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ABSTRACT

It is well known that standard asymptotic theory is not applicable or is very unreliable in models
with identification problems or weak instruments. One possible way out consists here in using a
variant of the Anderson-Rubin (1949, AR) procedure. The latter allows one to build exact tests
and confidence sets only for the full vector of the coefficients of the endogenous explanatory vari-
ables in a structural equation, but not for individual coefficients. This problem may in principle
be overcome by using projection techniques [Dufour (1997), Dufour and Jasiak (2001)]. At first
sight, however, these techniques can be implemented only by using costly numerical methods. In
this paper, we give a general necessary and sufficient condition which allows one to check whether
an AR-type confidence set is bounded. Further, we also provide an analytic solution to the problem
of building projection-based confidence sets from AR-type confidence sets. The latter involves the
geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals
and ellipsoids. Only least squares techniques are required for building confidence intervals.

Key words : Simultaneous equations; structural model; instrumental variable; weak instrument;
confidence interval; testing; projection; exact inference; asymptotic theory.
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1. Introduction

One of the classic problems of econometrics consists in making inference on the coefficients of
structural models. Recently, the statistical problems raised by such models have received new at-
tention in view of the observation that proposed instruments are often “weak”, i.e. poorly correlated
with the relevant endogenous variables, which corresponds to situations where the structural para-
meters are close to being not identifiable (given the instruments used). The literature on this topic
is now considerable; see the reviews of Stock, Wright, and Yogo (2002) and Dufour (2003).

In view of the unreliability of asymptotic arguments in such setups, we focus here on procedures
for which finite-sample pivotality obtains under standard assumptions. The oldest one appears to
be the statistic proposed by Anderson and Rubin (1949, henceforth AR). The latter is a limited-
information method which allows one to test an hypothesis setting the full vector of the endogenous
explanatory variable coefficients in a linear structural equation; under usual parametric assumptions
(error Gaussianity, instrument strict exogeneity) the distribution of the statistic is a central Fisher
distribution, while under weaker (standard) assumptions it is asymptotically chi-square. It is com-
pletely robust to the presence of weak instruments. Other potential pivots aimed at being robust
to weak instruments have recently been suggested by Wang and Zivot (1998), Kleibergen (2002)
and Moreira (2003). However, only asymptotic distributional theories have been supplied for these
statistics, so that the level of the procedures may not be controlled in finite samples.1

An important practical shortcoming of the above methods is that they are designed to test hy-
potheses of the form H0 : β = β0, where β is the coefficient vector for all the endogenous ex-
planatory variables. In particular, these statistics do not allow one to test linear restrictions on
the vector β. A general solution to this problem is the projection technique described in Dufour
(1990, 1997), Wang and Zivot (1998) and Dufour and Jasiak (2001). A drawback of the projection
approach comes from the fact that it can be numerically costly: for example, in Dufour and Jasiak
(2001), such confidence intervals were derived for an empirical example, but nonlinear optimization
methods [based on Fortran IMSL routines] had to be used.

In this paper, we study some general geometric features of AR-type confidence sets and we
provide a close-form solution to the problem of building projection-based confidence sets from
such sets. First, we observe that AR-type confidence sets can be described as quadrics, a class
of geometric figures which covers as special cases the usual confidence intervals and ellipsoids,
but also includes hyperboloids and paraboloids. In particular, we give a simple necessary and
sufficient condition under which such confidence sets are bounded (which indicates identifiability).
Second, we derive simple explicit expressions for projection-based confidence intervals in the case
of coefficient linear transformations, so that no search by nonlinear methods is anymore required.

