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dress: Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West,
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‡ Member, CREST-ENSAE (Centre de recherche en économie et statistique) and Associate Professor, University

Paris 1. Mailing address: CREST PARIS, Timbre J310, 15 Boulevard Gabriel Péri, 92254 MALAKOFF CEDEX, France.

TEL.: 33 1 41175131; FAX: 33 1 41176480. e-mail: trognon@ensae.fr . Web page: www.crest.fr/component/
§ CREST-ENSAI - Campus de Ker-Lann, Rue Blaise Pascal - BP 37203, 35712 BRUZ cedex, France. TEL.: 33 (0)2

99 05 32 63; FAX: 33 (0)2 99 05 32 05. e-mail: purevdorj.tuvaandorj@ensai.fr .



ABSTRACT

We study the invariance properties of various test criteria which have been proposed for hypothesis

testing in the context of incompletely specified models, such as models which are formulated in

terms of estimating functions (Godambe, 1960, Ann. Math. Stat.) or moment conditions and are es-

timated by generalized method of moments (GMM) procedures (Hansen, 1982, Econometrica), and

models estimated by pseudo-likelihood (Gouriéroux, Monfort and Trognon, 1984, Econometrica)

and M-estimation methods. The invariance properties considered include invariance to (possibly

nonlinear) hypothesis reformulations and reparameterizations. The test statistics examined include

Wald-type, LR-type, LM-type, score-type, and C(α)−type criteria. Extending the approach used

in Dagenais and Dufour (1991, Econometrica), we show first that all these test statistics except the

Wald-type ones are invariant to equivalent hypothesis reformulations (under usual regularity con-

ditions), but all five of them are not generally invariant to model reparameterizations, including

measurement unit changes in nonlinear models. In other words, testing two equivalent hypothe-

ses in the context of equivalent models may lead to completely different inferences. For example,

this may occur after an apparently innocuous rescaling of some model variables. Then, in view

of avoiding such undesirable properties, we study restrictions that can be imposed on the objective

functions used for pseudo-likelihood (or M-estimation) as well as the structure of the test criteria

used with estimating functions and GMM procedures to obtain invariant tests. In particular, we

show that using linear exponential pseudo-likelihood functions allows one to obtain invariant score-

type and C(α)−type test criteria, while in the context of estimating function (or GMM) procedures

it is possible to modify a LR-type statistic proposed by Newey and West (1987, Int. Econ. Rev.) to

obtain a test statistic that is invariant to general reparameterizations. The invariance associated with

linear exponential pseudo-likelihood functions is interpreted as a strong argument for using such

pseudo-likelihood functions in empirical work.

Key words: Testing; Invariance; Hypothesis reformulation; Reparameterization; Measurement

unit; Estimating function; Generalized method of moment (GMM); Pseudo-likelihood; M-

estimator; Linear exponential model; Nonlinear model; Wald test; Likelihood ratio test; score test;

Lagrange multiplier test; C(α) test
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1. Introduction

Model and hypothesis formulation in econometrics and statistics typically involve a number of ar-

bitrary choices, such as the labelling of i.i.d. observations or the selection of measurement units.

Further, in hypothesis testing, these choices often do not affect the interpretation of the null and

the alternative hypotheses. When this is the case, it appears desirable that statistical inference re-

main invariant to such choices; see Hotelling (1936), Pitman (1939), Lehmann (1983, Chapter 3),

Lehmann (1986, Chapter 6) and Ferguson (1967). Among other things, when the way a null hypoth-

esis is written has no particular interest or when the parameterization of a model is largely arbitrary,

it is natural to require that the results of test procedures do not depend on such choices. This holds,

for example, for standard t and F tests in linear regressions under linear hypothesis reformulations

and reparameterizations. In nonlinear models, however, the situation is more complex.

It is well known that Wald-type tests are not invariant to equivalent hypothesis reformulations

and reparameterizations; see Cox and Hinkley (1974, p. 302), Burguete, Gallant and Souza (1982, p.

