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C.P. 6128 succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
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We study a general family of Anderson–Rubin-type procedures, allowing for arbitrary collinearity

among the instruments and endogenous variables. Using finite-sample distributional theory, we show

that the proposed procedures, besides being robust to weak instruments, are also robust to the

exclusion of relevant instruments and to the distribution of endogenous regressors. A solution to the

problem of computing linear projections from general possibly singular quadric surfaces is derived

and used to build finite-sample confidence sets for individual structural parameters. The importance

of robustness to excluded instruments is studied by simulation. Applications to the trade-growth

relationship and to education returns are presented.
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1. Introduction

Models where different values of the parameter vector may lead to observationally
equivalent data distributions are quite widespread in statistics and econometrics. Further,
inference on such models often lead to complex problems, even when ‘‘identifying
restrictions’’ are imposed.1 A context where these difficulties have been extensively
explored is the one of simultaneous equations or instrumental variable (IV) regressions
when the instruments are poorly correlated with endogenous explanatory variables and,
more generally, when structural parameters are close to not being identifiable. The
literature on so-called ‘‘weak instruments’’ problems is now considerable.2

In view of these difficulties, a basic problem is to develop procedures that are robust to

weak instruments. Other features we shall also consider here is robustness to the exclusion
of possibly relevant instruments (robustness to missing instruments), and more generally
robustness to the distribution of explanatory endogenous variables (robustness to

endogenous explanatory variable distribution).3 We view all these features as important
because it is typically difficult to know whether a set of instruments is globally weak or
whether relevant instruments have been excluded (which seems highly likely in most
practical situations).
In such contexts, it is particularly important that tests and confidence sets be based on

properly pivotal (or boundedly pivotal) functions, as well as to study inference procedures
from a finite-sample perspective. This suggests that confidence sets should be built by
inverting likelihood ratio (LR) and Lagrange multiplier (LM) type statistics, as opposed to
the more usual method which consists in inverting Wald-type statistics (such as asymptotic
t-ratios); see Dufour (1997).
We focus here on extensions of the procedure originally proposed by Anderson and

Rubin (1949, henceforth AR). There are two basic reasons for that. First, it is completely
robust to weak instruments. Second, it is one of the few procedures for which a truly finite-
sample distributional theory has been supplied under standard parametric assumptions
(error Gaussianity, instrument strict exogeneity), which is based on the classical linear
model. In view of the non-uniformity of large-sample approximations, we view this feature
as the best starting point for the development of procedures that are robust to the presence
of weak instruments.
Other potential pivots aimed at being robust to weak instruments have recently been

suggested by Wang and Zivot (1998), Kleibergen (2002) and Moreira (2003a). These
methods are closer to being full-information methods—in the sense that they rely on a
relatively specific formulation of the model for the endogenous explanatory variables—and
1For general expositions of the theory of identification in econometrics and statistics, the reader may consult

Hsiao (1983) and Bekker et al. (1994).
2See, for example, Nelson and Startz (1990a, b), Buse (1992), Hall et al. (1996), Dufour (1997), Staiger and

Stock (1997), Wang and Zivot (1998), Zivot et al. (1998), Startz et al. (1999), Chao and Swanson (2000), Stock and

Wright (2000), Dufour and Jasiak (2001), Hahn and Hausman (2002a, b), Kleibergen (2002, 2004, 2005), Moreira

(2003a, b), Moreira and Poi (2001), Stock and Yogo (2002, 2003), Stock et al. (2002), Perron (2003), Wright (2003,

2002), Bekker and Kleibergen (2003), Hall and Peixe (2003), Forchini and Hillier (2003), Andrews et al. (2004),

Dufour and Taamouti (2004), and the reviews of Stock et al. (2002) and Dufour (2003).
3We borrow the terminology ‘‘robust to weak instruments’’ from Stock et al. (2002, p. 518). Robustness to

instrument exclusion appears to have been little discussed in the literature on weak instruments.
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thus may lead to power gains under the assumptions considered. But this will typically be
at the expense of robustness.

In this paper, we study a number of issues associated with the use of AR-type procedures
and we provide a number of extensions. More precisely, we show first that AR-type tests
and confidence sets enjoy remarkably strong robustness properties because they allow one
to produce valid inference in finite samples despite the presence of weak instruments,
missing relevant instruments, and indeed irrespective of the data generating process (DGP)
which determines the behavior of the endogenous explanatory variables in the structural
equation of interest. In contrast, alternative procedures that exploit more specific models
for the latter variables are much more fragile.

Second, we study a theoretical setup broader than the one under which finite-sample
validity of AR tests is usually derived, and we propose an extended class of AR-type
procedures based on a general class of auxiliary instruments. Arbitrary collinearity among
the instruments and model endogenous variables is allowed, and the auxiliary instruments
may not include all the exogenous variables which determine the endogenous explanatory
variables. Accounting relations and singular covariance matrices between model
disturbances are included as special cases of this setup. The extended AR procedure deals
in a transparent way with situations where the exogenous variables and the instruments
may be linearly dependent (as can happen easily if the latter contain dummy variables),
without reparametrizations that can modify the interpretation of model coefficients. This
provides a unified treatment of two basic cases of identification failure: namely, inference
in a structural model which may be underidentified as well as regressions with collinear
regressors.4

Third, we consider the problem of building tests and confidence sets for individual
parameters and, more generally, for linear transformations of structural parameters.
A central feature of models where parameters may fail to be identified is parametric non-

separability: in general, individual coefficients may not be empirically meaningful without
information on other parameters in the model (which may be viewed as nuisance

parameters). Reliable informative inference on certain model coefficients may not be
feasible, but inference on parameter vectors can often be achieved. This suggests a
‘‘joint’’ approach where we start with inference on vectors of model parameters and then
see what can be inferred on individual coefficients.

To produce inference on transformations of model parameters, we consider the
projection technique described in Dufour (1990, 1997), Wang and Zivot (1998), Dufour
and Jasiak (2001) and Dufour and Taamouti (2005). This technique produces exact
confidence sets in the sense that the probability of covering the true parameter value is at
least as large as the stated level (in accordance with the standard definition of Lehmann
1986, Sections 3.1 and 3.5).5 Exploiting the fact that AR confidence sets can be represented
4Multicollinearity is one of the most basic form of identification failure, which has led to the classical theory of

estimable functions. For further discussion, see Magnus and Neudecker (1991, Chapter 13) and Scheffé (1959,

Chapters 1–2).
5This problem was also considered by Choi and Phillips (1992), Stock and Wright (2000) and Kleibergen (2004).

While Choi and Phillips (1992) did not propose an operational method for dealing with the problem, the methods

considered by Stock and Wright (2000) and Kleibergen (2004) rely on the assumption that the structural

parameters not involved in the restrictions are well identified and rely on large-sample approximations (which

become invalid when the identification assumptions made do not hold). Consequently they are not robust to weak

instruments. For these reasons, we shall focus here on the projection approach.
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by quadric surfaces, we showed in Dufour and Taamouti (2004) that projection-based
confidence sets for linear transformations of model coefficients can be easily obtained in
the special case where the quadratic part of the quadric involves a full-rank matrix (the
concentration matrix). Here, we extend this result by giving a completely general closed-
form solution to the problem of building projection-based confidence sets for linear
combinations of parameters when the joint confidence set belongs to the quadric class. In
particular, this solution applies to the generalized AR-type confidence sets introduced
above (where the concentration matrix can easily be singular) and leads to confidence sets
which are as easy to compute as standard two-stage least squares (2SLS) confidence
intervals. The solution of this mathematical problem may also be of independent interest.

