2	0.9197	0.9288	0.9188	0.9246	0.9092	0.9205	0.9106	0.9168	0.9296	0.9695	0.9277	0.9435
	4	0.9685	0.9680	0.9679	0.9675	0.9562	0.9574	0.9562	0.9568	0.9406	0.9406	0.9383	0.9456
	6	0.9927	0.9926	0.9925	0.9926	0.9851	0.9852	0.9850	0.9852	0.9467	0.9466	0.9467	0.9490
	12	1.0001	1.0000	1.0000	1.0001	1.0002	1.0005	1.0005	1.0005	0.9803	0.9820	0.9803	0.9802
	18	0.9997	0.9996	0.9996	0.9996	1.0038	1.0037	1.0037	1.0037	0.9957	0.9947	0.9957	0.9957
	24	1.0009	1.0008	1.0008	1.0008	1.0010	1.0009	1.0009	1.0009	0.9978	0.9977	0.9978	0.9978
	36	0.9998	0.9997	0.9997	0.9997	0.9993	0.9995	0.9995	0.9995	0.9986	0.9986	0.9986	0.9986

D. FORECASTING MACROECONOMIC AGGREGATES IN A SMALL OPEN ECONOMY: CANADA

Using the Canadian balanced monthly panel of Boivin et al. (2009b), we performed an out-ofsample forecasting exercise similar to the one described above for U.S. data. This panel comprises 332 time series from 1981 to 2008. The evaluation period is 1998-2008. All series were initially transformed to induce stationarity. For this panel, the time and cross-section dimensions are close. The number of factors and lag orders across the forecasting models are the same as for the U.S. data.

The results in Table 3 are quite similar to the U.S. ones: FAVARMA models improve the forecasts of key macroeconomic indicators across several horizons. In particular, VARMA factors produce the best forecasts of employment at all horizons (except for 12,18 and 24 months). For CPI inflation, the Diffusion index model has the best performance at short horizons of 1 and 2 months, at the 18 -month horizon, and for long horizons of 3 and 4 years. FAVARMA models in Final MA form outperform other approaches at 4, 6, 12 and 24 month horizons. Finally, ARMA models yield the smallest RMSE for PPI inflation at short horizons (1, 2, 4 and 6 months), while Diagonal MA and Final AR FAVARMA models have the best performance at horizons of 12 and 36 months respectively.

In Table 4, we present the MSE of all factor model predictions relative to ARMA forecasts. Boldface numbers highlight cases where the ARMA model outperforms the factor-based model in terms of MSE. For the employment growth rate, the ARMA model outperforms all three onestep models, except at the 2-month horizon. On the other hand, three FAVARMA forms and the Sequential FAVAR model do better than ARMA models for all horizons. When forecasting CPI inflation, the two FAVARMA MA forms appear preferable to ARMA models at all horizons. Finally, for PPI inflation, ARMA models exhibit the best performance at short horizons.

It is also of interest to see how FAVARMA forecasts fare in comparison with those of FAVAR models. In Table 5, we present MSE of FAVARMA forecasting models relative to direct and sequential FAVAR approaches. Numbers in bold character indicate cases where the FAVARMA specification performs better than the FAVAR one. The FAVARMA models dominate in most cases, especially the two MA FAVARMA specifications.

Table 3: RMSE relative to direct $\operatorname{AR}(p)$ forecasts - Canadian data

Employment growth rate										
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR	ARMA
1	1.0221	1.0165	1.0920	0.9854	0.9854	0.9410	0.9854	0.9601	1.0362	1.0151
2	0.9874	0.9751	0.9457	0.9998	0.9920	0.9059	0.9920	0.9236	1.0597	1.0092
4	1.0604	1.0865	1.1204	0.9783	0.9399	0.9298	0.9399	0.9221	1.0503	1.0060
6	1.1928	1.1408	1.1667	1.1130	0.9760	0.9641	0.9760	0.9286	1.0615	1.0011
12	0.9822	1.1197	1.2073	1.0402	0.9914	1.0194	0.9914	0.9938	1.0889	1.0760
18	1.2135	1.5923	1.6208	1.3230	0.9792	1.0282	1.0740	0.9845	1.1923	1.1054
24	1.3133	1.9476	1.9595	1.1989	0.9803	1.0290	1.0022	0.9819	1.1401	1.0937
36	1.7336	2.1289	2.2198	1.5687	0.9201	0.9395	0.9441	0.9190	1.0639	1.0442
48	1.7698	1.5115	1.2833	1.7333	0.9788	0.9734	0.9905	0.9608	1.0926	1.0829
Consumer price index growth rate: all items										
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR	ARMA
1	0.8779	0.8501	0.8567	0.9146	0.9146	0.8563	0.9130	0.8647	0.9512	0.8811
2	0.9028	0.8720	0.8790	0.9946	0.9804	0.8895	0.9804	0.9040	0.9798	0.9226
4	0.9139	0.9082	0.9000	0.9737	0.9328	0.8826	0.9328	0.8816	0.9430	0.9069
6	0.8800	0.8701	0.8811	0.9307	0.8853	0.8403	0.8853	0.8399	0.8900	0.9062
12	0.9921	1.0585	1.0140	1.0178	0.9845	0.9318	0.9845	0.9070	1.0255	1.0207
18	1.0114	1.0143	1.0083	1.0362	1.0138	1.0504	1.0847	1.0130	1.0368	1.1184
24	0.9810	1.0563	1.0743	0.9671	0.9460	0.9655	0.9938	0.9508	1.0340	1.0804
36	0.9844	1.1165	1.1126	1.0140	1.0179	1.0325	1.0309	1.0160	1.1187	1.1287
48	0.9919	1.3307	1.3174	1.0908	1.0550	1.0415	1.0318	1.0554	1.1554	1.1832
Producer price index growth rate: all manufacturing										
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR	ARMA
1	1.0079	1.0035	1.0094	1.0097	1.0097	0.9985	1.0070	1.0175	1.0443	0.9931
2	1.0088	0.9732	0.9835	1.0317	1.0077	0.9852	1.0077	0.9874	1.0499	0.9729
4	0.9841	1.0255	1.0280	1.0115	0.9810	0.9986	0.9810	0.9852	1.0483	0.9803
6	0.9759	1.0083	1.0103	0.9885	0.9701	0.9830	0.9701	0.9781	0.9958	0.9580
12	1.0246	1.0274	1.0294	1.0183	1.0142	0.9916	1.0142	0.9942	0.9973	1.0123
18	0.9740	0.9998	1.0026	0.9905	0.9828	0.9789	0.9837	0.9815	0.9894	0.9842
24	0.9927	1.0204	1.0230	1.0159	1.0027	0.9956	1.0018	0.9981	0.9984	1.0040
36	1.0363	1.0763	1.0947	0.9850	0.9831	0.9790	0.9814	0.9804	0.9755	0.9842
48	0.9890	1.0761	1.0632	0.9927	1.0108	1.0032	1.0050	1.0110	0.9969	1.0143

Note - The numbers in bold character indicate which model yields the lowest forecast MSE.

Table 4: RMSE relative to $\operatorname{ARMA}(p, q)$ forecasts - Canadian data

Employment growth rate									
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR
1	1.0069	1.0014	1.0758	0.9707	0.9707	0.9270	0.9707	0.9458	1.0208
2	0.9784	0.9662	0.9371	0.9907	0.9830	0.8976	0.9830	0.9152	1.0500
4	1.0541	1.0800	1.1137	0.9725	0.9343	0.9243	0.9343	0.9166	1.0440
6	1.1915	1.1395	1.1654	1.1118	0.9749	0.9630	0.9749	0.9276	1.0603
12	0.9128	1.0406	1.1220	0.9667	0.9214	0.9474	0.9214	0.9236	1.0120
18	1.0978	1.4405	1.4663	1.1969	0.8858	0.9302	0.9716	0.8906	1.0786
24	1.2008	1.7807	1.7916	1.0962	0.8963	0.9408	0.9163	0.8978	1.0424
36	1.6602	2.0388	2.1258	1.5023	0.8812	0.8997	0.9041	0.8801	1.0189
48	1.6343	1.3958	1.1851	1.6006	0.9039	0.8989	0.9147	0.8872	1.0090
Consumer price index growth rate: all items									
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR
1	0.9964	0.9648	0.9723	1.0380	1.0380	0.9719	1.0362	0.9814	1.0796
2	0.9785	0.9452	0.9527	1.0780	1.0626	0.9641	1.0626	0.9798	1.0620
4	1.0077	1.0014	0.9924	1.0737	1.0286	0.9732	1.0286	0.9721	1.0398
6	0.9711	0.9602	0.9723	1.0270	0.9769	0.9273	0.9769	0.9268	0.9821
12	0.9720	1.0370	0.9934	0.9972	0.9645	0.9129	0.9645	0.8886	1.0047
18	0.9043	0.9069	0.9016	0.9265	0.9065	0.9392	0.9699	0.9058	0.9270
24	0.9080	0.9777	0.9944	0.8951	0.8756	0.8937	0.9198	0.8800	0.9571
36	0.8722	0.9892	0.9857	0.8984	0.9018	0.9148	0.9134	0.9002	0.9911
48	0.8383	1.1247	1.1134	0.9219	0.8916	0.8802	0.8720	0.8920	0.9765
Producer price index growth rate: all manufacturing									
Horizon	Unrestricted	DI	DI AR	Direct	Sequential	Diag MA	Diag AR	Final MA	Final AR
1	1.0149	1.0105	1.0164	1.0167	1.0167	1.0054	1.0140	1.0246	1.0516
2	1.0369	1.0003	1.0109	1.0604	1.0358	1.0126	1.0358	1.0149	1.0791
4	1.0039	1.0461	1.0487	1.0318	1.0007	1.0187	1.0007	1.0050	1.0694
6	1.0187	1.0525	1.0546	1.0318	1.0126	1.0261	1.0126	1.0210	1.0395
12	1.0122	1.0149	1.0169	1.0059	1.0019	0.9796	1.0019	0.9821	0.9852
18	0.9896	1.0159	1.0187	1.0064	0.9986	0.9946	0.9995	0.9973	1.0053
24	0.9887	1.0163	1.0189	1.0119	0.9987	0.9916	0.9978	0.9941	0.9944
36	1.0529	1.0936	1.1123	1.0008	0.9989	0.9947	0.9972	0.9961	0.9912
48	0.9751	1.0609	1.0482	0.9787	0.9965	0.9891	0.9908	0.9967	0.9828