185), Gregory and Veall (1985), Vaeth (1985), Lafontaine and White (1986), Breusch and Schmidt

(1988), Phillips and Park (1988), and Dagenais and Dufour (1991). For general possibly nonlinear

likelihood models (which are treated as correctly specified), we showed in previous work [Dagenais

and Dufour (1991, 1992), Dufour and Dagenais (1992)] that very few test procedures are invariant

to general hypothesis reformulations and reparameterizations. The invariant procedures essentially

reduce to likelihood ratio (LR) tests and certain variants of score [or Lagrange multiplier (LM)]

tests where the information matrix is estimated with either an exact formula for the (expected) in-

formation matrix or an outer product form evaluated at the restricted maximum likelihood (ML)

estimator. In particular, score tests are not invariant to reparameterizations when the information

matrix is estimated using the Hessian matrix of the log-likelihood function evaluated at the re-

stricted ML estimator. Further, C(α) tests are not generally invariant to reparameterizations unless

special equivariance properties are imposed on the restricted estimators used to implement them.

Among other things, this means that measurement unit changes with no incidence on the null hy-

pothesis tested may induce dramatic changes in the conclusions obtained from the tests and suggests

that invariant test procedures should play a privileged role in statistical inference.

In this paper, we study the invariance properties of various test criteria which have been pro-

posed for hypothesis testing in the context of incompletely specified models, such as models which

are formulated in terms of estimating functions [Godambe (1960)] – or moment conditions – and

are estimated by generalized method of moments (GMM) procedures [Hansen (1982)], and models

estimated by M-estimation [Huber (1981)] or pseudo-likelihood methods [Gouriéroux, Monfort and

Trognon (1984b, 1984c), Gouriéroux and Monfort (1993)]. For general discussions of inference in

such models, the reader may consult White (1982), Newey (1985), Gallant (1987), Newey and West

(1987), Gallant and White (1988), Gouriéroux and Monfort (1989, 1995), Godambe (1991), David-

son and MacKinnon (1993), Newey and McFadden (1994), Hall (1999) and Mátyás (1999); for

studies of the performance of some test procedures based on GMM estimators, see also Burnside

and Eichenbaum (1996) and Podivinsky (1999).

The invariance properties we consider include invariance to (possibly nonlinear) hypothesis re-

formulations and reparameterizations. The test statistics examined include Wald-type, LR-type,
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LM-type, score-type, and C(α)-type criteria. Extending the approach used in Dagenais and Dufour

(1991) and Dufour and Dagenais (1992) for likelihood models, we show first that all these test statis-

tics except the Wald-type ones are invariant to equivalent hypothesis reformulations (under usual

regularity conditions), but all five of them are not generally invariant to model reparameterizations,

including measurement unit changes in nonlinear models. In other words, testing two equivalent

hypotheses in the context of equivalent models may lead to completely different inferences. For ex-

ample, this may occur after an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we study restrictions that can be imposed on the

objective functions used for pseudo-likelihood (or M-estimation) as well as the structure of the test

criteria used with estimating functions and GMM procedures to obtain invariant tests. In particular,

we show that using linear exponential pseudo-likelihood functions allows one to obtain invariant

score-type and C(α)-type test criteria, while in the context of estimating function (or GMM) pro-

cedures it is possible to modify a LR-type statistic proposed by Newey and West (1987) to obtain

a test statistic that is invariant to general reparameterizations. The invariance associated with linear

exponential pseudo-likelihood functions can be viewed as a strong argument for using such pseudo-

likelihood functions in empirical work. Of course, the fact that Wald-type tests are not invariant to

both hypothesis reformulations and reparameterizations is by itself a strong argument to avoid using

this type of procedure (when they are not equivalent to other procedures) and suggest as well that

Wald-type tests can be quite unreliable in finite samples; for further arguments going in the same

direction, see Burnside and Eichenbaum (1996), Dufour (1997), and Dufour and Jasiak (2001).

In Section 2, we describe the general setup considered, while the test statistics studied are de-

fined in Section 3. The invariance properties of the available test statistics are studied in Section 4.

In Section 5, we make suggestions for obtaining tests that are invariant to general hypothesis refor-

mulations and reparameterizations. Numerical illustrations of the invariance (and noninvariance)

properties discussed are provided in Section 6. We conclude in Section 8. The regularity conditions

under which distributional results for test statistics are obtained appear in Appendix.