Fourth, we show that the confidence sets obtained in this way enjoy another important
property, namely simultaneity in the sense discussed by Miller (1981) and Dufour (1989).
More precisely, projection-based confidence sets (or confidence intervals) can be viewed as
Scheffé-type simultaneous confidence sets—which are widely used in analysis of variance—
so that the probability that any number of the confidence statements made (for different
functions of the parameter vector) hold jointly is controlled.

Fifth, we show that when the projection-based confidence intervals are bounded, they
may be interpreted as confidence intervals based on k-class estimators (for a discussion of
k-class estimators, see Davidson and MacKinnon, 1993, p. 649) where the ‘‘standard
error’’ is corrected in a way that depends on the level of the test.

Sixth, in order to illustrate the projection approach, we present two empirical
applications. In the first one, we study the relationship between standards of living and
openness in the context of an equation previously considered by Frankel and Romer
(1999). The second application deals with the famous problem of measuring returns to
education using the model and data considered by Angrist and Krueger (1995) and Bound
et al. (1995).
The paper is organized as follows. The problem of robustness to excluded instruments

and the endogenous regressor model is discussed in Section 2. We describe the general
setup that we consider and the corresponding generalized AR procedures in Section 3. The
general closed-form solution to the problem of building projection-based confidence sets
from a general quadric confidence set is presented in Section 4. The relation between
projection-based confidence sets, Scheffé confidence intervals and k-class estimators is
discussed in Section 5. In Section 6, we report the results of our Monte Carlo simulations,
while Section 7 presents the empirical applications. We conclude in Section 8.

2. Robustness to missing instruments and endogenous regressor model

Let us consider first the following common simultaneous equation framework, which
has been the basis of many recent papers on inference in models with possibly weak
instruments (see Dufour, 2003; Stock et al., 2002):

y ¼ Ybþ X 1gþ u, (1)

Y ¼ X 1P1 þ X 2P2 þ V , (2)

where y and Y are T � 1 and T � G matrices of endogenous variables ðGX1Þ, X 1 and X 2

are T � k1 and T � k2 matrices of exogenous variables, b and g are G � 1 and k1 � 1
vectors of unknown coefficients, P1 and P2 are k1 � G and k2 � G matrices of unknown
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coefficients, u ¼ ðu1; . . . ; uT Þ
0 is a vector of structural disturbances, and V ¼ ½V 1; . . . ;VT �

0

is a T � G matrix of disturbances. Further, in order to allow for a finite-sample
distributional theory, we suppose that:

X ¼ ½X 1;X 2� is a full-column rank T � k matrix, where k ¼ k1 þ k2, (3)

u and X are independent, (4)

u�N½0;s2uIT �. (5)

We consider the problem of building tests and confidence sets on b and g. Anderson and
Rubin (1949) test for the hypothesis H0 : b ¼ b0 in Eq. (1) involves considering the
transformed equation

y� Yb0 ¼ X 1D1 þ X 2D2 þ �, (6)

where D1 ¼ gþP1ðb� b0Þ, D2 ¼ P2ðb� b0Þ and � ¼ uþ V ðb� b0Þ. H0 can then be
assessed by testing H

0

0 : D2 ¼ 0 using the standard F-statistic for H00 (denoted ARðb0ÞÞ.
Under H0, we have: ARðb0Þ�F ðk2;T � kÞ. This distributional result holds irrespective of
the rank of the matrix P2, which means that tests based on ARðb0Þ are robust to weak

instruments.
In model (1)–(2), the ‘‘identifying’’ instruments X 2 that are excluded from the structural

equation (1) may be quite uncertain. In particular, we may wonder what happens if
instruments are ‘‘left out’’ of the analysis. A way to look at this problem consists in
considering a situation where Y depends on a third set of instruments X 3 which are not
used within the inference

Y ¼ X 1P1 þ X 2P2 þ X 3P3 þ V , (7)

where X 3 is a T � k3 matrix of explanatory variables (not necessarily strictly exogenous).
In particular, X 3 may include any variable that could be viewed as independent of the
structural disturbance u in (1), and could be unobservable.6 We view this situation as
important because, in practice, it is quite rare that one can consider all the relevant
instruments that could be used. In other words, Eq. (2) is replaced by (7), but inference
proceeds as if (2) were the actual equation.

Under the generating process (DGP) represented by (1) and (7), the variable y� Yb0
used as the dependent variable by the AR procedure satisfies the equation

y� Yb0 ¼ X 1D1 þ X 2D2 þ X 3D3 þ �, (8)

where D1 ¼ gþP1ðb� b0Þ, D2 ¼ P2ðb� b0Þ, D3 ¼ P3ðb� b0Þ and � ¼ uþ V ðb� b0Þ.
Since D2 ¼ 0 and D3 ¼ 0 under H0, it is easy to see that the null distribution of ARðb0Þ is
F ðk2;T � kÞ (under assumptions (1), (3)–(5) and (7)), even if X 3 is excluded from the
regression as in (6). The finite-sample validity of the test based on ARðb0Þ is unaffected by
the fact that potentially relevant instruments are not taken into account. For this reason,
we will say it is robust to missing instruments (or instrument exclusion). Furthermore, the
distribution of X 3 is irrelevant to the null distribution of ARðb0Þ, so that X 3 does not have
to be strictly exogenous.
6Clearly, this depends on the interpretation of the structural equation (1) and its parameters, which is itself

affected by both explicit and implicit conditionings. These features are, of course, context-specific. Note also that

the rows X 3i ; i ¼ 1; . . . ;T , of X 3 may have heterogeneous distributions—in which case the observations Y i (the

rows of Y Þ would typically also be heterogeneous—and a stable relationship between Y i and X 3i need not exist.
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It is also interesting to observe that the distribution of V need not be otherwise
restricted; in particular, the vectors V 1; . . . ;V T may not follow a Gaussian distribution and
may be heteroskedastic. Even more generally, we could assume that Y obeys a general non-
linear model of the form:

Y ¼ gðX 1; X 2; X 3; V ; PÞ, (9)

where gð�Þ is a possibly unspecified non-linear function, P is an unknown parameter matrix
and V follows an arbitrary distribution. Since, under H0. both D2 and D3 in the regression
(8) must be zero, the null distribution of the AR statistic ARðb0Þ is still F ðk2;T � kÞ: it is
unaffected by the distribution of explanatory endogenous variables. We call this feature
robustness to endogenous explanatory variable distribution. It is clear that this type of
robustness includes robustness to instrument exclusion as a special case.
By contrast, any procedure which exploits the special form of model (2), entailing the

exclusion of X 3 from the variables that determine Y , will not typically enjoy the same
robustness features. For example, if relevant regressors X 3 are missing, the covariance
matrix S of Vt typically cannot be consistently estimated, and any method that relies on
this possibility will be affected. Clearly, such problems can affect the procedures recently
proposed by Wang and Zivot (1998), Kleibergen (2002) and Moreira (2003a). In Section 6,
we present simulation evidence which clearly illustrates these difficulties.

