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ABSTRACT

In this paper, we provide several results on inference in linear simultaneous regression models (or
IV regressions) when instruments can be weak. We define a family of Anderson-Rubin-type (AR-
type) procedures based on a general class of auxiliary instruments and for which a finite-sample
distributional theory is supplied. The setup considered allows for arbitrary collinearity among the
instruments and model endogenous variables, including the presence of accounting relations and
singular disturbance covariance matrices. We show that such procedures, in addition to being ro-
bust to weak instruments, are also robust to the exclusion of possibly relevant instruments and, more
generally, to the distribution of explanatory endogenous variables, a property not shared by several
alternative procedures. Using a closed-form solution to the problem of computing linear projections
from a general possibly singular quadric surface, we derive computationally simple finite-sample
confidence sets for linear combinations of structural parameters based on generalized AR-type pro-
cedures in the extended setup considered. We discuss the relation between projection-based confi-
dence sets, Scheffé-type simultaneous confidence intervals and k-class estimators. The performance
of projection-based confidence sets as well as the importance of robustness to excluded instruments
are studied in a simulation experiment. Finally, the feasibility and usefulness of projection-based
confidence sets is illustrated by applying them to three different examples: the relationship between
trade and growth in a cross-section of countries, returns to education, and a study of returns to scale
and externalities in U.S. production functions.

Key words : simultaneous equations; structural model; instrumental variable; weak instrument;
collinearity; missing instrument; confidence interval; testing; projection; simultaneous inference;
exact inference; asymptotic theory.
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RÉSUMÉ

Dans cet article , nous présentons plusieurs résultats sur l’inférence statistique dans les modèles
à équations simultanées (régressions avec variables instrumentales) quand les instruments sont ou
peuvent être faibles. Sur la base d’une classe générale d’instruments auxilliaires, nous définis-
sons une famille de procédures de type Anderson-Rubin (AR) pour laquelle nous développons une
théorie distributionnelle à distance finie. Le cadre considéré supporte une collinéarité arbitraire en-
tre les instruments et les variables endogènes du modèle, y compris la présence de relations compt-
ables et/ou d’une matrice de covariances singulière sur les perturbations. Nous montrons qu’en
plus d’être robustes aux instruments faibles, ces procédures sont également robustes à l’exclusion
d’instruments pertinents et plus généralement à la distribution de variables explicatives endogènes,
une propriété que ne possède pas plusieurs autres procédures. Utilisant une solution explicite du
problème de calcul des projections d’une surface quadrique avec matrice singulière, nous dérivons
de façon simple des régions de confiance exactes pour des combinaisons linéaires des paramètres
structuraux basés sur des procédures AR généralisées. Nous discutons la relation entre les régions
de confiance basées sur la projection, les régions de confiance simultanées de type Scheffé et les es-
timateurs k-class. La performance des intervalles de confiance basés sur la projection et la propriété
de robustesse à l’exclusion d’instruments sont ensuite étudiés par simulation. Enfin, la faisabilité
et l’utilité des régions de confiance par projection sont illustrées par trois applications empiriques,
à savoir: la relation entre l’ouverture commerciale et la croissance économique, le rendement de
l’éducation et une application aux rendements d’échelle et les effets d’externalité dans l’économie
américaine.

Mots clés words : équations simultanées; modèle structurel; variable instrumentale; instrument
faible; collinéarité; instrument omis; région de confiance; tests d’hypothèse; projection; inférence
simultanée; inférence exacte; théorie asymptotique.
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1. Introduction

Models where different values of the parameter vector may lead to observationally equivalent data
distributions are quite widespread in statistics and econometrics. Important examples of such mod-
els include: (1) regression models when the matrix of the regressors does not have full rank (mul-
ticollinearity); (2) linear simultaneous equations models; (3) errors-in-variables and latent variable
models; (4) ARMA and VARMA models; (5) dynamic models with cointegrating relations; (5)
models with mixture distributions; etc.1 Further, inference on such models often lead to complex
problems, even when “identifying restrictions” are imposed. A context where these difficulties have
been extensively explored is the one of simultaneous equations or instrumental variable (IV) regres-
sions when the instruments are poorly correlated with endogenous explanatory variables and, more
generally, when structural parameters are close to not being identifiable. The literature on so-called
“weak instruments” problems is now considerable.2

In such contexts, several papers have documented by simulation and approximate asymptotic
methods the poor performance of standard asymptotically justified procedures [ Nelson and Startz
(1990a, 1990b), Buse (1992), Bound, Jaeger and Baker (1993, 1995), Hall et al. (1996), Staiger and
Stock (1997), Zivot et al. (1998), Dufour and Jasiak (2001)]. The fact that standard asymptotic the-
ory can be arbitrarily inaccurate in finite samples (of any size) is also shown rigorously in Dufour
(1997), where it is observed that valid confidence intervals in a standard linear structural equa-
tions model must be unbounded with positive probability and Wald-type statistics have distributions
which can deviate arbitrarily from their large-sample distribution (even when identification holds).
The fact that both finite-sample and large-sample distributions exhibit strong dependence upon nui-
sance parameters has also been demonstrated by other methods, such as finite-sample distributional
theory [see Choi and Phillips (1992)] and local to nonidentification asymptotics [see Staiger and
Stock (1997) and Wang and Zivot (1998)].

In view of these difficulties, a basic problem is to develop procedures that are robust to weak
instruments. Other features we shall also consider here is robustness to the exclusion of possibly
relevant instruments (robustness to missing instruments), and more generally robustness to the dis-
tribution of explanatory endogenous variables (robustness to endogenous explanatory variable dis-
tribution).3 We view all these features as important because it is typically difficult to know whether
a set of instruments is globally weak (so that the resulting inference becomes unreliable) or whether

1For general expositions of the theory of identification in econometrics and statistics, the reader may consult Rothen-
berg (1971), Fisher (1976), Hsiao (1983), Prakasa Rao (1992), Bekker, Merckens and Wansbeek (1994) and Manski
(1995, 2003).

2See, for example, Nelson and Startz (1990a, 1990b), Buse (1992), Maddala and Jeong (1992), Bound, Jaeger and
Baker (1993, 1995), Angrist and Krueger (1995), Hall, Rudebusch and Wilcox (1996), Dufour (1997), Shea (1997),
Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nelson (1998), Startz, Nelson and Zivot (1999),
Perron (1999), Chao and Swanson (2000), Stock and Wright (2000), Dufour and Jasiak (2001), Hahn and Hausman
(2002a, 2002b), Hahn, Hausman and Kuersteiner (2001), Kleibergen (2002, 2004, 2005), Moreira (2001, 2003a, 2003b),
Moreira and Poi (2001), Stock and Yogo (2002, 2003), Stock, Wright and Yogo (2002), Perron (2003), Wright (2003,
2002), Bekker and Kleibergen (2003) Hall and Peixe (2003), Forchini and Hillier (2003), Andrews, Moreira and Stock
(2004), Dufour and Taamouti (2005), and the reviews of Stock et al. (2002) and Dufour (2003).

3We borrow the terminology “robust to weak instruments” from Stock et al. (2002, p. 518). Robustness to instrument
exclusion appears to have been little discussed in the literature on weak instruments.

1



relevant instruments have been excluded (which seems highly likely in most practical situations).
In such contexts, it is particularly important that tests and confidence sets be based on properly

pivotal (or boundedly pivotal) functions, as well as to study inference procedures from a finite-
sample perspective. The fact that tests should be based on statistics whose distributions can be
bounded and that confidence sets should be derived from pivotal statistics is, of course, a require-
ment of basic statistical theory [see Lehmann (1986)]. In the framework of linear simultaneous
equations and in view of weak instrument problems, the importance of using pivotal functions for
statistical inference has been recently reemphasized by several authors [see Dufour (1997), Staiger
and Stock (1997), Wang and Zivot (1998), Zivot et al. (1998), Startz et al. (1999), Dufour and Jasiak
(2001), Stock and Wright (2000), Kleibergen (2002, 2004), Moreira (2001, 2003a), and Stock et al.
(2002)]. In particular, this suggests that confidence sets should be built by inverting likelihood ra-
tio (LR) and Lagrange multiplier (LM) type statistics, as opposed to the more usual method which
consists in inverting Wald-type statistics (such as asymptotic t-ratios).

We focus here on extensions of the procedure originally proposed by Anderson and Rubin (1949,
henceforth AR). There are two basic reasons for that. First, it is completely robust to weak instru-
ments. Second, it is close to being the only procedure for which a truly finite-sample distributional
theory has been supplied under standard parametric assumptions (error Gaussianity, instrument
strict exogeneity), which is based on the classical linear model. In view of the non-uniformity of
large-sample approximations, we view this feature as the best starting point for the development of
procedures that are robust to the presence of weak instruments. Of course, tests and confidence sets
based on the AR method are asymptotically pivotal under much weaker distributional assumptions
[see Dufour and Jasiak (1993, 2001), Staiger and Stock (1997)].

Other potential pivots aimed at being robust to weak instruments have recently been suggested
by Wang and Zivot (1998), Kleibergen (2002) and Moreira (2003a). These methods are closer to
being full-information methods – in the sense that they rely on a relatively specific formulation
of the model for the endogenous explanatory variables – and thus may lead to power gains under
the assumptions considered. But this will typically be at the expense of robustness. Further, only
asymptotic distributional theories have been supplied for these statistics, so that the level of the
procedures may not be controlled in finite samples. 4

In this paper, we study a number of issues associated with the use of AR-type procedures and we
provide a number of extensions. More precisely, we show first that AR-type tests and confidence sets
enjoy remarkably strong robustness properties because they allow one to produce valid inference in
finite samples despite the presence of weak instruments, missing relevant instruments, and indeed
irrespective of the data generating process (DGP) which determines the behavior of the endogenous
explanatory variables in the structural equation of interest. In contrast, alternative procedures that
exploit more specific models for the latter variables are much more fragile. The practical importance
of this point is demonstrated in a simulation experiment where alternative procedures exhibit strong
size distortions, while AR-type tests are not affected (as expected from theory).

Second, we study a theoretical setup broader than the one under which finite-sample validity
of AR tests is usually derived, and we propose an extended class of AR-type procedures based on

4Finite-sample conservative bounds have, however, been proposed by Dufour (1997) for LR statistics and by Bekker
and Kleibergen (2003) for Kleibergen’s statistic.
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a general class of auxiliary instruments. Arbitrary collinearity among the instruments and model
endogenous variables is allowed, and the auxiliary instruments may not include all the exogenous
variables which determine the endogenous explanatory variables. Accounting relations and singular
covariance matrices between model disturbances are included as special cases of this setup. The
extended AR procedure deals in a transparent way with situations where the exogenous variables
and the instruments may be linearly dependent (as can happen easily if the latter contain dummy
variables), without reparametrizations that can modify the interpretation of model coefficients. This
provides a unified treatment of two basic cases of identification failure: namely, inference in a
structural model which may be underidentified as well as regressions with collinear regressors.5

Third, we consider the problem of building tests and confidence sets for individual parameters
and, more generally, for linear transformations of structural parameters. A central feature of models
where parameters may fail to be identified is parametric nonseparability: in general, individual
coefficients may not be empirically meaningful without information on other parameters in the
model (which may be viewed as nuisance parameters). Reliable informative inference on certain
model coefficients may not be feasible, but inference on parameter vectors can often be achieved.
This suggests a “joint” approach where we start with inference on vectors of model parameters and
then see what can be inferred on individual coefficients. So, not surprisingly, the AR-procedure
succeeds at achieving pivotality by considering tests for hypotheses of the form H0 : β = β0,
where the vector β contains the coefficients of all the endogenous explanatory variables in a linear
structural equation.

