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ABSTRACT

The concept of causality introduced by Wiener (1956) and Granger (1969) is defined in terms of
predictability one period ahead. This concept can be generalized by considering causality at any
given horizonh as well as tests for the corresponding noncausality [Dufourand Renault (1998), Du-
four, Pelletier and Renault (2006)]. Instead of tests for noncausality at a given horizon, we study
the problem of measuring causality between two vector processes. Existing causality measures have
been defined only for the horizon1 and fail to capture indirect causality. We propose generaliza-
tions to any horizonh of the measures introduced by Geweke (1982). Nonparametricand parametric
measures of unidirectional causality and instantaneous effects are considered. On noting that the
causality measures typically involve complex functions ofmodel parameters in VAR and VARMA
models, we propose a simple simulation-based method to evaluate these measures for any VARMA
model. We also describe asymptotically valid nonparametric confidence intervals, based on a boot-
strap technique. Finally, the proposed measures are applied to study causality relations at different
horizons between macroeconomic, monetary and financial variables in the U.S.

Keywords: time series; Granger causality; indirect causality; multiple horizon causality; causality
measure; predictability; autoregressive model; vector autoregression; VAR; bootstrap; Monte Carlo;
macroeconomics; money; interest rates; output; inflation.
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1. Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) constitutes a basic no-
tion for studying dynamic relationships between time series. This concept is defined in terms of
predictability at horizon one of a (vector) variableX from its own past, the past of another (vec-
tor) variableY, and possibly a vectorZ of auxiliary variables. In particular, Granger (1969) defines
causality fromY to X in terms ofpredictability one period ahead: Y causesX if observations on
Y up to timet − 1 can help to predictX(t) given the past ofX andZ up to timet − 1. More
formally, Y causesX if the variance of the forecast error ofX obtained by using the past ofY is
smaller than the variance of the forecast error ofX obtained without using the past ofY . In such a
setup, the time order is used to distinguish between “input”variables (past values of different vari-
ables) and “output” variables (current values). Further, mere “correlations” that could be driven a
third set of variables can be eliminated by allowing for the presence of auxiliary variables(Z). The
theory of Wiener-Granger causality has generated a considerable literature; for reviews, see Pierce
and Haugh (1977), Newbold (1982), Geweke (1984a), Lütkepohl (1991), Boudjellaba, Dufour and
Roy (1992, 1994) and Gouriéroux and Monfort (1997, Chapter 10).

Most of the work in this field focuses on predictability at horizon 1. In Dufour and Renault
(1998), the concept of causality in the sense of Granger (1969) is generalized by considering causality
at a given (arbitrary) horizonh and causality up to horizonh, whereh is a positive integer and can be
infinite (1 ≤ h ≤ ∞); for related work, see also Sims (1980), Hsiao (1982), and Lütkepohl (1993b).
This extension is motivated by the following observation: in the presence of auxiliary variables(Z),
even ifY does not causeX at horizon one,Y may causeX at a longer horizonh > 1. In such case,
we haveindirect causalitytransmitted byZ. Necessary and sufficient conditions of noncausality
between vectors of variables at any horizonh for stationary and nonstationary processes have also
been derived, but they are notably more complex for horizonslonger than one, even in simple VAR
models [Dufour and Renault (1998)].

This type of analysis distinguishes between three basic types of causality: fromX to Y , from Y
toX, and instantaneous causality. In practice, it is possible that all three causality relations coexist,
hence the importance of finding means to quantify their degree. Unfortunately, causality tests fail to
accomplish this task, because they only provide evidence onthe presence or the absence of causality,
and statistical significance depends on the available data and test power. A large effect may not be
statistically significant (at a given level), and a statistically significant effect may not be “large” from
an economic viewpoint (or more generally from the viewpointof the subject at hand) or relevant
for decision making. As emphasized by McCloskey and Ziliak (1996), it is crucial to distinguish
between the numerical value of a parameter and its statistical significance. Indeed, the importance of
this distinction was well understood by Neyman and Pearson (1933, p. 296): “Is it more serious to
convict an innocent man or to acquit a guilty? That will depend on the consequences of the error; is
the punishment death or fine; what is the danger to the community of released criminals; what are
the current ethical views on punishment? From the point of view of mathematical theory all that we
can do is to show how the risk of errors may be controlled and minimized. The use of these statistical
tools in any given case, in determining just how the balance should be struck, must be left to the
investigator”.

In studying Wiener-Granger causality, predictability is the central issue. So, beyond accepting or
rejecting noncausality hypotheses – which state that certain variables do not help forecasting other
variables – we wish to assess the magnitude of the forecast improvement, where the latter is defined
in terms of some loss function (such as mean-square error). Even if the hypothesis of no improvement
(noncausality) cannot be rejected from looking at the available data (for example, because the sample
size or the structure of the process do allow for high test power), sizeable improvements may remain
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consistent with the same data. Or by contrast, a statistically significant improvement – which may
easily be produced by a large data set – may not be relevant from a practical viewpoint. Furthermore,
in comparing causality properties at different horizons, we may wish to compare the magnitudes
of improvement for different horizons. Reporting the results of causality tests at different horizons
simply does not provide this type of information. This suggests that building causality measures at
different horizons along with associated confidence intervals would yield a much more informative
analysis of Granger-Wiener causality than tests of noncausality.

As pointed out by Geweke (1982), much research has been devoted to building and applying tests
of noncausality. However, once it is admitted that a “causalrelation” (in the sense of Granger) may
be present, it is usually important to assess the strength ofthe relationship. This topic has attracted
much less attention. To answer this type of question, Geweke(1982, 1984b) introduced measures
of causality, based on mean-square forecast errors. Gouriéroux, Monfort and Renault (1987) pro-
posed causality measures based on the Kullback information. Polasek (1994) showed how causality
measures can be calculated using the Akaike Information Criterion (AIC). Polasek (2002) also in-
troduced new causality measures in the context of univariate and multivariate ARCH models and
their extensions based on a Bayesian approach.

Existing causality measures have been established only forthe one period horizon and fail to
capture indirect causal effects. In this paper, we develop causality measures at different horizons
which can detect indirect causality apparent only after several periods. Specifically, we propose
generalizations to any horizonh of the measures proposed by Geweke (1982) for the horizon one.
Important properties of these measures include: (1) they are nonnegative, and (2) they cancel only
when there is no causality at the horizon considered. By analogy with Geweke (1982, 1984b), we
also define a measure ofdependenceat horizonh, which combines causality measures fromX to
Y, from Y toX, and an instantaneous effect at horizonh. When both causalities fromX to Y and
from Y to X do exist, the effect (or predictability) may be stronger in one of these directions. The
causality measures studied do allow one to assess this for each horizon considered.

After noting that analytical formulae for causality measures in VAR and VARMA models typi-
cally involve complex functions of model parameters and maybe difficult to evaluate, we propose a
simple method based on a long simulation of the process of interest and we show that the approach
suggested works well in practice.

For empirical implementation, both parametric and nonparametric empirical estimates of the
causality measures are considered. Parametric estimates can be derived - using the long simulation
approach – from consistent estimates of the parameters of a VAR or VARMA model of known order
and the associated impulse response coefficients. Nonparametric estimates involve approximating
the process of interest by a long VAR whose degree increases at an appropriate rate.

Because of its simplicity, we focus on the second approach for empirical application. We show
that the proposed nonparametric estimates are consistent,derive their asymptotic distribution under
standard regularity conditions, and suggest a bootstrap technique to build confidence intervals based
on these estimates.

The proposed causality measures can be applied in differentcontexts and may help solve some
puzzles from the economic and financial literatures. In thispaper, we illustrate their use by studying
causality relations at different horizons between macroeconomic, monetary and financial variables in
the U.S. The data set considered is the one used by Bernanke and Mihov (1998) and Dufour, Pelletier
and Renault (2006). This data set consists of monthly observations on nonborrowed reserves, the
federal funds rate, the gross domestic product deflator, andreal gross domestic product.

The plan of the paper is as follows. Section 2 provides the motivation behind an extension of
causality measures at horizonh > 1. Section 3 presents the general theoretical framework which
underlies the definition of causality at different horizons. In Section 4, we propose nonparametric
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short-run and long-run causality measures. In Section 5, wegive parametric expressions for the pro-
posed causality measures in the context of linear stationary invertible processes, including VARMA
processes. In Section 6, we propose consistent estimators of the causality measures. In Section 7, we
suggest a simple method to evaluate the measures based on a simulation approach. In Section 8, we
establish the asymptotic distribution of the measures and the asymptotic validity of nonparametric
bootstrap confidence intervals. Section 9 is devoted to an empirical application and the conclusion
relating to the results is given in Section 10. Proofs appearin the appendix.

2. Motivation

The causality measures proposed in this paper constitute extensions of those developed by Geweke
(1982, 1984b, 1984a) and others. The existing causality measures quantify the effect of a vector of
variables on another one at the one period horizon. The significance of such measures is however
limited in the presence of auxiliary variables, since it is possible that a vectorY causes another vector
X at an horizonh strictly higher than1 even if there is no causality at horizon1. In this case, we
speak of an indirect causality induced by the auxiliary variablesZ. Causality measures defined for the
horizon1 do not capture this indirect causality. This paper proposescausality measures at different
horizons to quantify short- and long-run causality betweenrandom vectors. Such causality measures
can detect and quantify the indirect causalities due to auxiliary variables. To see the importance of
such causality measures, consider the following examples.

Example 2.1 Suppose we have two variablesX andY . (X, Y )′ follows a stationary VAR(1) model:

[
X(t+ 1)
Y (t+ 1)

]

=

[
0.5 0.7
0.4 0.35

] [
X(t)
Y (t)

]

+

[
εX(t+ 1)
εY (t+ 1)

]

. (2.1)

Since the coefficient ofY (t) in the first equation of (2.1) is0.7, we can conclude thatY causesX
in the sense of Granger. However, this does not provide information on causality at horizons larger
than1. To study causality at horizon2, consider the system (2.1) at timet+ 2 :

[
X(t+ 2)
Y (t+ 2)

]

=

[
0.53 0.595
0.34 0.402

] [
X(t)
Y (t)

]

+

[
0.5 0.7
0.4 0.35

][
εX(t+ 1)
εY (t+ 1)

]

+

[
εX(t+ 2)
εY (t+ 2)

]

.

The coefficient ofY (t) in the equation forX(t+ 2) is 0.595, soY causesX at horizon2. But, how
can one measure this “longer-run” causality? Existing measures do not answer this question.