3. A generalized AR procedure

The above observations suggest that AR-type procedures may easily be adapted to deal
with a much wider array of troublesome situations than the model for which it was
originally proposed. Specifically, let us consider again the structural equation (1) where the
different symbols are defined as in (1). However, we shall make the following modified
assumptions:

0prankðX 1Þ ¼ n1pk1, (10)

X̄ 2 is a T � k̄2 matrix such that 0prankðX̄ 2Þ ¼ n2pk̄2, (11)

u j X̄�N½0;s2uðX̄ ÞIT � where X̄ ¼ ½X 1; X̄ 2�. (12)

Here (10) allows X 1 to have an arbitrary rank (compatible with its dimension), X̄ 2 is a
general ‘‘instrument matrix’’ whose rank may not be full, while (12) states that, conditional
on X̄ , the disturbances in the structural equation (1) are i.i.d. normal. Of course, (10)–(12)
cover the more usual assumptions (3)–(5) as a special case. No additional assumption on
the DGP of Y will be needed at this stage. In particular, any model of the type (2), (7) or (9)
is allowed. Further, the matrix X̄ 2 may include any subset of columns from X 1, X 2 and X 3,
as well as any other instrument (which may be weak). From the power viewpoint, the
choice of X̄ 2 may (and should) be influenced by whatever model we have in mind for Y ,
but we will see below that it is irrelevant to size control. Note also that no rank assumption
is made on Y ; in particular, the latter matrix may not have full column rank because the
variables in Y satisfy accounting identities.
Let X 1 ¼ ½X 11;X 12�; g ¼ ðg01; g

0
2Þ
0; where X 1i is a T � k1i matrix, gi is k1i � 1 vector

ði ¼ 1; 2Þ, with k11 þ k12 ¼ k1 and 0pk11pk1. By convention, we consider that a matrix is
simply not present if its number of columns is equal to zero. Consider now the problem of
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testing an hypothesis of the form: H0ðb0; g10Þ : ðb; g1Þ ¼ ðb0; g10Þ, where, by convention, this
reduces to H0 : b ¼ b0, if k11 ¼ 0. Under the null hypothesis, we have

y� Yb0 � X 11g10 ¼ X 12g2 þ u, (13)

where g2 is a free parameter. An extension of the AR procedure is then obtained by
considering a regression of the form

y� Yb0 � X 11g10 ¼ X 11D11 þ X 12D12 þ X̄ 2D2 þ u ¼ X̄yþ u, (14)

where X̄ � ½X 1; X̄ 2� ¼ ½X 11;X 12; X̄ 2�, and then testing the restrictions Hn

0ðb0; g10Þ : D11 ¼ 0
and D2 ¼ 0, under which (14) becomes equivalent to the null model (13). Again, if k11 ¼ 0,
X 11 simply drops from the left-hand side of (14), and Hn

0ðb0; g10Þ reduces to Hn

0ðb0Þ :
D2 ¼ 0.

A Fisher-type test may still be applied here, provided corrected degrees of freedom are
used. The Fisher statistic for testing Hn

0ðb0; g10Þ is then

ARðb0; g10; X̄ 2Þ ¼
uðb0; g10Þ

0
½MðX 12Þ �MðX̄ Þ�uðb0; g10Þ=ðn� n2Þ

uðb0; g10Þ
0MðX̄ Þuðb0; g10Þ=ðT � nÞ

, (15)

where uðb0; g10Þ � y� Yb0 � X 11g10, n2 ¼ rankðX 12Þ and n ¼ rankðX̄ Þ. For any matrix B,
MðBÞ ¼ I � PðBÞ, PðBÞ ¼ BðB0BÞ�B0 is the projection matrix on the space spanned by the
columns of B and ðB0BÞ� is any generalized inverse of B0B (MðBÞ is invariant to the choice
of generalized inverse). Under assumptions (10)–(12) and the null hypothesis Hn

0ðb0; g10Þ,
all the conditions of the classical linear model are satisfied and we can conclude that:
ARðb0; g10; X̄ 2Þ�F ðn� n2;T � nÞ; see Dufour (1982) and Scheffé (1959, Sections 2.5–2.6).
The only features of the distribution which are affected by rank deficiencies are the degrees
of freedom. Note that n� n2prankð½X 11; X̄ 2�Þ, where a strict inequality is possible. Further
the distribution and the rank of the Y matrix are irrelevant.

Further, a confidence set with level 1� a for the vector ðb0; g01Þ
0 can be obtained by

inverting the statistic ARðb0; g10; X̄ 2Þ:

Cðb;g1ÞðaÞ ¼ fðb
0
0; g
0
10Þ
0 : ARðb0; g10; X̄ 2ÞpFaðn� n2;T � nÞg

¼ fðb00; g
0
10Þ
0 : ðb00; g

0
10ÞAðb

0
0; g
0
10Þ
0
þ b0ðb00; g

0
10Þ
0
þ cp0g, ð16Þ

where A ¼ ½Y ;X 11�
0H½Y ;X 11�, H ¼MðX 12Þ � kða; n� n2;T � nÞMðX̄ Þ, b ¼ �2½Y ;X 11�

0

Hy, c ¼ y0Hy; kða, n1; n2Þ ¼ 1þ ðn1=n2ÞFaðn1; n2Þ, and Faðn1; n2Þ is the 1� a quantile of
F ðn1; n2Þ. We call A the concentration matrix at level a (or the a-concentration matrix)
associated with ðb0; g01Þ

0. The quadratic-linear form in (16) defines a quadric surface (see Shilov,
1961, Chapter 11; Pettofrezzo and Marcoantonio, 1970, Chapters 9–10). In the special case
where ðb0; g01Þ

0 reduces to a single parameter (i.e., G ¼ 1 and k11 ¼ 0), the set Cðb;g1ÞðaÞ has a
closed-form solution involving a quadratic inequality: CbðaÞ ¼ fb0 : ab20 þ bb0 þ cp0g,
where a, b and c are simple functions of the data and thecritical value. The set CbðaÞ can
be viewed as an extension of the quadratic forms described in Dufour and Jasiak (2001) and
Zivot et al. (1998).
4. Projection-based confidence sets for scalar linear transformations

We will now consider the problem of building a projection-based confidence set for a
scalar linear transformation gðyÞ ¼ w0y, where w is a non-zero p� 1 vector, from a
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confidence set defined by a general quadric form:

Cy ¼ fy0 : y
0
0Ay0 þ b0y0 þ cp0g, (17)

where A is a symmetric p� p matrix (possibly singular), b is a p� 1 vector, and c is a real
scalar. By definition, the associated projection-based confidence set for w0y is

Cw0y � g½Cy� ¼ fd0 : d0 ¼ w0y0 where y00Ay0 þ b0y0 þ cp0g. (18)

Since wa0, we can assume without loss of generality that the first component of w

(denoted w1Þ is different from zero. It will be convenient to consider a non-singular
transformation of y

d ¼
d1
d2

" #
¼

w0y

R2y

" #
¼ Ry; R ¼

w0

R2

" #
¼

w1 w02

0 Ip�1

 !
, (19)

where w0 ¼ ½w1;w02� and R2 ¼ ½0; Ip�1� is a (p� 1Þ � p matrix. If y ¼ ðy1; y2; . . . ; ypÞ
0, it is

clear from this notation that d2 ¼ ðy2; . . . ; ypÞ
0. We study the problem of building a

confidence set for d1.
The quadric form which defines Cy in (17) may be written

y0Ayþ b0yþ c ¼ d0Ādþ b̄
0
dþ c � Q̄ðdÞ, (20)

where Ā ¼ ðR�1Þ0AR�1, b̄ ¼ ðR�1Þ0b, so that

Cw0y ¼ Cd1 ¼ fd1 : d ¼ ðd1; d
0
2Þ
0 satisfies Q̄ðdÞp0g. (21)

On partitioning A, Ā and b̄ conformably with d ¼ ðd1; d
0
2Þ
0, we have

A ¼
a11 A021

A21 A22

 !
; Ā ¼

ā11 Ā
0

21

Ā21 Ā22

 !
; b̄ ¼

b̄1

b̄2

 !
, (22)

where Ā22 has dimension ðp� 1Þ � ðp� 1Þ and, by convention, we set Ā ¼ ½ā11� and b ¼

½b̄1� when p ¼ 1. It is easy to see that: ā11 ¼ a11=w2
1, Ā21 ¼ ½w1A21 � a11w2�=w2

1,

Ā22 ¼
1

w2
1

½a11w2w02 � w1A21w02 � w1w2A021 þ w2
1A22�; b̄ ¼

1

w1

b1

�b1w2 þ w1b2

 !
.