In Section 2, we present the background model and the basic statistical method considered.
Section 3 presents the quadric confidence sets. In Section 4, we discuss some general properties of

1As a limited-information method, the AR procedure may involve an efficiency loss with respect to full-information
methods, but does allow for a less complete specification of the model and more robustness [for further discussion of
this point, see Dufour and Taamouti (2004)]. Note also that proposed exact or asymptotic pivots in this context typically
take for granted a number of structural restrictions which characterize the specification of the structural equation. If the
assumptions suggested by the structural model are relaxed, e.g. by considering the corresponding unrestricted reduced
form, the AR statistic as well as most other pivots may cease to be pivotal [see Forchini and Hillier (2003)]. Here, as in
most of the literature on weak instruments, we focus on the the situation where the structural restrictions are maintained.
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quadric confidence sets and provide a simple necessary and sufficient condition under which such
sets are bounded. Section 5 provides explicit projection-based confidence intervals for individual
structural parameters and linear transformations of these parameters. We conclude in Section 6.

2. Framework

We consider here a standard simultaneous equations model (SEM):

y = Y β + X1γ + u , (2.1)

Y = X1Π1 + X2Π2 + V , (2.2)

where y and Y are T × 1 and T × G matrices of endogenous variables, X1 and X2 are T × k1

and T × k2 matrices of exogenous variables, β and γ are G × 1 and k1 × 1 vectors of unknown
coefficients, Π1 and Π2 are k1×G and k2×G matrices of unknown coefficients, u = (u1, . . . , uT )′

is a vector of structural disturbances, and V = [V ′
1 , . . . , V ′

T ]′ is a T × G matrix of reduced-form
disturbances. Further,

X = [X1, X2] is a full-column rank T × k matrix (2.3)

where k = k1 + k2. Finally, to get a finite-sample distributional theory for the test statistics, we
shall use the following standard assumptions:

u and X are independent; (2.4)

u ∼ N
[
0, σ2

u IT

]
. (2.5)

In such a model, we are generally interested in making inference on β and γ. In Dufour (1997),
it is shown that, if the model is unidentified (i.e., the matrix Π2 does not have maximal rank),
any valid confidence set for β or γ must be unbounded with positive probability. This is due to
the fact that such a model may be unidentified and holds indeed even if identification restrictions
are imposed. This result explains many recent findings on the performance of standard asymptotic
statistics when the instruments X2 are weakly correlated with the endogenous explanatory variables
Y . The usual approach, which consists in inverting Wald-type statistics to obtain confidence sets,
is not valid in these situations since the resulting confidence sets are bounded with probability 1.
This is related to the fact that such statistics are not pivotal and follow distributions which depend
heavily on nuisance parameters.

A first solution to this problem [see Dufour (1997) and Staiger and Stock (1997)] consists in
using the Anderson-Rubin statistic [Anderson and Rubin (1949)]. To test H0 : β = β0 in equation
(2.1), the test statistic is given by:

AR(β0) =
(y − Y β0)′[M(X1) − M(X)](y − Y β0)/k2

(y − Y β0)′M(X)(y − Y β0)/(T − k)
(2.6)

where for any full rank matrix B, M(B) = I − P (B) and P (B) = B(B′B)−1B′ is the projection
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matrix on the space spanned by the columns of B. Under the assumptions (2.3) - (2.5), we have
under H0 : AR(β0) ∼ F (k2, T − k). This test also remains asymptotically valid under weaker
distributional assumptions, in the sense that the asymptotic null distribution of AR(β0) is χ2(k2)/k2

[see Dufour and Jasiak (2001) and Staiger and Stock (1997)]. The distributional result in (2.6) holds
irrespective on the rank of the matrix Π2, which means that tests based on AR(β0) are robust to
weak instruments. A confidence set for β with level 1 − α can also be obtained by inverting the
above test:

Cβ(α) = {β0 : AR(β0) ≤ Fα(k2, T − k)} (2.7)

where Fα(k2, T −k) is the 1−α quantile of the F distribution with (k2, T −k) degrees of freedom.
Below, we shall also consider two alternative statistics proposed by Wang and Zivot (1998). The

first one is an LR–type statistic and the second is an LM–type statistic. Under the assumptions (2.1) -
(2.5) and additional regularity conditions on the asymptotic behavior of the instruments [described
by Wang and Zivot (1998)], these two statistics follow χ2(k2) distributions asymptotically when the
model is exactly identified (k2 = G), and are bounded by a χ2(k2) distribution when the model is
over-identified (k2 > G). To test H0 : β = β0, these statistics are:

LRLIML(β0) = T [ln(k(β0)) − ln[k(β̂LIML)] , (2.8)

LM2SLS(β0) =
T (y − Y β0)′P [P [M(X1)X2]Y ](y − Y β0)

(y − Y β0)′M(X1)(y − Y β0)
, (2.9)

where k(β0) = (y − Y β0)′M(X1)(y − Y β0)/(y − Y β0)′M(X)(y − Y β0). Asymptotic and
conservative confidence sets for β can be obtained by inverting the latter tests.