Note - The numbers in bold character present cases where the ARMA model outperforms the factor-based models in terms of MSE.

Table 5: MSE of FAVARMA relative to FAVAR forecasting models - Canadian data

Horizon	Employment growth rate							
	VARMA/Direct					VARMA/Sequential		
	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9500	0.9551	0.9671	0.9515	0.9500	0.9551	0.9671	0.9515
2	0.8934	0.9060	0.8971	0.8982	0.8508	0.8628	0.8544	0.8554
4	0.8353	0.9248	0.8375	0.8852	0.7325	0.8110	0.7344	0.7762
6	0.7875	0.8936	0.7836	0.8385	0.6836	0.7757	0.6802	0.7279
12	0.9154	1.1173	0.9215	0.9486	0.7315	0.8928	0.7364	0.7580
18	0.9858	1.4161	0.9956	1.0510	0.8403	1.2071	0.8487	0.8959
24	0.9733	1.7694	0.9833	1.0921	0.9075	1.6496	0.9168	1.0182
36	0.7971	2.4510	0.7993	0.9540	0.9457	2.9080	0.9484	1.1318
48	0.8968	5.0005	0.8969	1.0559	0.9581	5.3424	0.9582	1.1281
	Consumer price index growth rate: all items							
	VARMA/Direct					VARMA/Sequential		
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9759	0.9845	0.9787	0.9763	0.9759	0.9845	0.9787	0.9763
2	0.9424	0.9291	0.9456	0.9341	0.9312	0.9180	0.9343	0.9229
4	0.9029	0.8817	0.9016	0.8811	0.8732	0.8527	0.8720	0.8521
6	0.9023	0.8891	0.8994	0.8825	0.8370	0.8248	0.8343	0.8186
12	0.9587	0.9778	0.9573	0.9429	0.8339	0.8505	0.8327	0.8201
18	1.0347	1.1696	1.0371	1.0674	0.8843	0.9996	0.8863	0.9122
24	1.0532	1.3283	1.0556	1.1260	0.9229	1.1640	0.9250	0.9867
36	0.9540	1.6253	0.9512	1.0622	0.9571	1.6305	0.9542	1.0655
48	1.0079	2.5086	1.0050	1.0946	0.9663	2.4048	0.9635	1.0494
	Producer price index growth rate: all manufacturing							
	VARMA/Direct				VARMA/Sequential			
Horizon	Diag MA	Diag AR	Final MA	Final AR	Diag MA	Diag AR	Final MA	Final AR
1	0.9909	1.0221	0.9597	0.9831	0.9909	1.0221	0.9597	0.9831
2	0.9685	0.9808	0.9648	0.9540	0.9567	0.9689	0.9531	0.9424
4	0.9624	1.0257	0.9516	0.9417	0.9840	1.0487	0.9730	0.9628
6	0.9611	1.0389	0.9604	0.9593	0.9847	1.0644	0.9840	0.9829
12	0.8846	1.1051	0.8828	0.9618	1.0062	1.2570	1.0042	1.0941
18	0.8527	1.0567	0.8542	0.9274	0.9213	1.1416	0.9228	1.0020
24	0.9273	1.2462	0.9244	1.0213	0.8837	1.1875	0.8809	0.9732
36	0.8439	1.4783	0.8495	0.9246	0.8795	1.5408	0.8854	0.9637
48	0.8858	2.4185	0.8904	0.9469	0.8695	2.3742	0.8741	0.9295

Note - The numbers in bold character indicate cases where the FAVARMA model performs better than the FAVAR model.

E. DATA

The data used in our empirical application are presented in this appendix. US data are taken from Boivin, Giannoni and Stevanovic (2009a), while the Canadian data are from Boivin, Giannoni and Stevanovic (2009b). The transformation codes (labeled T-Code) are: 1 - no transformation; 2 - first difference; 4-logarithm; 5 - first difference of logarithm.

US Data

IPS10
IPS11
IPS12
IPS13
IPS14
IPS18
IPS25
IPS29
IPS299
IPS306
IPS32
IPS34
IPS38
IPS43
PMP
PMI
UTL11
YPR
YPDR
YP@V00C
SAVPER
SAVPRATE

Real output and income
INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX
INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL
INDUSTRIAL PRODUCTION INDEX - PRODUCTS, GOIAL
INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS
INDUSTRIAL PRODUCTION INDEX - AUTOMOTIVE PRODUCTS
INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT
INDUSTRIAL PRODUCTION INDEX - DEFENSE AND SPACE EQUIPMENT
INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS
INDUSTRIAL PRODUCTION INDEX - FUELS
INDUSTRIAL PRODUCTION INDEX - MATERIALS
INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC)
NAPM PRODUCTION INDEX (PERCENT)
PURCHASING MANAGERS' INDEX (SA)
CAPACITY UTILIZATION - MANUFACTURING (SIC)
PERS INCOME CH 2000 \$,SA-US
DISP PERS INCOME,BILLIONS OF CH (2000) \$,SAAR-US
PERS INCOME LESS TRSF PMT CH 2000 \$,SA-US
PERS SAVING,BILLIONS OF \$,SAAR-US
PERS SAVING AS PERCENTAGE OF DISP PERS INCOME,PERCENT,SAAR-US
Employment and hours
INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)
EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF
CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA)
CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA)
UNEMPLOYMENT RATE: BOTH SEXES, $16-19$ YEARS ($\%$, SA)
UNEMPLOY.BY DURATION: PERSONS UNEMPL. 5 TO 14 WKS (THOUS.,SA)
UNEMPLOY.BY DURATION: PERSONS UNEMPL. 15 WKS + (THOUS.,SA)
UNEMPLOY.BY DURATION: PERSONS UNEMPL. 15 TO 26 WKS (THOUS.,SA)
UNEMPLOY.BY DURATION: PERSONS UNEMPL. 27 WKS + (THOUS,SA)
UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
CIVILIAN LABOR FORCE: UNEMPLOYED, TOTAL (THOUS.,SA)
AVG HR EARNINGS OF PROD WKRS: CONSTRUCTION (\$,SA)
AVG HR EARNINGS OF PROD WKRS: MANUFACTURING (\$,SA) NAPM EMPLOYMENT INDEX (PERCENT)
EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE
EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING
EMPLOYEES ON NONFARM PAYROLLS - NATURAL RESOURCES AND MINING
EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION
EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING
EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS
EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS
EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING
EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES
EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE
EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE
EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES
EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT
AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - GOODS-PRODUCING AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - CONSTRUCTION AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - MANUFACTURING AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - MANUFACT. OVERTIME HOURS AVG WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - DURABLE GOODS AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - GOODS-PRODUCING AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - CONSTRUCTION AVG HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE NONFARM PAYROLLS - MANUFACTURING