We can then write

Q̄ðdÞ ¼ ā11d
2
1 þ b̄1d1 þ cþ d02Ā22d2 þ ½2Ā21d1 þ b̄2�

0d2, (23)

where, by convention, the two last terms of (23) simply disappear when p ¼ 1. For pX1, let
r2 ¼ rankðĀ22Þ, where 0pr2pp� 1, and consider the spectral decomposition

Ā22 ¼ P2D2P
0
2; D2 ¼ diagðd1; . . . ; dp�1Þ, (24)

where d1; . . . ; dp�1 are the eigenvalues of Ā22 and P2 is an orthogonal matrix. Without loss
of generality, we can assume that

dia0 if 1pipr2,

¼ 0 if i4r2. ð25Þ

Let us also define (whenever the objects considered exist)

~d2 ¼ P02d2; ~A21 ¼ P02Ā21; ~b2 ¼ P02b̄2; D2n ¼ diagðd1; . . . ; dr2 Þ, (26)
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and denote by ~d2n, ~A21n and ~b2n the vectors obtained by taking the first r2 components of
~d2, ~A21 and ~b2 respectively

~d2n ¼ P021d2; ~A21n ¼ P021Ā21; ~b2n ¼ P021b̄2; P2 ¼ ½P21;P22�, (27)

where P21 and P22 have dimensions ðp� 1Þ � r2 and ðp� 1Þ � ðp� 1� r2Þ, respectively.
The form of the set Cw0y ¼ Cd1 is given by the following theorem:

Theorem 4.1 (Projection-based confidence sets with a possibly singular concentration

matrix). Under assumptions and notations (19)–(27), the set Cw0y takes one of the three

following forms:
(a)
 if p41 and Ā22 is positive semidefinite with Ā22a0, then

Cw0y ¼ fd1 : ~a1d
2
1 þ

~b1d1 þ ~c1p0g [ S1, (28)

where ~a1 ¼ ā11 � Ā
0

21Ā
þ

22Ā21, ~b1 ¼ b̄1 � Ā
0

21Ā
þ

22b̄2, ~c1 ¼ c� 1
4

b̄
0

2Ā
þ

22b̄2, Ā
þ

22 is the Moore–

Penrose inverse of Ā22, and

S1 ¼
; if rankðĀ22Þ ¼ p� 1;

fd1 : P022ð2Ā21d1 þ b̄2Þa0g if 1p rankðĀ22Þop� 1;

(

(b)
 if p ¼ 1 or Ā22 ¼ 0, then

Cw0y ¼ fd1 : ā11d
2
1 þ b̄1d1 þ cp0g [ S2, (29)

where

S2 ¼
; if p ¼ 1;

fd1 : 2Ā21d1 þ b̄2a0g if p41 and Ā22 ¼ 0;

(

(c)
 if p41 and Ā22 is not positive semidefinite, then Cw0y ¼ R.
The proof of this theorem is given in Appendix. In all the cases covered by the latter
theorem the joint confidence set Cy is unbounded if A is singular. However, we can see
from Theorem 4.1 that confidence intervals for some parameters (or linear transformations
of yÞ can be bounded. This depends on the values of the coefficients of the second-order
polynomials in (28) and (29). Specifically, it is easy to see that the quadratic set ~Cw0y ¼

fd1 : ~a1d
2
1 þ

~b1d1 þ ~c1p0g in (28) can take several basic forms; for convenience, the latter
are summarized in Table 1. Of course, a similar result holds for the quadratic set in (29).

The results in this paper generalize those provided in Dufour and Taamouti (2004) by
allowing A to have an arbitrary rank. In (16), A is almost surely singular when X 11 does
not have full column rank or when identities hold between the variables in Y . Other
cases are, of course, possible. When A is positive definite, the confidence interval in (28)
reduces to

Cw0y ¼ w0 ~y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðw0A�1wÞ

q
;w0 ~yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðw0A�1wÞ

q� �
, (30)

where ~y ¼ �1
2

A�1b, and d ¼ 1
4

b0A�1b� cX0 (if do0, Cw0y is empty).
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Table 1

Alternative forms of confidence set ~Cw0y ¼ fd1 : ~a1d
2
1 þ

~b1d1 þ ~c1p0g, ~D1 � ~b
2

1 � 4 ~a1 ~c1

~Cw0y ¼

� ~b1 �
ffiffiffiffiffiffi
~D1

p
2 ~a1

;
� ~b1 þ

ffiffiffiffiffiffi
~D1

p
2 ~a1

" #
if ~a140 and ~D1X0;

�
�1;

� ~b1þ
ffiffiffiffi
~D1

p

2 ~a1

�
[
� ~b1�

ffiffiffiffi
~D1

p

2 ~a1
;1

� �
if ~a1o0 and ~D1X0;

� �1;�~c1= ~b1� if ~a1 ¼ 0 and ~b140;

½�~c1= ~b1;1½ if ~a1 ¼ 0 and ~b1o0;

R if ð ~a1o0 and ~D1o0Þ

or ð ~a1 ¼ ~b1 ¼ 0 and ~c1p0Þ;

; if ð ~a140 and ~D1o0Þ

or ð ~a1 ¼ ~b1 ¼ 0 and ~c140Þ:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:
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5. Scheffé confidence intervals, k-class estimators, and projections

It is interesting to note the relationship of the above results with Scheffé-type confidence
sets in the context of model (1)–(2). The confidence set for b is based on the F-test of
H0 : D2 ¼ P2ðb� b0Þ ¼ 0 in the regression equation

y� Yb0 ¼ X 1D1 þ X 2D2 þ �.