To produce inference on transformations of model parameters, we consider the projection tech-
nique described in Dufour (1990, 1997), Wang and Zivot (1998), Dufour and Jasiak (2001) and
Dufour and Taamouti (2005). This method has the interesting feature that the level of the result-
ing confidence sets for transformed coefficients is at least as large as the one of the original joint
confidence set from which the projection is made, so in the case of an exact AR-type confidence
set the corresponding projection-based confidence sets are also exact, in sense that the probability
of covering the true parameter value is at least as large as the stated level [in accordance with the
standard definition of Lehmann (1986, sections 3.1 and 3.5)].6 In Dufour and Jasiak (2001), under
a more restricted setup, such confidence sets were actually computed by using nonlinear optimiza-
tion procedures, whose computational cost can be high. Exploiting the fact that AR confidence
sets can be represented by quadric surfaces, we also showed in Dufour and Taamouti (2005) that
projection-based confidence sets for linear transformations of model coefficients can be obtained
in much simpler way (which does not require nonlinear optimization) in the special case where
the quadratic part of the quadric involves a full-rank matrix (the concentration matrix). Here we

5Multicollinearity is one of the most basic form of identification failure, which has led to the classical theory of
estimable fucntions. For further discussion, see Magnus and Neudecker (1991, Chapter 13), Rao (1973, Chapter 4), Rao
and Mitra (1971, Chapter 7) and Scheffé (1959, Chapters 1-2).

6This problem was also considered by Choi and Phillips (1992), Stock and Wright (2000) and Kleibergen (2004).
While Choi and Phillips (1992) did not propose an operational method for dealing with the problem, the methods con-
sidered by Stock and Wright (2000) and Kleibergen (2004) rely on the assumption that the structural parameters not
involved in the restrictions are well identified and rely on large-sample approximations (which become invalid when the
identification assumptions made do not hold). Consequently they are not robust to weak instruments. For these reasons,
we shall focus here on the projection approach.
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extend this result by giving a completely general closed-form solution to the problem of building
projection-based confidence sets for linear combinations of parameters when the joint confidence
set belongs to the quadric class. In particular, this solution applies to the generalized AR-type con-
fidence sets introduced above (where the concentration matrix can easily be singular) and leads to
confidence sets which are as easy to compute as standard two-stage least squares (2SLS) confidence
intervals. The solution of this mathematical problem may also be of independent interest.

Fourth, we show that the confidence sets obtained in this way enjoy another important property,
namely simultaneity in the sense discussed by Miller (1981), Savin (1984) and Dufour (1989). More
precisely, projection-based confidence sets (or confidence intervals) can be viewed as Scheffé-type
simultaneous confidence sets – which are widely used in analysis of variance – so that the probability
that any number of the confidence statements made (for different functions of the parameter vector)
hold jointly is controlled. Correspondingly, an arbitrary number of hypotheses on β can be tested
without ever losing control of the overall level of the multiple tests, i.e. the probability of rejecting
at least one true null hypothesis on β is not larger than the level α. This can provide an important
check on data mining.

Fifth, we show that when the projection-based confidence intervals are bounded, they may be
interpreted as confidence intervals based on k-class estimators [for a discussion of k-class estima-
tors, see Davidson and MacKinnon (1993, page 649)] where the “standard error” is corrected in a
way that depends on the level of the test. The confidence interval for a linear combination of the
parameters, say w′β takes the usual form [w′β̂ − σ̂zα, w′β̂ + σ̂zα] with β̂ a k-class type estimator
of β.

Sixth, the methods discussed in this work are evaluated and compared on the basis of Monte
Carlo simulations. In particular, we study how conservative projection-based confidence sets are as
well as their robustness to weak and missing instruments.

Seventh, in order to illustrate the projection approach, we present three empirical applications.
In the first one, we study the relationship between standards of living and openness in the context
of an equation previously considered by Frankel and Romer (1999). The second application deals
with the famous problem of measuring returns to education using the model and data considered
by Angrist and Krueger (1995) and Bound, Jaeger and Baker (1995), while in the third example we
study returns to scale and externalities in various industrial sectors of the U.S. economy, using a
production function specification previously considered by Burnside (1996).

The paper is organized as follows. The problem of robustness to excluded instruments and
the endogenous regressor model is discussed in section 2. We describe the general setup that we
consider and the corresponding generalized Anderson-Rubin procedures in section 3. The projection
approach and its simultaneity properties are discussed in section 4. The general closed-form solution
to the problem of building projection-based confidence sets from a general quadric confidence set is
presented in section 5. The relation between projection-based confidence sets, Scheffé confidence
intervals and k-class estimators is discussed in section 6. In section 7, we report the results of
our Monte Carlo simulations, while section 8 presents the empirical applications. We conclude in
section 9.
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2. Robustness to missing instruments and endogenous regressor
model

Let us consider first the following common simultaneous equation framework, which has been the
basis of many recent papers on inference in models with possibly weak instruments [see Dufour
(2003) and Stock et al. (2002)]:

y = Y β + X1γ + u , (2.1)

Y = X1Π1 + X2Π2 + V, (2.2)

where y and Y are T × 1 and T × G matrices of endogenous variables (G ≥ 1), X1 and X2

are T × k1 and T × k2 matrices of exogenous variables, β and γ are G × 1 and k1 × 1 vectors
of unknown coefficients, Π1 and Π2 are k1 × G and k2 × G matrices of unknown coefficients, u
= (u1, . . . , uT )′ is a vector of structural disturbances, and V = [V1, . . . , VT ]′ is a T × G matrix
of disturbances. Further, in order to allow for a finite-sample distributional theory, we suppose that:

X = [X1, X2] is a full-column rank T × k matrix, where k = k1 + k2 ; (2.3)

u and X are independent; (2.4)

u ∼ N
[
0, σ2

u IT

]
. (2.5)

We consider the problem of building tests and confidence sets on β and γ. In view of the fact
that these parameters may not be identified (which occurs when the matrix Π2 has rank less than
G), it is especially important that such procedures be based on proper pivotal (or boundedly pivotal
functions); see Dufour (1997). In particular, Wald-type statistics are not pivotal in such a setup.
More generally, test statistics in this context tend to depend heavily on various unknown nuisance
parameters.

As pointed out in Dufour (1997) and Staiger and Stock (1997), a possible solution consists in
exploiting a procedure suggested long ago by Anderson and Rubin (1949). This method is based on
the simple idea that if β is specified, model (2.1) - (2.2) can be reduced to a simple linear regression
equation. More precisely, if we consider the hypothesis H0 : β = β0 in equation (2.1), we can
write:

y − Y β0 = X1Δ1 + X2Δ2 + ε (2.6)

where Δ1 = γ +Π1(β−β0), Δ2 = Π2(β−β0) and ε = u+V (β−β0). We can test H0 by testing
H

′
0 : Δ2 = 0 using the standard F -statistic for H

′
0 [denoted AR(β0)]. Under the assumptions

(2.1) - (2.5) and H0, equation (2.6) satisfies all the conditions of the linear regression model and we
have:

AR(β0) =
(y − Y β0)′[M(X1) − M(X)](y − Y β0)/k2

(y − Y β0)′M(X)(y − Y β0)/(T − k)
∼ F (k2, T − k) (2.7)

where for any full rank matrix B, M(B) = I − B(B′B)−1B′. The distributional result in (2.7)
holds irrespective of the rank of the matrix Π2, which means that tests based on AR(β0) are robust
to weak instruments.

5



The latter yields a confidence set with level 1 − α for β :

Cβ(α) = {β0 : AR(β0) ≤ Fα(k2, T − k)} (2.8)

where Fα(k2, T − k) is the 1 − α quantile of the F distribution with k2 and T − k degrees of
freedom. This confidence set is exact and does not require any identification assumption. When
G = 1, this set has an explicit form solution involving a quadratic inequation – i.e. Cβ(α) =
{β0 : aβ2

0 + bβ0 + c ≤ 0} where a, b and c are simple functions of the data and the critical value
Fα(k2, T − k) – and Cβ(α) is unbounded if F (Π2 = 0) < Fα, where F (Π2 = 0) is the F -test for
H0 : Π2 = 0 in equation (2.2); see Dufour and Jasiak (2001) and Zivot et al. (1998) for details.

In model (2.1) - (2.2), the “identifying” instruments X2 that are excluded from the structural
equation (2.1) may be quite uncertain. In particular, we may wonder what happens if instruments
are “left out” of the analysis. A way to look at this problem consists in considering a situation where
Y depends on a third set of instruments X3 which are not used within the inference:

Y = X1Π1 + X2Π2 + X3Π3 + V (2.9)

where X3 is a T ×k3 matrix of explanatory variables (not necessarily strictly exogenous). In partic-
ular, X3 may include any variable that could be viewed as independent of the structural disturbance
u in (2.1), and could be unobservable.7 We view this situation as important because, in practice, it
is quite rare that one can consider all the relevant instruments that could be used. In other words,
equation (2.2) is replaced by (2.9), but inference proceeds as if (2.2) were the actual equation.

Under the generating process (DGP) represented by (2.1) and (2.9), the variable y − Y β0 used
as the dependent variable by the AR procedure satisfies the equation:

y − Y β0 = X1Δ1 + X2Δ2 + X3Δ3 + ε (2.10)

where Δ1 = γ +Π1(β−β0), Δ2 = Π2(β−β0), Δ3 = Π3(β−β0) and ε = u+V (β−β0). Since
Δ2 = 0 and Δ3 = 0 under H0, it is easy to see that the null distribution of AR(β0) is F (k2, T −k)
[under the assumptions (2.1), (2.3) - (2.5) and (2.9)], even if X3 is excluded from the regression
as in (2.6). The finite-sample validity of the test based on AR(β0) is unaffected by the fact that
potentially relevant instruments are not taken into account. For this reason, we will say it is robust
to missing instruments (or instrument exclusion). Furthermore, the distribution of X3 is irrelevant
to the null distribution of AR(β0), so that X3 does not have to be strictly exogenous.

It is also interesting to observe that the distribution of V need not be otherwise restricted; in par-
ticular, the vectors V1, . . . , VT may not follow a Gaussian distribution and may be heteroskedastic.
Even more generally, we could assume that Y obeys a general nonlinear model of the form:

Y = g(X1, X2, X3, V, Π) (2.11)

7Clearly, this depends on the interpretation of the structural equation (2.1) and its parameters, which is itself affected
by both explicit and implicit conditionings. These features are, of course, context-specific. Note also that the rows X3i,
i = 1, . . . , T, of X3 may have heterogeneous distributions – in which case the observations Yi (the rows of Y ) would
typically also be heterogeneous) – and a stable relationship betwen Yi and X3i need not exist.
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where g(·) is a possibly unspecified nonlinear function, Π is an unknown parameter matrix and V
follows an arbitrary distribution. Since, under H0, both Δ2 and Δ3 in the regression (2.6) must
be zero, the null distribution of the AR statistic AR(β0) is still F (k2, T − k) : it is unaffected by
the distribution of explanatory endogenous variables. We call this feature robustness to endogenous
explanatory variable distribution. It is clear that this type of robustness includes robustness to
instrument exclusion as a special case.