A common shortcoming of all these tests is that they require one to specify the entire vector β.
In particular, they do not allow for general hypotheses of the form H0 : g(β) = 0, where g(β) may
be any transformation of β, such as g(β) = βi − βi0, where βi is any scalar component of β. In
this paper, we deal with this problem by studying the characteristics of the confidence sets obtained
by inverting such statistics, and we use them to derive confidence sets for the components of β or
linear combinations of these components. We will show that confidence sets based on the statistics
AR, LR and LM can be expressed in terms of a quadratic-linear form involving a matrix A, a
vector b and a scalar c. These sets (replacing the inequality by an equality) are known as quadrics;
see Shilov (1961, Chapter 11) and Pettofrezzo and Marcoantonio (1970, Chapters 9-10). We will
then classify possible cases as functions of A, b and c, and we will derive analytic expressions for
projection-based confidence sets (or intervals) on linear transformations of model parameters.2

3. Anderson-Rubin-type confidence sets

Let us first consider the AR statistic. A simple algebraic calculation shows that the inequality
AR(β0) ≤ Fα(k2, T − k) may be written in the following simple form:

β′
0Aβ0 + b′β0 + c ≤ 0 (3.1)

2This problem was also considered by Stock and Wright (2000), Kleibergen (2001) and Startz, Zivot, and Nelson
(2003), but the solutions provided rely on large-sample approximations and require additional identification assumptions.
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where A = Y ′HY, b = −2Y ′Hy, c = y′Hy and

H ≡ HAR = M(X1) −
[
1 +

k2Fα(k2, T − k)
T − k

]
M(X) . (3.2)

We can thus write:
Cβ(α) = {β0 : β′

0Aβ0 + b′β0 + c ≤ 0} . (3.3)

If we use the statistic LRLIML(β0) or LM2SLS(β0) instead of AR, we get analogous confidence
sets which only differ through the H matrix. For LRLIML(β0), this matrix takes the form

HLR = M(X1) − M(X) k(β̂LIML) exp[χ2
α(k2)/T ] (3.4)

while, for LM2SLS(β0), it is

HLM = P
[
P [M(X1)X2]Y

]
− M(X1)[χ2

α(k2)/T ] . (3.5)

For the AR and LR statistics, the matrix A can be written:

A = Y ′M(X1)Y − Y ′M(X)Y (1 + fα)

where fα = k2Fα(k2, T − k)/(T − k) for AR and fα = exp[χ2
α(k2)/T ]k(β̂LIML) − 1 for the

LR statistic. Clearly A is symmetric with diagonal elements of the form Aii = Y ′
i M(X1)Yi −

Y ′
i M(X)Yi (1 + fα) , where Aii is a corrected difference between the sum of squared residuals

from the regression of Yi on X1 and the sum of squared residuals from the regression of Yi on
X = [X1, X2]. This difference can be viewed as a measure of the importance of X2 in explaining
Yi, i.e. the relevance of X2 as an instrument for Yi. Similarly, c = y′Hy is a corrected difference
between the sum of squared residuals from the regression of y on X1 and the sum of squared
residuals from the regression of y on X = [X1, X2]. For the vector b, a typical element is given
by bi = −2{[M(X1)Yi]′[M(X1)y] − [M(X)Yi]′[M(X)y](1 + fα)}. The first term [multiplied
by −1/(2T )] is the sample covariance between the residuals of the regression of Yi on X1 and
the residuals of the regression of y on X1, while the second term gives the same covariance with
X1 replaced by X = [X1, X2].