Following Scheffé (1959), this F-test is equivalent to the test which does not reject H0 when all
hypotheses of the form H0ðaÞ : a0D2 ¼ 0 are not rejected by the criterion jtðaÞj4SðaÞ, for all
k2 � 1 non-zero vectors a, where tðaÞ is the t-statistic for H0ðaÞ and SðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 F aðk2;T � kÞ

p
;

see also Savin (1984). Since a0D2 ¼ w0ðb� b0Þ where w ¼ P02a, this entails that no hypothesis of
the form H00ðwÞ : w0b ¼ w00b, is rejected. The projection-based confidence set for w0b can be
viewed as a Scheffé-type simultaneous confidence interval for w0b.
When the eigenvalues of the matrix A are positive and the projection-based confidence

set for w0b is bounded, it is interesting to note that the form of this confidence set (see (30))
is similar to the standard form: ½b̂� ŝzðaÞ; b̂þ ŝzðaÞ�. Since b ¼ w0b, the corresponding
estimator of b is ~b ¼ �ð1=2ÞA�1b. The estimated variance of the estimator should be a
scalar (say ŝ2Þ times the matrix A�1, ŝ2A�1, and since the confidence interval has level
greater than or equal to 1� a,

ffiffiffi
d
p

=ŝ should correspond to a quantile of an order greater
than or equal to 1� a of the statistic jðw0 ~b� w0bÞ=½ŝ2ðw0A�1wÞ�1=2j. Replacing A and b by
their expressions, the estimator ~b may be written: ~b ¼ ðY 0HY Þ�1Y 0Hy, which can be
interpreted as the IV estimator obtained by taking HY as the instrument for Y . If
rankðP2Þ ¼ G and the following usual assumptions hold,

X 0X

T
;

X 0u

T
;

X 0V

T

� �
�!
p

T!1
ðQXX ; 0; 0Þ;

X 0uffiffiffiffi
T
p �!

L

T!1
N½0;s2uQXX �, (31)

we see easily that ~b is asymptotically uncorrelated with the disturbances u and

ffiffiffiffi
T
p
ð ~b� bÞ �!

L

T!1
N 0; s2u plim

T!1

1

T
A

� ��1" #
(32)
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where

plim
T!1

1

T
A ¼ P02½QX2X2

�QX2X1
Q�1X1X1

Q0X2X1
�P2

and

QX iXj
¼ plim

T!1

1

T
X 0iX j.

On developing the expression of ~b, we may also write

~b ¼ fY 0½MðX 1Þ � ð1þ f aÞMðX Þ�Y g
�1Y 0½MðX 1Þ � ð1þ f aÞMðX Þ�y. (33)

This is the expression of the well-known Theil’s k-class estimator with k ¼ 1þ f a, and
since f a tends to 0 when T becomes large, ~b is asymptotically equivalent to the 2SLS
estimator of b (see Davidson and MacKinnon, 1993, p. 649). Hence, when P2 is of full
rank and the eigenvalues of A are positive, the projection-based confidence set for w0b may
be interpreted as a Wald-type confidence interval based on the statistic (which is
asymptotically pivotal)

~tðw0bÞ ¼ ðw0 ~b� w0bÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2uðw0A

�1wÞ

q
. (34)

6. Simulation study: the effect of instrument exclusion

In this section, we present a small study on the finite sample behavior of different tests
aimed at being robust to weak instruments when some of the relevant instruments are
omitted.7 The tests considered are the exact AR test (based on (15) with k11 ¼ 0), the
asymptotic version of this test based on the w2ðk2Þ=k2 distribution (ARS), the LR and LM
tests proposed by Wang and Zivot (1998), Kleibergen’s (2002) K-test, and the two versions
of the conditional LR test (LR1 and LR2) of Moreira (2003a). The DGP is

y ¼ Y 1b1 þ Y 2b2 þ u; ðY 1;Y 2Þ ¼ X 2P2 þ X 3dþ ðV1;V2Þ, (35)

ðut;V1t;V 2tÞ
0
�
i:i:d:

Nð0;SÞ; S ¼

1 :8 :8

:8 1 :3

:8 :3 1

0
B@

1
CA, (36)

where X 2 is a T � k2 matrix of included instruments and X 3 is a T � 1 omitted instrument
vector which is not taken into account when computing the different statistics. We took
X 3 ¼MðX 2Þ ~X 3, where the elements of X 2 and ~X 3 were generated as i.i.d. Nð0; 1Þ variables,
so that X 3 is orthogonal to X 2. Both X 2 and X 3 are kept fixed over the simulation
experiment.8 The parameters values are set at b1 ¼

1
2
, b2 ¼ 1; d ¼ lð1; 1Þ0 and l takes the

values 0, 1 or 10. The correlation coefficient r between u and V i ði ¼ 1; 2Þ is set equal to 0:8,
7The discussion paper version of this article (Dufour and Taamouti, 2005) also contains a study of the

performance of projection-based confidence sets in the setup considered, in particular how conservative such sets

are. The results indicate that, besides being the only provably valid confidence sets for individual coefficients

(when G41Þ, the projection-based confidence sets are not overly conservative and are sufficiently precise to be

useful in practice.
8In Dufour and Taamouti (2005), we also study the case where the missing instruments are regenerated at each

replication. The results are qualitatively the same.
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Table 2

Instrument exclusion and the size of tests robust to weak instruments

k2 AR ARS K LM LR LR1 LR2 AR ARS K LM LR LR1 LR2

(a) d ¼ 0 and r ¼ 0:01 (b) d ¼ 0 and r ¼ 1

2 5.4 6.2 6.2 5.4 5.9 5.9 6.2 4.8 5.0 5.0 4.6 5.0 5.0 5.0

3 4.4 4.8 5.0 3.9 3.9 5.1 5.1 5.0 6.1 6.2 2.0 2.9 6.3 6.3

4 5.1 6.0 6.6 4.5 4.2 6.0 6.1 5.4 6.0 4.9 0.6 0.8 5.1 5.4

5 3.2 3.6 4.7 2.9 1.8 3.7 3.7 5.0 5.7 5.6 0.7 0.8 5.4 5.7

10 4.9 6.5 7.8 3.9 1.7 6.3 6.9 6.6 7.7 5.5 0.0 0.0 4.7 5.7

20 3.9 7.6 7.6 2.1 0.4 7.7 8.0 4.9 8.7 5.3 0.0 0.0 5.4 5.7

40 5.6 11.8 17.7 1.0 0.4 15.9 15.1 4.5 10.5 7.7 0.0 0.0 7.1 8.2

(c) d ¼ 1 and r ¼ 0:01 (d) d ¼ 1 and r ¼ 1

2 5.0 5.4 5.4 4.8 5.4 5.4 5.4 5.4 5.8 5.8 5.4 5.7 5.7 5.8

3 5.7 6.3 8.0 5.4 6.3 6.4 7.0 4.7 5.3 5.0 1.9 2.3 4.7 4.9

4 6.2 7.3 11.6 5.7 7.1 7.2 7.4 5.5 6.5 4.9 0.8 1.3 4.8 5.0

5 5.0 5.8 14.5 3.8 5.7 6.0 6.1 5.1 6.0 4.4 0.1 0.3 4.3 4.3

10 5.1 6.1 36.5 4.1 6.3 6.6 6.1 6.0 8.4 6.3 0.0 0.0 6.5 6.9

20 3.7 7.2 57.6 2.1 9.8 10.7 7.5 5.1 8.3 6.3 0.0 0.0 6.3 6.8

40 5.9 13.3 80.2 1.0 31.8 35.5 14.4 4.9 10.8 11.2 0.0 0.0 12.0 12.6

(e) d ¼ 10 and r ¼ 0:01 (f) d ¼ 10 and r ¼ 1

2 5.2 5.6 5.6 5.2 5.6 5.6 5.6 4.4 4.9 4.9 4.1 4.8 4.8 4.9

3 3.8 4.3 10.0 3.7 4.2 4.4 4.5 4.8 5.5 4.9 2.3 4.6 5.2 5.4

4 4.8 5.5 17.2 4.1 5.1 5.8 5.9 5.4 6.2 6.6 1.0 5.4 6.5 6.6

5 6.2 6.8 28.7 5.3 6.8 7.2 7.4 5.2 6.1 7.0 0.4 5.5 6.3 6.4

10 5.2 7.6 72.4 4.2 7.9 8.4 7.7 3.6 5.1 11.5 0.0 4.4 5.5 5.3

20 6.8 10.1 95.1 3.6 13.1 14.0 10.1 5.4 8.2 42.9 0.0 10.5 12.9 9.2

40 6.0 15.7 97.7 1.2 38.7 41.9 16.7 5.8 13.2 69.6 0.0 33.5 36.9 14.5

Nominal size ¼ 0.05. Results are given in percentages.
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the variables Y 1 and Y 2 are endogenous and the IVs X 2 are necessary. The matrix P2 is
such that P2 ¼ rP=