By contrast, any procedure which exploits the special form of model (2.2), entailing the exclu-
sion of X3 from the variables that determine Y, will not typically enjoy the same robustness features.
For example, if relevant regressors X3 are missing, the covariance matrix Σ of Vt typically cannot
be consistently estimated, and any method that relies on this possibility will be affected. Clearly,
such problems can affect the procedures recently proposed by Wang and Zivot (1998), Kleibergen
(2002) and Moreira (2003a). In section 7.2, we present simulation evidence which clearly illustrates
these difficulties.

3. A generalized Anderson-Rubin procedure

The above observations suggest that AR-type procedures may easily be adapted to deal with a much
wider array of troublesome situations than the model for which it was originally proposed. Specif-
ically, let us consider again the structural equation (2.1) where the different symbols are defined as
in (2.1). However, we shall make the following modified assumptions:

0 ≤ rank(X1) = ν1 ≤ k1 , (3.1)

X̄2 is a T × k̄2 matrix such that 0 ≤ rank(X̄2) = ν2 ≤ k̄2 , (3.2)

u | X̄ ∼ N
[
0, σ2

u(X̄)IT

]
where X̄ = [X1, X̄2]. (3.3)

Here (3.1) allows X1 to have an arbitrary rank (compatible with its dimension), X̄2 is a general
“instrument matrix” whose rank may not be full, while (3.3) states that, conditional on X̄, the
disturbances in the structural equation (2.1) are i.i.d. normal. Of course, (3.1) - (3.3) cover the more
usual assumptions (2.3) - (2.5) as a special case. No additional assumption on the DGP of Y will be
needed at this stage. In particular, any model of the type (2.2), (2.9) or (2.11) is allowed. Further, the
matrix X̄2 may include any subset of columns from X1, X2 and X3, as well as any other instrument
(which may be weak). From the power viewpoint, the choice of X̄2 may (and should) be influenced
by whatever model we have in mind for Y, but we will see below that it is irrelevant to size control.
Note also that no rank assumption is made on Y ; in particular, the latter matrix may not have full
column rank because the variables in Y satisfy accounting identities.

Let
X1 = [X11, X12] , γ = (γ′

1, γ′
2)

′ , (3.4)

where X1i is a T×k1i matrix, γi is k1i×1 vector (i = 1, 2), with k11+k12 = k1 and 0 ≤ k11 ≤ k1.
By convention, we consider that a matrix is simply not present if its number of columns is equal to
zero. Consider now the problem of testing an hypothesis of the form:

H0(β0, γ10) : (β, γ1) = (β0, γ10) (3.5)
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where, by convention, this reduces to H0 : β = β0 , if k11 = 0. Under the null hypothesis, we have

y − Y β0 − X11γ10 = X12γ2 + u (3.6)

where γ2 is a free parameter. An extension of the AR procedure is then obtained by considering a
regression of the form

y − Y β0 − X11γ10 = X11Δ11 + X12Δ12 + X̄2Δ2 + u = X̄θ + u (3.7)

where X̄ ≡ [X1, X̄2] = [X11, X12, X̄2], and then testing the restrictions

H∗
0 (β0, γ10) : Δ11 = 0 and Δ2 = 0 (3.8)

under which (3.7) becomes equivalent to the null model (3.6). Again, if k11 = 0, X11 simply drops
from the left-hand side of (3.7), and H∗

0 (β0, γ10) reduces to H∗
0 (β0) : Δ2 = 0 .

A Fisher-type test may still be applied here, provided corrected degrees of freedom are used.
Let

ν2 = rank(X12) and ν = rank(X̄) = rank([X11, X12, X̄2]) , (3.9)

be the ranks of the regressor matrix respectively under the null hypothesis (3.6) and the alternative
(3.7). The Fisher statistic for testing H∗

0 (β0, γ10) is then:

AR(β0, γ10; X̄2) =
u(β0, γ10)′[M(X12) − M(X̄)]u(β0, γ10)/(ν − ν2)

u(β0, γ10)′M(X̄)u(β0, γ10)/(T − ν)
(3.10)

where u(β0, γ10) ≡ y − Y β0 − X11γ10. For any matrix B, M(B) = I − P (B), P (B) =
B(B′B)−B′ is the projection matrix on the space spanned by the columns of B and (B′B)− is
any generalized inverse of B′B [M(B) is invariant to the choice of generalized inverse]. Under
the assumptions (3.1) - (3.3) and the null hypothesis H∗

0 (β0, γ10), all the conditions of the classical
linear model are satisfied and we can conclude that:

AR(β0, γ10; X̄2) ∼ F (ν − ν2, T − ν) ; (3.11)

see Dufour (1982) and Scheffé (1959, sections 2.5-2.6). The only features of the distribution which
are affected by rank deficiencies are the degrees of freedom. Note that ν − ν2 ≤rank([X11, X̄2]),
where a strict inequality is possible. Further the distribution and the rank of the Y matrix are
irrelevant.

In view of (3.11), a confidence set with level 1 − α for the vector (β′, γ ′
1)

′ can be obtained by
inverting the statistic AR(β0, γ10; X̄2) :

C(β, γ1)
(α) = {(β′

0, γ′
10)

′ : AR(β0, γ10; X̄2) ≤ Fα(ν − ν2, T − ν)} . (3.12)

Using an argument similar to the one in Dufour and Taamouti (2005), this set can be rewritten in
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the form

C(β, γ1)(α) = {(β′
0, γ′

10)
′ : (β′

0, γ′
10)A(β′

0, γ ′
10)

′ + b′(β′
0, γ′

10)
′ + c ≤ 0} (3.13)

where A = [Y, X11]′H[Y, X11], b = −2[Y, X11]′Hy, c = y′Hy, and

H = M(X12) −
[
1 +

ν − ν2

T − ν
Fα(ν − ν2, T − ν)

]
M(X̄) . (3.14)

We call A the concentration matrix at level α (or the α-concentration matrix) associated with
(β′, γ ′

1)
′. The quadratic-linear form in (3.13) defines a quadric surface [see Shilov (1961, Chap-

ter 11) and Pettofrezzo and Marcoantonio (1970, Chapters 9-10)].
In the special case where (β′, γ′

1)
′ reduces to a single parameter [i.e., G = 1 and k11 = 0], the

set C(β, γ1)
(α) has a closed-form solution involving a quadratic inequality:

Cβ(α) = {β0 : aβ2
0 + bβ0 + c ≤ 0} (3.15)

where a, b and c are simple functions of the data and the critical value Fα(ν − ν2, T − ν). The
set Cβ(α) can be viewed as an extension of the quadratic forms described in Dufour and Jasiak
(2001) and Zivot et al. (1998); details on the different possible cases are, however, the same except
that the case where a = 0 may have a non-zero probability in problems where [Y, X11] does not
have full-column rank. When (β′, γ ′

1)
′ contains more than one parameter, we face the problem of

building confidence sets and tests for individual elements of (β′, γ′
1)

′, which we now tackle through
projection techniques.

4. The projection approach and simultaneous inference

The projection technique is a general approach that may be applied in different contexts. Given a
confidence set Cθ(α) with level 1−α for the parameter vector θ, this method enables one to deduce
confidence sets for general transformations g in R

m of this vector. For example, we may have θ = β
or θ = (β′, γ′

1)
′. Since x ∈ E ⇒ g(x) ∈ g(E) for any set E, we have

P[θ ∈ Cθ(α)] ≥ 1 − α ⇒ P
[
g(θ) ∈ g [Cθ(α)]

]
≥ 1 − α (4.1)

where g [Cθ(α)] = {x ∈ R
m : ∃ θ ∈ Cθ(α), g(θ) = x}. Hence g [Cθ(α)] is a conservative

confidence set for g(θ) with level 1 − α.
Even if g(θ) is scalar, the projection-based confidence set is not necessarily an interval. How-

ever, it is easy to see that
P[gL(α) ≤ g(θ) ≤ gU (α)] � 1 − α (4.2)

where gL(α) = inf{g(θ0), θ0 ∈ Cθ(α)} and gU (α) = sup{g(θ0), θ0 ∈ Cθ(α)}; see Du-
four (1997), Abdelkhalek and Dufour (1998) or Dufour and Jasiak (2001). Thus IU (α) =[
gL(α), gU (α)

]
\{−∞, +∞} is a confidence interval with level 1 − α for g(θ), where it is as-

sumed that −∞ and +∞ are not admissible. This interval is not bounded when gL(α) or gU (α) is
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infinite.
It is worth noting that we obtain in this way simultaneous confidence sets for any number of

transformations of θ: g1(θ), g2(θ), . . . , gn(θ). The set Cg1(θ)(α) × Cg2(θ)(α) × · · · × Cgn(θ)(α)
where Cgi(θ)(α) is the projection-based confidence set for gi(θ), i = 1, . . . , n, is a simultaneous

confidence set for the vector
(
g1(θ), g2(θ), . . . , gn(θ)

)′
with level greater than or equal to 1 − α.

More generally, if {ga(θ) : a ∈ A} is a set of functions of θ,where A is some index set, then

P
[
ga(θ) ∈ ga [Cθ(α)] for all a ∈ A

]
≥ 1 − α . (4.3)

If these confidence intervals are used to test different hypotheses, an unlimited number of hypotheses
can be tested without losing control of then overall level. The confidence sets obtained in this way
are simultaneous in the sense of Scheffé. For further discussion of simultaneous inference, the
reader may consult Miller (1981), Savin (1984), and Dufour (1989).

If the aim is to test H0 : g(θ) = 0, we can easily deduce from Cθ(α) a conservative test. The
latter consists in rejecting H0 when all the vectors θ0 that satisfy H0 are rejected by the AR test, or
equivalently when the minimum of AR(θ0) subject to the constraint (s.c.) g(θ) = 0 is larger than
Fα(k2, T − k), i.e.when min{AR(θ) : g(θ) = 0} ≥ Fα(k2, T − k).

5. Projection-based confidence sets for scalar linear transformations

We will now consider the problem of building a projection-based confidence set for a scalar linear
transformation g(θ) = w′θ, where w is a non-zero p × 1 vector, from a confidence set defined by a
general quadric form:

Cθ = {θ0 : θ′0Aθ0 + b′θ0 + c ≤ 0} (5.1)

where A is a symmetric p × p matrix (possibly singular), b is a p × 1 vector, and c is a real scalar.
By definition, the associated projection-based confidence set for w′θ is:

Cw′θ ≡ g[Cθ] = {δ0 : δ0 = w′θ0 where θ′0Aθ0 + b′θ0 + c ≤ 0}. (5.2)

Since w �= 0, we can assume without loss of generality that the first component of w (denoted w1)
is different from zero. It will be convenient to consider a nonsingular transformation of θ :

δ =
[

δ1

δ2

]
=

[
w′θ
R2θ

]
= Rθ , R =

[
w′

R′
2

]
=

(
w1 w′

2

0 Ip−1

)
, (5.3)

where w′ = [w1, w′
2] and R2 = [0, Ip−1] is a (p − 1) × p matrix. If θ = (θ1, θ2, . . . , θp)′, it is

clear from this notation that δ2 = (θ2, . . . , θp)′. We study the problem of building a confidence set
for δ1.