4. Geometry of quadric confidence sets

The locus of points that satisfy an equation of the form β′Aβ+b′β+c = 0 ,where A is a symmetric
G × G matrix, b is a G × 1 vector and c is a scalar, constitutes a quadric surface. These include as
special cases various figures such as ellipsoids, paraboloids, hyperboloids, cones, etc. Consequently,
we shall call a confidence set of the form

Cβ = {β0 : β′
0Aβ0 + b′β0 + c ≤ 0} (4.1)

a quadric confidence set. A quadric is characterized by the sum a quadratic form (β′
0Aβ0) and

an affine transformation (b′β0 + c). Depending on the values of A, b and c, it may take several
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forms. In this section, we examine some general properties of quadric confidence sets, especially
the conditions under which such sets are bounded or unbounded. In particular, we will see that the
eigenvalues of the A matrix play a central role in these properties and that larger eigenvalues are
associated with more “concentrated” (or “smaller”) confidence sets. For these reasons, we call A
the concentration matrix at level α (or the α-concentration matrix) associated with β. It will be
convenient here to distinguish between two basic cases: the one where A is nonsingular, and the
one where it is singular. We adopt the convention that an empty set is bounded.

4.1. Nonsingular concentration matrix

If A is nonsingular, we can write:

β′
0Aβ0 + b′β0 + c =

(
β0 − β̃

)′
A

(
β0 − β̃

)
− d (4.2)

where β̃ = −1
2A−1b and d = 1

4b′A−1b − c . Since A is a real symmetric matrix, we have

A = P ′DP (4.3)

where P is an orthogonal matrix and D is a diagonal matrix whose elements are the eigenvalues of
A. The inequality β′

0Aβ0 + b′β0 + c ≤ 0 may then be reexpressed as

λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d (4.4)

where the λi’s are the eigenvalues of A and z = P (β − β̃). The transformation z = P (β − β̃)
represents a translation followed by a rotation of β, so it is clear that Cβ is bounded if and only if
(iff) Cz is bounded, where Cβ = {β : λ1z

2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d and z = P (β − β̃)} and
Cz ≡ {z : λ1z

2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d} . Again it will be convenient to distinguish between
three cases according to the signs of the eigenvalues of A, namely: (a) all the eigenvalues of A
are positive (λi > 0, i = 1, . . . , G), i.e. A is positive definite; (b) all the eigenvalues of A are
negative (λi < 0, i = 1, . . . , G), i.e. A is negative definite; (c) A has both positive and negative
eigenvalues, i.e. A is neither positive nor negative definite.

(a) Positive definite concentration matrix. If λi > 0, i = 1, . . . , G, the inequality (4.4) can be
reexpressed as (

z1

γ1

)2

+ · · · +
(

zG

γG

)2

≤ d (4.5)

where γi =
√

1/λi, i = 1, . . . , G. If d = 0, we have Cz = {0} and Cβ = {β̃}. If d < 0, Cz and
Cβ are empty. If d > 0, Cz is the area inside or on an ellipsoid. Thus, Cz and Cβ are bounded.

(b) Negative definite concentration matrix. If λi < 0, i = 1, . . . , G, the set Cz is the set of all
values of z that satisfy (

z1

γ1

)2

+ · · · +
(

zG

γG

)2

≥ −d (4.6)

where γi =
√
−1/λi. Since (4.6) holds as soon any |zi| is large enough, Cz and Cβ are unbounded
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sets. In particular, if d ≥ 0, we have Cβ = Cz = R
G.

(c) Concentration matrix not positive or negative definite. If A has both positive and negative
eigenvalues, we can assume, without loss of generality, that λi > 0 for i = 1 , . . . , p, and λi <
0 , for i = p + 1 , . . . , G, where 1 ≤ p < G. Inequality (4.4) may then be rewritten:

(
z1

γ1

)2

+ · · · +
(

zp

γp

)2

−
(

zp+1

γp+1

)2

− · · · −
(

zG

γG

)2

≤ d (4.7)

where p is the number of positive eigenvalues of A, γi =
√

1/λi for i = 1 , . . . , p, and γi =√
−1/λi for i = p + 1 , . . . , G. Then, for arbitrary given values of z1, . . . , zp and d, it is clear

that inequality (4.7) will hold if any of the values zi, p+1 ≤ i ≤ G, is small enough (as |zi| → ∞).
Consequently, each component of z is unbounded in Cz, and similarly for each component of β in
Cβ. This entails that Cz and Cβ are unbounded.