2. Framework

We consider an inference problem about a parameter of interest θ ∈Θ ⊆R
p. This parameter appears

in a model which is not fully specified. In order to identify θ , we assume there exist a m×1 vector

score-type function Dn (θ ; Zn) where Zn = [z1,z2, . . . ,zn]
′
is a n× k stochastic matrix such that

Dn (θ ; Zn)
p−→

n→∞
D∞ (θ ; θ 0) . (2.1)

D∞ (· ; θ 0) is a mapping from Θ onto R
m such that:

D∞ (θ ; θ 0) = 0 ⇐⇒ θ = θ 0 (2.2)

so the value of θ is uniquely determined by D∞ (θ ; θ 0) . Furthermore, we assume:

√
nDn (θ 0; Zn)

L−→
n→∞

N [0, I (θ 0)] (2.3)

2



Hn (θ 0; Zn) =
∂Dn (θ 0; Zn)

∂θ ′
p−→

n→∞
J (θ 0) (2.4)

where I (θ 0) and J (θ 0) are m×m and m× p full-column rank matrices.

Typically, such a model is estimated by minimizing with respect to θ an expression of the form

Mn(θ) = Dn (θ ; Zn)
′
Wn Dn (θ ; Zn) (2.5)

where Wn is a symmetric positive definite matrix. The method of estimating functions [Durbin

(1960), Godambe (1960, 1991), Basawa, Godambe and Taylor (1997)], the generalized method

of moments [Hansen (1982), Hall (2004)], maximum likelihood, pseudo-maximum likelihood, M-

estimation and instrumental variable methods may all be cast in this setup. Under general regularity

conditions, the estimator θ̂ n so obtained has a normal asymptotic distribution:

√
n(θ̂ n −θ 0)

L−→
n→∞

N [0,Σ (W0)] (2.6)

where

Σ (W0) =
(
J′0W0J0

)−1
J′0W0I0W0J0

(
J′0W0J0

)−1
, (2.7)

J0 = J (θ 0) , I0 = I (θ 0) , W0 = plim
n→∞

Wn ,det(W0) 6= 0; see Gouriéroux and Monfort (1995, Ch.

9). Note also that “asymptotic estimation efficiency” arguments suggest one to use Wn = I−1
n as

weighting matrix, where In is consistent estimator of I0.1

If we assume that the number of equations is equal to the number of parameters (m = p) , a

general method for estimating θ also consists in finding an estimator θ̂ n which satisfies the equation

Dn(θ̂ n; Zn) = 0 . (2.8)

Typically, in such cases, Dn (θ ; Zn) is the derivative of an objective function Sn(θ ; Zn), which is

maximized (or minimized) to obtain θ̂ n, so that

Dn (θ ; Zn) =
∂Sn (θ ; Zn)

∂θ
, Hn (θ ; Zn) =

∂ 2Sn (θ ; Zn)

∂θ∂θ ′ . (2.9)

In this case,
√

n(θ̂ n −θ 0) is asymptotically normal with zero mean and asymptotic variance

ΣD (θ 0) =
[
J (θ 0)

′
I (θ 0)

−1
J (θ 0)

]−1
=
(
J ′

0 I−1
0 J0

)−1
. (2.10)

Obviously, condition (2.8) is entailed by the minimization of Mn (θ) when m = p. It is also inter-

esting to note that problems with m > p can be reduced to cases with m = p through an appropriate

redefinition of the score-type function Dn (θ ; Zn) , so that the characterization (2.8) also covers most

1This “optimal” choice may be infeasible (or far from “efficient”) in finite samples when I0 (or In) is not invertible or

“ill-conditioned” (close to non-invertibility). For this reason, we consider here the general formulation in (2.5), though

the weighting matrix I−1
n is allowed as a special case. Note also that “efficiency” from the estimation viewpoint is not in

general equivalent to efficiency from the testing viewpoint (in terms of power), so it is not clear Wn = I−1
n is an optimal

choice for the purpose of hypothesis testing.

3



classical asymptotic estimation methods. A typical list of methods is the following.

a) Maximum likelihood. In this case, the model is fully specified with log-likelihood function

Ln (θ ; Zn) and score function

Dn (θ ; Zn) =
1

n

∂Ln (θ ; Zn)

∂θ
. (2.11)

b) Generalized method of moments (GMM). θ is identified through a m×1 vector of conditions of

the form: E [ht (θ ; zt)] = 0 , t = 1, . . . ,n . Then one considers the sample analogue of this mean,

hn (θ) =
1

n

n

∑
t=1

ht (θ ; zt) , (2.12)

and the quadratic form

Mn (θ) = hn (θ)′Wnhn (θ) (2.13)

where Wn is a symmetric positive definite matrix. In this case, the score-type function is:

Dn (θ ; Zn) = 2
∂hn (θ)′

∂θ
Wnhn (θ) . (2.14)

c) M-estimator. θ̂ n is defined by minimizing (or maximizing) an objective function M̄n of the form:

M̄n (θ ; Zn) =
1

n

n

∑
t=1

ξ (θ ; zt) . (2.15)

The score function has the following form:

Dn (θ ; Zn) =
∂M̄n (θ ; Zn)

∂θ
=

1

n

n

∑
t=1

∂ξ (θ ; zt)

∂θ
. (2.16)

3. Test statistics

Consider now the problem of testing

H0 : ψ (θ) = 0 (3.1)

where ψ (θ) is a p1 ×1 continuously differentiable function of θ , 1 ≤ p1 ≤ p and the p1 × p matrix

P(θ) =
∂ψ
∂θ ′ (3.2)

has full row rank (at least in an open neighborhood of θ 0). Let θ̂ n be the unrestricted estimator

obtained by minimizing Mn (θ), and θ̂ 0

n the corresponding constrained estimator under H0.
At this stage, it is not necessary to specify closely the way the matrices I (θ 0) and J (θ 0) are

estimated. We will denote by Î0 and Ĵ0 or by Î and Ĵ the corresponding estimated matrices depending

4



on whether they are obtained with or without the restriction ψ (θ) = 0. In particular, if

Dn (θ ; Zn) =
1

n

n

∑
t=1

ht (θ ; zt) , (3.3)

standard definitions of Î (θ) and Ĵ (θ) would be

Î (θ) =
1

n

n

∑
t=1

ht (θ ; zt)ht (θ ; zt)
′ , Ĵ (θ) =

∂Dn (θ)

∂θ ′ = Hn (θ ; Zn) , (3.4)

where θ can be replaced by an appropriate estimator. For M-estimators, we have ht (θ ; zt) =
∂ξ (θ ; zt)

∂θ
the derivative of the (pseudo-)likelihood associated with an individual observation.

For Î (θ), other estimators are also widely used. Here, we shall consider general estimators of

the form

Î (θ) =
n

∑
s=1

n

∑
t=1

wst(n)hs (θ ; zs) ht (θ ; zt)
′ = h(θ ; Zn)WI(n)h(θ ; Zn)

′
(3.5)

where WI(n) =
[
wst(n)

]
is a n × n matrix of weights (which depend of the sample size n and,

possibly, on the data) and

h(θ ; Zn) =
[
h1 (θ ; z1) , h2 (θ ; z2) , . . . , hn (θ ; zn)

]
. (3.6)

For example, a “mean corrected” version of Î (θ) may be obtained on taking WI(n) = 1
n
(In− 1

n
ιnι ′n),

where In is the identity matrix of order n and ιn = (1, 1, . . . , 1)′, which yields

Î (θ) =
1

n

n

∑
t=1

[
ht (θ ; zt)−h(θ)

][
ht (θ ; zt)−h(θ)

]′
(3.7)

where h(θ) = 1
n

n

∑
t=1

ht (θ ; zt) . Similarly, so-called “heteroskedasticity-autocorrelation consistent

(HAC)” covariance matrix estimators can usually be rewritten in the form (3.5). In most cases,

such estimators are defined by a formula of the type:

Î (θ) =
n−1

∑
j=−n+1

k̄ ( j/Bn) Γ̂ ( j, θ) (3.8)

where k̄ (·) is a kernel function, Bn is a bandwidth parameter (which depends on the sample size

and, possibly, on the data), and

Γ̂ ( j, θ) =





1
n

n

∑
t= j+1

ht (θ ; zt)ht− j (θ ; zt− j)
′ , if j ≥ 0 ,

1
n

n

∑
t=− j+1

ht+ j (θ ; zt+ j)ht (θ ; zt)
′ , if j < 0 .

(3.9)
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For further discussion of such estimators, the reader may consult Newey and West (1987), Andrews

(1991), Andrews and Monahan (1992), Hansen (1992), and Cushing and McGarvey (1999).