The quadric form which defines Cθ in (5.1) may be written:

θ′Aθ + b′θ + c = δ′Āδ + b̄′δ + c ≡ Q̄(δ) (5.4)
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where Ā = (R−1)′AR−1, b̄ = (R−1)′b, so that

Cw′θ = Cδ1 = {δ1 : δ = (δ1, δ′2)
′ satisfies Q̄(δ) ≤ 0} . (5.5)

On partitioning Ā and b̄ conformably with δ = (δ1, δ′2)′, we have:

Ā =
(

ā11 Ā′
21

Ā21 Ā22

)
, b̄ =

(
b̄1

b̄2

)
, (5.6)

where Ā22 has dimension (p−1)× (p−1) and, by convention, we set Ā = [ā11] and b = [b̄1] when
p = 1. It is easy to see that: ā11 = a11/w

2
1 , Ā21 = [w1A21 − a11w2]/w2

1,

Ā22 =
1
w2

1

[a11w2w
′
2 − w1A21w

′
2 − w1w2A

′
21 + w2

1A22] , b̄ =
1
w1

(
b1

−b1w2 + w1b2

)
.

We can then write:

Q̄(δ) = ā11δ
2
1 + b̄1δ1 + c + δ′2Ā22δ2 + [2Ā21δ1 + b̄2]′δ2 (5.7)

where, by convention, the two last terms of (5.7) simply disappear when p = 1. For p ≥ 1, let
r2 = rank(Ā22), where 0 ≤ r2 ≤ p − 1, and consider the spectral decomposition:

Ā22 = P2D2P
′
2 , D2 = diag(d1, . . . , dp−1) (5.8)

where d1, . . . , dp−1 are the eigenvalues of Ā22 and P2 is an orthogonal matrix. Without loss of
generality, we can assume that

di �= 0, if 1 ≤ i ≤ r2 ,
= 0, if i > r2 .

(5.9)

Let us also define (whenever the objects considered exist)

δ̃2 = P ′
2δ2 , Ã21 = P ′

2Ā21 , b̃2 = P ′
2b̄2 , D2∗ = diag(d1, . . . , dr2) , (5.10)

and denote by δ̃2∗, Ã21∗ and b̃2∗ the vectors obtained by taking the first r2 components of δ̃2, Ã21

and b̃2 respectively:

δ̃2∗ = P ′
21δ2 , Ã21∗ = P ′

21Ā21 , b̃2∗ = P ′
21b̄2 , P2 = [P21, P22] (5.11)

where P21 and P22 have dimensions (p− 1)× r2 and (p− 1)× (p− 1− r2) respectively. The form
of the set Cw′θ = Cδ1 is given by the following theorem.

Theorem 5.1 PROJECTION-BASED CONFIDENCE SETS WITH A POSSIBLY SINGULAR CONCEN-
TRATION MATRIX. Under the assumptions and notations (5.4) - (5.11), the set Cw′θ takes one of
the three following forms:
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(a) if p > 1 and Ā22 is positive semidefinite with Ā22 �= 0, then

Cw′θ = {δ1 : ã1δ
2
1 + b̃1δ1 + c̃1 ≤ 0} ∪ S1 (5.12)

where ã1 = ā11 − Ā′
21Ā

+
22Ā21 , b̃1 = b̄1 − Ā′

21Ā
+
22b̄2 , c̃1 = c − 1

4 b̄′2Ā
+
22b̄2 , Ā+

22 is the Moore-
Penrose inverse of Ā22 , and

S1 =
{

∅ , if rank(Ā22) = p − 1 ,
{δ1 : P ′

22(2Ā21δ1 + b̄2) �= 0} , if 1 ≤ rank(Ā22) < p − 1 ;

(b) if p = 1 or Ā22 = 0 , then

Cw′θ = {δ1 : ā11δ
2
1 + b̄1δ1 + c ≤ 0} ∪ S2 (5.13)

where

S2 =
{

∅ , if p = 1 ,
{δ1 : 2Ā21δ1 + b̄2 �= 0} , if p > 1 and Ā22 = 0 ;

(c) if p > 1 and Ā22 is not positive semidefinite, then Cw′θ = R .

The proof of this theorem is given in the Appendix. In all the cases covered by the latter theorem
the joint confidence set Cθ is unbounded if A is singular. However, we can see from Theorem 5.1
that confidence intervals for some parameters (or linear transformations of θ) can be bounded. This
depends on the values of the coefficients of the second-order polynomials in (5.12) and (5.13).
Specifically, it is easy to see that the quadratic set C̃w′θ = {δ1 : ã1δ

2
1 + b̃1δ1 + c̃1 ≤ 0} in (5.12) can

take several basic forms; for convenience, the latter are summarized in Table 1. Of course, a similar
result holds for the quadratic set in (5.13).

The results in this paper generalize those provided in Dufour and Taamouti (2005) by allowing A
to have an arbitrary rank. In (3.13), A is almost surely singular when X11 does not have full column
rank or when identities hold between the variables in Y. Other cases are, of course, possible. When
A is positive definite, the confidence interval in (5.12) reduces to

Cw′θ =
[
w′θ̃ −

√
d (w′A−1w) , w′θ̃ +

√
d (w′A−1w)

]
(5.14)

where θ̃ = −1
2A−1b, and d = 1

4b′A−1b − c ≥ 0 (if d < 0, Cw′θ is empty). If, furthermore,
w = ei = (δ1i, δ2i, . . . , δpi)′, with δji = 1 if j = i and δji = 0 otherwise, the set Cw′θ is a
confidence interval for the component θi and is given by:

Cθi =
[

θ̃i −
√

d (A−1)ii , θ̃i +
√

d (A−1)ii
]

(5.15)

where θ̃i = −(A−1)i.b/2 is the i-th element of θ̃ = −1
2

′
A−1b, (A−1)i. is the i-th row of A−1,

(A−1)ii is the i-th element of the diagonal of A−1, and (A−1)ii > 0 .
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Table 1. Alternative forms of confidence set C̃w′θ = {δ1 : ã1δ
2
1 + b̃1δ1 + c̃1 ≤ 0}.

Δ̃1 ≡ b̃2
1 − 4ã1c̃1

C̃w′θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−b̃1−

√
Δ̃1

2ã1
, −b̃1+

√
Δ̃1

2ã1

]
, if ã1 > 0 and Δ̃1 ≥ 0 ,]

−∞ , −b̃1+
√

Δ̃1

2ã1

]
∪

[
−b̃1−

√
Δ̃1

2ã1
, ∞

[
, if ã1 < 0 and Δ̃1 ≥ 0 ,]

−∞ , − c̃1/b̃1

]
, if ã1 = 0 and b̃1 > 0 ,[

− c̃1/b̃1 , ∞
[
, if ã1 = 0 and b̃1 < 0 ,

R , if (ã1 < 0 and Δ̃1 < 0)
or (ã1 = b̃1 = 0 and c̃1 ≤ 0) ,

∅ , if (ã1 > 0 and Δ̃1 < 0)
or (ã1 = b̃1 = 0 and c̃1 > 0) .

6. Scheffé confidence intervals, k-class estimators, and projections

It is interesting to notice the relationship of the above results with Scheffé-type confidence sets in
the context of model (2.1) - (2.2). The confidence set for β is based on the F -test of H0 : Δ2 =
Π2(β − β0) = 0 in the regression equation:

y − Y β0 = X1Δ1 + X2Δ2 + ε .

Following Scheffé (1959), this F -test is equivalent to the test which does not reject H0 when all
hypotheses of the form H0(a) : a′Δ2 = 0 are not rejected by the criterion |t(a)| > S(α), for all
k2 × 1 non-zero vectors a, where t(a) is the t-statistic for H0(a) and S(α) =

√
k2 Fα(k2, T − k);

see also Savin (1984). Since a′Δ2 = w′(β − β0) where w = Π ′
2a, this entails that no hypothesis

of the form H ′
0(w) : w′β = w′

0β, is rejected. The projection-based confidence set for w′β can be
viewed as a Scheffé-type simultaneous confidence interval for w′β.

In the case where A is nonsingular, has exactly one negative eigenvalue, w′A−1w < 0, and
d < 0, the confidence set for w′β reduces to

Cw′β =
]
−∞ , w′β̃ −

√
d (w′A−1w)

]
∪

[
w′β̃ +

√
d (w′A−1w) , +∞

[
. (6.1)

Note here that Cw′β can remain informative, even if it is unbounded. In particular, if we want to
test H0 : w′β = r and consider as a decision rule which rejects H0 when r /∈ Cw′β, H0 will be
rejected for all values of r in the interval

(
w′β̃ −

√
d(w′A−1w) , w′β̃ +

√
d(w′A−1w)

)
. In this

case, gL(α) = −∞ and gU (α) = ∞, so that IU (α) = R an uninformative set, while in fact the true
projection-based confidence set is a proper subset of R.

When the eigenvalues of the matrix A are positive and the projection-based confidence set for
w′β is bounded, it is interesting to note that the form of this confidence set [see (5.14)] is similar
to the standard form: [β̂ − σ̂z(α), β̂ + σ̂z(α)]. Since β = w′β, the corresponding estimator of
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β is β̃ = −(1/2)A−1b .The estimated variance of the estimator should be a scalar (say σ̂2) times
the matrix A−1, σ̂2A−1, and since the confidence interval has level greater than or equal to 1 − α,√

d/σ̂ should correspond to a quantile of an order greater than or equal to 1 − α of the statistic∣∣(w′β̃ − w′β)/[σ̂2(w′A−1w)]1/2
∣∣. Replacing A and b by their expressions, the estimator β̃ may be

written:
β̃ = (Y ′HY )−1Y ′Hy .

β̃ may be interpreted as an instrumental variables estimator. Indeed, on multiplying (2.1) by (HY )′,
we get

Y ′Hy = Y ′HY β + Y ′Hu ,

which yields the IV estimator

β̃IV = (Y ′HY )−1Y ′Hy = β̃ .

If rank(Π2) = G and the following usual assumptions hold,
(

X ′X

T
,

X ′u

T
,

X ′V

T

)
p−→

T→∞
(QXX , 0, 0) ,

X ′u√
T

L−→
T→∞

N
[
0, σ2

uQXX

]
, (6.2)

then HY is asymptotically uncorrelated with the disturbances u and

√
T

(
β̃ − β

) L−→
T→∞

N
[
0, σ2

u plim
T→∞

( 1
T

A
)−1]

(6.3)

where plim
T→∞

1
T A = Π ′

2

[
QX2X2 − QX2X1Q

−1
X1X1

Q′
X2X1

]
Π2 and QXiXj = plim

T→∞
1
T X ′

iXj .

On developing the expression of β̃, we may also write:

β̃ = {Y ′[M(X1) − (1 + fα)M(X)]Y }−1Y ′[M(X1) − (1 + fα)M(X)]y. (6.4)

This is the expression of the well-known Theil’s k-class estimator with k = 1 + fα, and since
fα tends to 0 when T becomes large, β̃ is asymptotically equivalent to the two stage least squares
estimator [see Davidson and MacKinnon (1993, page 649)]. The later may be written:

β̂2SLS = {Y ′[M(X1) − M(X)]Y }−1Y ′[M(X1) − M(X)]y.