Example 2.2 Suppose now that the information set contains not only the two variables of interest
X andY but also an auxiliary variableZ. Consider a trivariate stationary process(X, Y,Z)′ which
follows a VAR(1) model:





X(t+ 1)
Y (t+ 1)
Z(t+ 1)



 =





0.60 0.00 0.80
0.00 0.40 0.00
0.00 0.60 0.10









X(t)
Y (t)
Z(t)



+





εX(t+ 1)
εY (t+ 1)
εZ(t+ 1)



 . (2.2)

Since the coefficient ofY (t) in the first equation forX(t+ 1) is 0, Y does not causeX at horizon1.
At time t+ 2, thenX(t+ 2) is given by

X(t+2) = 0.36 X(t)+0.48Y (t)+0.56 Z(t)+0.6εX(t+1)+0.8εZ(t+1)+εX(t+2). (2.3)
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The coefficient ofY (t) in the latter equation is0.48, which implies thatY causesX at horizon2.
This shows that the absence of causality at horizon1 does not preclude causality at a longer horizon.
This indirect causality is transmitted by the variableZ:

Y →
︸︷︷︸

0.60

Z →
︸︷︷︸

0.80

X

where0.60 and0.80 are the coefficients of the one period effect ofY onZ and the one period effect
of Z on X, respectively. So,how can one measure the degree of this indirect causality?Again,
existing measures do not answer this question.

3. Framework

The notion of noncausality studied here is defined in terms oforthogonality conditions between
subspaces of a Hilbert space of random variables with finite second moments. We denoteL2 ≡
L2(Ω,A, Q) a Hilbert space of real random variables with finite second moments, defined on a
common probability space(Ω,A, Q), with covariance as the inner product. IfE andF are two
Hilbert subspaces ofL2, we denoteE + F the smallest subspace ofL2 which contains bothE
andF, while E\F represents the smallest Hilbert subspace ofL2 which contains the difference
E − F = E ∩ F ′ = {x : x ∈ E, x /∈ F} [If E − F is empty, we setE\F = {0}.]

“Information” is represented here by nondecreasing sequences of Hilbert subspaces ofL2. In
particular, we consider a sequenceI of “reference information sets”I(t),

I = {I(t) : t ∈ Z , t > ω} with t < t′ ⇒ I(t) ⊆ I(t′) for all t > ω , (3.1)

whereI(t) is a Hilbert subspace ofL2, ω ∈ Z ∪ {−∞} represents a “starting point”, andZ is the
set of the integers. The “starting point”ω is typically equal to a finite initial date (such asω = −1,
0 or 1) or to−∞; in the latter caseI(t) is defined for allt ∈ Z. We also consider three multivariate
stochastic processes

X = {X(t) : t ∈ Z, t > ω} , Y = {Y (t) : t ∈ Z, t > ω} , Z = {Z(t) : t ∈ Z, t > ω} , (3.2)

whereX(t) = (x1(t), . . . , xm1
(t))′, Y (t) = (y1(t), . . . , ym2

(t))′, Z(t) = (z1(t), . . . , zm3
(t))′,

m1 ≥ 1, m2 ≥ 1, m3 ≥ 0, andxi(t) ∈ L2, yi(t) ∈ L2, zi(t) ∈ L2, for all i. Further, we letH
be a (possibly empty) Hilbert subspace ofL2, whose elements represent information available at any
time, such as time independent variables (e.g., the constant in a regression model) and deterministic
processes (e.g., deterministic trends). We denoteX(ω, t] the Hilbert space spanned by the compo-
nentsxi(τ ), i = 1, . . . ,m1, of X(τ ), ω < τ ≤ t, and similarly forY (ω, t] andZ(ω, t] : X(ω, t],
Y (ω, t] andZ(ω, t] represent the information contained in the history of the variablesX, Y and
Z respectively up to timet. Finally, the information sets obtained by “adding”X(ω, t] to I(t) and
Y (ω, t] to IX(t) are defined as

IX(t) = I(t) +X(ω, t] , IXY (t) = IX(t) + Y (ω, t] , (3.3)

and similarly forIY (t), IZ(t), IXZ , etc. In most cases considered below, the information setI(t)
containsZ(ω, t] but may not containX(ω, t] or Y (ω, t].

For any information setBt [some Hilbert subspace ofL2] and positive integerh, we denote
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P [xi(t+ h) |Bt] the best linear forecast ofxi(t+ h) based on the information setBt,

u[xi(t+ h)|Bt] = xi(t+ h) − P [xi(t+ h) |Bt]

the corresponding prediction error, andσ2[xi(t + h) |Bt] = E
{
u[xi(t + h)|Bt]

2
}
. Then, the best

linear forecast ofX(t+ h) is

P [X(t+ h)|Bt] =
(
P [x1(t+ h) |Bt], . . . , P [xm1

(t+ h) |Bt]
)′
,

the corresponding vector of prediction errors is

U [X(t + h) |Bt] =
(
u[x1(t+ h) |Bt]

′, . . . , u[xm1
(t+ h) |Bt]

)′
, (3.4)

and the corresponding matrix of second moments is

Σ[X(t+ h) |Bt] = E
{
U [X(t+ h) |Bt]U [X(t+ h) |Bt]

′
}
. (3.5)

ProvidedBt contains a constant,Σ[X(t + h) |Bt] is covariance matrix ofU [X(t + h) |Bt]. Each
componentP [xi(t + h) |Bt] of P [X(t + h) |Bt] is the orthogonal projection ofxi(t + h) on the
subspaceBt.

Following Dufour and Renault (1998), noncausality at horizon h is defined as follows, given an
information setI.

Definition 3.1 NON-CAUSALITY AT HORIZON h. Leth ≥ 1. (i) Y does not causeX at horizon
h given I [denotedY 9

h
X | I] iff P [X(t + h)| IX(t)] = P [X(t + h) | IXY (t)], ∀t > ω,where

IX(t) = I(t) +X(ω, t] andIXY (t) = IX(t) + Y (ω, t]; (ii) Y does not causeX up to horizonh
givenI [denotedY 9

(h)
X | I] iff Y 9

k
X | I for k = 1, 2, . . . , h ; (iii) Y does not causeX at any

horizon givenI [denotedY 9
(∞)

X | I] iff Y 9
k
X | I for all k = 1, 2, . . . .

This definition corresponds to causality fromY toX. It means thatY causesX at horizonh if
the past ofY improves the forecast ofX(t + h) based on the information inI(t) andX(ω, t]. It is
slightly more general than the one considered in Dufour and Renault (1998, Definition 2.2), because
the conformability assumptionX(ω, t] ⊆ I(t) is not imposed. Clearly ifX(ω, t] ⊆ I(t), then
IX(t) = I(t). So, if the conformability assumption is added, Definition 3.1 is equivalent to the one
in Dufour and Renault (1998, Definition 2.2). Below, relaxing the assumptionX(ω, t] ⊆ I(t) will
facilitate the definition of causality measures. Given the above definition, the natural specification
for I(t) is one whereZ(ω, t] is a subset ofI(t), butX(ω, t] andY (ω, t] are not subsets ofI(t), i.e.
X(ω, t] * I(t) , Y (ω, t] * I(t) , Z(ω, t] ⊆ I(t) .

An alternative characterization of noncausality can be expressed in terms of the variance-
covariance matrix of the forecast errors. The following result is easily deduced from Definition
3.1.

Proposition 3.1 COVARIANCE CHARACTERIZATION OF NON-CAUSALITY AT HORIZON h. Let
h ≥ 1. (i) Y does not causeX at horizonh givenI iff

det {Σ[X(t + h) | IX (t)]} = det {Σ[X(t + h) | IXY (t)]} , ∀t > ω,

whereΣ[X(t+ h) | · ] is defined by(3.5); (ii) Y does not causeX up to horizonh givenI iff

det {Σ[X(t + k) | IX(t)]} = det {Σ[X(t + k) | IXY (t)]} , ∀t > ω, k = 1, 2, . . . , h ;
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(iii) Y does not causeX at any horizon givenI, iff

det {Σ[X(t + k) | IX (t)]} = det {Σ[X(t+ k) | IXY (t)]} , ∀t > ω, k = 1, 2, . . . .

Below, we also consider unconditional causality properties induced by eliminating the auxil-
iary variable vectorZ from the information set. This suggests consideringZ−unconditional non-
causalitywhich is defined as follows.

Definition 3.2 UNCONDITIONAL NON-CAUSALITY AT HORIZON h. Leth ≥ 1. (i) Y does not
causeX at horizonh givenI, unconditionally with respect toZ [denotedY 9

h
X | I(Z)] iff

P [X(t+ h)| I(Z)X (t)] = P [X(t+ h)| I(Z)XY (t)], ∀t > ω, (3.6)

whereI(Z)X(t) = I(Z)(t) +X(ω, t], I(Z)XY (t) = I(Z)X(t) + Y (ω, t] andI(Z)(t) = I(t)\Z(ω, t] ;
(ii) Y does not causeX up to horizonh givenI, unconditionally with respect toZ [denotedY 9

(h)

X | I(Z)] iff Y 9
k
X | I(Z) for k = 1, 2, . . . , h; (iii) Y does not causeX at any horizon given

I, unconditionally with respect toZ [denotedY 9
(∞)

X | I(Z)] iff Y 9
k
X | I(Z) for all k = 1, 2, . . . .

If Z is empty(m3 = 0), there is no effective conditioning and we use the conventions I(Z)X(t) =
IX(t) and I(Z)XY (t) = IXY (t). On replacingI by I(Z), it is straightforward to see that Proposition
3.1 also holds forZ−unconditional non-causality.

4. Causality measures

We will now develop multi-horizon extensions of the causality measures introduced by Geweke
(1982, 1984b, 1984a) for the horizon 1. Important properties of these measures include: (1) they
are nonnegative, and (2) they cancel only when there is no causality at the horizon considered.
Specifically, we propose the following causality measures at horizonh ≥ 1, where by convention
ln(0/0) = 0 andln(x/0) = +∞ for x > 0.

Definition 4.1 MEAN-SQUARE CAUSALITY MEASURE AT HORIZONh RELATIVE TO AN INFOR-
MATION SET. For h ≥ 1,

CL(Y →
h
X | I) = ln

[
det {Σ[X(t+ h) | IX (t)]}

det {Σ[X(t+ h) | IXY (t)]}

]

(4.1)

is themean-square causality measure[alt., the intensityof the causality] from Y toX at horizonh,
givenI.

Since we consider here only mean-square measures, the term “mean square causality measure”
will be abbreviated to “causality measure”. Clearly,CL(Y →

h
X | I) = 0 if Y (ω, t] ⊆ IX(t), so

CL(Y →
h
X | I) provides useful information mainly whenY (ω, t] * I(t). For m1 = m2 = 1,

Definition 4.1 reduces to

CL(Y →
h
X | I) = ln

[
σ2[X(t+ h) |IX(t)]

σ2[X(t+ h) | IXY (t)]

]

.

CL(Y →
h
X | I) measures the causal effect fromY to X at horizonh given I and the past ofX.

In terms of predictability, this can be viewed as the amount of information brought by the past ofY
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which can improve the forecast ofX(t + h). Following Geweke (1982), this measure can also be
interpreted as the proportional reduction in the variance of the forecast error ofX(t+h) obtained by
taking into account the past ofY . This proportion is equal to

σ2[X(t+ h) | IX (t)] − σ2[X(t+ h) | IXY (t)]

σ2[X(t+ h) | IX(t)]
=1 − exp[ − CL(Y →

h
X | I)] .