4.2. Singular concentration matrix

We now consider the case where A is singular with rank r (r < G). First, if A = 0 (i.e., r = 0),
it is easy to see that the only situation where Cβ can be bounded is the one where b = 0 and
c > 0 (in which case Cβ is empty). So we can focus on the case where A 	= 0, hence r ≥ 1 and
G − r ≥ 1. Without loss of generality, we can assume that the first r diagonal elements of D in the
decomposition A = P ′DP (the first r eigenvalues of A) used in (4.3) are different from zero, while
the G − r other ones are equal to zero. Then we can write:

Q(β) ≡ β′Aβ + b′β + c =
r∑

i=1

λiz
2
i +

G∑
i=r+1

δizi − d (4.8)

where the λi are the non-zero eigenvalues of A (λi 	= 0, i = 1, . . . , r), δ = Pb, z = Pβ + μ and

d = −c +
r∑

i=1

δ2
i /(4λi) , μi =

{
δi/(2λi) , if λi 	= 0 ,
0 , otherwise.

(4.9)

If b = 0, we have Q(β) =
r∑

i=1
λiz

2
i + c and the values of zr+1, . . . , zG can be as big as we wish

without affecting the value of Q(β). Then, Cβ is either empty (when c > 0 and λi > 0, i =
1, . . . , r) or unbounded (in all the other cases). If b 	= 0, there is at least one k ∈ {r + 1, . . . , G}
such that δk 	= 0. Then, we can set zj = 0 for j 	= k, and choose zk such that |zk| is arbitrarily large
and the inequality (4.4) be satisfied. This entails that Cβ is unbounded.

4.3. Necessary and sufficient condition for bounded quadric confidence set

Following Gleser and Hwang (1987) and Dufour (1997), a valid confidence set Cβ for β (with
level 1 − α) in model (2.1) - (2.5) must be unbounded with positive probability for any parameter
configuration, a probability that should be large (close to 1 − α) when the matrix Π2 does not
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have full rank (or is close to have full column rank). Given the complicated expressions of the
random matrix A, the random vector b and the random scalar c, it seems difficult to evaluate this
probability. On putting together the different cases discussed above, we get the following easy-to-
verify necessary and sufficient condition for a quadric confidence set to be bounded.

Theorem 4.1 If the matrix A is nonsingular, the set Cβ in (4.1) is bounded if and only if the matrix
A is positive definite. If A is singular, the set Cβ is bounded only when it is empty, and Cβ is empty
if and only if A is positive semidefinite, b = 0 and c > 0.

It is of interest to note here that the case where A is singular is unlikely to be met with AR-type
confidence sets such as those described in Section 3, because in this case we have A = Y ′HY,
where Y and H are T × G and T × T matrices respectively. If Y follows an absolutely continuous
distribution (as assumed in Section 2), A will be nonsingular with probability one as soon as the
rank of H is greater than or equal to G. In the rest of this paper, we will thus focus on the case of a
nonsingular concentration matrix.3

5. Confidence sets for transformations of β

We consider now a general confidence set of the form

Cβ = {β0 : β′
0Aβ0 + b′β0 + c ≤ 0} (5.1)

where c is a real scalar, A is a symmetric G × G matrix, and b is a G × 1 vector. By definition, the
associated projection-based confidence interval for the scalar function g(β) = w′β is:

Cw′β ≡ g[Cβ ] = {δ0 : δ0 = w′β0 where β′
0Aβ0 + b′β0 + c ≤ 0} (5.2)

where w is a nonzero G×1 vector. When the concentration matrix is nonsingular, all the eigenvalues
of A are different from 0. Using the transformation z = P (β − β̃), Cw′β may then be written:

Cw′β = {w′β0 : λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d and z = P (β0 − β̃)}.