Hence, when Π2 is of full rank and the eigenvalues of A are positive, the projection-based confi-
dence set for w′β may be interpreted as a Wald-type confidence interval based on the statistic (which
is asymptotically pivotal):

t̃(w′β) = (w′β̃ − w′β)/
√

σ̂2
u(w′A−1w) .
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7. Simulation study

In this section, we study by Monte Carlo methods the properties of AR-type and projection-
based confidence procedures. We focus on two main issues. First, we evaluate how conservative
projection-based confidence sets are and compare the confidence sets based on different test statis-
tics. The tests considered are the exact Anderson-Rubin test based on (2.7), the asymptotic version
of this test using the χ2(k2)/k2 distribution, as well as the LR and LM tests proposed by Wang and
Zivot (1998). Second, we study the robustness to instrument exclusion on the finite sample behavior
of the statistics considered above and two other statistics proposed recently in the literature, namely,
Kleibergen’s (2002) K-test and the conditional LR test of Moreira (2003a).

7.1. Performance of projection-based confidence sets

To study the properties of projection-based confidence sets, we consider the following data gener-
ating process:

y = Y1β1 + Y2β2 + X1γ + u , (7.1)

(Y1, Y2) = X1Π1 + X2Π2 + (V1, V2) , (7.2)

(ut, V1t, V2t)′
i.i.d.∼ N(0, Σ) , Σ =

⎛
⎝ 1 .8 .8

.8 1 .3

.8 .3 1

⎞
⎠ , (7.3)

where X1 is a T ×1 column of ones and X2 is a T ×k2 (fixed) matrix of instruments. The elements
of X2 were generated as i.i.d. N(1, 1) random variables, but they are kept fixed over the simulation.
The parameters values are set at β1 = 1

2 , β2 = 1 , γ = 2 , and Π1 = (0.1, 0.5) . The correlation
coefficient r between u and Vi (i = 1, 2) is set equal to 0.8, the variables Y1 and Y2 are endogenous
and the instrumental variables X2 are necessary. The matrix Π2 is such that Π2 = C/

√
T . We

consider three different sample sizes T = 50, 100, 200. The number of instruments (k2) varies
from 2 to 40. All simulations are based on 10000 replications.

Table 2 presents results on the performance of Wald-type 2SLS-based confidence sets, while
the three following tables report results on the other procedures for three basic cases: (1) in Table
3, C = 0 (complete unidentification); (2) in Table 4, the components cij of the matrix C satisfy
1 < cij < 5 (weak identification); (3) in Table 5, we have 10 ≤ cij ≤ 20 (strong identification).
The nominal level of the confidence procedures is 95%.

Let us consider first the behavior of the Wald procedure (Table 2). As expected from the results
in Dufour (1997), its real coverage rate may reach 0 when the instruments are very poor. The only
case where it behaves well is when identification holds and the number of instruments is small com-
pared to the sample size. This shows how crucial is the need for alternative valid pivotal statistics.

For the exact AR statistic, no size distortion, even very small, is observed. The main observation
is that the coverage rate of the projection-based confidence sets for β1 decreases as k2 increases and
gets closer to the exact confidence level 1 − α of the confidence set for β.8 Thus the projection-

8Recall that theoretically, this rate is always greater than or equal to the confidence level of the set from which the
projection is done.
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Table 2. Empirical coverage rate of 2SLS-based Wald confidence sets

T k Cij = 0 1 ≤ Cij ≤ 5 10 ≤ Cij ≤ 20

2 56.13 97.40 94.46

3 25.10 94.05 93.71

4 9.19 89.06 93.68

5 3.82 84.49 93.65

50 10 0.03 78.28 93.33

15 0.00 78.99 93.16

20 0.00 77.14 92.88

30 0.00 68.47 93.35

40 0.00 67.84 92.30

2 55.22 97.68 95.07

3 24.53 94.33 94.43

4 10.52 89.45 95.16

5 3.81 87.16 94.16

100 10 0.03 83.88 94.44

15 0.00 81.40 94.12

20 0.00 72.29 94.19

30 0.00 61.47 93.20

40 0.00 45.48 93.66

2 55.53 97.85 95.32

3 24.55 94.68 94.80

4 10.32 90.33 94.95

5 4.10 89.19 94.64

200 10 0.04 83.99 94.75

15 0.00 81.28 94.14

20 0.00 71.71 94.32

30 0.00 62.26 93.89

40 0.00 54.99 93.76
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Table 6. Comparison between AR and LR projection-based confidence sets
when they are bounded

1 ≤ Cij ≤ 5 10 ≤ Cij ≤ 20

T k2 AR shorter CI mean length AR shorter CI mean length

than LR (%) AR LR than LR (%) AR LR

2 0.00 9.80 13.28 0.00 0.53 0.51

3 38.65 25.85 15.59 45.37 0.43 0.45

4 59.68 20.89 31.69 68.54 0.59 0.65

5 71.75 82.79 62.85 80.47 0.49 0.57

50 10 91.32 17.96 23.62 95.65 0.44 0.58

15 96.24 6.83 11.22 97.39 0.35 0.49

20 94.14 16.07 17.61 97.59 0.35 0.51

30 87.98 7.30 14.94 93.66 0.35 0.51

40 53.66 13.66 11.54 67.12 0.49 0.59

2 0.00 13.05 12.88 0.00 0.62 0.61

3 44.21 16.37 15.93 59.74 0.49 0.52

4 69.88 17.00 23.77 82.57 0.58 0.66

5 85.97 16.48 16.16 92.01 0.43 0.50

100 10 99.20 6.04 14.87 99.65 0.36 0.48

15 99.79 4.71 10.85 99.92 0.28 0.40

20 100.00 4.78 23.20 99.98 0.33 0.50

30 99.96 3.85 31.25 100.00 0.28 0.46

40 100.00 8.67 17.75 100.00 0.27 0.47

2 0.00 13.59 43.78 0.00 0.53 0.52

3 56.82 33.94 18.59 70.54 0.49 0.52

4 88.33 41.99 259.61 91.35 0.55 0.62

5 95.67 21.27 15.42 96.71 0.40 0.47

200 10 99.86 7.82 14.02 99.93 0.32 0.43

15 100.00 7.90 14.17 100.00 0.28 0.40

20 100.00 5.30 24.65 100.00 0.23 0.35

30 100.00 2.14 11.72 100.00 0.24 0.41

40 100.00 1.61 20.78 100.00 0.24 0.43
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Figure 1. Power of tests induced by projection-based confidence sets
H0 : β1 = 0.5

25



based confidence sets become less conservative as the number of relevant instruments increases.
This suggests using of a number of relevant instruments as large as possible. But on the other hand,
as noted by Dufour and Taamouti (2001b) and Kleibergen (2002), a large number of instruments
will induce loss of power for the Anderson-Rubin test for β.

The proportions of unbounded confidence sets and confidence sets equal to the real line are
nearly zero when identification holds (Table 5). When we approach nonidentification (tables 4 and
3), these proportions become large but decrease as the number of instruments increases. This is
predictable according to the results in Dufour (1997). It is natural when the components of Π2

approach 0 to get an unbounded confidence set, for β is not identified in this case and the set of
possible values is large.

The ARS test behaves in the same way as AR, except when the sample size is small with respect
to the number of instruments. In this case we observe a size distortion, in the sense that the empirical
coverage rate for β becomes smaller than the nominal level (95%).

For the LR and LM tests, the main observation is that they produce confidence sets much more
conservative than those based on AR or ARS, and unlike the AR test, the conservative character of
the resulting confidence sets increases with the number of instruments k2. The coverage rate of the
confidence sets based on the LM and LR statistics are always greater than 98.5% and approaches
rapidly 100% as k2 increases. This is predictable since the LM and LR based confidence sets are
doubly conservative, by majorization of their distribution and by projection. Even in the strongly
identified case, the LR test exhibits a downward size distortion.

In Table 6, we report comparisons between alternative confidence sets from the viewpoint of
their length (in identified cases, conditional on getting a bounded interval). We see from these results
that AR-based confidence sets tend to be shorter than confidence sets based on the LR statistic. This
may be due that the latter procedure is based on a conservative critical value even when the full β
vector is tested.

As we may expect the high coverage rate of the LM and LR-based confidence sets induces
power loss for the test that rejects H0 : β1 = β0

1 when the projection-based confidence set for
β1 excludes β0

1. This is shown in Table 7 and Figure 1 where we present estimates of P[rejecting
H0 : β1 = 0.5 |β1 = βi

1] with a decision rule consisting of rejecting H0 if 0.5 is excluded from the
confidence set for β1. The theoretical size is 95%. The value of the alternative varies from −0.5 to
1.5 with increments of 0.1.We see from these results that, for k2 = 2, the three tests have the same
power. But, as k2 increases, the LM and LR based tests are undersized and exhibit less power.

7.2. The effect of instrument exclusion

In this subsection, we present a small study on the finite sample behavior of different tests aimed at
being robust to weak instruments when some of the relevant instruments are omitted. We consider
the statistics AR, ARS, LM, and LR described above, to which we add Kleibergen’s (2002) K-test
and the two versions of the conditional LR test (LR1 and LR2) of Moreira (2003a). The reduced
form equation (7.2) is then replaced by

(Y1, Y2) = X2Π2 + X3δ + (V1, V2),
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where X2 is a T × k2 matrix of included instruments and X3 is a T × 1 omitted instrument vector
which is not taken into account when computing the different statistics. We took X3 = M(X2)X̃3,
where the elements of X2 and X̃3 were generated as i.i.d. N(0, 1) variables, so that X3 is orthog-
onal to X2. Two cases were considered: (a) both X2 and X3 are kept fixed over the simulation
experiment; (b) X2 and X3 are regenerated at each replication (random missing instruments). The
parameters values are set at β1 = 1

2 , β2 = 1, δ = λ(1, 1) and λ takes the values 0, 1 or 10. The
number of replications is N = 1000 and the conditional LR critical values are computed using the
same number of replications. The matrix C is set equal to: C = ρΠ where ρ takes the values 0.01
or 1 and Π is obtained from the identity matrix by keeping the first k2 lines and the first G columns.
k2 is the number of instruments.

For each statistic, we computed the empirical rejection probability of the null hypothesis H0 :
β = β0 when β0 is the true value of the parameter. The nominal level of the tests is 5%. Six basic
cases are considered. In cases (a) and (b), we have δ = 0, which means that there is no omitted
instrument: this is a benchmark for comparison with other cases. In cases (c) and (d), we have
δ = 1, which means that there is an omitted instrument. In cases (e) and (f), we have δ = 10, which
means that the omitted instrument is a very relevant one. For each value of δ, we consider a design
with weak identification (ρ = 0.01) and a design where identification is strong (ρ = 1). The results
are presented in table 8 and 9.

The main observation from these results is that the sizes of the tests K, LR1 and LR2 can be
seriously affected by the omission of a relevant instrument, with empirical rejection frequencies as
high as 97% (rather than 5%). The more relevant the omitted instrument is, the larger the distortion.
The conditional LR (LR1 and LR2) tests are clearly more robust than the K test, but sizeable size
distortions are also observable. The distortion persists even if the included instruments are relevant.
On the other hand, the AR and ARS tests are completely robust to instrument exclusion (as expected
from the theory). The slight distortion in ARS size is due to the fact that the chi-square critical value
is used rather than the Fisher critical value.

8. Empirical illustrations

In this section we illustrate the statistical inference methods discussed in the previous sections
through three empirical applications related to important issues in the macroeconomic and labor eco-
nomics literature. The first one concerns the relation between growth and trade examined through
cross-country data on a large sample of countries, the second one considers the widely studied prob-
lem of returns to education, and the third application is about the returns to scale and externality
spillovers in U.S. industry.