Real Consumption
REAL PERSONAL CONS EXP QUANTITY INDEX ($200=100$), SAAR
REAL PERSONAL CONS EXP-NONDURABLE GOODS QUANTITY INDEX $(200=100)$, SAAR
REAL PERSONAL CONS EXP-DURABLE GOODS QUANTITY INDEX ($200=100$), SAAR
REAL PERSONAL CONS EXP-SERVICES QUANTITY INDEX ($200=100$), SAAR
HSMW
HSNE
HSSOU
EXRUK
EXRUK
EXRUS
FMFBA
FMRNBA
FMRNBA
FMRRA

```

XMTOSA
\begin{tabular}{ll} 
HSWST & 4 \\
\hline
\end{tabular}
EXRCAN
PMCP
PW561
PWCMSA
PWFCSA
PWFSA
PWIMSA
PUNEW
PUS
PUXF
PUXHS
PUXM
PUXX
PUC
PUCD
PU83
PU84
PU85

FSDJ
FSDXP
FSPCOM
FSPIN
FSPXE
F

FM1
U－
UOMO83

FYGM3
FYGM6
FYGT1
FYGT10
FYGT10
FYGT20
FYGT3
FYGT5
FYPR
FYAAAC
FYAAAM
FYAAAM
FYAC
FYAVG
FYBAAC
SFYGM3
SFYGM6
SFYGT1
SFYGT5
SFYGT10
SFYAAAC
SFYBAAC
FYFF
Bspread10Y
\begin{tabular}{lll} 
& \multicolumn{3}{c}{ Real inventories and orders } \\
MOCMQ & 5 & NEW ORDERS（NET）－CONSUMER GOODS and MATERIALS，1996 DOLLARS（BCI） \\
MSONDQ & 5 & NEW ORDERS，NONDEFENSE CAPITAL GOODS，IN 1996 DOLLARS（BCI） \\
PMDEL & 1 & NAPM VENDOR DELIVERIES INDEX（PERCENT） \\
PMNO & 1 & NAPM NEW ORDERS INDEX（PERCENT） \\
PMNV & 1 & \begin{tabular}{l} 
NAPM INVENTORIES INDEX（PERCENT） \\
\\
HMTOSA
\end{tabular} \\
& 4 & RESIDE starts
\end{tabular}

Real inventories and orders
NEW ORDERS（NET）－CONSUMER GOODS and MATERIALS， 1996 DOLLARS（BCI）
NEW ORDERS，NONDEFENSE CAPITAL GOODS，IN 1996 DOLLARS（BCI）
APM VENDOR DELIVERIES INDEX（PERCENT）
NAPM INVENTORIES INDEX（PERCENT）
Housing starts
RESIDENTIAL CONSTRUCTION PRIVATE HOUSING UNITS STARTED：TOTAL UNITS（THOUS．，SAAR）
HOUSING STARTS：TOTAL NEW PRIV HOUSING UNITS（THOUS．，SAAR）
HOUSING STARTS：NONFARM（1947－58）；TOTAL FARM\＆NONFARM（1959－）（THOUS．，SA
HOUSING STARTS：MIDWEST（THOUS．U．）S．A．
HOUSING STARTS：NORTHEAST（THOUS．U．）S．A．
HOUSING STARTS：SOUTH（THOUS．U．）S．A．
HOUSING STARTS：WEST（THOUS．U．）S．A．
Exchange rates
FOREIGN EXCHANGE RATE：CANADA（CANADIAN \＄PER U．S．\＄）
FOREIGN EXCHANGE RATE：UNITED KINGDOM（CENTS PER POUND）
UNITED STATES；EFFECTIVE EXCHANGE RATE（MERM）（INDEX NO．）
Price indexes
NAPM COMMODITY PRICES INDEX（PERCENT）
PRODUCER PRICE INDEX：CRUDE PETROLEUM（ \(82=100\) ，NSA）
PRODUCER PRICE INDEX：CRUDE MATERIALS（82＝100，SA）
PRODUCER PRICE INDEX：FINISHED CONSUMER GOODS \((82=100\), SA \()\)
PRODUCER PRICE INDEX：FINISHED GOODS \((82=100, S A)\)
PRODUCER PRICE INDEX：INTERMED MAT SUPPLIO
PRODUCER PRICE INDEX：INTERMED MAT．SUPPLIES \＆COMPONENTS（ \(82=100, \mathrm{SA}\) ）
CPI－U：ALL ITEMS（82－84＝100，SA）
CPI－U：SERVICES（ \(82-84=100, \mathrm{SA}\) ）
CPI－U：ALL ITEMS LESS FOOD（ \(82-84=100\), SA）
CPI－U：ALL ITEMS LESS SHELTER（ \(82-84=100\), SA）
CPI－U：ALL ITEMS LESS MIDICAL CARE（82－84＝100，SA）
CPI－U：ALL ITEMS LESS FOOD AND ENERGY（82－84＝100，SA）
CPI－U：COMMODITIES（82－84＝100，SA）
CPI－U：DURABLES（ \(82-84=100, \mathrm{SA}\) ）
CPI－U：DURABLES （ \(82-84=100, \mathrm{SA})\)
CPAREL \＆UPKEEP \((82-84=100, \mathrm{SA})\)
CPI－U：TRANSPORTATION \((82-84=100, \mathrm{SA})\)
CPI－U：MEDICAL CARE（ \(82-84=100\), SA \()\)

\section*{Stock prices}

COMMON STOCK PRICES：DOW JONES INDUSTRIAL AVERAGE
S\＆P＇S COMPOSITE COMMON STOCK：DIVIDEND YIELD（\％PER ANNUM）
S\＆P＇S COMMON STOCK PRICE INDEX：COMPOSITE（1941－43＝10）
S\＆P＇S COMMON STOCK PRICE INDEX：INDUSTRIALS（1941－43＝10）
S\＆P＇S COMMON STOCK PRICE INDEX：INDUSTRIALS（1941－43＝10）
S\＆P＇S COMPOSITE COMMON STOCK：PRICE－EARNINGS RATIO（\％，NSA）
Money and credit quantity aggregates
MONEY STOCK：M1（CURR，TRAV．CKS，DEM DEP，OTHER CK＇ABLE DEP）（BIL\＄，SA）
MONEY STOCK：M2（M1＋O＇NITE RPS，EURO\＄，G／P\＆B／D MMMFS\＆SAV\＆SM TIME DEP（BIL\＄，
MONETARY BASE，ADJ FOR RESERVE REQUIREMENT CHANGES（MIL\＄，SA）
DEPOSITORY INST RESERVES：NONBORROWED，ADJ RES REQ CHGS（MIL\＄，SA）
DEPOSITORY INST RESERVES：TOTAL，ADJ FOR RESERVE REQ CHGS（MIL\＄，SA）
DEPOSITORY INST RESERVES：TOTAL，ADJ FOR RESERVE REQ CHGS（MIL\＄，SA）
CONSUMER CREDIT OUTSTANDING－NONREVOLVING（G19）
Miscellaneous
COMPOSITE INDEXES LEADING INDEX COMPONENT INDEX OF CONSUMER EXPECTATIONS UNITS：1966．1＝100 NSA，CONFBOARD AND U．MICH．

\section*{Interest rates and bonds}

INTEREST RATE：U．S．TREASURY BILLS，SEC MKT，3－MO．（\％PER ANN，NSA）
INTEREST RATE：U．S．TREASURY BILLS，SEC MKT，6－MO．（\％PER ANN，NSA）
INTEREST RATE：U．S．TREASURY CONST MATURITIES，1－YR．（\％PER ANN，NSA）
INTEREST RATE：U．S．TREASURY CONST MATURITIES，10－YR．（\％PER ANN，NSA）
INTEREST RATE：U．S．TREASURY CONST MATURITIES，20－YR．（\％PER ANN，NSA）
INTEREST RATE：U．S．TREASURY CONST MATURITIES，3－YR．（\％PER ANN，NSA）
INTEREST RATE：U．S．TREASURY CONST MATURITIES，5－YR．（\％PER ANN，NSA）
PRIME RATE CHG BY BANKS ON SHORT－TERM BUSINESS LOANS（\％PER ANN，NSA）
BOND YIELD：MOODY＇S AAA CORPORATE（\％PER ANNUM）
BOND YIELD：MOODY＇S AAA MUNICIPAL（\％PER ANNUM）
BOND YIELD：MOODY＇S A CORPORATE（\％PER ANNUM，NSA）
BOND YIELD：MOODY＇S A CORPORATE（\％PER ANNUM，NSA）
BOND YIELD：MOODY＇S AVERAGE CORPORATE（\％PER ANNUM）
BOND YIELD：MOODY＇S BAA CORPORATE（\％PER ANNUM）
FYGM3－FYFF
FYGM6－FYFF
FYGT1－FYFF
FYGT5－FYFF
FYGT10－FYFF
FYAAAC－FYFF
FYAAAC－FYFF
FYBAAC－FYFF
INTEREST RATE：FEDERAL FUNDS（EFFECTIVE）（\％PER ANNUM，NSA）
FYBAAC－FYGT10

\section*{Canadian Data}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{StatCan no} & Code & Series category \\
\hline & & Table 326-0020 Consumer Price Index Canada, Provinces \\
\hline v41690973 & 5 & All-items (2002=100) \\
\hline v41690974 & 5 & Food (2002=100) \\
\hline v41690993 & 5 & Dairy products (2002=100) \\
\hline v41691046 & 5 & Food purchased from restaurants (2002=100) \\
\hline v41691051 & 5 & Rented accommodation (2002=100) \\
\hline v41691055 & 5 & Owned accommodation (2002=100) \\
\hline v41691065 & 5 & Natural gas (2002=100) \\
\hline v41691066 & 5 & Fuel oil and other fuels (2002=100) \\
\hline v41691108 & 5 & Clothing and footwear (2002=100) \\
\hline v41691129 & 5 & Private transportation (2002=100) \\
\hline v41691153 & 5 & Health and personal care (2002=100) \\
\hline v41691170 & 5 & Recreation, education and reading (2002=100) \\
\hline v41692942 & 5 & All-items excluding eight of the most volatile components (Bank of Canada definition) (2002=100 \\
\hline v41691232 & 5 & All-items excluding food (2002=100) \\
\hline v41691233 & 5 & All-items excluding food and energy (2002=100) \\
\hline v41691238 & 5 & All-items excluding energy (2002=100) \\
\hline v41691237 & 5 & Food and energy ( \(2002=100\) ) \\
\hline v41691239 & 5 & Energy (2002=100) \\
\hline v41691219 & 5 & Housing (1986 definition) (2002=100) \\
\hline v41691222 & 5 & Goods (2002=100) \\
\hline v41691223 & 5 & Durable goods (2002=100) \\
\hline v41691225 & 5 & Non-durable goods (2002=100) \\
\hline v41691229 & 5 & Goods excluding food purchased from stores and energy (2002=100) \\
\hline v41691230 & 5 & Services (2002=100) \\
\hline v41691231 & 5 & Services excluding shelter services (2002=100) \\
\hline v41691244 & 5 & Newfoundland and Labrador; All-items (2002=100) \\
\hline v41691369 & 5 & Newfoundland and Labrador; All-items excluding food and energy (2002=100) \\
\hline v41691363 & 5 & Newfoundland and Labrador; Goods (2002=100) \\
\hline v41691367 & 5 & Newfoundland and Labrador; Services (2002=100) \\
\hline v41691379 & 5 & Prince Edward Island; All-items (2002=100) \\
\hline v41691503 & 5 & Prince Edward Island; All-items excluding food and energy (2002=100) \\
\hline v41691497 & 5 & Prince Edward Island; Goods (2002=100) \\
\hline v41691501 & 5 & Prince Edward Island; Services (2002=100) \\
\hline v41691513 & 5 & Nova Scotia; All-items (2002=100) \\
\hline v41691638 & 5 & Nova Scotia; All-items excluding food and energy (2002=100) \\
\hline v41691632 & 5 & Nova Scotia; Goods (2002=100) \\
\hline v41691636 & 5 & Nova Scotia; Services (2002=100) \\
\hline v41691648 & 5 & New Brunswick; All-items (2002=100) \\
\hline v41691773 & 5 & New Brunswick; All-items excluding food and energy (2002=100) \\