Further,
w′β = w′P ′Pβ = w′P ′P (β − β̃) + w′P ′P β̃ = a′z + w′β̃ (5.3)

where a = Pw. Setting

Ca′z = {a′z : λ1z
2
1 + λ2z

2
2 + · · · + λGz2

G ≤ d} , (5.4)

it is then easy to see that, for x ∈ R,

x ∈ Cw′β ⇔ x − w′β̃ ∈ Ca′z , (5.5)

3The case where the concentration matrix is singular is discussed in a companion working paper [Dufour and Taamouti
(2004)].
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hence: Cw′β = R ⇔ Ca′z = R . We will now distinguish three cases depending on the number
of negative eigenvalues: (1) all the eigenvalues of A are positive (i.e., A is positive-definite); (2) A
has exactly one negative eigenvalue; (3) A has at least two negative eigenvalues.

When A is positive definite, Cβ is a bounded set and, correspondingly, its image g[Cβ ] by the
continuous function g(β) = w′β is also bounded. The following proposition provides an explicit
form for the projection-based confidence set Cw′β.

Theorem 5.1 Let Cβ be the set defined in (5.1), d ≡ 1
4b′A−1b−c, let w be a nonzero vector in R

G,
and suppose the matrix A is positive definite. If d ≥ 0, then

Cw′β =
[
w′β̃ −

√
d (w′A−1w) , w′β̃ +

√
d (w′A−1w)

]
(5.6)

where β̃ = −1
2A−1b. If d < 0, then Cw′β is empty.

Proofs are provided in the Appendix. Note the case where A is positive definite is one where
the instruments X2 provide additional explanatory power for Y (with respect to X1) : the number
of strong instruments is sufficient to pin down all parameters (which suggests a traditional identifi-
cation condition holds). Let us now consider the case where A has exactly one negative eigenvalue.

Theorem 5.2 Let Cβ be the set defined in (5.1), d ≡ 1
4b′A−1b − c, w ∈ R

G\{0}, and suppose the
matrix A is nonsingular with exactly one negative eigenvalue. If w′A−1w < 0 and d < 0, then

Cw′β =
]
−∞ , w′β̃ −

√
d (w′A−1w)

]
∪

[
w′β̃ +

√
d (w′A−1w) , +∞

[
. (5.7)

If w′A−1w > 0 or if w′A−1w ≤ 0 and d ≥ 0, then Cw′β = R. If w′A−1w = 0 and d < 0, then
Cw′β = R\{w′β̃}.

It is interesting to note here that Cw′β can remain informative, even if it is unbounded. In
particular, if we want to test H0 : w′β = r and consider a decision rule which rejects H0 when
r /∈ Cw′β , H0 will be rejected for all values of r outside the interval (5.7). This can be viewed
as a case where components (or linear transformations) of β are identifiable while others are not:
this suggests that the rank condition for identification fails, but some parameters may be identified.
Finally, we consider the case where A has at least two negative eigenvalues.

Theorem 5.3 Let Cβ be the set defined in (5.1) and w ∈ R
G\{0}. If the matrix A in (5.1) is

nonsingular and has at least two negative eigenvalues, then Cw′β = R.

In the latter case, the projection-based confidence set for w′β is equal to the real line, thus
uninformative. No linear combination of the elements of β appears to be identifiable.

6. Conclusion

Recent research in econometrics has shown that weak instruments are quite widespread and should
be carefully addressed. Techniques which are robust to weak instruments typically require one to
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consider first joint inference problem on all or, at least, some subvector of model parameters. This
leads to the problem of drawing inference on individual coefficients (or lower dimensional subvec-
tors). In this paper, we studied this problem from a finite-sample limited-information viewpoint and
focused on AR-type tests and confidence sets.