It can be useful to consider unconditional causality properties induced by eliminating the aux-
iliary variable vectorZ from the information set. Such unconditional causality measures can be
defined as follows.

Definition 4.2 UNCONDITIONAL MEAN -SQUARE CAUSALITY MEASURE AT HORIZONh. For
h ≥ 1,

CL(Y →
h
X | I(Z)) = ln

[

det
{
Σ[X(t+ h) | I(Z)X (t)]

}

det
{
Σ[X(t+ h) | I(Z)XY (t)]

}

]

is theZ-unconditional mean-square causality measurefromY toX at horizonh, givenI.

When there is no ambiguity concerning the reference information I, we shall also use the more
intuitive notation:

C(X →
h
Y |Z) = CL(X →

h
Y | I(Z)) .

As in Geweke (1984b), we can rewrite (conditional) causality measures [Definition 4.1] in terms of
unconditional causality measures whereZ is eliminated from the reference information set:

CL(Y→
h
X | I) = CL

(
(Y, Z) →

h
X | I(Z)X

)
− CL

(
Z →

h
X | I(Z)X

)

= C
(
(Y, Z) →

h
X |Z

)
− C

(
Z →

h
X |Z

)
,

CL(X →
h
Y | I) = CL

(
(X, Z)→

h
Y | I(Z)Y

)
− CL

(
Z →

h
Y | I(Z)Y

)

= C
(
(X, Z) →

h
Y |Z

)
− C

(
Z →

h
Y |Z

)
,

where (Y, Z) and (X, Z) represent the joint process{
(
Y (t)′, Z(t)′

)′
: t ∈ Z, t > ω} and

{
(
X(t)′, Z(t)′

)′
: t ∈ Z, t > ω}, respectively.

We now define an instantaneous causality measure betweenX andY at horizonh.

Definition 4.3 MEASURE OF INSTANTANEOUS CAUSALITY AT HORIZONh. For h ≥ 1,

CL(X −
h
Y | I) = ln

[
det {Σ[X(t+ h) | IXY (t)]} det {Σ[Y (t+ h) | IXY (t)]}

det {Σ[X(t+ h), Y (t+ h) | IXY (t)]}

]

whereΣ[X(t + h), Y (t + h) | IXY (t)] = E
{
U [W (t + h) | IXY (t)]U [W (t + h) | IXY (t)]′

}
and

W (t) =
(
X(t)′, Y (t)′

)′
, is themean-square instantaneous causality measure[alt.,the intensityof

the instantaneous causality] betweenY andX at horizonh.

Form1 = m2 = 1 and providedI(t) includes a constant variable, we have:

det
{
Σ[
(
X(t+ h), Y (t+ h)

)
| IXY (t)]

}
= σ2[X(t+ h) | IXY (t)]σ2[Y (t+ h) | IXY (t)]

−
(
cov[(X(t+ h), Y (t+ h) | IXY (t)]

)2
,
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CL(X −
h
Y | I) = ln

[
1

1 − ρ[X(t+ h), Y (t+ h) | IXY (t)]2

]

= ln

[
σ2[X(t+ h) |IXY (t)]

σ2[X(t+ h) | IXY (t) + IY (t+h)]

]

= ln

[
σ2[Y (t+ h) |IXY (t)]

σ2[Y (t+ h) | IXY (t) + IX(t+h)]

]

,

where

ρ[X(t+ h), Y (t+ h) | IXY (t)] =
cov[X(t+ h), Y (t+ h) | IXY (t)]

σ[X(t+ h) | IXY (t)]σ[Y (t+ h) | IXY (t)]

is the conditional correlation coefficient betweenX(t + h) andY (t + h) given the information set
IXY (t), IY (t+h) represents the Hilbert subspace spanned by the components of Y (t + h) and simi-
larly for IX(t+h). Thus, instantaneous causality increases with the absolutevalue of the conditional
correlation coefficient.

We also define a measure of dependence betweenX andY at horizonh. This will enable one to
check whether, at a given horizonh, the processesX andY must be considered together or whether
they can be treated separately.

Definition 4.4 DEPENDENCE MEASURE AT HORIZONh. For h ≥ 1,

C
(h)
L (X, Y | I) = CL(X →

h
Y | I) + CL(Y →

h
X | I) + CL(X −

h
Y | I) (4.2)

is theintensityof the dependence betweenX andY at horizonh, givenI.

It is easy to see that the intensity of the dependence betweenX andY at horizonh can be written
in the alternative form:

C
(h)
L (X, Y | I) = ln

[
det {Σ[X(t+ h) | IX(t)]} det {Σ[Y (t+ h) | IY (t)]}

det {Σ[X(t + h), Y (t+ h) | IXY (t)]}

]

.

When there is no ambiguity on the definition of the reference information setI(t), we shall also use
the following notations:

C(Y →
h
X) = CL(Y →

h
X | I) , C(Y →

h
X |Z) = CL(Y →

h
X | I(Z)),

C(X −
h
Y ) = CL(X −

h
Y | I) , C(h)(X, Y ) = C

(h)
L (X, Y | I) .

Now, it is possible to build a recursive formulation of causality measures. This one will depend
on the predictability measure introduced by Diebold and Kilian (2001). Form1 = m2 = 1, these
authors proposed a predictability measure based on the ratio of expected losses of short and long run
forecasts:

P̄ (L, Ωt, j, k) = 1 −
E
[
L(U [X(t+ j) |Ωt])

]

E
[
L(U [X(t+ k) |Ωt])

]

whereΩt is the information set at timet, L is a loss function,j andk represent respectively the short
and the long-run,U [X(t+ s) |Ωt] = X(t+ s)−P [X(t+ s) |Ωt], for s = j, k, is the forecast error
at horizont+ s. This predictability measure can be constructed according to the horizons of interest
and it allows for general loss functions as well as univariate or multivariate information sets. In this
paper, we focus on the case of a quadratic loss function:

L (U [X(t+ s) |Ωt]) = U [X(t+ s) |Ωt]
2, for s = j, k.
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Then, we have the following relationships.

Proposition 4.1 RELATION OF CAUSALITY MEASURES WITH PREDICTABILITY MEASURES. Let
h1 andh2 be two different horizons,m1 = m2 = 1, and

P̄X

(
IX(t), h1, h2

)
= 1 −

σ2
(
X(t+ h1) | IX(t)

)

σ2
(
X(t+ h2) | IX(t)

) , (4.3)

P̄X

(
IXY (t), h1, h2

)
= 1 −

σ2
(
X(t+ h1) | IXY (t)

)

σ2
(
X(t+ h2) | IXY (t)

) , (4.4)

the predictability measures forX based on the information setsIX(t) and IXY (t), respectively.
Then, forh2 > h1 ≥ 1,

CL(Y →
h1

X | I) − CL(Y →
h2

X | I) = ln{1 − P̄X [IX(t), h1, h2]} − ln{1 − P̄X [IXY (t), h1, h2]} .

The following identity follows immediately from the latterproposition: forh ≥ 2 andm1 =
m2 = 1,

CL(Y →
h
X | I) = CL(Y →

1
X | I) + ln[1 − P̄X

(
IXY (t), 1, h

)
] − ln[1 − P̄X

(
IX(t), 1, h

)
] .

Predictability measures look at the effect of changing the forecast horizon, for agiven information
set, while causality measures look at the joint effect of changing the information set and the forecast
horizon.

5. Causality measures for VARMA models

We now consider a more specific set of linear invertible processes which includes vector autoregres-
sive (VAR), moving average (VMA), and mixed (VARMA) models of finite order as special cases. It
is possible to provide parametric expressions for short-run and long-run causality measures in terms
of reduced-form impulse responses.

We consider in turn two distinct cases. First, we calculate parametric measures of short-run and
long-run causality in the context of an autoregressive moving average model. We assume that the
processW (t) = (X(t)′, Y (t)′, Z(t)′)′ is a VARMA(p, q) model, hereafter theunconstrainedmodel,
wherep andq can be infinite. The structure of the processW0(t) = (X(t)′, Z(t)′)′, hereafter the
constrainedmodel, can be deduced from the unconstrained model using Corollary 6.1.1 in Lütkepohl
(1993a, pages 308-309). This model is a VARMA(p̄, q̄) with p̄ ≤ mp andq̄ ≤ (m−1)p+q. Second,
we provide a characterization of the parametric causality measures in the context of VMA(q) model,
whereq is finite.

Without loss of generality, let us consider the discretem × 1 vector process with zero mean
W (t) = (X(t)′, Y (t)′, Z(t)′)′ defined onL2 and characterized by the following autoregressive mov-
ing average representation:

Φ(L)W (t) = Θ(L)u(t) (5.1)

wherem = m1 +m2 +m3,

Φ(L)=





ϕXX(L) ϕXY (L) ϕXZ(L)
ϕY X(L) ϕY Y (L) ϕY Z(L)
ϕZX(L) ϕZY (L) ϕZZ(L)



 , Θ(L) =





θXX(L) θXY (L) θXZ(L)
θY X(L) θY Y (L) θY Z(L)
θZX(L) θZY (L) θZZ(L)



 ,
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ϕll(L) = Iml
−

p
∑

i=1

ϕlliL
i, ϕlk(L) = −

p
∑

i=1

ϕlkiL
i,

θll(L) = Il +

q
∑

j=1

θlljL
j, θlk(L) =

q
∑

j=1

θlkjL
j , for l 6= k andl, k = X, Y, Z,

E [u(t)] = 0, E
[
u(t)u(s)′

]
=

{
Σu for s = t
0 for s 6= t

.

We assume thatu(t) is orthogonal to the Hilbert subspace spanned by{W (s) : s ≤ t− 1} with Σu

is symmetric positive definite matrix. Under stationarity,W (t) has a VMA(∞) representation:

W (t) = Ψ(L)u(t) , (5.2)

Ψ(L) = Φ(L)−1Θ(L) =
∞∑

j=0

ΨjL
j =

∞∑

j=0





ψXXj ψXY j ψXZj

ψY Xj ψY Y j ψY Zj

ψZXj ψZY j ψZZj



Lj, Ψ0 = Im. (5.3)

From Section 4, measures of dependence and causality are defined in terms of variance-
covariance matrices of the constrained and unconstrained forecast errors. Thus, to calculate these
measures, we need to know the structure of the constrained model (imposing noncausality). This one
can be deduced from the structure of the unconstrained model(5.1) using the following proposition
and corollary [Lütkepohl (1993a, pages 231-232)].

Lemma 5.1 L INEAR TRANSFORMATION OF A VMA (q) PROCESS. Letu(t) be am-dimensional
white noise process with nonsingular variance-covariancematrixΣu and let

W (t) = µ+

q
∑

j=1

Ψju(t− j) + u(t)

be am-dimensional invertible VMA(q) process. Furthermore, letF be an(m̄ ×m) matrix of rank
m̄. Then them̄-dimensional processW0(t) = FW (t) has an invertible VMA(q̄) representation:

W0(t) = Fµ+

q̄
∑

j=1

θ̄jε(t− j) + ε(t)

whereε(t) is m̄-dimensional white noise with nonsingular variance-covariance matrixΣε, the θ̄j ,
j = 1, . . . , q̄, are m̄× m̄ coefficient matrices and̄q ≤ q.