In this context, analogues of the Wald, LM, score and C (α) test statistics can be shown to

have asymptotic null distributions without nuisance parameters, namely χ2 (p1) distributions. On

assuming that the referenced inverse matrices do exist, these test criteria can be defined as follows:

(a) the Wald-type statistic,

W (ψ) = nψ(θ̂ n)
′[P̂
(
Ĵ ′Î−1Ĵ

)−1
P̂ ′ ]−1ψ(θ̂ n) (3.10)

where P̂ = P(θ̂ n), Î = Î(θ̂ n) and Ĵ = Ĵ(θ̂ n);
(b) the score-type statistic,

S (ψ) = nDn(θ̂
0

n; Zn)
′Î−1

0 Ĵ0

(
Ĵ ′

0 Î−1
0 Ĵ0

)−1
Ĵ ′

0 Î−1
0 Dn(θ̂

0

n; Zn) (3.11)

where Î0 = Î(θ̂ 0

n) and Ĵ0 = Ĵ(θ̂ 0

n);
(c) the Lagrange-multiplier-type (LM-type) statistic,

LM (ψ) = n λ̂
′
n P̂0

(
Ĵ ′

0 Î−1
0 Ĵ0

)−1
P̂ ′

0 λ̂ n (3.12)

where P̂0 = P(θ̂ 0

n) and λ̂ n is the Lagrange multiplier in the corresponding constrained optimization

problem;

(d) the C (α)-type statistic,

PC(θ̃ 0

n; ψ) = nDn

(
θ̃ 0

n; Zn

)′
W̃0 Dn

(
θ̃ 0

n; Zn

)
(3.13)

where θ̃ 0

n is any root-n consistent estimator of θ that satisfies ψ(θ̃ 0

n) = 0, and

W̃0 ≡ Ĩ−1
0 J̃0

(
J̃ ′

0 Ĩ−1
0 J̃0

)−1
P̃ ′

0

[
P̃0

(
J̃ ′

0 Ĩ−1
0 J̃0

)−1
P̃ ′

0

]−1
P̃0

(
J̃ ′

0 Ĩ−1
0 J̃0

)−1
J̃ ′

0 Ĩ−1
0

with P̃0 = P(θ̃ 0

n), Ĩ0 = Î(θ̃ 0

n) and J̃0 = Ĵ(θ̃ 0

n).
The above Wald-type and score-type statistics were discussed by Newey and West (1987) in the

context of GMM estimation, and for pseudo-maximum likelihood estimation by Trognon (1984).

The C (α)-type statistic is given by Davidson and MacKinnon (1993, p. 619). Of course, LR-type

statistics based on the difference of the maxima of the objective function Sn (θ ; Zn) have also been

considered in such contexts:

LR(ψ) = Sn

(
θ̂ n; Zn

)
−Sn

(
θ̂ 0

n; Zn

)
. (3.14)

It is well known that, in general, this difference is distributed as a mixture of independent chi-square

with coefficients depending upon nuisance parameters [see, for example, Trognon (1984) and Vuong

(1989)]. Nevertheless, there is one “LR-type” test statistic whose distribution is asymptotically
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pivotal with a chi-square distribution, namely the D statistic suggested by Newey and West (1987):

DNW (ψ) = n
[
Mn

(
θ̂ 0

n; Ĩ0

)
−Mn

(
θ̂ n; Ĩ0

)]
(3.15)

where

Mn

(
θ ; Ĩ0

)
= Dn (θ ; Zn)

′
Ĩ−1
0 Dn (θ ; Zn) , (3.16)

Ĩ0 is a consistent estimator of I (θ 0), θ̂ n minimizes Mn(θ ; Ĩ0) without restriction and θ̂ 0

n minimizes

Mn(θ ; Ĩ0) under the restriction ψ (θ) = 0. Note, however, that this “LR-type” statistic is more accu-

rately viewed as a score-type statistic: if Dn is the derivative of some other objective function (e.g.,

a log-likelihood function), the latter is not used as the objective function but replaced by a quadratic

function of the “score” Dn.
Using the constrained minimization condition,

Hn

(
θ̂ 0

n; Zn

)′
Ĩ−1
0 Dn

(
θ̂ 0

n; Zn

)
= P

(
θ̂ 0

n

)′λ̂ n , (3.17)

we see that

S (ψ) = LM (ψ) , (3.18)

i.e., the score and LM statistics are identical in the present circumstances. Further, it is interesting

to observe that the score, LM and C (α)-type statistics given above may all be viewed as special

cases of a more general C (α)-type statistic obtained by considering the generalized “score-type”

function:

s
(
θ̃ 0

n,Wn

)
=
√

nQ̃ [Wn]Dn

(
θ̃ 0

n; Zn

)
(3.19)

where θ̃ 0

n is consistent restricted estimate of θ 0 such that ψ(θ̃ 0

n) = 0 and
√

n(θ̃ 0

n −θ 0) is asymptot-

ically bounded in probability,

Q̃ [Wn] ≡ P̃0(J̃
′
0Wn J̃0)