We observed that AR-type confidence sets belong to a class of sets defined by quadric curves
(which include ellipsoids as a special case). A simple condition for deciding whether such confi-
dence sets are bounded was derived. On observing that a projection technique does provide finite-
sample confidence sets for individual coefficients in such contexts (indeed, the only procedure for
which a finite-sample theory is currently available), we derived a close-from solution to the problem
of building projection-based confidence sets for individual structural coefficients (or linear combi-
nations of the latter) when the joint confidence set has a quadric structure in the case where the
quadratic form in the quadric (i.e., the concentration matrix) is nonsingular. The confidence sets so
obtained turn out to be as easy to compute as standard Wald-type 2SLS-based confidence intervals.
Simulation evidence on the performance of projection-based confidence sets as well as empirical
illustrations are available in Dufour and Taamouti (2004).

A. Appendix: Proofs

PROOF OF THEOREM 5.1 Consider again the decomposition A = P
′
DP as in (4.3). By (5.5),

we have, for any x0 ∈ R, x0 ∈ Cw′β ⇔x0 − w′β̃ ∈ Ca′z ,where a = Pw. Let x = x0 − w′β̃ . By
definition, x ∈ Ca′z iff there is a vector z ∈ R

G such that

z′Dz ≤ d and a′z = x . (A.1)

Further, there is a z verifying (A.1) iff the solution of the problem

min
z

z′Dz s.c. a′z = x (A.2)

verifies the constraint (A.1). If d < 0, it is clear there is no solution verifying (A.1) – for D is
positive definite – and consequently Ca′z = Cw′β = ∅. Let d ≥ 0. The Lagrangian of the problem
(A.2) is L = z′Dz+μ(x−a′z) . Since D is positive definite, the first order conditions are necessary
and sufficient. These are: 2Dz = μa and a′z = x, hence μ = 2x/(a′D−1a) , z = x/(a′D−1a)
and z′Dz = μx/2 = x2/(a′D−1a). Thus

x ∈ Ca′z ⇔ x2

a′D−1a
≤ d ⇔ |x| ≤

√
d (a′D−1a) ⇔ |x0 − w′β̃ | ≤

√
d (a′D−1a) .

On noting that a′D−1a = w′A−1w, this entails that the confidence set for w′β is given by (5.6).

PROOF OF THEOREM 5.2 As in the proof of Proposition 5.1, let us consider again the decompo-
sition (4.3), the equivalence x0 ∈ Cw′β ⇔ x0 − w′β̃ ∈ Ca′z , and set x = x0 − w′β̃ and a = Pw .
Now, x ∈ Ca′z iff there is a value of z ∈ R

G such that

a′z = a1z1 + · · · + aG−1zG−1 + aGzG = x , (A.3)

9



z′Dz = λ1z
2
1 + · · · + λG−1z

2
G−1 − |λG|z2

G ≤ d , (A.4)

where (without loss of generality) we assume that λG is the negative eigenvalue. Let a(G) =
(a1, a2, . . . , aG−1)′, z(G) = (z1, z2, . . . , zG−1)′, and D(G) = diag(λ1, λ2, . . . , λG−1)′.

If aG = 0, then a(G) 	= 0 (because w 	= 0 entails a 	= 0), and w′A−1w = a′D−1a > 0. In this
case, for any x ∈ R, we can choose z such that a1z1 + · · · + aG−1zG−1 = x and zG is sufficiently
large to ensure that (A.4) holds. Hence Ca′z = R and Cw′β = R .

We will now suppose that aG 	= 0. Then, the conditions (A.3) - (A.4) are equivalent to:

zG = (x − a′(G)z(G))/aG , (A.5)

|λG|
(

x − a′(G)z(G)

aG

)2

≥ −d + z′(G)D(G)z(G) , (A.6)

where the latter inequality can also be written as[
|λG| s2

(G) − a2
G(z′(G)D(G)z(G))