Lemma 5.2 L INEAR TRANSFORMATION OF A VARMA (p, q) PROCESS. Let W (t) be am-
dimensional, stable, invertible VARMA(p, q) process and letF be anm̄×m matrix of rankm̄. Then
the processW0(t) = FW (t) has a VARMA(p̄, q̄) representation with

p̄ ≤ mp, q̄ ≤ (m− 1)p + q.

If we assume thatW (t) follows a VAR(p) [or VARMA (p, 0)] model, then its linear transforma-
tionW0(t) = FW (t) has a VARMA(p̄, q̄) representation with̄p ≤ mp andq̄ ≤ (m− 1)p. Suppose
now we are interested in measuring causality fromY to X at a given horizonh. We need to apply
Lemma 5.2 to obtain the structure of processW0(t) = (X(t)′, Z(t)′)′. If we left-multiply equation
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(5.1) by the adjoint matrix ofΦ(L), sayΦ(L)∗, we get

Φ(L)∗Φ(L)W (t) = Φ(L)∗Θ(L)u(t) (5.4)

whereΦ(L)∗Φ(L) = det {Φ(L)}. Since the determinant ofΦ(L) is a sum of products involving
one operator from each row and each column ofΦ(L), the degree of the VAR polynomial, here
det {Φ(L)} , is at mostmp. We write:

det {Φ(L)} = 1 − α1L− · · · − αp̄L
p̄

wherep̄ ≤ mp. It is also easy to check that the degree of the operatorΦ(L)∗Θ(L) is at mostp(m−
1) + q. Thus, equation (5.4) can be written as follows:

det {Φ(L)}W (t) = Φ(L)∗Θ(L)u(t). (5.5)

This equation is another stationary invertible VARMA representation of processW (t), called the
final equation form. The model of the processW0(t) = (X(t)′, Z(t)′)′ can be obtained by choosing
F in Lemma 5.2 as

F =

[
Im1

0 0
0 0 Im3

]

.

On premultiplying (5.5) byF, we get

det {Φ(L)}W0(t) = FΦ(L)∗Θ(L)u(t). (5.6)

The right-hand side of (5.6) is a linearly transformed finite-order VMA process which, by Lemma
5.1, has a VMA(q̄) representation with̄q ≤ p(m− 1) + q . Thus, we get the model:

det {Φ(L)}W0(t) = θ̄(L)ε(t) =

[
θ̄XX(L) θ̄XZ(L)
θ̄ZX(L) θ̄ZZ(L)

]

ε(t) , (5.7)

θ̄ll(L) = Iml
+

q̄
∑

j=1

θ̄lljL
j, θ̄lk(L) =

q̄
∑

j=1

θ̄lkjL
j, for l 6= k andl, k = X, Z , (5.8)

E [ε(t)] = 0, E
[
ε(t)ε(s)′

]
=

{
Σε for s = t
0 for s 6= t

. (5.9)

The coefficients̄θlkj and the elements ofΣε are functions ofΣu, ϕlki, Θlkj, l, k = X, Z, Y,
1 ≤ i ≤ p, 1 ≤ j ≤ q. This is possible by solving the following system:

γε(v) = γu(v), v = 0, 1, 2, . . . , (5.10)

where γε(v) and γu(v) are the autocovariance functions of the processesθ̄(L)ε(t) and
FΦ(L)∗Θ(L)u(t), respectively.

Example 5.1 Suppose we have two variablesX andY . If we assume that the joint process(X, Y )′

follows a stationary VAR(1) model, then the marginal processX is an ARMA(2, 1). The parameters
of the autoregressive part of the ARMA(2, 1) model are functions of the VAR(1) parameters. How-
ever, the moving average coefficient [sayθ̄] of the ARMA(2, 1) and the variance of new error terms
[sayσ2

εX
] can be determined by solving the system (5.10) forv = 0 andv = 1. These parameters

must satisfy the constraints| θ̄ | < 1 andσ2
εX

> 0.
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The VMA(∞) representation of model (5.7) is given by

W0(t) = det {Φ(L)}−1 θ̄(L)ε(t) =

∞∑

j=0

Ψ̄jε(t− j) =

∞∑

j=0

[
ψ̄XXj

ψ̄XZj

ψ̄ZXj
ψ̄ZZj

] [
εX(t− j)
εZ(t− j)

]

(5.11)
whereΨ̄0 = Im1+m2

. To quantify the degree of causality fromY to X at horizonh, we need to
calculate the variance-covariance matrices of the unconstrained and constrained forecast errors of
X(t+ h). From (5.2), the forecast error ofW (t+ h) and its covariance matrix are given by

U [W (t+ h) | IW (t)] =

h−1∑

i=0

Ψiu(t+ h− i) , (5.12)

Σ[W (t+ h) | IW (t)] =

h−1∑

i=0

Ψi V [u(t)] Ψ ′
i =

h−1∑

i=0

ΨiΣu Ψ
′
i . (5.13)

Consequently, the variance-covariance matrix of the unconstrained forecast error ofX(t+ h) is

Σ[X(t+ h) | IW (t)] =
h−1∑

i=0

J1ΨiΣuΨ
′
iJ

′
1

whereJ1 =
[
Im1

0 0
]
. Similarly, the forecast error ofW0(t + h) and its covariance matrix

are given by:

U0[W0(t+ h) | IW0
(t)] =

h−1∑

i=0

Ψ̄iε(t+ h− i) ,

Σ[W0(t+ h) | IW0
(t)] =

h−1∑

i=0

Ψ̄i ΣεΨ̄
′
i .

Then the variance-covariance matrix of the constrained forecast error ofX(t+ h) is

Σ[X(t+ h) | IW0
(t)] =

h−1∑

i=0

J0Ψ̄i ΣεΨ̄
′
i J

′
0

whereJ0 =
[
Im1

0
]
. We can immediately deduce the following result by using the definition

of a causality measure fromY toX [Definition 4.1].

Theorem 5.1 REPRESENTATION OF CAUSALITY MEASURE IN TERMS OF REDUCED-FORM IM-
PULSE RESPONSES. Under Assumptions5.1and5.2,

CL(Y−→
h
X | I) = ln

[

det
{∑h−1

i=0

(
J0Ψ̄i ΣεΨ̄

′
i J

′
0

)}

det
{∑h−1

i=0

(
J1ΨiΣuΨ ′

iJ
′
1

)}

]

for h ≥ 1, whereJ1 =
[
Im1

0 0
]

andJ0 =
[
Im1

0
]
.

We can, of course, repeat the same argument switching the role of the variablesX andY . For
a bivariate VAR(1) model, it is relatively easy to analytically compute the causality measures at any
horizonh using only the unconstrained parameters [see Example 5.1].
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Now, we will determine the parametric measure of instantaneous causality betweenX andY at
given horizonh. We know from Section 4 that a measure of instantaneous causality is defined only in
terms of the variance-covariance matrices of unconstrained forecast errors [see Definition 4.3]. The
variance-covariance matrix of the unconstrained forecasterror of joint process

(
X(t+h)′, Y (t+h)′

)′

is given by

Σ
(
X(t+ h), Y (t+ h) | IW (t)

)
=

h−1∑

i=0

G ΨiΣuΨ
′
iG

′ , G =

[
Im1

0 0
0 Im2

0

]

.

Consequently,

Σ
(
X(t+ h) | IW (t)

)
=

h−1∑

i=0

J1ΨiΣuΨ
′
iJ

′
1 , Σ

(
Y (t+ h) | IW (t)

)
=

h−1∑

i=0

J2ΨiΣuΨ
′
iJ

′
2,

whereJ1 =
[
Im1

0 0
]

andJ2 =
[

0 Im2
0
]
. We can immediately deduce the following

result by using the definition of the instantaneous causality measure [see Definition 4.3].

Theorem 5.2 REPRESENTATION OF THE INSTANTANEOUS CAUSALITY MEASURE IN TERMS OF

REDUCED-FORM IMPULSE RESPONSES. Under Assumptions5.1and5.2,

CL(X −
h
Y | I)=ln

[

det
{∑h−1

i=0

(
J1ΨiΣuΨ

′
iJ

′
1

)}
det
{∑h−1

i=0

(
J2ΨiΣuΨ

′
iJ

′

2

)}

det
{∑h−1

i=0

(
G ΨiΣuΨ ′

iG
′
)}

]

for h ≥ 1, whereG =

[
Im1

0 0
0 Im2

0

]

, J1 =
[
Im1

0 0
]
, andJ2 =

[
0 Im2

0
]
.

The parametric measure of dependence betweenX andY at horizonh can be deduced from its
decomposition given by equation (4.2).

Let us finally consider the special case where the processW (t) = (X(t)′, Y (t)′, Z(t)′)′ follows
an invertible VMA(q) model:

W (t) = Θ(L)u(t) (5.14)

with

Θ(L) =





θXX(L) θXY (L) θXZ(L)
θY X(L) θY Y (L) θY Z(L)
θZX(L) θZY (L) θZZ(L)



 ,

θll(L) = Il +
∑q

j=1 θlljL
j, θlk(L) =

∑q
j=1 θlkjL

j , for l 6= k, l, k = X, Z, Y, andIl is an identity
matrix. The following result then follows from Proposition4.1.

Theorem 5.3 CHARACTERIZATION OF CAUSALITY MEASURES FORVMA( q). Leth1 andh2 be
two different horizons. Under Assumption5.14and forh2 ≥ h1 ≥ q,

CL(Y−→
h1

X | I) = CL(Y−→
h2

X | I).

6. Estimation

We know that short-run and long-run causality measures depend on the parameters of the model
describing the process of interest [see Section 5]. Consequently, these measures can be estimated by
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replacing the unknown parameters by their estimates from a finite sample.
There are at least three different approaches to the estimation of causality measures. The first and

simplest approach assumes that the process of interest follows a finite-order VAR(p) model which can
be estimated by OLS. The second approach assumes that the process follows a finite-order VARMA
model. But standard methods for the estimation of VARMA models, such as maximum likelihood
and nonlinear least squares, require nonlinear optimization. This is difficult to implement in practice
especially when the number of parameters is large, as it is typically the case in VARMA models. The
last approach assumes that the process is autoregressive with potentially infinite order, but can be
approximated by a VAR(k) model, wherek = k(T ) depends on the sample size. It is the focus of
this section.

The precise form of the parametric model appropriate for a process is typically unknown. For this
reason, several authors have considered a nonparametric approach to predicting future values using
an autoregressive model fitted to a series ofT observations; see, for example, Parzen (1974), Bhansali
(1978) and Lewis and Reinsel (1985). This approach is based on assuming the process considered has
an infinite-order autoregressive model, which can be approximated in finite samples by a finite-order
autoregressive model. In particular, stationary invertible VARMA processes belongs to this class.
We will now describe how this approach can be applied to estimate causality measures at different
horizons. We first discuss the estimation of the fitted autoregressive constrained and unconstrained
models. Then we construct a consistent estimator of the short-run and long-run causality measures.