8.1. Trade and growth

A large number of cross-country studies in the macroeconomics literature have looked at the rela-
tionship between standards of living and openness. The recent literature includes Irwin and Tervio
(2002), Frankel and Romer (1996, 1999), Harrison (1996), Mankiw, Romer and Weil (1992) and
the survey of Rodrik (1995). Despite the great effort that has been devoted to studying this issue,
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Table 8. Instrument exclusion and the size of tests robust to weak instruments.
Nominal size = 0.05. Results are given in percentages.

AR ARS K LM LR LR1 LR2 AR ARS K LM LR LR1 LR2

k2 (a) δ = 0 and ρ = 0.01 (b) δ = 0 and ρ = 1

2 5.4 6.2 6.2 5.4 5.9 5.9 6.2 4.8 5.0 5.0 4.6 5.0 5.0 5.0
3 4.4 4.8 5.0 3.9 3.9 5.1 5.1 5.0 6.1 6.2 2.0 2.9 6.3 6.3
4 5.1 6.0 6.6 4.5 4.2 6.0 6.1 5.4 6.0 4.9 0.6 0.8 5.1 5.4
5 3.2 3.6 4.7 2.9 1.8 3.7 3.7 5.0 5.7 5.6 0.7 0.8 5.4 5.7
10 4.9 6.5 7.8 3.9 1.7 6.3 6.9 6.6 7.7 5.5 0.0 0.0 4.7 5.7
20 3.9 7.6 7.6 2.1 0.4 7.7 8.0 4.9 8.7 5.3 0.0 0.0 5.4 5.7
40 5.6 11.8 17.7 1.0 0.4 15.9 15.1 4.5 10.5 7.7 0.0 0.0 7.1 8.2

(c) δ = 1 and ρ = 0.01 (d) δ = 1 and ρ = 1

2 5.0 5.4 5.4 4.8 5.4 5.4 5.4 5.4 5.8 5.8 5.4 5.7 5.7 5.8
3 5.7 6.3 8.0 5.4 6.3 6.4 7.0 4.7 5.3 5.0 1.9 2.3 4.7 4.9
4 6.2 7.3 11.6 5.7 7.1 7.2 7.4 5.5 6.5 4.9 0.8 1.3 4.8 5.0
5 5.0 5.8 14.5 3.8 5.7 6.0 6.1 5.1 6.0 4.4 0.1 0.3 4.3 4.3
10 5.1 6.1 36.5 4.1 6.3 6.6 6.1 6.0 8.4 6.3 0.0 0.0 6.5 6.9
20 3.7 7.2 57.6 2.1 9.8 10.7 7.5 5.1 8.3 6.3 0.0 0.0 6.3 6.8
40 5.9 13.3 80.2 1.0 31.8 35.5 14.4 4.9 10.8 11.2 0.0 0.0 12.0 12.6

(e) δ = 10 and ρ = 0.01 (f) δ = 10 and ρ = 1

2 5.2 5.6 5.6 5.2 5.6 5.6 5.6 4.4 4.9 4.9 4.1 4.8 4.8 4.9
3 3.8 4.3 10.0 3.7 4.2 4.4 4.5 4.8 5.5 4.9 2.3 4.6 5.2 5.4
4 4.8 5.5 17.2 4.1 5.1 5.8 5.9 5.4 6.2 6.6 1.0 5.4 6.5 6.6
5 6.2 6.8 28.7 5.3 6.8 7.2 7.4 5.2 6.1 7.0 0.4 5.5 6.3 6.4
10 5.2 7.6 72.4 4.2 7.9 8.4 7.7 3.6 5.1 11.5 0.0 4.4 5.5 5.3
20 6.8 10.1 95.1 3.6 13.1 14.0 10.1 5.4 8.2 42.9 0.0 10.5 12.9 9.2
40 6.0 15.7 97.7 1.2 38.7 41.9 16.7 5.8 13.2 69.6 0.0 33.5 36.9 14.5
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Table 9. Instrument exclusion and the size of tests robust to weak instruments
Random missing instruments

Nominal size = 0.05. Results are given in percentages.

AR ARS K LM LR LR1 LR2 AR ARS K LM LR LR1 LR2

k2 (a) δ = 0 and ρ = 0.01 (b) δ = 0 and ρ = 1

2 5.0 5.2 5.2 4.8 5.1 5.1 5.2 5.5 5.9 5.9 5.0 5.8 5.8 5.9
3 3.8 4.6 5.6 3.5 3.6 4.5 4.5 5.0 6.2 5.6 2.0 1.7 5.8 5.8
4 5.4 5.7 5.7 4.9 4.1 5.4 5.6 4.8 5.6 5.5 1.3 1.1 5.6 5.5
5 6.6 7.7 5.9 5.6 3.9 7.4 7.7 4.3 5.0 4.6 0.4 0.4 4.9 5.1
10 4.3 5.6 6.0 4.1 1.7 6.0 6.2 4.2 5.6 4.6 0.0 0.0 4.2 4.3
20 5.5 9.0 8.4 3.0 0.5 9.1 9.2 4.9 7.7 4.8 0.0 0.0 5.3 5.5
40 4.8 12.4 16.5 0.9 0.0 14.6 14.9 4.1 11.0 5.8 0.0 0.0 6.3 6.2

(c) δ = 1 and ρ = 0.01 (d) δ = 1 and ρ = 1

2 4.9 5.5 5.5 4.9 5.3 5.3 5.5 4.4 4.8 4.8 4.2 4.8 4.8 4.8
3 5.0 5.5 7.4 4.6 5.3 5.7 5.7 4.4 4.9 5.1 1.8 2.5 5.0 5.0
4 5.0 5.7 11.5 4.5 5.7 5.8 5.9 5.2 6.3 4.7 0.6 0.8 4.6 4.7
5 5.4 6.3 15.7 4.7 5.9 6.6 6.7 5.1 6.2 5.2 0.4 0.8 5.7 6.0
10 4.9 7.2 34.5 3.8 7.7 8.0 7.8 4.8 6.7 6.4 0.1 0.1 6.6 6.7
20 4.7 7.2 56.9 2.9 9.3 10.7 7.8 4.8 7.7 6.6 0.0 0.0 6.7 7.0
40 4.2 11.8 77.3 1.0 29.8 33.5 12.9 5.3 12.5 11.9 0.0 0.0 14.4 15.6

(e) δ = 10 and ρ = 0.01 (f) δ = 10 and ρ = 1

2 4.4 4.7 4.7 4.2 4.5 4.5 4.7 5.0 5.4 5.4 4.9 5.2 5.2 5.4
3 4.3 4.4 9.6 4.0 4.4 4.6 4.8 4.8 5.6 5.0 1.8 4.6 6.1 6.3
4 3.3 3.9 15.9 3.1 3.8 3.9 4.0 5.0 6.0 6.6 0.8 5.2 6.1 6.4
5 5.3 5.7 28.9 4.6 5.6 5.8 5.9 4.4 4.9 6.1 0.4 4.4 5.2 5.5
10 5.2 7.0 74.7 4.2 7.5 8.0 7.6 5.0 6.7 15.0 0.1 6.0 7.8 7.4
20 5.1 7.9 94.6 2.6 11.7 12.5 8.9 4.5 7.1 39.8 0.0 8.9 10.7 7.7
40 5.0 10.8 97.9 0.7 33.5 36.2 12.8 5.2 12.4 73.6 0.0 30.5 34.7 14.1
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there is little persuasive evidence concerning the effect of openness on income even if many studies
conclude that openness has been conductive to higher growth.

Estimating the impact of openness on income through a cross-country regression raises two
basic difficulties. The first one consists in finding an appropriate indicator of openness. The most
commonly used one is the trade share (ratio of imports or exports to GDP). The second problem is
the endogeneity of this indicator. Frankel and Romer (1999) argue that the trade share should be
viewed as an endogenous variable, and similarly for the other indicators such as trade policies.

As a solution to this problem, Frankel and Romer (1999) proposed to use IV methods to estimate
the income-trade relationship. The equation studied is given by

yi = a + bTi + c1Ni + c2Ai + ui (8.1)

where yi is log income per person in country i, Ti the trade share (measured as the ratio of imports
and exports to GDP), Ni the logarithm of population, and Ai the logarithm of country area. The
trade share Ti can be viewed as endogenous, and to take this into account, the authors used an
instrument constructed on the basis of geographic characteristics [see Frankel and Romer (1999,
equation (6), page 383)].

The data used include for each country the trade share in 1985, the area and population (1985),
and per capita income (1985).9 The authors focus on two samples. The first is the full 150 countries
covered by the Penn World Table, and the second sample is the 98-country sample considered by
Mankiw et al. (1992). In this paper, we consider the sample of 150 countries. For this sample, it is
not clear how “weak” the instruments are. The F -statistic of the first stage regression

Ti = α + βZi + γ1Ni + γ2Ai + εi (8.2)

is about 13; see Frankel and Romer (1999, Table 2, page 385).
To draw inference on the coefficients of the structural equation (8.1), we can use the Anderson-

Rubin method in two ways. First if we are interested only in the coefficient of trade share, we can
invert the AR test for H0 : b = b0 to obtain a quadratic confidence set for b. On the other hand, if
we wish to build confidence sets for the other parameters of (8.1), we must first use the AR test to
obtain a joint confidence set for b and each one of the other parameters and then use the projection
approach to obtain confidence sets for each one of these parameters.10 As assumed in the literature,
the observations are considered to be homoskedastic and uncorrelated but not necessarily normal,
we use the asymptotic AR test with a χ2 distribution. The results are as follows.

The 95% quadratic confidence set for the coefficient of trade share b is given by:

Cb(α) = {b : 0.963b2 − 4.754b + 1.274 ≤ 0} = [0.284 , 4.652] . (8.3)

The p-value of the Anderson-Rubin test for H0 : b = 0 is 0.0244, this means a significant positive
impact of trade on income at the usual 5% level. The IV estimation of this coefficient is 1.97
with a standard error of 0.99, yielding the confidence interval

[
b̂IV − 2σ̂b̂IV

, b̂IV + 2σ̂b̂IV

]
=

9The data set and its sources are given in the appendix of Frankel and Romer (1999).
10We can not use the AR test to build directly confidence sets for the coefficients of the exogenous variables.
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Table 10. Confidence sets for the coefficients of the Frankel-Romer income-trade equation
A. Bivariate joint confidence sets (confidence level = 95%)

θ Joint confidence set (95%)

(b, c1) θ′
(

1.78 −16.36
−16.36 257.85

)
θ +

(
−2.23 , −34.50

)
θ + 0.19 ≤ 0

(b, c2) θ′
(

3.83 −34.58
−34.58 386.87

)
θ +

(
−10.6 , 69.17

)
θ + 2.13 ≤ 0

(b, a) θ′
(

38.41 33.34
33.35 29.52

)
θ +

(
−611.55 , −537.47

)
θ + 2445.58 ≤ 0

B. Projection-based individual confidence intervals (confidence level ≥ 95%)

Coefficient Projection-based confidence sets IV-based Wald-type confidence sets

Openness [−0.21 , 6.18] [−0.01 , 3.95]

Population [−0.01 , 0.52] [−0.01 , 0.37]

Area [−0.14 , 0.49] [−0.11 , 0.29]

Constant [2.09 , 9.38] [0.56 , 9.36]

[−0.01 , 3.95], which is not very different from the AR-based confidence set. In particular, in
contrast with Cb(α) in (8.3), it does not exclude zero and may suggest that b is not significantly
different from zero.