−1J̃ ′
0Wn , (3.20)

P̃0 = P
(
θ̃ 0

n

)
, J̃0 = Ĵ

(
θ̃ 0

n

)
, and Wn is a symmetric positive definite (possibly random) m×m matrix

such that

plim
n→∞

Wn = W0 , det(W0) 6= 0. (3.21)

Under standard regularity conditions [see Appendix A], we have:

s
(
θ̃ 0

n; Zn

) L−→
n→∞

N
[
0,Q(θ 0) I (θ 0)Q(θ 0)

′]
(3.22)

where

Q(θ 0) = plim
n→∞

Q̃ [Wn] = P(θ 0)
[
J (θ 0)

′
W0J (θ 0)

]−1
J (θ 0)

′
W0 (3.23)

and rank [Q(θ 0)] = p1. This suggests the following generalized C (α) criterion:

PC
(
θ̃ 0

n; ψ,Wn

)
= nDn

(
θ̃ 0

n; Zn

)′
Q̃ [Wn]

′{
Q̃ [Wn] Ĩ0Q̃ [Wn]

′}−1
Q̃ [Wn]Dn

(
θ̃ 0

n; Zn

)
(3.24)

where Ĩ0 = Î(θ̃ 0

n) . Under general regularity conditions, the asymptotic distribution of PC
(
θ̃ 0

n; ψ,Wn

)
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is χ2 (p1) under H0.
2 It is clear that PC(θ̃ 0

n; ψ ,Wn) includes as special cases various other C(α)-type

statistics proposed in the statistical and econometric literatures.3 On taking Wn = Ĩ−1
0 , as suggested

by efficiency arguments, PC(θ̃ 0

n; ψ,Wn) reduces to PC(θ̃ 0

n; ψ) in (3.13). When the number of equa-

tions equals the number of parameters (m = p) , we have Q̃ [Wn] = P̃0J̃−1
0 and PC(θ̃ 0

n; ψ,Wn) does

not depend on the choice of Wn:

PC(θ̃ 0

n; ψ,Wn) = PC
(
θ̃ 0

n; ψ
)

= Dn

(
θ̃ 0

n; Zn

)′
(J̃−1

0 )′P̃′
0

[
P̃0

(
J̃′0Ĩ−1

0 J̃0

)−1
P̃′

0

]−1
P̃0J̃−1

0 Dn

(
θ̃ 0

n; Zn

)
.

In particular, this will be the case if Dn (θ ; Zn) is the derivative vector of a (pseudo) log-likelihood

function. Finally, for m ≥ p, when θ̃ 0

n is obtained by minimizing Mn (θ) = Dn (θ ; Zn)
′
Ĩ−1
0 Dn (θ ; Zn)

subject to ψ (θ) = 0, we can write θ̃ 0

n ≡ θ̂ 0

n and PC
(
θ̃ 0

n; ψ,Wn

)
is identical to the score (or LM)-type

statistic suggested by Newey and West (1987). Since the statistic PC
(
θ̃ 0

n; ψ,Wn

)
is quite compre-

hensive, it will be convenient for establishing general invariance results.

4. Invariance

Following Dagenais and Dufour (1991), we will consider two types of invariance properties: (1)

invariance with respect to the formulation of the null hypothesis, and (2) invariance with respect to

reparameterizations.

4.1. Hypothesis reformulation

Let

Θ0 = {θ ∈Θ | ψ (θ) = 0} (4.1)

and Ψ be the set of differentiable functions ψ̄ : Θ → R
m such that

{θ ∈Θ | ψ̄ (θ) = 0} = Θ0 . (4.2)