Consider a stationary vector processW (t) = (X(t)′, Y (t)′, Z(t)′)′. By Wold’s theorem, this
process can be written in the form of a VMA(∞) model:

W (t) = u(t) +
∞∑

j=1

Ψju(t− j).

We assume that
∑∞

j=0 ‖ Ψj ‖< ∞ anddet{Ψ(z)} 6= 0 for z ∈ C and | z | ≤ 1, where‖ Ψj ‖=

tr(ΨjΨj) and Ψ(z) =
∑∞

j=0 Ψjz
j , with Ψ0 = Im an m × m identity matrix. Under the latter

assumptions,W (t) is invertible and can be written as an infinite autoregressive process:

W (t) =

∞∑

j=1

ΦjW (t− j) + u(t) (6.1)

where
∑∞

j=1 ‖ Φj ‖< ∞ andΦ(z) = Im −
∑∞

j=1Φjz
j = Ψ(z)−1 satisfiesdet{Φ(z)} 6= 0 for

z ∈ C and | z | ≤ 1.
Given a realization{W (1), . . . ,W (T )}, we can approximate (6.1) by a finite-order VAR(k)

model, wherek depends on the sample sizeT :

W (t) =
k∑

j=1

ΦjkW (t− j) + uk(t).

The least squares estimators of the coefficientsΦ(k) = [Φ1k, Φ2k, . . . , Φkk] of the fitted VAR(k)
model and variance-covariance matrixΣu|k of the error termuk(t) are given by

Φ̂(k) = [Φ̂1k, Φ̂2k, . . . , Φ̂kk] = Γ̂
′

k1Γ̂
−1

k , Σ̂u|k =
1

T − k

T∑

t=k+1

ûk(t)ûk(t)
′ ,
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Γ̂k =
1

T − k

T∑

t=k+1

w(t)w(t)′ , Γ̂k1 =
1

T − k

T∑

t=k+1

w(t)W (t+ 1)′,

w(t) = (W (t)′, . . . ,W (t− k + 1)′)′ andûk(t) = W (t) −
∑k

j=1 Φ̂jkW (t− j).
Suppose now we are interested in measuring causality fromY to X at a given horizonh. For

that, we need to define the structure of the marginal processW0(t) = (X(t)′, Z(t)′)′. Under general
condition [and as there isW (t) follows a VARMA(p, q) model as in Lemma 5.2],W0(t) has a
VAR(∞) representation:

W0(t) =

∞∑

j=1

Φ̄jW0(t− j) + ε(t). (6.2)

Model (6.2) can also be approximated by a a finite-order VAR(k) model, wherek depends on the
sample sizeT :

W0(t) =
k∑

j=1

Φ̄jkW (t− j) + εk(t).

It is more convenient to calculate the causality measure by considering the same orderk for the
constrained and unconstrained models. This is to ensure a relevant comparison of the determinants
of the variance-covariance matrices of the constrained andunconstrained forecast errors.

The estimators of the autoregressive coefficientsΦ̄(k) = [Φ̄1k, Φ̄2k, . . . , Φ̄kk] of the fitted con-
strained VAR(k) model and variance-covariance matrixΣε|k of the error termεk(t) are given by the
following equation:

Φ̃(k) = [Φ̃1k, Φ̃2k, . . . , Φ̃kk] = Γ̃
′

k1Γ̃
−1
k , Σ̃ε|k =

1

T − k

T∑

t=k+1

ε̃k(t)ε̃k(t)
′

whereΓ̃k1, Γ̃k, andε̃k(t) are defined as for unconstrained model.
Now, to estimate the degree of causality fromY to X at horizonh,we need to estimate the

variance-covariance matrices of the unconstrained and constrained forecast errors, using the corre-
sponding fitted VAR(k) models. The variance-covariance matrix of the unconstrained forecast error
of W (t+ h) based on theV AR(∞) model is given by

Σ(h) =
h−1∑

j=0

ΨjΣuΨ
′
j (6.3)

whereΨj = Φ
(j)
1 and

Φ
(j+1)
1 = Φ

(j)
2 + Φ

(j)
1 Φ1, Φ

(1)
1 = Φ1, Φ

(0)
1 = Im, for j ≥ 1; (6.4)

see Dufour and Renault (1998). An estimator of the variance-covariance matrix (6.3) based on the
fittedV AR(k) model is given by

Σ̂k(h) =

h−1∑

j=0

Ψ̂jkΣ̂u|kΨ̂
′

jk (6.5)

whereΨ̂jk = Φ̂
(j)
1k and Φ̂(j)

1k are calculated using (6.4) [withΦ(j)
1 replaced byΦ̂(j)

1k ]. Similarly, the

15



variance-covariance matrix of the forecast error ofW0(t+ h) is given by

Σ0(h) =

h−1∑

j=0

Ψ̄jΣεΨ̄
′
j (6.6)

whereΨ̄j = Φ̄
(j)
1 andΦ̄(j)

1 are defined in similar way as in (6.4). Furthermore, an estimator of the
variance-covariance matrix (6.6) based on the fittedV AR(k) model is given by

Σ̃0|k(h) =

h−1∑

j=0

Ψ̃jkΣ̃ε|kΨ̃
′
jk (6.7)

whereΨ̃jk is an estimate of the corresponding population parameterΨ̄j. Consequently, from Theorem
5.1an estimator of the causality measure fromY toX at horizonh is given by

ĈL(Y−→
h
X | I) = ln

[

det
{[
J0Σ̃0|k(h)J

′
0

]}

det
{[
J1Σ̂k(h)J

′
1

]}

]

. (6.8)

The most basic property that the above estimator should haveis consistency. To prove consis-
tency, additional regularity assumptions are needed. We consider here the set of standard assumptions
originally considered by Lewis and Reinsel (1985) to deriveconsistency of parameter estimates for a
VAR (∞) model. Of course, alternative – eventually weaker – assumptions could also be considered.

Assumption 6.1 The following conditions are satisfied:

(1) E |uh(t)ui(t)uj(t)ul(t) | ≤ γ4 < ∞, for 1 ≤ h, i, j, l ≤ m; whereuh(t), ui(t), uj(t), and
ul(t) are elements of the vector of the error termu(t);

(2) k is chosen as a function ofT such thatk3/T → 0 ask, T → ∞;

(3) k is chosen as a function ofT such thatk1/2
∑∞

j=k+1 ‖ Φj ‖→ 0 ask, T → ∞;

(4) the series used to estimate parameters ofV AR(k) and the series used for prediction are gener-
ated from two independent processes having the same stochastic structure.

Theorem 1 in Lewis and Reinsel (1985) ensures convergence ofΦ̂(k) under conditions 1 and 3 of
Assumption 6.1 and by choosingk as a function ofT such thatk2/T → 0 ask, T → ∞. The latter
is an implication of condition 2 of Assumption 6.1. Consequently, Assumption 6.1 is sufficient for
the consistency ofΦ̂(k). Furthermore, their Theorem 4 derives the asymptotic distribution for Φ̂(k)
under Assumption 6.1 and by assuming that there exists{l(k)} a sequence ofkm2 × 1 vectors such
that 0 < M1 ≤‖ l(k) ‖2= l(k)′l(k) ≤ M2 < ∞, for k = 1, 2, . . . Under similar conditions the
estimatorΦ̃(k) converges tōΦ(k) and asymptotically follows a normal distribution. Finally, we note
thatΣ̂u|k (Σ̃ε|k) converges toΣu|k (Σε|k), ask andT → ∞ [Lütkepohl (1993a, pages 308-309)].

Proposition 6.1 CONSISTENCY OF CAUSALITY MEASURES. Under Assumption 6.1, ĈL(Y −→
h

X | I) is a weakly consistent estimator ofCL(Y −→
h
X | I).

In practice, one must choose the value ofk to use for any given seriesT . Lewis and Reinsel
(1985, pages 408-409) suggest to use Akaike’s information criterion, which was originally proposed
to select the order of a finite autoregressive process by choosing the value ofk which minimizes
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the determinant of the estimated one-step ahead mean squareprediction error matrix, to determine
a finite-order approximation to a true infinite order autoregressive process [see also Bhansali (1978)
and Parzen (1974)].

7. Evaluation by simulation of causality measures

Except for very simple specifications, it is quite difficult to derive analytical expressions for causality
measures. To bypass this difficulty, we propose here a simplesimulation-based technique to calcu-
late causality measures at any horizonh, for h ≥ 1. To illustrate the proposed technique we consider
the examples of Section 2 and limit ourselves to horizons1 and2. Since one source of bias in au-
toregressive coefficients is sample size, the proposed technique consists of simulating a large sample
from the unconstrained model whose parameters are assumed to be either known or estimated from
a real data set. Once the large sample, hereafter large simulation, is simulated, we use it to estimate
the parameters of the constrained model (imposing noncausality). In what follows, we describe an
algorithm to calculate the causality measure at given horizonh using a simulation technique.

1. Given the parameters of the unconstrained model and its initial values, simulate a large sample
of T observations under the assumption that the probability distribution of the error termu(t)
is completely specified [in our work, we have used values ofT as high as1000000]. Note that
the form of the probability distribution ofu(t) does not affect the value of causality measures.

2. Estimate the constrained model using a large simulation.

3. Calculate the variance-covariance matrices of the unconstrained and constrained forecast errors
at horizonh [see Section 6].

4. Calculate the causality measure at horizonh using for example (6.8).

To see better how this works, consider again Example 2.1 of Section 2. Our illustration involves
two steps. First, we calculate the theoretical values of thecausality measures at horizons1 and2.
We know from Example 5.1 that for a bivariate VAR(1) model it is relatively easy to compute the
causality measure at any horizonh using only the unconstrained parameters. Second, we evaluate the
causality measures using a large simulation technique and we compare them with theoretical values
from step 1. The latter are recovered as follows.

1. We compute the variances of the forecast errors ofX at horizons1 and2 using its own past
and the past ofY . We have:

σ2[X(t+ 1) | IXY (t)] = 1, σ2[X(t+ 2) | IXY (t)] = 1.74.

2. We compute the variances of the forecast errors ofX at horizons1 and2 using only its own
past. To do that we need to determine the structure of the constrained model ofX. This one is
given by the following equation:

X(t+ 1) = 0.85X(t) + 0.105X(t − 1) + εX(t+ 1) + θ̄εX(t).