ffiffiffiffi
T
p

, where r takes the values 0:01 or 1, and P is obtained from the
identity matrix by keeping the first k2 lines and the first G columns. The number of
instruments k2 varies from 2 to 40. The sample size is T ¼ 100. The number of replications
is N ¼ 1000 and the conditional LR critical values are computed using the same number of
replications.
For each statistic, we computed the empirical rejection probability of the null hypothesis

H0 : b ¼ b0 when b0 is the true value of the parameter. The nominal level of the tests is 5%.
Six basic cases are considered. In cases (a) and (b), we have d ¼ 0, which means that there
is no omitted instrument: this is a benchmark for comparison with other cases. In cases (c)
and (d), we have d ¼ 1, which means that there is an omitted instrument. In cases (e) and
(f), we have d ¼ 10, which means that the omitted instrument is a very relevant one. For
each value of d, we consider a design with weak identification (r ¼ 0:01Þ and a design
where identification is strong (r ¼ 1). The results are presented in Table 2.
The main observation from these results is that the sizes of the tests K, LR1 and LR2

can be seriously affected by the omission of a relevant instrument, with empirical rejection
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frequencies as high as 97% (rather than 5%). The more relevant the omitted instrument is,
the larger the distortion. The conditional LR (LR1 and LR2) tests are clearly more robust
than the K test, but sizeable size distortions are also observable. The distortion persists
even if the included instruments are relevant. On the other hand, the AR and ARS tests are
completely robust to instrument exclusion (as expected from the theory). The slight
distortion in ARS size is due to the fact that the chi-square critical value is used rather than
the Fisher critical value.

7. Empirical illustrations

In this section we illustrate the statistical inference methods discussed in the previous
sections through two empirical applications related to important issues in the
macroeconomic and labor economics literature. The first one concerns the relation
between growth and trade examined through cross-country data on a large sample of
countries, while the second one considers the widely studied problem of returns to
education.

7.1. Trade and growth

A large number of cross-country studies in the macroeconomics literature have looked
at the relationship between standards of living and openness. The recent literature includes
Irwin and Tervio (2002), Frankel and Romer (1996, 1999), Harrison (1996), Mankiw et al.
(1992) and the survey of Rodrik (1995). Despite the great effort that has been devoted to
studying this issue, there is little persuasive evidence concerning the effect of openness on
income even if many studies conclude that openness has been conductive to higher growth.

Estimating the impact of openness on income through a cross-country regression raises
two basic difficulties. The first one consists in finding an appropriate indicator of openness.
The most commonly used one is the trade share (ratio of imports or exports to GDP). The
second problem is the endogeneity of this indicator. Frankel and Romer (1999) argue that
the trade share should be viewed as an endogenous variable, and similarly for the other
indicators such as trade policies.

As a solution to this problem, Frankel and Romer (1999) proposed to use IV methods to
estimate the income-trade relationship. The equation studied is given by

yi ¼ aþ bTi þ c1Ni þ c2Ai þ ui, (37)

where yi is log income per person in country i, Ti the trade share (measured as the ratio of
imports and exports to GDP), Ni the logarithm of population, and Ai the logarithm of
country area. The trade share Ti can be viewed as endogenous, and to take this into
account, the authors used an instrument constructed on the basis of geographic
characteristics (see Frankel and Romer, 1999, Eq. (6), p. 383).

The data used include for each country the trade share in 1985, the area and population
(1985), and per capita income (1985).9 The authors focus on two samples. The first is the
full 150 countries covered by the Penn World Table, and the second sample is the
98-country sample considered by Mankiw et al. (1992). In this paper, we consider
the sample of 150 countries. For this sample, it is not clear how ‘‘weak’’ the instruments
9The data set and its sources are given in the appendix of Frankel and Romer (1999).
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are. The F-statistic of the first stage regression

Ti ¼ aþ bZi þ g1Ni þ g2Ai þ �i (38)

is about 13; see Frankel and Romer (1999, Table 2, p. 385).
To draw inference on the coefficients of structural equation (37), we can use the AR

method in two ways. First if we are interested only in the coefficient of trade share, we can
invert the AR test for H0 : b ¼ b0 to obtain a quadratic confidence set for b. On the other
hand, if we wish to build confidence sets for the other parameters of (37), we must first use
the AR test to obtain a joint confidence set for b and each one of the other parameters and
then use the projection approach to obtain confidence sets for each one of these
parameters.10 As assumed in the literature, the observations are considered to be
homoskedastic and uncorrelated but not necessarily normal, we use the asymptotic AR
test with a w2 distribution. The results are as follows:
The 95% quadratic confidence set for the coefficient of trade share b is given by

CbðaÞ ¼ fb : 0:963b2
� 4:754bþ 1:274p0g ¼ ½0:284; 4:652�. (39)

The p-value of the AR test for H0 : b ¼ 0 is 0:0244, this means a significant positive impact
of trade on income at the usual 5% level. The IV estimation of this coefficient is 1:97 with a
standard error of 0:99, yielding the confidence interval ½b̂IV � 2ŝ

b̂IV
; b̂IV þ 2ŝ

b̂IV
� ¼

½�0:01; 3:95�, which is not very different from the AR-based confidence set. In particular,
in contrast with CbðaÞ in (39), it does not exclude zero and may suggest that b is not
significantly different from zero.
The joint confidence sets obtained by applying the method developed in this paper to

each pair obtained by putting the trade share coefficient and each one of the other
coefficients in (37) are given in Table 3A. All the confidence sets are bounded, a natural
outcome since we do not have a serious problem of identification in this model. From these
confidence sets we can obtain projection-based confidence intervals for each one of the
parameters; see Table 3B. Even if zero is covered by the confidence intervals for the
openness coefficient, the intervals almost entirely consist of positive values. AR-projection-
based confidence sets are conservative so when the level of the joint confidence set is 95% it
is likely that the level of the projection is close to 98% (see the simulations in Dufour and
Taamouti, 2004), but if we compare them to those obtained from t-statistics, they are not
notably larger.