\hline v41691767 & 5 & New Brunswick; Goods (2002=100) \\
\hline v41691771 & 5 & New Brunswick; Services (2002=100) \\
\hline v41691783 & 5 & Quebec; All-items (2002=100) \\
\hline v41691909 & 5 & Quebec; All-items excluding food and energy (2002=100) \\
\hline v41691903 & 5 & Quebec; Goods (2002=100) \\
\hline v41691907 & 5 & Quebec; Services (2002=100) \\
\hline v41691919 & 5 & Ontario; All-items (2002=100) \\
\hline v41692045 & 5 & Ontario; All-items excluding food and energy (2002=100) \\
\hline v41692039 & 5 & Ontario; Goods (2002=100) \\
\hline v41692043 & 5 & Ontario; Services (2002=100) \\
\hline v41692055 & 5 & Manitoba; All-items (2002=100) \\
\hline v41692181 & 5 & Manitoba; All-items excluding food and energy (2002=100) \\
\hline v41692175 & 5 & Manitoba; Goods (2002=100) \\
\hline v41692179 & 5 & Manitoba; Services (2002=100) \\
\hline v41692191 & 5 & Saskatchewan; All-items (2002=100) \\
\hline v41692317 & 5 & Saskatchewan; All-items excluding food and energy (2002=100) \\
\hline v41692311 & 5 & Saskatchewan; Goods (2002=100) \\
\hline v41692315 & 5 & Saskatchewan; Services (2002=100) \\
\hline v41692327 & 5 & Alberta; All-items (2002=100) \\
\hline v41692452 & 5 & Alberta; All-items excluding food and energy (2002=100) \\
\hline v41692446 & 5 & Alberta; Goods (2002=100) \\
\hline v41692450 & 5 & Alberta; Services (2002=100) \\
\hline v41692462 & 5 & British Columbia; All-items (2002=100) \\
\hline v41692588 & 5 & British Columbia; All-items excluding food and energy (2002=100) \\
\hline v41692582 & 5 & British Columbia; Goods (2002=100) \\
\hline v41692586 & 5 & British Columbia; Services (2002=100) \\
\hline & & Table 026-0001 Building permits, residential values and number of units \\
\hline v14098 & 1 & Canada; Total dwellings (number of units) [D848383] \\
\hline v41651 & 1 & Canada; Total dwellings (dollars - thousands) [D845521] \\
\hline v13824 & 1 & Newfoundland and Labrador; Total dwellings (number of units) [D847651] \\
\hline v41560 & 1 & Newfoundland and Labrador; Total dwellings (dollars - thousands) [D845363] \\
\hline v13859 & 1 & Prince Edward Island; Total dwellings (number of units) [D847658] \\
\hline v41595 & 1 & Prince Edward Island; Total dwellings (dollars - thousands) [D845370] \\
\hline v13866 & 1 & Nova Scotia; Total dwellings (number of units) [D847665] \\
\hline v41602 & 1 & Nova Scotia; Total dwellings (dollars - thousands) [D845377] \\
\hline v13873 & , & New Brunswick; Total dwellings (number of units) [D847672] \\
\hline v41609 & 1 & New Brunswick; Total dwellings (dollars - thousands) [D845384] \\
\hline v13880 & 1 & Quebec; Total dwellings (number of units) [D847679] \\
\hline v41616 & 1 & Quebec; Total dwellings (dollars - thousands) [D845391] \\
\hline v13887 & 1 & Ontario; Total dwellings (number of units) [D847686] \\
\hline v41623 & 1 & Ontario; Total dwellings (dollars - thousands) [D845398] \\
\hline v13894 & 1 & Manitoba; Total dwellings (number of units) [D847693] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 81 & v41630 & 1 & Manitoba; Total dwellings (dollars - thousands) [D845405] \\
\hline 82 & v13901 & 1 & Saskatchewan; Total dwellings (number of units) [D847700] \\
\hline 83 & v41637 & 1 & Saskatchewan; Total dwellings (dollars - thousands) [D845412] \\
\hline 84 & v13908 & 1 & Alberta; Total dwellings (number of units) [D847707] \\
\hline 85 & v41644 & 1 & Alberta; Total dwellings (dollars - thousands) [D845419] \\
\hline 86 & v13831 & 1 & British Columbia; Total dwellings (number of units) [D847714] \\
\hline 87 & v41567 & 1 & British Columbia; Total dwellings (dollars - thousands) [D845426] \\
\hline & & & Table 027-0002 CMHC, housing starts, under constr and completions, SA \\
\hline 88 & v730040 & 1 & Canada; Total units (units - thousands) [J9001] \\
\hline 89 & v729972 & 1 & Newfoundland and Labrador; Total units (units - thousands) [J7002] \\
\hline 90 & v729973 & 1 & Prince Edward Island; Total units (units - thousands) [J7003] \\
\hline 91 & v729974 & 1 & Nova Scotia; Total units (units - thousands) [J7004] \\
\hline 92 & v729975 & 1 & New Brunswick; Total units (units - thousands) [J7005] \\
\hline 93 & v729976 & 1 & Quebec; Total units (units - thousands) [J7006] \\
\hline 94 & v729981 & 1 & Ontario; Total units (units - thousands) [J7008] \\
\hline 95 & v729987 & 1 & Manitoba; Total units (units - thousands) [J7011] \\
\hline 96 & v729988 & 1 & Saskatchewan; Total units (units - thousands) [J7012] \\
\hline 97 & v729989 & 1 & Alberta; Total units (units - thousands) [J7013] \\
\hline 98 & v729990 & 1 & British Columbia; Total units (units - thousands) [J7014] \\
\hline & & & Table 377-0003 Business leading indicators for Canada \\
\hline 99 & v7677 & 1 & Average work week, manufacturing; Smoothed (hours) [D100042] \\
\hline 100 & v7680 & 1 & Housing index; Smoothed (index, 1992=100) [D100043] \\
\hline 101 & v7681 & 5 & United States composite leading index; Smoothed (index, 1992=100) [D100044] \\
\hline 102 & v7682 & 5 & Money supply; Smoothed (dollars, 1992 - millions) [D100045] \\
\hline 103 & v7683 & 5 & New orders, durable goods; Smoothed (dollars, 1992 - millions) [D100046] \\
\hline 104 & v7684 & 5 & Retail trade, furniture and appliances; Smoothed (dollars, 1992 - millions) [D100047] \\
\hline 105 & v7686 & 1 & Shipment to inventory ratio, finished products; Smoothed (ratio) [D100049] \\
\hline 106 & v7678 & 5 & Stock price index, TSE 300; Smoothed (index, 1975=1000) [D100050] \\
\hline 107 & v7679 & 5 & Business and personal services employment; Smoothed (persons - thousands) [D100051] \\
\hline 108 & v7688 & 5 & Composite index of 10 indicators; Smoothed (index, 1992=100) [D100053] \\
\hline & & & Table 379-0027 GDP at basic prices, by NAICS, Canada, SA, 2002 constant prices \\
\hline 109 & v41881478 & 5 & All industries [T001] (dollars - millions) \\
\hline 110 & v41881480 & 5 & Business sector, goods [T003] (dollars - millions) \\
\hline 111 & v41881481 & 5 & Business sector, services [T004] (dollars - millions) \\
\hline 112 & v41881482 & 5 & Non-business sector industries [T005] (dollars - millions) \\
\hline 113 & v41881485 & 5 & Goods-producing industries [T008] (dollars - millions) \\
\hline 114 & v41881486 & 5 & Service-producing industries [T009] (dollars - millions) \\
\hline 115 & v41881487 & 5 & Industrial production [T010] (dollars - millions) \\
\hline 116 & v41881488 & 5 & Non-durable manufacturing industries [T011] (dollars - millions) \\
\hline 117 & v41881489 & 5 & Durable manufacturing industries [T012] (dollars - millions) \\
\hline 118 & v41881494 & 5 & Agriculture, forestry, fishing and hunting [11] (dollars - millions) \\
\hline 119 & v41881501 & 5 & Mining and oil and gas extraction [21] (dollars - millions) \\
\hline 120 & v41881524 & 5 & Residential building construction [230A] (dollars - millions) \\
\hline 121 & v41881525 & 5 & Non-residential building construction [230B] (dollars - millions) \\
\hline 122 & v41881527 & 5 & Manufacturing [31-33] (dollars - millions) \\
\hline 123 & v41881555 & 5 & Wood product manufacturing [321] (dollars - millions) \\
\hline 124 & v41881564 & 5 & Paper manufacturing [322] (dollars - millions) \\
\hline 125 & v41881602 & 5 & Rubber product manufacturing [3262] (dollars - millions) \\
\hline 126 & v41881606 & 5 & Non-metallic mineral product manufacturing [327] (dollars - millions) \\
\hline 127 & v41881637 & 5 & Machinery manufacturing [333] (dollars - millions) \\