The parameters̄θ andV(εX(t)) = σ2
εX

are the solutions to the following system:

(1 + θ̄
2
)σ2

εX
= 1.6125 , θ̄σ2

εX
= −0.35.
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Table 1. Evaluation by simulation of causality measures at horizons1 and2 for Model (2.1)

p CL(Y−→
1

X) CL(Y−→
2

X)

1 0.519 0.567
2 0.430 0.220
3 0.427 0.200
4 0.425 0.199
5 0.426 0.198
10 0.425 0.197
15 0.426 0.199
20 0.425 0.197
25 0.425 0.199

Table 2. Evaluation by simulation of causality measures at horizons1 and2 for Model (2.2)

p CL(Y−→
1

X | I) CL(Y−→
2

X | I)

1 0.000 0.121
2 0.000 0.123
3 0.000 0.122
4 0.000 0.123
5 0.000 0.124
10 0.000 0.122
15 0.000 0.122
20 0.000 0.122
25 0.000 0.124

The set of possible solutions is
{
(θ̄, σ2

εX
) = (−4.378, 0.08), (−0.2285, 1.53)

}
. To get an

invertible solution we must choose the combination which satisfies the condition| θ̄ | < 1,
i.e. the combination(−0.2285, 1.53). Thus, the variance of the forecast error ofX at horizon
1 using only its own past isσ2[X(t+ 1) | IX (t)] = 1.53, and the variance of the forecast error
of X at horizon2 is σ2[X(t+ 2) | IX (t)] = 2.12. Consequently,

CL(Y−→
1
X) = 0.425, CL(Y−→

2
X) = 0.197. (7.1)

In a second step we use the algorithm described at the beginning of this section to evaluate the
causality measures using a large simulation technique. Table 1 shows results that we get for different
lag ordersp in the constrained model (usingT = 600000). These results correspond to the theoretical
values of the causality measures calculated in (7.1) and confirm the convergence ensured by the law
of large numbers.

Now consider Example 2.2 of Section 2. In this example, analytical calculation of causality
measures is not easy. In model (2.2)Y does not causeX at horizon one, but causes it at horizon
2 (indirect causality). Consequently, we expect that causality measure fromY to X will be equal
to zero at horizon1 and different from zero at horizon 2. Using a large simulation technique and
by considering different lag ordersp in the constrained model, we get the results in Table 2. These
results confirm our expectation and show clearly the presence of an indirect causality fromY toX.
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8. Confidence intervals

In this section, we assume thatX andY are univariate processes (m1 = m2 = 1) while Z can be
multivariate (m3 ≥ 0). This corresponds to the case of most practical interest. Furthermore and
for simplicity of exposition, we assume that the processW (t) = (X(t)′, Y (t)′, Z(t)′)′ follows a
VAR(p) model:

W (t) =

p
∑

i=1

ΦiW (t− i) + u(t)

where{u(t)}∞t=0 is a sequence ofi.i.d. random variables with zero mean and a positive definite
variance-covariance matrixΣu, the polynomialΦ(z) = Im −

∑p
i=1 Φiz

i satisfiesdet {Φ(z)} 6= 0,
for z ∈ C with | z | ≤ 1, andIm is anm×m identity matrix.1

For a realization{W (1), . . . ,W (T )} of processW , estimates ofΦ = [Φ1, . . . , Φp] andΣu are
given by the following equations:

Φ̂ = Γ̂ ′
1Γ̂

−1, Σ̂u =
1

T − p

T∑

t=p+1

û(t)û(t)′ , (8.1)

Γ̂ =
1

T − p

T∑

t=p+1

w(t)w(t)′, Γ̂1 =
1

T − p

T∑

t=p+1

w(t)W (t+ 1)′, (8.2)

wherew(t) = (W (t)′, . . . ,W (t− p+ 1)′)′, andû(t) = W (t) −
∑p

i=1 Φ̂iW (t− i).
Suppose that we are interested in measuring causality fromY to X at given horizonh. To do

that we need to know the structure of the marginal processW0(t) = (X(t)′, Z(t)′)′. This one has a
VARMA (p̄, q̄) representation with̄p ≤ mp andq̄ ≤ (m− 1)p,

Φc(L)W0(t) = θc(L)ε(t) (8.3)

whereΦc(L) = Im̄ −Φc
1L− · · · −Φc

p̄
Lp̄, θc(L) = Im̄ + θc

1L+ · · ·+ θc
q̄L

q̄, for m̄ = m3 + 1, Im̄ an
m̄×m̄ identity matrix, and{ε(t)}∞t=0 is a sequence of uncorrelated random variables with zero mean
and a positive definite variance-covariance matrixΣε. We assume thatθc(z) = Im̄ +

∑q̄
j=1 θ

c
jz

j

satisfiesdet {θc(z)} 6= 0 for z ∈ C and | z | ≤ 1. Under the latter assumption, the VARMA(p̄, q̄)
process is invertible and has a VAR(∞) representation:

W0(t) =

∞∑

j=1

Φ̄jW0(t− j) + ε(t). (8.4)

We approximate (8.4) by a finite-order VAR(k) model, wherek depends on sample sizeT :

W0(t) =

k∑

j=1

Φ̄jkW
′
0(t− j) + εk(t).

The estimators of the coefficients̄Φ(k) = [Φ̄1k, Φ̄2k, . . . , Φ̄kk] of the fitted constrained VAR(k)
model and variance-covariance matrixΣε|k of the error termεk(t) are given by the following equa-

1If the processW follows a VAR(∞) model, then we can use Inoue and Kilian’s (2002) approach toget results that are
similar to those developed in this section.
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tion:

Φ̃(k) = [Φ̃1k, Φ̃2k, . . . , Φ̃kk] = Γ̃
′

k1Γ̃
−1
k , Σ̃ε|k =

1

T − k

T∑

t=k+1

ε̃k(t)ε̃k(t)
′ ,

whereΓ̃k, Γ̃k1, andε̃k(t) are calculated as for the unconstrained model.
The theoretical value of causality measure fromY toX at horizonh is given by

CL(Y−→
h
X | I) = ln

[

det
{
J0Σ

′
0(h)J

′
0

}

det
{
J1Σ(h)J ′

1

}

]

, Σ0(h) =

h−1∑

j=0

Ψ̄jΣεΨ̄
′

j, Σ(h) =

h−1∑

j=0

ΨjΣuΨ
′
j,

whereΨ̄j = Φ̄
(j)
1 , Ψj = Φ

(j)
1 andΦ(j)

1 andΦ̄(j)
1 are defined in similar way as in (6.4). Using Lemma

5.2CL(Y−→
h
X | I) may be written as follows:

CL(Y−→
h
X | I) = ln

[

det
{
G
(
Φ,Σu

)}

det
{
H
(
Φ,Σu

)}

]

,

G
(
Φ,Σu

)
=

h−1∑

j=0

J0Ψ̄jΣεΨ̄
′

jJ
′
0 , H

(
Φ, Σu

)
=

h−1∑

j=0

J1ΨjΣuΨ
′

jJ
′
1 ,

whereG(·) andH(·) are continuous and differentiablefunctions of
(
Φ,Σu

)
. A consistent estimator

of CL(Y −→
h

X | I) is given by

ĈL(Y−→
h
X | I) = ln

[

det
{
J0Σ̃0|k(h)J

′
0

}

det
{
J1Σ̂(h)J ′

1

}

]

, Σ̃0|k(h) =

h−1∑

j=0

Ψ̃jkΣ̃ε|kΨ̃
′
jk , Σ̂(h) =

h−1∑

j=0

Ψ̂jΣ̂uΨ̂
′
j ,

whereΨ̂j, Σ̂u, Ψ̃jk, andΣ̂ε|k are estimates of the corresponding population quantitiesΨj, Σu, Ψ̄jk,
andΣε|k.

To establish the asymptotic distribution ofĈL(Y −→
h

X | I), we recall the following result [see

Lütkepohl (1993a, Chapter 3) and Kilian (1998, page 221)]:

T 1/2

(
vec(Φ̂) − vec(Φ)

vech(Σ̂u) − vech(Σu)

)

d
→ N [0, Ω] (8.5)

where “vec” denotes the column stacking operator, “vech” is the column stacking operator that stacks
the elements on and below the diagonal only,

Ω =

[
Γ−1 ⊗Σu 0

0 2(D
′

mDm)−1D
′

m(Σu ⊗Σu)Dm(D
′

mDm)−1

]

, (8.6)

andDm is the duplication matrix, defined such thatvech(F ) = Dmvech(F ) for any symmetric
m×m matrixF . Thereafter, we will consider the following assumptions.

Assumption 8.1 The following conditions are satisfied:

(1) E | εh(t)εi(t)εj(t)εl(t) | ≤ γ4 <∞, for 1 ≤ h, i, j, l ≤ m̄; whereεh(t), εi(t), εj(t), andεl(t)
are elements of the vector of the error termε(t);

(2) k is chosen as a function ofT such thatk3/T → 0 ask, T → ∞;
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(3) k is chosen as a function ofT such thatk1/2
∑∞

j=k+1 ‖ Φ̄j ‖→ 0 ask, T → ∞;

(4) the series used to estimate parameters ofV AR(k) and the series used for prediction are gener-
ated from two independent processes having the same stochastic structure.

Proposition 8.1 ASYMPTOTIC DISTRIBUTION OF CAUSALITY MEASURES. Under Assumptions
8.1, we have:

T 1/2
[
ĈL(Y−→

h
X | I) − CL(Y−→

h
X | I)

] d
→ N

[
0, σc(h)

2
]

whereσc(h)
2 = DCΩD

′

C , DC = ∂CL(Y−→
h
X | I) / ∂θ′, θ =

(
vec(Φ)′, vech(Σu)′

)′
andΩ is

given by(8.6).

Differentiating analytically the causality measures withrespect toθ is typically difficult. One way
to build confidence intervals for causality measures is to use a large simulation technique [see Section
7] to calculate the derivative numerically. Another way consists of building bootstrap confidence
intervals. As mentioned by Inoue and Kilian (2002), for bounded measures, as in our case, the
bootstrap approach is more reliable than the delta-method.One reason is because the delta-method
interval is not range respecting and may produce confidence intervals that are logically invalid. In
contrast, the bootstrap percentile interval preserves by construction these constraints [see Inoue and
Kilian (2002, pages 315-318) and Efron and Tibshirani (1993)].

Let us consider the following bootstrap approximation to the distribution of the causality measure
at given horizonh.

1. Estimate a VAR(p) process and save the residuals

ũ(t) = W (t) −

p
∑

i=1

Φ̂iW (t− i), for t = p+ 1, . . . , T,

Φ̂ = [Φ̂1, . . . , Φ̂p] is given by (8.1) and the OLS estimate ofΣu is given by Σ̃u =
∑T

t=p+1 ũ(t)ũ(t)
′/(T − p), whereũ(t) = û(t) −

∑T
t=p+1 û(t)/(T − p) andû(t) = W (t) −

∑p
i=1 Φ̂iW (t− i).

2. Generate(T − p) bootstrap residualsu∗(t) by random sampling with replacement from the
residualŝu(t), t = p+ 1, . . . , T.