A test statistic is invariant with respect to Ψ if it is the same for all ψ ∈Ψ . It is obvious the LR-type

statistics LR(ψ) and DNW (ψ) (when applicable) are invariant to such hypothesis reformulations

because the optimal values of the objective function (restricted or unrestricted) do not depend on

the way the restrictions are written. Now, a reformulation does not affect Î, Ĵ, Î0 and Ĵ0. The same

holds for Ĩ0 and J̃0 provided the restricted estimator θ̃ 0

n used with C (α) tests does not depend on

which function ψ ∈Ψ is used to obtain it. However, P̂, λ̂ n and ψ
(
θ̂ n

)
change. Following Dagenais

2A rigorous proof of the latter assertion appears in Dufour, Trognon and Tuvaandorj (2015). See also earlier versions

of this paper [Dufour, Trognon and Tuvaandorj (2013a)].
3For further discussion of C(α) tests, the reader may consult Basawa (1985), Ronchetti (1987), Smith (1987), Berger

and Wallenstein (1989), Dagenais and Dufour (1991), Davidson and MacKinnon (1991, 1993) and Kocherlakota and

Kocherlakota (1991)
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and Dufour (1991), if ψ̄ ∈Ψ , we have:

P̄(θ) =
∂ψ̄
∂θ ′ = P̄1 (θ)G(θ) , P(θ) =

∂ψ
∂θ ′ = P1 (θ)G(θ) , (4.3)

where P̄1 and P1 are two p1 × p1 invertible functions and G(θ) is a p1 × p full row-rank matrix.

Since P̄0′
1 λ̄ n = P̂0′

1 λ̂ n where P̄0
1 = P̄1(θ̂

0

n), P̂
0
1 = P1(θ̂

0

n) and λ̄ n is the Lagrange multiplier associated

with ψ̄, we deduce that all the statistics, except the Wald-type statistics, are invariant with respect

to a reformulation. This leads to the following proposition.

Proposition 4.1 INVARIANCE TO HYPOTHESIS REFORMULATIONS. Let Ψ be a family of

p1 × 1 continuously differentiable functions of θ such that
∂ψ
∂θ ′ has full row rank when ψ (θ) =

0 (1 ≤ p1 ≤ p) , and

ψ (θ) = 0 ⇐⇒ ψ̄ (θ) = 0,∀ψ , ψ̄ ∈Ψ . (4.4)

Then, T (ψ) = T (ψ̄) where T stands for any one of the test statistics S (ψ) , LM (ψ) , PC(θ̃ 0

n; ψ),

LR(ψ) , DNW (ψ) and PC(θ̃ 0

n; ψ,Wn) defined in (3.11) - (3.15) and (3.24).

Note that the invariance of the S (ψ) , LM (ψ) , LR(ψ) and DNW (ψ) statistics to hypothesis

reformulations has been pointed out by Gouriéroux and Monfort (1989) for mixed-form hypotheses.

4.2. Reparameterization

Let ḡ be a one-to-one differentiable transformation from Θ ⊆R
p to Θ∗ ⊆R

p : θ ∗ = ḡ(θ) . ḡ repre-

sents a reparameterization of the parameter vector θ to a new one θ ∗. The latter is often determined

by a one-to-one transformation of the data Zn∗ = g(Zn) , as occurs for example when variables are

rescaled (measurement unit changes). But it may also represent a reparameterization without any

variable transformation. Let k = ḡ−1 be the inverse function associated with ḡ :

k (θ ∗) = ḡ−1 (θ ∗) = θ . (4.5)

Set

Ḡ(θ) =
∂ ḡ′

∂θ
and K (θ ∗) =

∂k

∂θ ′
∗

. (4.6)

Since k [ḡ(θ)] = θ and ḡ [k (θ ∗)] = θ ∗, we have by the chain rule of differentiation:

K [ḡ(θ)] Ḡ(θ) = Ip and Ḡ [k (θ ∗)]K (θ ∗) = Ip , ∀θ ∗ ∈Θ∗ , ∀θ ∈Θ . (4.7)

Let

ψ∗ (θ ∗) = ψ
[
ḡ−1 (θ ∗)

]
. (4.8)

Clearly,

ψ∗ (θ ∗) = 0 ⇔ ψ (θ) = 0 , (4.9)
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and H∗
0 : ψ∗ (θ ∗) = 0 is an equivalent reformulation of H0 : ψ (θ) = 0 in terms of θ ∗. We shall

call ψ∗ (θ ∗) = 0 the canonical reformulation of ψ (θ) = 0 in terms of θ ∗. Other (possibly more

“natural”) reformulations are of course possible, but the latter has the convenient property that

ψ∗ (θ ∗) = ψ (θ) . If a test statistic is invariant to reparameterizations when the null hypothesis is

reformulated as ψ∗ (θ ∗) = 0, we will say it is canonically invariant.