\hline 128 & v41881654 & 5 & Electrical equipment, appliance and component manufacturing [335] (dollars - millions) \\
\hline 129 & v41881662 & 5 & Transportation equipment manufacturing [336] (dollars - millions) \\
\hline 130 & v41881663 & 5 & Motor vehicle manufacturing [3361] (dollars - millions) \\
\hline 131 & v41881674 & 5 & Aerospace product and parts manufacturing [3364] (dollars - millions) \\
\hline 132 & v41881675 & 5 & Railroad rolling stock manufacturing [3365] (dollars - millions) \\
\hline 133 & v41881688 & 5 & Wholesale trade [41] (dollars - millions) \\
\hline 134 & v41881689 & 5 & Retail trade [44-45] (dollars - millions) \\
\hline 135 & v41881690 & 5 & Transportation and warehousing [48-49] (dollars - millions) \\
\hline 136 & v41881699 & 5 & Pipeline transportation [486] (dollars - millions) \\
\hline 137 & v41881724 & 5 & Finance, insurance, realÂ estate, rental and leasing and management of companies and enterprises [5A] (dollars - millions) \\
\hline 138 & v41881756 & 5 & Educational services [61] (dollars - millions) \\
\hline 139 & v41881759 & 5 & Health care and social assistance [62] (dollars - millions) \\
\hline 140 & v41881776 & 5 & Federal government public administration [911] (dollars - millions) \\
\hline 141 & v41881777 & 5 & Defence services [9111] (dollars - millions) \\
\hline 142 & v41881779 & 5 & Provincial and territorial public administration [912] (dollars - millions) \\
\hline 143 & v41881780 & 5 & Local, municipal and regional public administration [913] (dollars - millions) \\
\hline & & & Tables 329-00(46,38,39) Industrial price indexes, 1997=100 \\
\hline 144 & v1575728 & 5 & Transformer equipment (index, 1997=100) [P5648] \\
\hline 145 & v1575754 & 5 & Electric motors and generators (index, 1997=100) [P5674] \\
\hline 146 & v1575886 & 5 & Diesel fuel (index, 1997=100) [P5806] \\
\hline 147 & v1575925 & 5 & Light fuel oil (index, 1997=100) [P5845] \\
\hline 148 & v1575903 & 5 & Heavy fuel oil (index, 1997=100) [P5823] \\
\hline 149 & v1575934 & 5 & Lubricating oils and greases (index, 1997=100) [P5854] \\
\hline 150 & v1575958 & 5 & Asphalt mixtures and emulsions (index, 1997=100) [P5878] \\
\hline 151 & v1575457 & 5 & Industrial trucks, tractors and parts (index, 1997=100) [P5329] \\
\hline 152 & v1575493 & 5 & Parts, air conditioning and refrigeration equipment (index, 1997=100) [P5365] \\
\hline 153 & v1575511 & 5 & Food products industrial machinery and equipment (index, 1997=100) [P5383] \\
\hline 154 & v1575557 & 5 & Trucks, chassis, tractors, commercial (index, 1997=100) [P5429] \\
\hline 155 & v1575610 & 5 & Motor vehicle engine parts (index, 1997=100) [P5482] \\
\hline 156 & v3860051 & 5 & Motor vehicle brakes (index, 1997=100) [P5512] \\
\hline 157 & v3822562 & 5 & All manufacturing (index, 1997=100) [P6253] \\
\hline 158 & v3825177 & 5 & Total excluding food and beverage manufacturing (index, 1997=100) [P6491] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 159 & v3825178 & 5 & Food and beverage manufacturing [311, 3121] (index, 1997=100) [P6492] \\
\hline 160 & v3825179 & 5 & Food and beverage manufacturing excluding alcoholic beverages (index, 1997=100) [P6493] \\
\hline 161 & v3825180 & 5 & Non-food (including alcoholic beverages) manufacturing (index, 1997=100) [P6494] \\
\hline 162 & v3825181 & 5 & Basic manufacturing industries [321, 322, 327, 331] (index, 1997=100) [P6495] \\
\hline 163 & v3825183 & 5 & Primary metal manufacturing excluding precious metals (index, 1997=100) [P6497] \\
\hline & & & Table 176-0001 Commodity price index, US\$ (index, 82-90=100) \\
\hline 164 & v36382 & 5 & Total, all commodities (index, 82-90=100) [B3300] \\
\hline 165 & v36383 & 5 & Total excluding energy (index, 82-90=100) [B3301] \\
\hline 166 & v36384 & 5 & Energy (index, 82-90=100) [B3302] \\
\hline 167 & v36385 & 5 & Food (index, 82-90=100) [B3303] \\
\hline 168 & v36386 & 5 & Industrial materials (index, 82-90=100) [B3304] \\
\hline & & & Tables 176-00(46,47), 184-0002 Stock market statistics \\
\hline 169 & v37412 & 5 & Toronto Stock Exchange, value of shares traded (dollars - millions) [B4213] \\
\hline 170 & v37413 & 5 & Toronto Stock Exchange, volume of shares traded (shares - millions) [B4214] \\
\hline 171 & v37414 & 5 & United States common stocks, Dow-Jones industrials, high (index) [B4218] \\
\hline 172 & v37415 & 5 & United States common stocks, Dow-Jones industrials, low (index) [B4219] \\
\hline 173 & v37416 & 5 & United States common stocks, Dow-Jones industrials, close (index) [B4220] \\
\hline 174 & v37419 & 5 & New York Stock Exchange, customers' debit balances (dollars - millions) [B4223] \\
\hline 175 & v37420 & 5 & New York Stock Exchange, customers' free credit balance (dollars - millions) [B4224] \\
\hline 176 & v122620 & 5 & Standard and Poor's/Toronto Stock Exchange Composite Index, close (index, 1975=1000) [B4237] \\
\hline 177 & v122628 & 1 & Toronto Stock Exchange, stock dividend yields (composite), closing quotations (percent) [B4245] \\
\hline 178 & v122629 & 1 & Toronto Stock Exchange, price earnings ratio, closing quotations (ratio) [B4246] \\
\hline 179 & v6384 & 5 & Total volume; Value of shares traded (dollars - millions) [D4560] \\
\hline 180 & v6385 & 5 & Industrials; Value of shares traded (dollars - millions) [D4558] \\
\hline 181 & v6386 & 5 & Mining and oils; Value of shares traded (dollars - millions) [D4559] \\
\hline & & & Table 176-0064 Foreign exchange rates \\
\hline 183 & v37426 & 1 & United States dollar, noon spot rate, average (dollars) [B3400] \\
\hline 184 & v37437 & 1 & United States dollar, 90-day forward noon rate (dollars) [B3401] \\
\hline 185 & v37452 & 1 & Danish krone, noon spot rate, average (dollars) [B3403] \\
\hline 186 & v37456 & 1 & Japanese yen, noon spot rate, average (dollars) [B3407] \\
\hline 187 & v37427 & 1 & Norwegian krone, noon spot rate, average (dollars) [B3409] \\
\hline 188 & v37428 & 1 & Swedish krona, noon spot rate, average (dollars) [B3410] \\
\hline 189 & v37429 & 1 & Swiss franc, noon spot rate, average (dollars) [B3411] \\
\hline 190 & v37430 & 1 & United Kingdom pound sterling, noon spot rate, average (dollars) [B3412] \\
\hline 191 & v37431 & 1 & United Kingdom pound sterling, 90-day forward noon rate (dollars) [B3413] \\
\hline 192 & v37432 & 1 & United States dollar, closing spot rate (dollars) [B3414] \\
\hline 193 & v37433 & 1 & United States dollar, highest spot rate (dollars) [B3415] \\
\hline 194 & v37434 & 1 & United States dollar, lowest spot rate (dollars) [B3416] \\
\hline 195 & v37435 & 1 & United States dollar, 90-day forward closing rate (dollars) [B3417] \\
\hline 196 & v41498903 & 1 & Canadian dollar effective exchange rate index (CERI) (1992=100) (dollars) \\
\hline & & & Table 176-0043 Interest rates \\
\hline 197 & v122550 & 1 & Bank rate, last Tuesday or last Thursday (percent) [B14079] \\
\hline 198 & v122530 & 1 & Bank rate (percent) [B14006] \\
\hline 199 & v122495 & 1 & Chartered bank administered interest rates - prime business (percent) [B14020] \\
\hline 200 & v122505 & 1 & Forward premium or discount (-), United States dollar in Canada: 3 month (percent) [B14034] \\
\hline 201 & v122509 & 1 & Prime corporate paper rate: 1 month (percent) [B14039] \\
\hline 202 & v122556 & 1 & Prime corporate paper rate: 2 month (percent) [B14084] \\
\hline 203 & v122491 & 1 & Prime corporate paper rate: 3 month (percent) [B14017] \\
\hline 204 & v122504 & 1 & Bankers' acceptances: 1 month (percent) [B14033] \\
\hline 205 & v122558 & 1 & Government of Canada marketable bonds, average yield: 1-3 year (percent) [B14009] \\