3. Choose the vector ofp initial observationsw∗(0) = (W (1)′, . . . , W (p)′)′. 2

4. GivenΦ̂ = [Φ̂1, . . . , Φ̂p], {u
∗(t)}T

t=p+1, andw∗(0), generate bootstrap data for the dependent
variableW ∗(t) from equation:

W ∗(t) =

p
∑

i=1

Φ̂iW
∗(t− i) + u∗(t), for t = p+ 1, . . . , T . (8.7)

2The choice of using the initial vectors(W (1)
′

, . . . , W (p)
′

)
′

seems natural, but any block of p vectors fromW ≡
{W (1), . . . ,W (T )}would be appropriate. Berkowitz and Kilian (2000) note thatconditioning each bootstrap replicate on
the same initial value will understate the uncertainty associated with the bootstrap estimates, and this choice is randomised
in the simulations by choosing the starting value fromW ≡ {W (1), . . . ,W (T )} [see Patterson (2007)].
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5. Calculate the bootstrap OLS regression estimates

Φ̂∗ = [Φ̂∗
1, Φ̂

∗
2, . . . , Φ̂

∗
p] = Γ̂ ∗′

1 Γ̂
∗−1, Σ̃∗

u =
1

T − p

T∑

t=p+1

ũ∗(t)ũ∗(t)′,

where

Γ̂ ∗ =
1

T − p

T∑

t=p+1

w∗(t)w∗(t)′, Γ̂ ∗
1 =

1

T − p

T∑

t=p+1

w∗(t)W ∗(t+ 1)′,

w∗(t) = (W ∗(t)′, . . . ,W ∗(t − p + 1)′)′, ũ∗(t) = û∗(t) −
∑T

t=p+1 û
∗(t)/(T − p), and

û∗(t) = W ∗(t) −
∑p

i=1 Φ̂
∗
iW

∗(t− i).

6. Estimate the constrained model of the marginal process(X,Z) using the bootstrap sample
{W ∗(t)}T

t=1.

7. Calculate the causality measure at horizonh, say Ĉ(j)∗
L (Y −→

h
X | I), using equation (6.8)

and the bootstrap sample.

8. ChooseB such1
2α(B + 1) is an integer and repeat the steps (2)-(7)B times.

We have the following result which establish the validity ofthe percentile bootstrap technique.

Proposition 8.2 ASYMPTOTIC VALIDITY OF THE RESIDUAL-BASED BOOTSTRAP. Under As-
sumptions 8.1, we have

T 1/2
[
Ĉ∗

L(Y−→
h
X | I) − ĈL(Y−→

h
X | I)

] d
→ N

[
0, σc(h)

2
]

whereσc(h)
2 andΩ are defined in Proposition 8.1.

Kilian (1998) proposes an algorithm to remove the bias in impulse response functions prior to
bootstrapping the estimate. As he mentioned, the small sample bias in an impulse response function
may arise from bias in slope coefficient estimates or from thenonlinearity of this function, and this
can translate into changes in interval width and location. If the ordinary least-squares small-sample
bias can be responsible for bias in the estimated impulse response function, then replacing the biased
slope coefficient estimates by bias-corrected slope coefficient estimates may help to reduce the bias
in the impulse response function. Kilian (1998) shows that the additional modifications proposed
in the bias-corrected bootstrap confidence intervals method do not alter its asymptotic validity. The
reason is that the effect of bias corrections is negligible asymptotically.

To improve the performance of the percentile bootstrap intervals described above, we can con-
sider a similar algorithm to the one in Kilian (1998). Beforebootstrapping the causality measures, we
correct the bias in the VAR coefficients. We approximate the bias termBias =E[Φ̂−Φ] of the VAR
coefficients by the corresponding bootstrap biasBias∗ = E

∗[Φ̂∗ − Φ̂], whereE
∗ is the expectation

based on the bootstrap distribution ofΦ̂∗. This suggests the bias estimate

B̂ias
∗

=
1

B

B∑

j=1

Φ̂∗(j) − Φ̂.

We substituteΦ̂ − B̂ias
∗

in equation (8.7) and generateB new bootstrap replicationŝΦ∗. We use

the same bias estimate,̂Bias
∗
, to estimate the mean bias of neŵΦ∗ [see Kilian (1998)]. Then we
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calculate the bias-corrected bootstrap estimatorΦ̃∗ = Φ̂∗ − B̂ias
∗

that we use to estimate the bias-
corrected bootstrap causality measure estimate. Based on the discussion by Kilian (1998, page 219),
given the nonlinearity of the causality measure, this procedure will not in general produce unbiased
estimates, but as long as the resulting bootstrap estimatoris approximately unbiased, the implied
percentile intervals are likely to be good approximations.Further, to reduce the bias in the causality
measure estimate, one can consider another bias correctionapplied directly on the measure itself,

C̃L
(j)∗(Y−→

h
X | I) = Ĉ

(j)∗
L (Y−→

h
X | I) −

[
C̄∗

L(Y −→
h

X | I) − ĈL(Y −→
h

X | I)
]
,

C̄∗
L(Y−→

h
X | I) =

1

B

B∑

j=1

C̃L
(j)∗(Y−→

h
X | I) .

In practice, specially when the true value of causality measure is close to zero, it is possible that for
some bootstrap samples the quantityC̃L

(j)∗(Y−→
h

X | I) becomes negative. In this case we impose

the following non-negativity truncation:

C̃
(j)∗
L (Y −→

h
X | I) = max

{
C̃

(j)∗
L (Y −→

h
X | I), 0

}
.

9. Empirical application

We apply our causality measures to examine whether or not monetary policy can cause at different
horizons the real economy and vice versa. Further, we compare the causal effects that different
measures of monetary policy can have on the real economy, where the latter is represented by gross
domestic product. We follow Bernanke and Blinder (1992) andBernanke and Mihov (1998) to
consider as measures of monetary policy nonborrowed reserves and federal funds rate.

The data set considered is the one used by Bernanke and Mihov (1998) and Dufour et al. (2006).
This data set consists of monthly observations on nonborrowed reserves (NBR), federal funds rate
(R), gross domestic product deflator (P), and real gross domestic product (GDP). The monthly data
on GDP and GDP deflator were constructed using state space methods from quarterly observations
[for more details, see Bernanke and Mihov (1998)]. The sample runs from January 1965 to December
1996 for a total of 384 observations. All variables are in logarithmic form. These variables were also
transformed by taking first differences, consequently the causality relations have to be interpreted in
terms of growth rates.

We performed augmented Dickey-Fuller tests (hereafterADF -tests) for nonstationarity of the
four variables of interest and their first differences. The results show that all variables in logarithmic
form are nonstationary. However, their first differences are stationary except for the GDP deflator.
We performed a nonstationarity test for the second differences of the GDP deflator. The test statistic
values are equal to−11.04826 and−11.07160 for theADF -test with only an intercept and with
both intercept and trend, respectively. The critical values in both cases are equal to−2.8695 and
−3.4235. Thus, the second differences of the GDP deflator are stationary.

Once the data is made stationary, we use the nonparametric approach described in Section 6 for
the estimation and Akaike’s information criterion to specify the orders of the corresponding fitted
VAR(k) models. Applying Akaike’s criterion for the unconstrainedVAR model, which corresponds
to four variables, we find that it is minimized at orderk = 16. The orders of the constrained VAR
models, which correspond to different combinations of three variables, are all less than or equal to
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Figures 1 -8. Causality profiles

These figures present measures of causality between nonborrowed reserves (NBR), federal funds rate (R), the
gross domestic product deflator (P), and real gross domesticproduct (GDP), until40 months. The sample runs
from January 1965 to December 1996 for a total of 384 observations.
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Figure 2: Causality measures from Nonborrowed reserves to GDP Deflator
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Figure 3: Causality measures from Nonborrowed reserves to Real GDP
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Figure 4: Causality measures from Federal funds rate to GDP Deflator
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Figure 5: Causality measures from Federal funds rate to Real GDP
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16. To calculate the causality measures we consider the same order k = 16 for the constrained
and unconstrained models. This ensures a relevant comparison of the determinants of the variance-
covariance matrices of the constrained and unconstrained forecast errors. We compute the causality
measures for horizonsh = 1, . . . , 40 [see Figure 1- 8]. Higher values of the measures indicate
larger causality. We also calculate the corresponding nominal 95% bootstrap confidence intervals as
described in the previous section.

Figure1 shows that nonborrowed reserves strongly Granger cause thefederal funds rate (one
period ahead). This causality is well known in the literature and can be explained by the theory of
supply and demand for money. The nonborrowed reserves also cause the real GDP and GDP deflator:
these causality measures are not significantly different from zero after4 months for real GDP and
after6 months for the GDP deflator, although the confidence intervals still cover sizeable values. The
causality measures from the federal funds rate to the GDP deflator decline gradually, although they
are significantly different from zero only for the two-months horizon [see Figure4]. We also observe
that real GDP strongly causes the federal funds rate during the first three months. This causality is
statistically significant for the first4 or 5 months. Another interesting result is the one which cor-
responds to the causality from the federal funds rate to realGDP. This causality is sizeable (in the
range of0.05) and statistically significant during the first15 months, after which it becomes statisti-
cally non significant although possibly sizeable from an economic viewpoint [see Figure5]. These
findings are consistent with conclusions obtained by Dufouret al. (2006). Statistically significant
causality measures – in the sense that the95% confidence intervals do not cover zero – are summa-
rized in Table 3. The above results do not change substantially when we consider second – rather
than first – differences of the GDP deflator.

From the above results, we draw the following conclusions. First, monetary policy – as mea-
sured by nonborrowed reserves and federal funds – affects the real economy. Second, nonborrowed
reserves cause federal funds rate in the short-term, which then causes real GDP over several months
(see figures1 and5). These findings are consistent with the literature; see forexample Bernanke
and Blinder (1992), Bernanke and Mihov (1998), and Ireland (2005). Third, except for the first two
months, where the both measures of monetary policy have the same degree of causal effect on real
GDP, the federal funds rate causes the real economy more strongly than nonborrowed reserves at
longer horizons (see Figure7). The latter result is also supported by the literature: “The results are
striking: the Federal funds rate is markedly superior to theboth monetary aggregates[M1 and M2
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money supplies]and to most other interest rates as a forecaster of the economy” [Bernanke and
Blinder (1992, page 903)]. Finally, Figure8 shows that the real economy (real GDP) affects the
federal funds rate more than nonborrowed reserves.

10. Conclusion

New concepts of causality were introduced in Dufour and Renault (1998): causality at a given (ar-
bitrary) horizonh, and causality up to any given horizonh, whereh is a positive integer and can be
infinite (1 ≤ h ≤ ∞). These concepts are motivated by the fact that, in the presence of an auxiliary
variableZ, it is possible to have a situation in which the variableY does not cause variableX at hori-
zon1, but causes it at a longer horizonh > 1. In this case, this is an indirect causality transmitted by
the auxiliary variableZ.

A related problem arises when measuring the degree of causality between two variables. Existing
causality measures have been established only for horizon1 and fail to capture indirect causal effects.
In this paper, we have proposed a generalization of such measures for any horizonh, both parametric
and nonparametric. Parametric measures are defined in termsof impulse response coefficients in the
VMA representation. On observing that the relevant parametric expressions can be quite complex,
an original approach based on simulating a large sample fromthe process of interest was suggested.
Bootstrap nonparametric confidence intervals were also derived.