7.2. Education and earnings

The second application considers the well known problem of estimating returns to
education. Since the work of Angrist and Krueger (1991), a lot of research has been done
on this problem; see, for example, Angrist and Krueger (1995), Angrist et al. (1999), and
Bound et al. (1995). The central equation in this work is a relationship where the log
weekly earning is explained by the number of years of education and several other
covariates (age, age squared, year of birth, region,. . .). Education can be viewed as an
endogenous variable, so Angrist and Krueger (1991) proposed to use the birth quarter as
an instrument, since individuals born in the first quarter of the year start school at an older
age, and can therefore drop out after completing less schooling than individuals born near
10We cannot use the AR test to build directly confidence sets for the coefficients of the exogenous variables.
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Table 3

Confidence sets for the coefficients of the Frankel–Romer income-trade equation

A. Bivariate joint confidence sets (confidence level ¼ 95%Þ

y Joint confidence set (95%)

ðb; c1Þ
y0

1:78 �16:36

�16:36 257:85

� �
yþ �2:23; �34:50

� �
yþ 0:19p0

ðb; c2Þ
y0

3:83 �34:58

�34:58 386:87

� �
yþ �10:6; 69:17

� �
yþ 2:13p0

ðb; aÞ
y0

38:41 33:34

33:35 29:52

� �
yþ �611:55; �537:47

� �
yþ 2445:58p0

B. Projection-based individual confidence intervals (confidence level X95%Þ

Coefficient Projection-based

confidence sets

IV-based Wald-type

confidence sets

Openness ½�0:21; 6:18� ½�0:01; 3:95�
Population ½�0:01; 0:52� ½�0:01; 0:37�
Area ½�0:14; 0:49� ½�0:11; 0:29�
Constant ½2:09; 9:38� ½0:56; 9:36�
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the end of the year. Consequently, individuals born at the beginning of the year are likely
to earn less than those born during the rest of the year. Other versions of this IV regression
take as instruments interactions between the birth quarter and regional and/or birth year
dummies.

It is well documented that the instrument set used by Angrist and Krueger (1991) is weak
and explains very little of the variation in education; see Bound et al. (1995). Consequently,
standard IV-based inference is quite unreliable. We shall now apply the methods developed
in this paper to this relationship. The model considered is the following:

y ¼ b0 þ b1E þ
Xk1
i¼1

giX i þ u; E ¼ p0 þ
Xk2
i¼1

piZi þ
Xk1
i¼1

fiX i þ v,

where y is log-weekly earnings, E is the number of years of education (possibly
endogenous), X contains the exogenous covariates (age, age squared, marital status, race,
standard metropolitan statistical area (SMSA), 9 dummies for years of birth, and 8
dummies for division of birth). Z contains 30 dummies obtained by interacting the quarter
of birth with the year of birth. b1 measures the return to education. The data set consists
of the 5% public-use sample of the 1980 US census for men born between 1930 and 1939.
The sample size is 329 509 observations.

Since the instruments are likely to be weak, it appears important to use a method which
is robust to weak instruments. We consider here the AR procedure. If we were only
interested in the coefficient of education, we could compute the quadratic confidence set
for b1. But if we wish to evaluate the other coefficients, for example the age coefficient (say,
g1Þ, the only way to get a confidence interval is to compute the AR joint confidence set for
ðb1; g1Þ and then deduce by projection a confidence set for g1. Since the instruments are
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Table 4

Projection-based confidence sets for the coefficients of the exogenous covariates in the income-education equation

(size ¼ 95%)

Covariate CS for education CS for covariate Wald CS covariate

Constant ½�0:86076934; 0:77468002� ½�4:4353178; 16:836347� ½4:121; 5:600�
Age ½�0:86076841; 0:77467914� ½�0:12099477; 0:06963698� ½�0:031; 0:002�
Age squared ½�:86076865; 0:77467917� ½�0:00772368; 0:00748569� ½�0:001; 0:002�
Marital status R R ½0:234; 0:263�
SMSA R R ½0:120; 0:240�
Race R R ½�0:352;�0:173�
Year 1 ½�0:86076899; 0:77467898� ½�0:72434684; 1:1399276� ½�0:002; 0:187�
Year 2 ½�0:86076919; 0:7746792� ½�0:64290291; 1:0246588� ½0:003; 0:172�
Year 3 ½�0:86076854; 0:77467918� ½�0:51469586; 0:84369807� ½0:008; 0:154�
Year 4 ½�:86076758; 0:77467916� ½�0:4042831; 0:69265631� ½0:013; 0:141�
Year 5 ½�0:86076725; 0:77467906� ½�0:28675828; 0:52165559� ½0:015; 0:123�
Year 6 ½�0:8607684; 0:77467903� ½�0:2206811; 0:39879656� ½0:007; 0:0980�
Year 7 R R ½0:008; 0:080�
Year 8 ½�0:86768146; 0:78338792� ½�0:08312128; 0:17409244� ½0:005; 0:0581�
Year 9 ½�0:86076735; 0:77467921� ½�0:04610583; 0:1050552� ½0:005; 0:038�
Division 1 R R ½�0:150;�0:081�
Division 2 R R ½�0:094;�0:015�
Division 3 R R ½�0:048; 0:073�
Division 4 R R ½�0:153;�0:067�
Division 5 R R ½�0:205;�0:080�
Division 6 R R ½�0:265;�0:074�
Division 7 R R ½�0:161;�0:051�
Division 8 R R ½�0:111;�0:075�
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weak, we expect large, if not completely uninformative, intervals. Table 4 gives projection-
based confidence sets for the coefficients of education and different covariates. For each
covariate X i, we computed the AR joint confidence set with education (a confidence set for
ðb1; giÞ) and then project to obtain a confidence set for b1 (column 2) and a confidence set
for gi (column 3). The last column gives Wald-based confidence sets for each covariate
obtained by 2SLS estimation of the education equation. As expected many of the valid
confidence sets are unbounded while Wald-type confidence sets are always bounded but
unreliable.
For the coefficient b1 measuring returns to education, the AR-based quadratic

confidence interval of confidence level 95% is given by AR_ICaðb1Þ ¼ ½�0:86; 0:77�. It is
bounded but too large to provide relevant information on the magnitude of returns to
education. The 2SLS estimate for b1 is 0.06 with a standard error of 0.023 yielding the
Wald-type confidence interval W_ICaðb1Þ ¼ ½0:0031; 0:1167�.

8. Conclusion

In this paper, we have provided extensions of AR-type procedures based on a general
class of auxiliary instruments, for which we supplied a finite-sample distributional theory.
The new procedures allow for arbitrary collinearity among the instruments and model
endogenous variables, including the presence of accounting relations and singular
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disturbance covariance matrices. For inference on parameter transformations, we used the
projection approach to obtain finite-sample tests and closed-form confidence sets. The
confidence sets so obtained have the additional feature of being simultaneous in the sense
of Scheffé and when they take the form of a closed interval, they can be interpreted as
Wald-type confidence intervals based on k-class estimators.

We also stressed that AR-type procedures enjoy remarkable invariance (or robustness)
properties. The finite-sample distribution of AR-type test statistics is completely unaffected
by the presence of ‘‘weak instruments’’, the exclusion of relevant instruments, and the
distribution of the explanatory endogenous variables. These features can be quite
important and useful from a practical viewpoint. The robustness of AR-type procedures
and the non-robustness of alternative procedures aimed at being more robust to weak
instruments was also documented in a simulation experiment. In several cases, the
difference in reliability is spectacular.

Of course, the class of AR-type tests, especially in the generalized form introduced in
this paper, is quite large. This raises the problem of selecting instruments. Further, one
must be aware that power may decline as the number of instruments increases, especially if
they have little relevance, which suggests that the number of instruments should be kept as
small as possible. Because AR statistics are robust to the exclusion of instruments, this can
be done relatively easily. We discuss the problem of selecting optimal instruments and
reducing the number of instruments in two companion papers (Dufour and Taamouti,
2001a, b). For other results relevant to the instrument selection, the reader may consult
Cragg and Donald (1993), Hall et al. (1996), Shea (1997), Chao and Swanson (2000),
Donald and Newey (2001), Hall and Peixe (2003), Hahn and Hausman (2002a, b), and
Stock and Yogo (2002).