\hline 206 & v122485 & 1 & Government of Canada marketable bonds, average yield: 3-5 year (percent) [B14010] \\
\hline 207 & v122486 & 1 & Government of Canada marketable bonds, average yield: 5-10 year (percent) [B14011] \\
\hline 208 & v122487 & 1 & Government of Canada marketable bonds, average yield: over 10 years (percent) [B14013] \\
\hline 209 & v122515 & 1 & Chartered bank - 5 year personal fixed term (percent) [B14045] \\
\hline 210 & v122493 & 1 & Chartered bank - non-chequable savings deposits (percent) [B14019] \\
\hline 211 & v122541 & 1 & Treasury bill auction - average yields: 3 month (percent) [B14007] \\
\hline 212 & v122484 & 1 & Treasury bill auction - average yields: 3 month, average at values (percent) [B14001] \\
\hline 213 & v122552 & 1 & Treasury bill auction - average yields: 6 month (percent) [B14008] \\
\hline 214 & v122554 & 1 & Treasury bills: 2 month (percent) [B14082] \\
\hline 215 & v122531 & 1 & Treasury bills: 3 month (percent) [B14060] \\
\hline 216 & v122499 & 1 & Government of Canada marketable bonds, average yield, average of Wednesdays: 1-3 year (percent) [B14028] \\
\hline 217 & v122500 & 1 & Government of Canada marketable bonds, average yield, average of Wednesdays: 3-5 year (percent) [B14029] \\
\hline 218 & v122502 & 1 & Government of Canada marketable bonds, average yield, average of Wednesdays: 5-10 year (percent) [B14030] \\
\hline 219 & v122501 & 1 & Government of Canada marketable bonds, average yield, average of Wednesdays: over 10 years (percent) [B14003] \\
\hline 220 & v122497 & 1 & Average residential mortgage lending rate: 5 year (percent) [B14024] \\
\hline 221 & v122506 & 1 & Chartered bank - chequable personal savings deposit rate (percent) [B14035] \\
\hline 222 & v122507 & 1 & Covered differential: Canada-United States 3 month Treasury bills (percent) [B14036] \\
\hline 223 & v122508 & 1 & Covered differential: Canada-United States 3 month short-term paper (percent) [B14038] \\
\hline 224 & v122510 & 1 & First coupon of Canada Savings Bonds (percent) [B14040] \\
\hline & & & Table 176-0051 Canada's official international reserves \\
\hline 225 & v122396 & 5 & Total, Canada's official international reserves (dollars - millions) [B3800] \\
\hline 226 & v122397 & 5 & Convertible foreign currencies, United States dollars (dollars - millions) [B3801] \\
\hline 227 & v122398 & 5 & Convertible foreign currencies, other than United States (dollars - millions) [B3802] \\
\hline 228 & v122399 & 5 & Gold (dollars - millions) [B3803] \\
\hline 229 & v122401 & 5 & Reserve position in the International Monetary Fund (IMF) (dollars - millions) [B3805] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & Table 176-0032 Credit measures \\
\hline 230 & v36414 & 5 & Total business and household credit; Seasonally adjusted (dollars - millions) [B165] \\
\hline 231 & v36415 & 5 & Household credit; Seasonally adjusted (dollars - millions) [B166] \\
\hline 232 & v36416 & 5 & Residential mortgage credit; Seasonally adjusted (dollars - millions) [B167] \\
\hline 233 & v36417 & 5 & Consumer credit; Seasonally adjusted (dollars - millions) [B168] \\
\hline 234 & v36418 & 5 & Business credit; Seasonally adjusted (dollars - millions) [B169] \\
\hline 235 & v36419 & 5 & Other business credit; Seasonally adjusted (dollars - millions) [B170] \\
\hline 236 & v36420 & 5 & Short-term business credit; Seasonally adjusted (dollars - millions) [B171] \\
\hline & & & Table 176-0025 Monetary aggregates \\
\hline 237 & v37148 & 5 & Currency outside banks (dollars - millions) [B1604] \\
\hline 238 & v37153 & 5 & Canadian dollar assets, total loans (dollars - millions) [B1605] \\
\hline 239 & v37154 & 5 & General loans (including grain dealers and installment finance companies) (dollars - millions) [B1606] \\
\hline 240 & v37107 & 5 & Total, major assets (dollars - millions) [B1611] \\
\hline 241 & v37111 & 5 & Canadian dollar assets, liquid assets (dollars - millions) [B1615] \\
\hline 242 & v37112 & 5 & Canadian dollar assets, less liquid assets (dollars - millions) [B1616] \\
\hline 243 & v37119 & 5 & Total personal loans, average of Wednesdays (dollars - millions) [B1622] \\
\hline 244 & v37120 & 5 & Business loans, average of Wednesdays (dollars - millions) [B1623] \\
\hline 245 & v41552793 & 5 & Currency outside banks and chartered bank deposits, held by general public (including private sector float) (dollars - millions) \\
\hline 246 & v41552795 & 5 & M1B (gross) (currency outside banks, chartered bank chequable deposits, less inter-bank chequable deposits) (dollars - millions) \\
\hline 247 & v41552796 & 5 & M2 (gross) (currency outside banks, chartered bank demand and notice deposits, chartered bank personal term deposits, adjustments to M2 (gross) (continuity adjustments and inter-bank demand and notice deposits)) (dollars - millions) \\
\hline 248 & v41552797 & 5 & Currency outside banks and chartered bank deposits (including private sector float) (dollars - millions) \\
\hline 249 & v37130 & 5 & Residential mortgages (dollars - millions) [B1632] \\
\hline 250 & v41552798 & 5 & M2+ (gross) (dollars - millions) \\
\hline 251 & v37135 & 5 & Chartered bank deposits, personal, term (dollars - millions) [B1637] \\
\hline 252 & v37138 & 5 & Total, deposits at trust and mortgage loan companies (dollars - millions) [B1639] \\
\hline 253 & v37139 & 5 & Total, deposits at credit unions and caisses populaires (dollars - millions) [B1640] \\
\hline 254 & v37140 & 5 & Bankers' acceptances (dollars - millions) [B1641] \\
\hline 255 & v37145 & 5 & Monetary base (notes and coin in circulation, chartered bank and other Canadian Payments Association members' deposits with the Bank of Canada) (dollars - millions) [B1646] \\
\hline 256 & v37146 & 5 & Monetary base (notes and coin in circulation, chartered bank and other Canadian Payments Association members' deposits with the Bank of Canada) (excluding required reserves) (dollars - millions) [B1647] \\
\hline 257 & v37147 & 5 & Canada Savings Bonds and other retail instruments (dollars - millions) [B1648] \\
\hline 258 & v41552801 & 5 & M2++ (gross) (M2+ (gross), Canada Savings Bonds, non-money market mutual funds) (dollars - millions) \\
\hline 259 & v37152 & 5 & M1++ (gross) (dollars - millions) [B1652] \\
\hline & & & Table 282-0087 LFS, SA, Canada and provinces \\
\hline 260 & v2062811 & 5 & Canada; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 261 & v2062815 & 1 & Canada; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 262 & v2063000 & 5 & Newfoundland and Labrador; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 263 & v2063004 & 1 & Newfoundland and Labrador; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 264 & v2063189 & 5 & Prince Edward Island; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 265 & v2063193 & 1 & Prince Edward Island; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 266 & v2063378 & 5 & Nova Scotia; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 267 & v2063382 & 1 & Nova Scotia; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 268 & v2063567 & 5 & New Brunswick; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 269 & v2063571 & 1 & New Brunswick; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 270 & v2063756 & 5 & Quebec; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 271 & v2063760 & 1 & Quebec; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 272 & v2063945 & 5 & Ontario; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 273 & v2063949 & 1 & Ontario; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 274 & v2064134 & 5 & Manitoba; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 275 & v2064138 & 1 & Manitoba; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 276 & v2064323 & 5 & Saskatchewan; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 277 & v2064327 & 1 & Saskatchewan; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 278 & v2064512 & 5 & Alberta; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 279 & v2064516 & 1 & Alberta; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline 280 & v2064701 & 5 & British Columbia; Employment; Both sexes; 15 years and over; Seasonally adjusted (persons - thousands) \\