The causality measures are applied to examine whether monetary policy causes the real economy
at different horizons. The results show that nonborrowed reserves cause the federal funds rate in
the short-term, while the federal funds rate causes the realeconomy (real gross domestic product)
for several months ahead. Further, the federal funds rate has more impact on the real economy
than nonborrowed reserves. The federal funds rate is a better forecaster of the real economy than
nonborrowed reserves. This also suggests that nonborrowed reserves affect the real economy mainly
through their effect on interest rates.

The long VAR approach used in this paper to estimate the causality measures can have some
drawbacks. Given the dimension of VAR and the large number oflags that we put in the model to
capture the structure of the infinite autoregressive model,the estimated slope coefficients and the
corresponding reduced-form impulse responses can be imprecise, especially in small sample. Con-
sequently, a small sample bias in the causality measures mayarises from bias in the reduced-form
impulse coefficients estimates or from the nonlinearity of these measures. To remove this bias, one
may replace the biased reduced-form impulse responses in the causality measures by bias-corrected
reduced-form impulse responses estimates using bootstrap-after-bootstrap method discussed in Kil-
ian (1998).

The choice of the appropriate order of VAR models can also be an important issue for causality
measures. Recently, Kapetanios, Pagan and Scott (2007) argue that the order of VAR needed to
reproduce the reduced-form impulse responses for actual economies is likely to be far higher than
those suggested in practice and quite infeasible given the sample sizes in macroeconomics. The
investigation of the impact of those issue on the small sample estimates of causality measures is the
topic of on-going research.
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Table 3. Summary of causality relations at various horizonsfor series in first difference

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NBR→ R yes
NBR→ P yes yes yes yes yes yes
NBR→ GDP yes yes yes yes
R→ NBR
R→ P yes yes
R→ GDP yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
P → NBR
P → R
P → GDP

GDP → NBR
GDP → R yes yes yes yes yes
GDP → P

Note: This table summarizes the results of different causality directions between nonborrowed reserves (NBR), the federalfunds rate (R), the gross
domestic product deflator (P), and real gross domestic product (GDP), up to20 months. “yes” means that the corresponding causality measure is
significant at level0.05. (i.e., the95% bootstrap confidence interval does not cover zero). The sample runs from January 1965 to December 1996
(384 observations).
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A. Appendix: Proofs

PROOF OF PROPOSITION 4.1 Let h1 and h2 be two different horizons andm1 = m2 = 1.
According to Diebold and Kilian (2001), the predictabilitymeasures forX based on the information
setsIX(t) andIXY (t) are, respectively, defined as

P̄X

(
IX(t), h1, h2

)
= 1 −

σ2
(
X(t+ h1) | IX(t)

)

σ2
(
X(t+ h2) | IX(t)

) ,

P̄X

(
IXY (t), h1, h2

)
= 1 −

σ2
(
X(t+ h1) | IXY (t)

)

σ2
(
X(t+ h2) | IXY (t)

) .

By Definition 4.1, we then see that

CL(Y →
h1

X | I) −CL(Y →
h2

X | I) = ln

[
σ2[X(t+ h1) |IX(t)]

σ2[X(t + h1) | IXY (t)]

]

− ln

[
σ2[X(t+ h2) |IX(t)]

σ2[X(t + h2) | IXY (t)]

]

= ln

[
σ2[X(t+ h1) |IX(t)]

σ2[X(t+ h2) |IX(t)]

]

− ln

[
σ2[X(t+ h1) | IXY (t)]

σ2[X(t+ h2) | IXY (t)]

]

= ln
{
1 − P̄X

(
IX(t), h1, h2

)}
− ln

{
1 − P̄X

(
IXY (t), h1, h2

)}
.

PROOF OFPROPOSITION6.1 Under Assumption 6.1 and using Theorem 1 in Lewis and Reinsel
(1985), we have

Φ̂(k) = Φ(k) + op(1).

Using (4.1) of Lewis and Reinsel (1985) and Assumption 6.1, we have:

Σ̂k(h) =

(

1+
mk

T

)

Σ(h) + op(1) = Σ(h) +Σ(h)op(T
−δ) + op(1), for δ ≤

2

3
,

hence
Σ̂k(h)

p
→

T→∞
Σ(h) . (A.1)

Similarly, we have:
Σ̃0|k(h)

p
→

T→∞
Σ0(h) . (A.2)

From (A.1) and (A.2), we get

ln

[

det
{
J0Σ̃0|k(h)J

′
0

}

det
{
J1Σ̂k(h)J

′
1

}

]

p
→

T→∞
ln

[

det
{
J0Σ0(h)J

′

0

}

det
{
J1Σ(h)J ′

1

}

]

, (A.3)

ĈL

(
Y −→

h
X | I

) p
→

T→∞
CL

(
Y −→

h
X | I

)
. (A.4)

PROOF OFPROPOSITION8.1 We know that, forδ ≤ 2
3 ,

G
(
Φ̃(k), Σ̃ε| k

)
=
(
1 + op(T

−δ)
)
G
(
Φ,Σu

)
+ op(1).
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ln
(
G
(
Φ̃(k), Σ̃ε| k

))
= ln

(
G
(
Φ,Σu

))
+ op(T

−δ) + op(1). (A.5)

By the differentiability ofG(·),

ln
(
G
(
Φ̂, Σ̂u

))
= ln

(
G
(
Φ, Σu

))
+ op(1). (A.6)

From (A.5) and (A.6),we get

ln
(
G
(
Φ̃(k), Σ̃ε| k

))
= ln

(
G
(
Φ̂, Σ̂u

))
+ op(T

−δ) + op(1).

Consequently,
ĈL(Y −→

h
X | I) = C̃L(Y −→

h
X | I) + op(T

−δ) + op(1)

where

C̃L(Y −→
h

X | I) = ln

(

det
(
G(Φ̂, Σ̂u)

)

det
(
H(Φ̂, Σ̂u)

)

)

.

SinceC̃L(Y −→
h

X | I) =Op(1), the asymptotic distribution of̂CL(Y −→
h

X | I) will be the same

as that ofC̃L(Y −→
h
X | I). Using a first-order Taylor expansion of̃CL(Y −→

h
X | I), we get

C̃L(Y −→
h
X | I) = CL(Y−→

h
X | I) +DC

(
vec(Φ̂) − vec(Φ)

vech(Σ̂u) − vech(Σu)

)

+ op(T
− 1

2 ),

where

DC =
∂CL(Y−→

h
X | I)

∂ (vec(Φ)′, vech(Σu)′)
=
∂CL(Y−→

h
X | I)

∂θ′
(A.7)

for θ =
(
vec(Φ)′, vech(Σu)′

)′
, hence

T 1/2

[

C̃L(Y−→
h
X | I) − CL(Y−→

h
X | I)

]

⋍ DC

(

T 1/2 vec(Φ̂) − vec(Φ)

T 1/2vech(Σ̂u) − vech(Σu)

)

.

Using (8.5),

T 1/2
[
C̃L(Y−→

h
X | I) − CL(Y−→

h
X | I)

] d
→N(0, σc(h)

2).

Consequently,

T 1/2
[
Ĉ (Y −→

h
X | I) −CL(Y−→

h
X | I)

] d
→N(0, σc(h)

2)

whereσc(h)
2 = DCΩD

′

C ,

Ω =

[
Γ−1 ⊗Σu 0

0 2(D
′

mDm)−1D
′

m(Σu ⊗Σu)Dm(D
′

mDm)−1

]

, (A.8)

andDm is the duplication matrix, defined such thatvech(F ) = Dmvech(F ) for any symmetric
m×m matrixF .

PROOF OFPROPOSITION8.2 We start by showing that conditional on the sample

vec
(
Φ̂∗
) p

→
T→∞

vec
(
Φ̂
)
, vech

(
Σ̂∗

u

) p
→

T→∞
vech

(
Σ̂u

)
,
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vec
(
Φ̃∗(k)

) p
→

T→∞
vec
(
Φ̃(k)

)
, vech

(
Σ̃∗

ε| k

) p
→

T→∞
vech

(
Σ̃ε| k

)
.

We first note that

vec
(
Φ̂∗
)

= vec
(
Γ̂ ∗′

1 Γ̂
∗−1
)

= vec
( 1

T − p

T∑

t=p+1

W (t+ 1)∗w∗(t)′Γ̂ ∗−1
)
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( 1
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Φ̂w∗(t)+ u∗ (t+ 1)
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)
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(
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( 1
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t=p+1
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)
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)
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(
Φ̂
)
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( 1
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T∑

t=p+1

u∗(t+ 1)w∗(t)′Γ̂ ∗−1
)

.

Letℑ∗
t = σ (u∗(1), . . . , u∗(t)) denote theσ-algebra generated byu∗(1), . . . , u∗(t). Then,

E
∗
[
u∗(t+ 1)w∗(t)′Γ̂ ∗−1

]
= E

∗
[
E
∗ [u∗(t+ 1) | ℑ∗

t ]w
∗(t)′Γ̂ ∗−1

]
= 0.

By the law of large numbers,

1

T − p
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t=p+1
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∗
[
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andvec
(
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→
T→∞

0 . Now, to prove thatvech
(
Σ̂∗

u
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→
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Σ̂u

)
,we observe that
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(
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.

Conditional on the sample and by the law of iterated expectations, we have:

E
∗
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u∗(s)u∗(s)′ −
1

T − p
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û(s)û(s)′
]

= E
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û(s)û(s)′
]

= 0.

Since

1
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û(s)û(s)′
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û(s)û(s)′
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we getvec
(
Σ̂∗

u

)
− vec

(
Σ̂u

) p
→

T→∞
0. Similarly, we can show that

vec
(
Φ̃∗(k)

) p
→

T→∞
vec
(
Φ̃(k)

)
, vech

(
Σ̃∗
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→

T→∞
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(
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)
.

SinceG(·) andH(·) are differentiable functions, we have:

ln
(

H
(
Φ̂∗,Σ̂∗

u

))

= ln
(

H
(
Φ̂,Σ̂u

))

+ op(1),

ln
(

G
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Φ̃∗(k),Σ̃∗

ε| k
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= ln
(
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))

+ op(1).

By Theorems 2.5-3.4 in Paparoditis (1996) and Theorem 6 in Lewis and Reinsel (1985), we have

ln
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= ln
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for δ ≤ 2
3 . Consequently,
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We have shown that forδ ≤ 2
3 [see the proof of Proposition 8.1],
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Consequently,
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Conditional on the sample, we can expandC̃∗(Y → X | I) aroundC̃L(Y−→
h
X | I) :

Ĉ∗
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h
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hence
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.

Conditional on the sample, we have:
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d
→ N [0, Ω], (A.9)

31



whereΩ is given by equation (A.8); see Inoue and Kilian (2002). Thus,

T 1/2
[
Ĉ∗

L(Y−→
h
X | I) − C̃L(Y−→

h
X | I)

] d
→ N

[
0, σc(h)

2
]
,
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L(Y−→
h
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h
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] d
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[
0, σc(h)

2
]
,

whereσc(h)
2 =DCΩD

′
C andDC is given by equation (A.7).
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