Finally, we think that the analytical results presented here on quadric confidence sets can
be useful in other contexts involving, for example, errors-in-variables models (see Dufour
and Jasiak, 2001), non-linear models, and dynamic models. Such extensions would go
beyond the scope of the present paper. We study such extensions in another companion
paper (Dufour and Taamouti, 2001b).
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Appendix A. Proofs
Proof of Theorem 4.1. To simplify the notation, we write Cd1 � Cw0y, as in (21). (a)
Consider first the case where p41 and Ā22 is positive semidefinite with Ā22a0. To cover
this situation, it will be convenient to distinguish between 2 subcases: (a.1) r2 ¼ p� 1; (a.2)
1pr2op� 1.
(a.1) If r2 ¼ p� 1, Ā22 is positive definite. From (23), we can write Q̄ðdÞ ¼ Q̄ðd1; d2Þ.

Then, d1 2 Cd1 iff the following condition holds: (1) if Q̄ðd1; d2Þ has a minimum with
respect to d2, the minimal value is less than or equal to zero, and (2) if Q̄ðd1; d2Þ does not
have a minimum with respect to d2, the infimum is less than zero. To check this, we
consider the problem of minimizing Q̄ðd1; d2Þ with respect to d2. The first and second order
derivatives of Q̄ with respect to d2 are

qQ̄

qd2
¼ 2Ā22d2 þ 2Ā21d1 þ b̄2 ¼ 0;

q2Q̄
qd2qd

0
2

¼ 2Ā22. (40)

Here the Hessian 2Ā22 is positive definite, so that there is a unique minimum obtained by
setting qQ̄=qd2 ¼ 0:

~d2 ¼ �1
2

Ā
�1

22 ½2Ā21d1 þ b̄2� ¼ �Ā
�1

22 Ā21d1 � 1
2

Ā
�1

22 b̄2. (41)

On setting d2 ¼ ~d2 in Q̄ðd1; d2Þ, we get (after some algebra) the minimal value: Q̄ðd1; ~d2Þ ¼

~a1d
2
1 þ

~b1d1 þ ~c1, where ~a1 ¼ ā11 � Ā
0

21Ā
�1

22 Ā21, ~b1 ¼ b̄1 � Ā
0

21Ā
�1

22 b̄2; ~c1 ¼ c� 1
4

b̄
0

2Ā
�1

22 b̄2. In

this case, we also have Ā
�1

22 ¼ Ā
þ

22, and (28) holds with S1 ¼ ;.

(a.2) If 1pr2op� 1, we get, using (23) and (25)–(27)

Q̄ðdÞ ¼ ā11d
2
1 þ b̄1d1 þ cþ ~d

0

2D2
~d2 þ ½2 ~A21d1 þ ~b2�

0 ~d2

¼ ā11d
2
1 þ b̄1d1 þ cþ ~d

0

2nD2n
~d2n þ ½2 ~A21nd1 þ ~b2n�

0 ~d2n þ ½P022ð2Ā21d1 þ b̄2Þ�
0 ~d22,

where ~d2n ¼ P021d2, ~d22 ¼ P022d2, and D2n is a positive definite matrix. We will now distinguish
between two further cases: (i) P022ð2Ā21d1 þ b̄2Þ ¼ 0, and (ii) P022ð2Ā21d1 þ b̄2Þa0.
(i)
 If P022ð2Ā21d1 þ b̄2Þ ¼ 0, Q̄ðdÞ takes the form:

Q̄ðdÞ ¼ ā11d
2
1 þ b̄1d1 þ cþ ~d

0

2nD2n
~d2n þ ½2 ~A21nd1 þ ~b2n�

0 ~d2n. (42)

By an argument similar to the one used for (a.1), we can see that: d1 2 Cd1 iff

~a1d
2
1 þ

~b1d1 þ ~c1p0, where ~a1 ¼ ā11 � Ā
0

21nD�12n Ā21n, ~b1 ¼ b̄1 � Ā
0

21n D�12n b̄2n, ~c1 ¼ c�
1
4

b̄
0

2nD�12n b̄2n. Further, since Ā22 ¼ P2D2P
0
2, the Moore–Penrose inverse of Ā22 is (see

Harville, 1997, Chapter 20):

Ā
þ

22 ¼ P2

D�12n 0

0 0

" #
P02 ¼ ½P21;P22�

D�12n 0

0 0

" #
½P21;P22�

0 ¼ P21D
�1
2n P021, (43)

hence Ā
0

21nD�12n Ā21n ¼ Ā
0

21P21D�12n P021Ā21 ¼ Ā
0

21Ā
þ

22Ā21, Ā
0

21nD�12n b̄2n ¼ Ā
0

21P21D�12n P021b̄2 ¼

Ā
0

21Ā
þ

22b̄2, b̄
0

2nD�12n b̄2n ¼ b̄
0

2P21D�12n P021b̄2 ¼ b̄
0

2Ā
þ

22b̄2.

(ii)
 If P022ð2Ā21d1 þ b̄2Þa0, then for any value of d1 we can choose ~d22 so that Q̄ðd1; d2Þo0,

which entails that d1 2 Cd1 . Putting together the conclusions drawn in (i) and (ii)
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above, we see that

Cd1 ¼ fd1 : P022ð2Ā21d1 þ b̄2Þ ¼ 0 and

~a1d
2
1 þ

~b1d1 þ ~c1p0g [ fd1 : P022ð2Ā21d1 þ b̄2Þa0g

¼ fd1 : ~a1d
2
1 þ

~b1d1 þ ~c1p0g [ fd1 : P022ð2Ā21d1 þ b̄2Þa0g ð44Þ

and (28) holds with S1 ¼ fd1 : P022ð2Ā21d1 þ b̄2Þa0g. This completes the proof of part
(a) of the theorem.
(b) If p ¼ 1 or Ā22 ¼ 0, we can write: Q̄ðd1; d2Þ ¼ ā11d
2
1 þ b̄1d1 þ cþ ½2Ā21d1 þ b̄2�

0d2,
where we set Ā21 ¼ b̄2 ¼ 0 when p ¼ 1. If 2Ā21d1 þ b̄2 ¼ 0, we see immediately that: d1 2
Cd1 iff ā11d

2
1 þ b̄1d1 þ cp0. Of course, this obtains automatically when p ¼ 1. If

2Ā21d1 þ b̄2a0, we can choose d2 so that Q̄ðd1; d2Þo0, irrespective of the value of d1.
Part (b) of the theorem follows on putting together these two observations.

(c) If p41 and Ā22 is not positive semidefinite, this entails that Ā22a0, and we can find a
vector d20 such that d020Ā22d20 � q0o0. Now, for any scalar D0, we have

Q̄ðd1;D0d20Þ ¼ ā11d
2
1 þ b̄1d1 þ cþ D2

0q0 þ D0½2Ā21d1 þ b̄2�
0d20. (45)

Since q0o0, we can choose D0 sufficiently large to have Q̄ðd1;D0d20Þo0, irrespective of the
value of d1. This entails that all values of d1 belong to Cd1 , hence Cd1 ¼ R. &
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