The joint confidence sets obtained by applying the method developed in this paper to each
pair obtained by putting the trade share coefficient and each one of the other coefficients in (8.1)
are given in Table 10A. All the confidence sets are bounded, a natural outcome since we do not
have a serious problem of identification in this model. From these confidence sets we can obtain
projection-based confidence intervals for each one of the parameters; see Table 10B. Even if zero
is covered by the confidence intervals for the openness coefficient, the intervals almost entirely
consist of positive values. AR-projection-based confidence sets are conservative so when the level
of the joint confidence set is 95% it is likely that the level of the projection is close to 98% (see the
simulations in section 7.1), but if we compare them to those obtained from t-statistics, they are not
really larger.

8.2. Education and earnings

The second application considers the well known problem of estimating returns to education. Since
the work of Angrist and Krueger (1991), a lot of research has been done on this problem; see, for
example, Angrist and Krueger (1995), Angrist, Imbens and Krueger (1999), Bound et al. (1995).
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The central equation in this work is a relationship where the log weekly earning is explained by the
number of years of education and several other covariates (age, age squared, year of birth, region,
...). Education can be viewed as an endogenous variable, so Angrist and Krueger (1991) proposed
to use the birth quarter as an instrument, since individuals born in the first quarter of the year start
school at an older age, and can therefore drop out after completing less schooling than individuals
born near the end of the year. Consequently, individuals born at the beginning of the year are likely
to earn less than those born during the rest of the year. Other versions of this IV regression take as
instruments interactions between the birth quarter and regional and/or birth year dummies.

It is well documented that the instrument set used by Angrist and Krueger (1991) is weak and
explains very little of the variation in education; see Bound et al. (1995). Consequently, standard
IV-based inference is quite unreliable. We shall now apply the methods developed in this paper to
this relationship. The model considered is the following:

y = β0 + β1E +
k1∑
i=1

γiXi + u , E = π0 +
k2∑
i=1

πiZi +
k1∑
i=1

φiXi + v ,

where y is log-weekly earnings, E is the number of years of education (possibly endogenous), X
contains the exogenous covariates [age, age squared, marital status, race, standard metropolitan
statistical area (SMSA), 9 dummies for years of birth, and 8 dummies for division of birth]. Z
contains 30 dummies obtained by interacting the quarter of birth with the year of birth. β1 measures
the return to education. The data set consists of the 5% public-use sample of the 1980 US census
for men born between 1930 and 1939. The sample size is 329509 observations.

Since the instruments are likely to be weak, it appears important to use a method which is
robust to weak instruments. We consider here the AR procedure. If we were only interested in
the coefficient of education, we could compute the quadratic confidence set for β1. But if we
wish to evaluate the other coefficients, for example the age coefficient (say, γ1), the only way to
get a confidence interval is to compute the AR joint confidence set for (β1, γ1) and then deduce by
projection a confidence set for γ1. Since the instruments are weak, we expect large, if not completely
uninformative, intervals. Table 11 gives projection-based confidence sets for the coefficients of
education and different covariates. For each covariate Xi, we computed the AR joint confidence
set with education [a confidence set for (β1, γi)] and then project to obtain a confidence set for β1

(column 2) and a confidence set for γi (column 3). The last column gives Wald-based confidence
sets for each covariate obtained by 2SLS estimation of the education equation. As expected many
of the valid confidence sets are unbounded while Wald-type confidence sets are always bounded but
unreliable.

For the coefficient β1 measuring returns to education, the AR-based quadratic confidence inter-
val of confidence level 95% is given by AR_ICα(β1) = [−0.86, 0.77] . It is bounded but too
large to provide relevant information on the magnitude of returns to education. The 2SLS es-
timate for β1 is 0.06 with a standard error of 0.023 yielding the Wald-type confidence interval
W_ICα(β1) = [0.0031, 0.1167].
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Table 11. Projection-based confidence sets for the coefficients of the exogenous covariates in the
income-education equation (size = 95%)

Covariate CS for education CS for covariate Wald CS covariate

Constant [−0.86076934, 0.77468002] [−4.4353178, 16.836347] [4.121, 5.600]

Age [−0.86076841, 0.77467914] [−0.12099477, 0 .06963698] [−0.031, 0.002]

Age squared [−.86076865, 0.77467917] [−0.00772368, 0.00748569] [−0.001, 0.002]

Marital status R R [0.234, 0.263]

SMSA R R [0.120, 0.240]

Race R R [−0.352, −0.173]

Year 1 [−0.86076899, 0.77467898] [−0.72434684, 1.1399276] [−0.002, 0.187]

Year 2 [−0.86076919, 0.7746792] [−0.64290291, 1.0246588] [0.003, 0.172]

Year 3 [−0.86076854, 0.77467918] [−0.51469586, 0.84369807] [0.008, 0.154]

Year 4 [−.86076758, 0.77467916] [−0.4042831, 0.69265631] [0.013, 0.141]

Year 5 [−0.86076725, 0.77467906] [−0.28675828, 0.52165559] [0.015, 0.123]

Year 6 [−0.8607684., 0.77467903] [−0.2206811, 0.39879656] [0.007, 0.0980]

Year 7 R R [0.008, 0.080]

Year 8 [−0.86768146, 0.78338792] [−0.08312128, 0.17409244] [0.005, 0.0581]

Year 9 [−0.86076735, 0 .77467921] [−0.04610583, 0.1050552] [0.005, 0.038]

Division 1 R R [−0.150, −0.081]

Division 2 R R [−0.094, −0.015]

Division 3 R R [−0.048, 0.073]

Division 4 R R [−0.153,−0.067]

Division 5 R R [−0.205,−0.080]

Division 6 R R [−0.265,−0.074]

Division 7 R R [−0.161,−0.051]

Division 8 R R [−0.111,−0.075]

8.3. Returns to scale and externality spillovers in U.S. industry

One of the widely studied problems in recent macroeconomics literature is the extent of returns
to scale and externalities in the U.S. industry. Recent work on these issues includes Hall (1990),
Caballero and Lyons (1989, 1992), Basu and Fernald (1995, 1997) and Burnside (1996). The results
of these researches and many others have important implications on many fields of macroeconomics,
such as growth and business cycle models.

Burnside (1996) presents a short survey of different specifications of the production function
adopted in this literature. One of these specifications considers the following equation:

Yit = F (Kit, Lit, Eit,Mit) (8.4)

where, for each industry i and each period t, Yit is the gross output, Kit is the amount of capital
services used, Lit is the amount of labor, Eit is energy used, and Mit is the quantity of materials. If
we assume that F is a differentiable function and homogeneous of degree ρ, we get the following
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regression equation [see Burnside (1996)]:

Δyit = ρΔxit + Δait (8.5)

where Δyit is the growth rate of the output, Δxit is a weighted average of the inputs and Δait

represents technological changes.11 In this specification, ρ is the coefficient that measures the extent
of returns to scale. Returns to scale are increasing, constant or decreasing depending on whether
ρ > 1, ρ = 1 or ρ < 1.

To identify simultaneously the effects of externalities between industries, Caballero and Lyons
(1992) added to the previous regression equation the aggregated industrial output as a measure of
this effect. Burnside (1996) suggested a variable based on inputs rather than output, arguing by
the fact that the first measure may induce spurious externalities for industries with a large output.
Adopting the later suggestion, the previous regression equation becomes:

Δyit = ρΔxit + ηΔxt + uit (8.6)

where Δxt is the cost shares weighted average of the Δxit [Burnside (1996, equation (2.8))] and
uit = Δait. The coefficient η measures the externalities effect.

To estimate this equation, Hall (1990) proposed a set of instruments that was used in most sub-
sequent researches. These instruments include the growth rate of military purchases, the growth rate
of world oil price, a dummy variable representing the political party of the President of Unites States
and one lag of each of these variables. Estimation methods used include ordinary least squares, two
stages least squares and three stages least squares.

The regressions are performed using panel data on two-digit SIC (Standard Industrial Classifi-
cation) code level manufacturing industries. This classification includes 21 industries. The data set
is described in detail by Jorgenson, Gollop and Fraumeni (1987) and contains information on gross
output, labor input, stock of capital, energy use, and materials inputs.

These regressions are interesting as an application for the statistical inference methods devel-
oped in this paper because the instruments used appear to be weak and may induce identification
problems. These instruments have been studied in detail by Burnside (1996) who showed on the
basis of calculations of R2 and partial R2 [Shea (1997)], that these instruments are weak. A valid
method to draw inference on ρ (returns to scale) and η (externalities) then consists in using an ex-
tension of the Anderson-Rubin approach [as suggested in Dufour and Jasiak (2001)] to build a joint
confidence set for (ρ, η)′ and then build through projection individual confidence intervals for ρ and
η.12

Given this identification problem, we expect unbounded confidence sets. Using the same data
set as Burnside (1996), we obtained the results presented in Table 12. This table presents the 2SLS
estimates and the confidence sets for the returns to scale coefficients and externalities coefficients in
21 U.S. manufacturing industries over the period 1953-1984. The projection based confidence sets

11The weights are the production cost shares of each input.
12As reported in Caballero and Lyons (1989), there is no evidence of serial correlation from either the Durbin-Watson

statistic or the Ljung-Box Q statistic.
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Table 12. Confidence sets for the returns to scale and externality coefficients in different U.S.
industries (size ≥ 90%)

Returns to scale Externalities

Industry 2SLS Confidence set 2SLS Confidence set

7: Food & kindred products 0.99 R -0.06 R

8: Tobacco 1.06 R 0.28 R

9: Textile mill products 0.61 ] −∞, 0.56] ∪ [2.23, ∞[ 0.20 R

10: Apparel 1.09 ∅ -0.05 ∅

11: Lumber & wood 0.86 R -0.08 R

12: Furniture and fixtures 1.13 ] −∞, 0.58] ∪ [1.77, ∞[ -0.01 ] −∞, −0.73] ∪ [0.55, ∞[

13: Paper and allied 0.54 ] −∞, 0.74] ∪ [4.56, ∞[ 0.61 ] −∞, −4.51] ∪ [0.45, ∞[

14: Printing; publishing 0.93 [−1.2, 4.23] 0.23 [−0.11, 1.05]

15: Chemicals 0.22 [−7.36, 0.54] 1.06 [0.85, 11.7]

16: Petroleum & coal products 0.34 R 0.29 R

17: Rubber & misc. plastics 1.29 R -0.31 R

18: Leather 0.39 R 0.01 R

19: Stone, clay, glass 1.21 [1, 3.34] -0.03 [−3.16, 0.15]

20: Primary metal 0.79 [0.46, 1.01] 0.42 [−0.37, 1.51]

21: Fabricated metal 0.80 ] −∞, 2.25] ∪ [1.15, ∞[ 0.30 ] −∞, −0.13] ∪ [4.21, ∞[

22: Machinery, non-electrical 1.16 [0.73, 1.81] 0.02 [−1.41, 0.76]

23: Electrical machinery 1.17 ] −∞, 0.29] ∪ [2.47, ∞[ 0.05 ] −∞, 1.16] ∪ [1.72, ∞[

24: Motor vehicles 1.23 R -0.12 R

25: Transportation equipment 1.07 [0.64, 1.55] 0.10 [−0.36, 1.6]

26: Instruments 1.38 [1.19, 3.29] -0.07 [−1.5, 0.38]

27: Misc. manufacturing 1.5 ] −∞, −88.7] ∪ [0.48, ∞[ -0.51 ] −∞, 0.12] ∪ [102.1, ∞[

Mean 0.94 0.11

are obtained from joint confidence sets for (ρ, η) of level 90%.13

The average estimation over all industries of the coefficients ρ and η are of the same order as
those obtained by Burnside (1996).14 Only 7 among 21 confidence sets are bounded. For industries
19 (stone, clay and glass) and 26 (instruments), the returns to scale are increasing. For industry 15
(chemicals), the returns to scale are decreasing. For industries 9 (textile mill products), 12 (furniture
and fixtures), 13 (paper and allied), and 23 (electrical machinery) the hypothesis of constant returns
to scale is rejected with a significance level smaller than or equal 10%. For industry 10 (apparel) the
confidence set is empty which may be explained by the fact that the data does not support the model.
For industries 7 (food and kindred products), 8 (tobacco), 11 (lumber and wood), 16 (petroleum and
coal products), 17 (rubber and miscellaneous plastics), 18 (leather), and 24 (motor vehicles), the
confidence sets are equal to R and thus provide no information on ρ and η.