\hline 281 & v2064705 & 1 & British Columbia; Unemployment rate; Both sexes; 15 years and over; Seasonally adjusted (rate) \\
\hline & & & Table 282-0088 Employment by industry \\
\hline 282 & v2057603 & 5 & Total employed, all industries; Seasonally adjusted (persons - thousands) \\
\hline 283 & v2057604 & 5 & Goods-producing sector; Seasonally adjusted (persons - thousands) \\
\hline 284 & v2057605 & 5 & Agriculture [1100-1129, 1151-1152]; Seasonally adjusted (persons - thousands) \\
\hline 285 & v2057606 & 5 & Forestry, fishing, mining, oil and gas [1131-1133, 1141-1142, 1153, 2100-2131]; Seasonally adjusted (persons - thousands) \\
\hline 286 & v2057607 & 5 & Utilities [2211-2213]; Seasonally adjusted (persons - thousands) \\
\hline 287 & v2057608 & 5 & Construction [2361-2389]; Seasonally adjusted (persons - thousands) \\
\hline 288 & v2057609 & 5 & Manufacturing [3211-3219, 3271-3279, 3311-3399, 3111-3169, 3221-3262]; Seasonally adjusted (persons - thousands) \\
\hline 289 & v2057610 & 5 & Services-producing sector; Seasonally adjusted (persons - thousands) \\
\hline 290 & v2057611 & 5 & Trade [4111-4191, 4411-4543]; Seasonally adjusted (persons - thousands) \\
\hline 291 & v2057612 & 5 & Transportation and warehousing [4811-4931]; Seasonally adjusted (persons - thousands) \\
\hline 292 & v2057613 & 5 & Finance, insurance, real estate and leasing [5211-5269, 5311-5331]; Seasonally adjusted (persons - thousands) \\
\hline 293 & v2057614 & 5 & Professional, scientific and technical services [5411-5419]; Seasonally adjusted (persons - thousands) \\
\hline 294 & v2057615 & 5 & Business, building and other support services [5511-5629]; Seasonally adjusted (persons - thousands) \\
\hline 295 & v2057616 & 5 & Educational services [6111-6117]; Seasonally adjusted (persons - thousands) \\
\hline 296 & v2057617 & 5 & Health care and social assistance [6211-6244]; Seasonally adjusted (persons - thousands) \\
\hline 297 & v2057618 & 5 & Information, culture and recreation [5111-5191, 7111-7139]; Seasonally adjusted (persons - thousands) \\
\hline 298 & v2057619 & 5 & Accommodation and food services [7211-7224]; Seasonally adjusted (persons - thousands) \\
\hline 299 & v2057620 & 5 & Other services [8111-8141]; Seasonally adjusted (persons - thousands) \\
\hline 300 & v2057621 & 5 & Public administration [9110-9191]; Seasonally adjusted (persons - thousands) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 301 & v183474 & 5 & Imports, United States, including Puerto Rico and Virgin Islands (dollars - millions) [D398058] \\
\hline 302 & v183475 & 5 & Imports, United Kingdom (dollars - millions) [D398059] \\
\hline 303 & v183476 & 5 & Imports, Other European Economic Community (dollars - millions) [D398060] \\
\hline 304 & v183477 & 5 & Imports, Japan (dollars - millions) [D398061] \\
\hline 305 & v191559 & 5 & Exports, United States, including Puerto Rico and Virgin Islands (dollars - millions) [D399518] \\
\hline 306 & v191560 & 5 & Exports, United Kingdom (dollars - millions) [D399519] \\
\hline 307 & v191561 & 5 & Exports, Other European Economic Community (dollars - millions) [D399520] \\
\hline 308 & v191562 & 5 & Exports, Japan (dollars - millions) [D399521] \\
\hline 309 & v21386488 & 5 & Imports, total of all merchandise (dollars - millions) \\
\hline 310 & v21386489 & 5 & Imports, Sector 1 Agricultural and fishing products (dollars - millions) \\
\hline 311 & v21386492 & 5 & Imports, Sector 2 Energy products (dollars - millions) \\
\hline 312 & v21386495 & 5 & Imports, Sector 3 Forestry products (dollars - millions) \\
\hline 313 & v21386496 & 5 & Imports, Sector 4 Industrial goods and materials (dollars - millions) \\
\hline 314 & v21386500 & 5 & Imports, Sector 5 Machinery and equipment (dollars - millions) \\
\hline 315 & v21386505 & 5 & Imports, Sector 6 Automotive products (dollars - millions) \\
\hline 316 & v21386509 & 5 & Imports, Sector 7 Other consumer goods (dollars - millions) \\
\hline 317 & v21386512 & 5 & Imports, Sector 8 Special transactions trade (dollars - millions) \\
\hline 318 & v21386514 & 5 & Exports, total of all merchandise (dollars - millions) \\
\hline 319 & v21386515 & 5 & Exports, Sector 1 Agricultural and fishing products (dollars - millions) \\
\hline 320 & v21386518 & 5 & Exports, Sector 2 Energy products (dollars - millions) \\
\hline 321 & v21386522 & 5 & Exports, Sector 3 Forestry products (dollars - millions) \\
\hline 322 & v21386526 & 5 & Exports, Sector 4 Industrial goods and materials (dollars - millions) \\
\hline 323 & v21386531 & 5 & Exports, Sector 5 Machinery and equipment (dollars - millions) \\
\hline 324 & v21386535 & 5 & Exports, Sector 6 Automotive products (dollars - millions) \\
\hline 325 & v21386539 & 5 & Exports, Sector 7 Other consumer goods (dollars - millions) \\
\hline 326 & v21386540 & 5 & Exports, Sector 8 Special transactions trade (dollars - millions) \\
\hline & & & Table 026-0008: Building permits, values by activity sector; Canada \\
\hline 327 & v4667 & 5 & Total residential and non-residential (dollars - thousands) [D2677] \\
\hline 328 & v4668 & 5 & Residential (dollars - thousands) [D2681] \\
\hline 329 & v4669 & 5 & Non-residential (dollars - thousands) [D4898] \\
\hline 330 & v4670 & 5 & Industrial (dollars - thousands) [D2678] \\
\hline 331 & v4671 & 5 & Commercial (dollars - thousands) [D2679] \\
\hline 332 & v4672 & 5 & Institutional and governmental (dollars - thousands) [D2680] \\
\hline
\end{tabular}

\section*{References}

Abraham, B. (1982), 'Temporal aggregation and time series', International Statistical Review 50, 285-291.

Amengual, D. and Watson, M. (2007), 'Consistent estimation of the number of dynamic factors in large N and T panel', Journal of Business and Economic Statistics 25(1), 91-96.

Aruoba, S., Diebold, F. and Scotti, C. (2009), 'Real-time measurement of business conditions', Journal of Business and Economic Statistics 27, 417-427.

Bai, J. (2003), 'Inferential theory for factor models of large dimensions', Econometrica 71(1), 135172.

Bai, J. and Ng, S. (2002), 'Determining the number of factors in approximate factor models', Econometrica 70(1), 191-221.

Bai, J. and Ng, S. (2007), 'Determining the number of primitive shocks', Journal of Business and Economic Statistics 25(1), 52-60.

Bai, J. and Ng, S. (2008), 'Large dimensional factor analysis', Foundations and Trends in Econometrics 3(2), 89-163.

Bai, J. and Ng, S. (2010), 'Instrumental variable estimation in a data-rich environment', Econometric Theory 26(6), 1577-1606.

Banerjee, A., Marcellino, M. and Masten, I. (2006), Forecasting macroeconomic variables using diffusion indexes in short samples with structural change, in D. Rapach and M. Wohar, eds, 'Presence of Structural Breaks and Model Uncertainty'.