]
− 2|λG|s(G)x +

[
|λG|x2 + da2

G

]
≥ 0 (A.7)

where s(G) = a′(G)z(G). Since (A.5) always allows one to obtain (A.3) once the vector z(G) is
given, a necessary and sufficient condition for x ∈ Ca′z is the existence of a vector z(G) which
satisfies inequality (A.7). Further, such a vector z(G) does exist iff we can find a value s such
that the supremum (with respect to z(G)) of the left-hand side of (A.7) subject to the restriction
a′(G)z(G) = s is larger than zero. Consequently, we consider the problem:

min
z(G)

z′(G)D(G)z(G) s.c. a′(G)z(G) = s (A.8)

where s is some real number. Since D(G) is positive definite, the first order conditions are necessary
and sufficient to characterize a solution of (A.8). The Lagrangian for this problem is given by
L = z′(G)D(G)z(G)−μ(a′(G)z(G)−s) and the corresponding first order conditions are: 2D(G)z(G) =
μa(G) and a′(G)z(G) = s , hence

μ =
2s

a′(G)D
−1
(G)a(G)

, z(G) =
s

a′(G)D
−1
(G)a(G)

D−1
(G)a(G) , z′(G)D(G)z(G) =

s2

a′(G)D
−1
(G)a(G)

where a′(G)D
−1
(G)a(G) > 0. Substituting the solution of (A.8) into (A.7), we get:

q s2 − (2|λG|x)s +
(
|λG|x2 + da2

G

)
≥ 0 (A.9)

where q = |λG| −
[
a2

G/a′(G)D
−1
(G)a(G)

]
= δG(w′A−1w) and δG ≡ |λG|/a′(G)D

−1
(G)a(G) > 0. Thus,

x ∈ Ca′z iff there is a value of s such that (A.9) holds. The discriminant of this second degree
equation is: Δ = 4λ2

Gx2 − 4q
(
|λG|x2 + da2

G

)
= 4δGa2

G

[
x2 − d(w′A−1w)

]
.

We will now consider in turn each possible case for the signs of w′A−1w and d .
(1) If w′A−1w > 0, then q > 0 and, for any x, we can find a (sufficiently large) value of s such that
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(A.9) will hold. Consequently, Ca′z = Cw′β = R . Thus, w′A−1w > 0 entails Ca′z = Cw′β = R ,
irrespective of the value of aG (the case aG = 0 was considered at the beginning of the proof).
(2) If w′A−1w < 0 and d < 0, then q < 0 and (A.9) has a (real) solution iff Δ ≥ 0 or, equivalently,
x2 ≥ d (w′A−1w) > 0 . Consequently,

Ca′z =
]
−∞ , −

√
d (w′A−1w)

]
∪

[√
d (w′A−1w), +∞

[
, (A.10)

Cw′β =
]
−∞ , w′β̃ −

√
d (w′A−1w)

]
∪

[
w′β̃ +

√
d (w′A−1w), +∞

[
. (A.11)

(3) If w′A−1w = 0 and d < 0, (A.9) can be satisfied for any x 	= 0, hence Ca′z = R\{0} and
Cw′β = R\{w′β̃}. (4) Finally, if d ≥ 0, (A.9) is satisfied for any x (on taking s = 0), and we have
Ca′z = Cw′β = R. All possible cases have been covered.

PROOF OF THEOREM 5.3 We need to show that Ca′z = R. To see this, let λi1 and λi2 be the two
negative eigenvalues of the matrix A, and (without loss of generality) suppose a1 	= 0. For any real
x, we will show that x ∈ Ca′z , which entails that Cw′β = Ca′z = R.

If λi1 or λi2 is associated with z1 (say it is λi1), we can set the components of z such that:
(1) z1 =

(
x − ai2zi2

)
/a1 ; (2) zi = 0, for i > 1, i 	= i2 ; (3) λ1z

2
1 + λi2z

2
i2
≤ d . Since λi1 and λi2

are negative, zi2 does exist. The vector z verifies (4.4) and a′z = x, hence x ∈ Ca′z.
If none of λi1 and λi2 is associated with z1, we can set z so that: (1) z1 = x/a1 ; (2) zi = 0, for

i 	= i1, i 	= i2 and i > 1 ; (3) λi1z
2
i1

+ λi2z
2
i2
≤ d − λ1 (x/a1)2 and ai1zi1 + ai2zi2 = 0 . Since λi1

and λi2 are negative, appropriate values of zi1 and zi2 always exist, hence x ∈ Ca′z.
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