13We used χ2 as asymptotic distribution for the Anderson-Rubin statistic instead of the Fisher distribution valid under
normality and independence assumption.

14The small differences may be due to the use of TSLS instead of 3SLS.
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9. Conclusion

In this paper, we have provided extensions of AR-type procedures based on a general class of aux-
iliary instruments, for which we supplied a finite-sample distributional theory. The new procedures
allow for arbitrary collinearity among the instruments and model endogenous variables, including
the presence of accounting relations and singular disturbance covariance matrices. For inference
on parameter transformations, we used the projection approach to obtain finite-sample tests and
closed-form confidence sets. The confidence sets so obtained have the additional feature of being
simultaneous in the sense of Scheffé and when they take the form of a closed interval, they can be
interpreted as Wald-type confidence intervals based on k-class estimators.

We also stressed that AR-type procedures enjoy remarkable invariance (or robustness) prop-
erties. In addition to being completely robust (in finite samples) to the presence of weak instru-
ments, their validity is unaffected by the exclusion of possibly relevant instruments (robustness to
instrument exclusion), and more generally to the distribution of explanatory endogenous variables
(robustness to endogenous explanatory variable distribution). More precisely, the finite-sample
distribution (under the null hypothesis) of AR-type test statistics is completely unaffected by the
presence of “weak instruments”, the exclusion of relevant instruments, and the distribution of the
explanatory endogenous variables (which includes the form of the associated DGP and the distur-
bance distribution). These features can be quite important and useful from a practical viewpoint.
AR-type procedures constitute limited-information methods, which typically involve an efficiency
loss with respect to full-information methods, but do allow for a less complete specification of the
model. The robustness of AR-type procedures and the non-robustness of alternative procedures
aimed at being more robust to weak instruments was also documented in a simulation experiment.
In several cases, the difference in reliability is spectacular. Finally, we presented simulation results
as well as three experimental examples which showed that projection-based AR-type confidence
sets are indeed quite easy to implement and perform reasonably well in terms of accuracy.

Of course, the class of AR-type tests, especially in the generalized form introduced in this paper,
is quite large. This raises the problem of selecting instruments. Further, one must be aware that
power may decline as the number of instruments increases, especially if they have little relevance,
which suggests that the number of instruments should be kept as small as possible. Because AR
statistics are robust to the exclusion of instruments, this can be done relatively easily. We discuss the
problem of selecting optimal instruments and reducing the number of instruments in two companion
papers [ Dufour and Taamouti (2001b, 2001a)]. For other results relevant to the instrument selection,
the reader may consult Cragg and Donald (1993), Hall et al. (1996), Shea (1997), Chao and Swanson
(2000), Donald and Newey (2001), Hall and Peixe (2003), Hahn and Hausman (2002a, 2002b), and
Stock and Yogo (2002).

Finally, we think that the analytical results presented here on quadric confidence sets can be
useful in other contexts involving, for example, errors-in-variables models [see Dufour and Jasiak
(2001)], nonlinear models, and dynamic models. Such extensions would go beyond the scope of
the present paper. We study such extensions in another companion paper [Dufour and Taamouti
(2001b)].

36



A. Appendix: Proofs

PROOF OF THEOREM 5.1 To simplify the notation, we write Cδ1 ≡ Cw′θ as in (5.5). (a) Consider
first the case where p > 1 and Ā22 is positive semidefinite with Ā22 �= 0. To cover this situation, it
will be convenient to distinguish between 2 subcases: (a.1) r2 = p− 1; (a.2) 1 ≤ r2 < p− 1 .
(a.1) If r2 = p − 1, Ā22 is positive definite. From (5.7), we can write Q̄(δ) = Q̄(δ1, δ2). Then,
δ1 ∈ Cδ1 iff the following condition holds: (1) if Q̄(δ1, δ2) has a minimum with respect to δ2, the
minimal value is less than or equal to zero, and (2) if Q̄(δ1, δ2) does not have a minimum with
respect to δ2, the infimum is less than zero. To check this, we consider the problem of minimizing
Q̄(δ1, δ2) with respect to δ2. The first and second order derivatives of Q̄ with respect to δ2 are:

∂Q̄

∂δ2
= 2Ā22δ2 + 2Ā21δ1 + b̄2 = 0 ,

∂2Q̄

∂δ2∂δ′2
= 2Ā22 . (A.1)

Here the Hessian 2Ā22 is positive definite, so that there is a unique minimum obtained by setting
∂Q̄/∂δ2 = 0 :

δ̃2 = −1
2
Ā−1

22

[
2Ā21δ1 + b̄2

]
= −Ā−1

22 Ā21δ1 −
1
2
Ā−1

22 b̄2 . (A.2)

On setting δ2 = δ̃2 in Q̄(δ1, δ2), we get (after some algebra) the minimal value:

Q̄(δ1, δ̃2) = ã1δ
2
1 + b̃1δ1 + c̃1 (A.3)

where ã1 = ā11 − Ā′
21Ā

−1
22 Ā21 , b̃1 = b̄1 − Ā′

21Ā
−1
22 b̄2 , c̃1 = c − 1

4 b̄′2Ā
−1
22 b̄2 . In this case, we also

have Ā−1
22 = Ā+

22, and (5.12) holds with S1 = ∅.
(a.2) If 1 ≤ r2 < p − 1, we get, using (5.7) and (5.9) - (5.11):

Q̄(δ) = ā11δ
2
1 + b̄1δ1 + c + δ̃

′
2D2δ̃2 +

[
2Ã21δ1 + b̃2

]′
δ̃2

= ā11δ
2
1 + b̄1δ1 + c + δ̃

′
2∗D2∗δ̃2∗ +

[
2Ã21∗δ1 + b̃2∗

]′
δ̃2∗ +

[
P ′

22(2Ā21δ1 + b̄2)
]′

δ̃22

where δ̃2∗ = P ′
21δ2 , δ̃22 = P ′

22δ2 , and D2∗ is a positive definite matrix. We will now distinguish
between two further cases: (i) P ′

22(2Ā21δ1 + b̄2) = 0 , and (ii) P ′
22(2Ā21δ1 + b̄2) �= 0 .

(i) If P ′
22(2Ā21δ1 + b̄2) = 0, Q̄(δ) takes the form:

Q̄(δ) = ā11δ
2
1 + b̄1δ1 + c + δ̃

′
2∗D2∗δ̃2∗ + [2Ã21∗δ1 + b̃2∗]′δ̃2∗ . (A.4)

By an argument similar to the one used for (a.1), we can see that

δ1 ∈ Cδ1 iff ã1δ
2
1 + b̃1δ1 + c̃1 ≤ 0 (A.5)

where ã1 = ā11 − Ā′
21∗D

−1
2∗ Ā21∗ , b̃1 = b̄1 − Ā′

21∗D
−1
2∗ b̄2∗ , c̃1 = c − 1

4 b̄′2∗D
−1
2∗ b̄2∗. Further, since

Ā22 = P2D2P
′
2, the Moore-Penrose inverse of Ā22 is [see Harville (1997, Chapter 20)]:

Ā+
22 = P2

[
D−1

2∗ 0
0 0

]
P ′

2 = [P21, P22]
[

D−1
2∗ 0
0 0

]
[P21, P22]′ = P21D

−1
2∗ P ′

21 , (A.6)
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hence

Ā′
21∗D

−1
2∗ Ā21∗ = Ā′

21P21D
−1
2∗ P ′

21Ā21 = Ā′
21Ā

+
22Ā21 , (A.7)

Ā′
21∗D

−1
2∗ b̄2∗ = Ā′

21P21D
−1
2∗ P ′

21b̄2 = Ā′
21Ā

+
22b̄2 , (A.8)

b̄′2∗D
−1
2∗ b̄2∗ = b̄′2P21D

−1
2∗ P ′

21b̄2 = b̄′2Ā
+
22b̄2 . (A.9)

(ii) If P ′
22(2Ā21δ1 + b̄2) �= 0, then for any value of δ1 we can choose δ̃22 so that Q̄(δ1, δ2) < 0,

which entails that δ1 ∈ Cδ1 . Putting together the conclusions drawn in (i) and (ii) above, we see that

Cδ1 = {δ1 : P ′
22(2Ā21δ1 + b̄2) = 0 and ã1δ

2
1 + b̃1δ1 + c̃1 ≤ 0} ∪ {δ1 : P ′

22(2Ā21δ1 + b̄2) �= 0}
= {δ1 : ã1δ

2
1 + b̃1δ1 + c̃1 ≤ 0} ∪ {δ1 : P ′

22(2Ā21δ1 + b̄2) �= 0} (A.10)

and (5.12) holds with S1 = {δ1 : P ′
22(2Ā21δ1 + b̄2) �= 0} . This completes the proof of part (a) of

the theorem.
(b) If p = 1 or Ā22 = 0 , we can write:

Q̄(δ1, δ2) = ā11δ
2
1 + b̄1δ1 + c + [2Ā21δ1 + b̄2]′δ2 (A.11)

where we set Ā21 = b̄2 = 0 when p = 1. If 2Ā21δ1 + b̄2 = 0, we see immediately that: δ1 ∈ Cδ1

iff ā11δ
2
1 + b̄1δ1 + c ≤ 0. Of course, this obtains automatically when p = 1. If 2Ā21δ1 + b̄2 �= 0, we

can choose δ2 so that Q̄(δ1, δ2) < 0, irrespective of the value of δ1. Part (b) of the theorem follows
on putting together these two observations.
(c) If p > 1 and Ā22 is not positive semidefinite, this entails that Ā22 �= 0, and we can find a
vector δ20 such that δ′20Ā22δ20 ≡ q0 < 0 . Now, for any scalar Δ0, we have:

Q̄(δ1, Δ0δ20) = ā11δ
2
1 + b̄1δ1 + c + Δ2

0 q0 + Δ0[2Ā21δ1 + b̄2]′δ20 . (A.12)

Since q0 < 0 , we can choose Δ0 sufficiently large to have Q̄(δ1, Δ0δ20) < 0, irrespective of the
value of δ1. This entails that all values of δ1 belong to Cδ1, hence Cδ1 = R .
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