Bernanke, B., Boivin, J. and Eliasz, P. (2005), 'Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach', Quarterly Journal of Economics 120, \(387 \ddot{i} \ddot{u}_{\mathrm{e}}{ }^{1 / 2} 422\).

Boivin, J. and Giannoni, M. (2006), DSGE models in a data-rich environment, Technical report, Columbia Business School, Columbia University.

Boivin, J., Giannoni, M. and Stevanović, D. (2009), Dynamic effects of credit shocks in a data-rich environment, Technical report, Columbia Business School, Columbia University.

Boivin, J., Giannoni, M. and Stevanović, D. (2009b), Monetary transmission in a small open economy: more data, fewer puzzles, Technical report, Columbia Business School, Columbia University.

Boivin, J. and Ng, S. (2005), 'Understanding and comparing factor-based forecasts', International Journal of Central Banking 1, 117-151.

Boudjellaba, H., Dufour, J.-M. and Roy, R. (1992), ‘Testing causality between two vectors in multivariate ARMA models', Journal of the American Statistical Association 87(420), 1082-1090.

Chamberlain, G. and Rothschild, M. (1983), 'Arbitrage, factor structure and mean-variance analysis in large asset markets', Econometrica 51(5), 1281-1304.

Deistler, M., Anderson, B., Filler, A., Zinner, C. and Chen, W. (2010), ‘Generalized linear dynamic factor models - an approach via singular autoregressions', European Journal of Control 16:3, 211-224.

Deistler, M., Filler, A. and Funovits, B. (2011), 'AR systems and AR processes: The singular case', Communications in Information and Systems 11:3, 225-236.

Deistler, M. and Hannan, E. J. (1981), 'Some properties of the parameterization of ARMA systems with unknown order', Journal of Multivariate Analysis 11, 474-484.

Dufour, J.-M. and Pelletier, D. (2013), Practical methods for modelling weak VARMA processes: Identification, estimation and specification with a macroeconomic application, Technical report, Department of Economics, McGill University, CIREQ and CIRANO, Montréal, Canada.

Favero, C., Marcellino, M. and Neglia, F. (2005), 'Principal components at work: The empirical analysis of monetary policy with large datasets', Journal of Applied Econometrics 20, 603620.

Forni, M., Giannone, D., Lippi, M. and Reichlin, L. (2009), 'Opening the black box: identifying shocks and propagation mechanisms in VAR and factor models', Econometric Theory 25, 1319ï̈¹⁄21347.

Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000), ‘The generalized factor model: identification and estimation', The Review of Economics and Statistics 82, 540ï̈ \({ }^{11 / 2554}\).

Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2004), ‘The generalized factor model: consistency and rates', Journal of Econometrics 119, 231-255.

Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2005), 'The generalized dynamic factor model: one-sided estimation and forecasting', Journal of the American Statistical Association 100, 830-839.

Geweke, J. (1977), The dynamic factor analysis of economic time series, in D. Aigner and A. Goldberger, eds, 'Latent Variables in Socio Economic Models', Vol. 77, North Holland, Amsterdam, pp. 304-313.

Giannone, D., Reichlin, L. and Small, D. (2008), 'Nowcasting: the real-time informational content of macroeconomic data’, Journal of Monetary Economics 55, 665-676.

Hallin, M. and Liska, R. (2007), 'Determining the number of factors in the general dynamic factor model', Journal of the American Statistical Association 102, 603-617.

Hannan, E. J. and Deistler, M. (1988), The Statistical Theory of Linear Systems, John Wiley \& Sons, New York.

Hannan, E. J. and Rissanen, J. (1982), 'Recursive estimation of mixed autoregressive-movingaverage order', Biometrika 69(1), 81-94. Errata 70 (1983), 303.

Kapetanios, G. and Marcellino, M. (2010), 'Factor-GMM estimation with large sets of possibly weak instruments', Computational Statistics and Data Analysis 54, 2655-2675.

Komunjer, I. and Ng, S. (2011), ‘Dynamic identification of dynamic stochastic general equilibrium models', Econometrica 79, 1995-2032.

Lütkepohl, H. (1984), 'Forecasting contemporaneously aggregated vector ARMA processes', Journal of Business and Economic Statistics 2, 201-214.

Lütkepohl, H. (1984b), 'Linear transformations of vector ARMA processes', Journal of Econometrics 26, 283-293.

Lütkepohl, H. (1987), Forecasting Aggregated Vector ARMA Processes, Springer-Verlag, Berlin.
Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin.
Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis, Springer, Springer-Verlag, Berlin Heidelberg, Germany.

Marcellino, M., Stock, J. H. and Watson, M. W. (2006), 'A comparison of direct and iterated multistep ar methods for forecasting macroeconomic time series', Journal of Econometrics 135, 499-526.

Onatski, A. (2009), 'A formal statistical test for the number of factors in the approximate factor models', Econometrica 77(5), 1447-1480.

Onatski, A. (2009b), Asymptotics of the principal components estimator of large factor models with weak factors, Technical report, Department of Economics, Columbia University.

Poskitt, D. S. (2011), Vector autoregressive moving average identification for macroeconomic modeling: A new methodology, Technical report, Monash University.

Ravenna, F. (2006), ‘Vector autoregressions and reduced form representation of dynamic stochastic general equilibrium models', Journal of Monetary Economics 54(7), 715-719.

Rose, D. (1977), 'Forecasting aggregates of independent arima processes', Journal of Econometrics 5, 323-345.

Sargent, T. and Sims, C. (1977), Business cycle modeling without pretending to have too much a priori economic theory, in C. Sims, ed., 'New Methods in Business Cycle Research', Federal Reserve Bank of Minneapolis, Minneapolis.

Stock, J. H. and Watson, M. W. (2002), 'Forecasting using principal components from a large number of predictors', Journal of the American Statistical Association 97, 1167ï̈½1179.

Stock, J. H. and Watson, M. W. (2002b), 'Macroeconomic forecasting using diffusion indexes', Journal of Business and Economic Statistics 20(2), 147-162.

Stock, J. H. and Watson, M. W. (2005), Implications of dynamic factor models for var analysis, Technical report, NBER WP 11467.

Stock, J. H. and Watson, M. W. (2006), An empirical comparison of methods for forecasting using many predictors, Technical report, Department of Economics, Harvard University.

Wei, W. S. (1978), Some consequences of temporal aggregation in seasonal time series models, U.S. Government Printing Office (U.S. Department of Commerce, Bureau of the Census), Washington, D.C.

Yamamoto, Y. (2011), Bootstrap inference for the impulse response functions in factor-augmented vector autoregressions, Technical report, Faculty of Business, University of Alberta, Edmonton, Alberta.

Zellner, A. and Palm, F. (1974), 'Time series analysis and simultaneous equation econometric model', Journal of Econometrics 2(1), 17-54.```


[^0]:    * The authors thank Jean Boivin and Carsten Trenkler for useful discussions and comments, and Denis Pelletier for sharing Matlab codes. This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).
    ${ }^{\dagger}$ William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 5143984400 ext. 09156; FAX: (1) 514398 4800; e-mail: jeanmarie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com
    ${ }^{\ddagger}$ Département des sciences économiques, Université du Québec à Montréal. Mailing address: Université du Québec à Montréal, Département des sciences économiques, 315, rue Ste-Catherine Est, Montréal, QC, H2X 3X2. e-mail: dstevanovic.econ@gmail.com