By the invariance property of Proposition 4.1, it will be sufficient for our purpose to study

invariance to reparameterizations for any given reformulation of the null hypothesis in terms of θ ∗.
From the above definition of ψ∗ (θ ∗) , it follows that

P∗ (θ ∗) ≡
∂ψ∗

∂θ ′
∗

=
∂ψ
∂θ ′

∂θ
∂θ ′

∗
= P [k (θ ∗)]K (θ ∗) = P(θ)K [ḡ(θ)] . (4.10)

We need to make an assumption on the way the score-type function Dn (θ ; Zn) changes under

a given reparameterization. We will consider two cases. The first one consists in assuming that

Dn (θ ; Zn) =
n

∑
t=1

ht (θ ; zt)/n as in (3.3) where the values of the scores are unaffected by the repa-

rameterization, but are simply reexpressed in terms of θ ∗ and zt∗ (invariant scores):

ht (θ ∗; zt∗) = ht (θ ; zt) , t = 1, . . . ,n , (4.11)

where Zn∗ = g(Zn) and θ ∗ = ḡ(θ) . The second one is the one where Dn (θ ; Zn) can be interpreted

as the derivative of an objective function.

Under condition (4.11), we see easily that

Hn∗ (θ ∗; Zn∗) =
∂Dn∗ (θ ∗; Zn∗)

∂θ ′
∗

= Hn (θ ; Zn)K (θ ∗) = Hn (θ ; Zn)K [ḡ(θ)] . (4.12)

Further the functions Î (θ) and Ĵ (θ) in (3.4) are then transformed in the following way :

Î∗ (θ ∗) = Î (θ) , Ĵ∗ (θ ∗) = Ĵ (θ)K [ḡ(θ)] . (4.13)

If Î (θ) and Ĵ (θ) are defined as in (3.4), Wn∗ = Wn and θ̃ 0

n is equivariant with respect to ḡ

[i.e., θ̃ 0

n∗ = ḡ
(
θ̃ 0

n

)
], it is easy to check that the generalized C (α) statistic defined in (3.24) is invari-

ant to the reparameterization θ ∗ = ḡ(θ) . This suggests the following general sufficient condition

for the invariance of C (α) statistics.

Proposition 4.2 C(α) CANONICAL INVARIANCE TO REPARAMETERIZATIONS: INVARIANT

SCORE CASE. Let ψ∗ (θ ∗) = ψ
[
ḡ−1 (θ ∗)

]
, and suppose the following conditions hold :

(a) θ̃ 0

n∗ = ḡ(θ̃ 0

n),

(b) Dn∗(θ̃
0

n∗; Zn∗) = Dn(θ̃
0

n; Zn) ,

(c) Ĩ0∗ = Ĩ0 and J̃0∗ = J̃0K̃,

(d) Wn∗ = Wn,
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where Ĩ0, J̃0 and Wn are defined as in (3.24), and K̃ = K(θ̃ 0

n∗) is invertible. Then

PC∗(θ̃
0

n∗; ψ∗,Wn∗) ≡ nD̃′
n∗Q̃′

0∗
(
Q̃′

0∗Ĩ0∗Q̃0∗
)−1

Q̃0∗D̃n∗ = PC(θ̃ 0

n; ψ,Wn)

where D̃n∗ = Dn∗(θ̃
0

n∗; Zn∗), Q̃0∗ = P̃0∗
(
J̃′0∗Wn∗J̃0∗

)−1
J̃′0∗Wn∗, P̃0∗ = P∗(θ̃

0

n∗) and P∗ (θ ∗) =
∂ψ∗/∂θ ′

∗ .

It is clear that the estimators θ̂ n and θ̂ 0

n satisfy the equivariance condition, i.e., θ̂ n∗ = ḡ
(
θ̂ n

)

and θ̂ 0

n∗ = ḡ
(
θ̂ 0

n

)
. Consequently, the above invariance result also applies to score (or LM) statistics.

It is also interesting to observe that W∗ (ψ∗) = W (ψ) . This holds, however, only for the special

reformulation ψ∗ (θ ∗) = ψ
[
ḡ−1 (θ ∗)

]
= 0, not for all equivalent reformulations ψ∗ (θ ∗) = 0. On

applying Proposition 4.1, this type of invariance holds for the other test statistics. These observations

are summarized in the following proposition.

Theorem 4.3 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL HYPOTHESIS RE-

FORMULATIONS: INVARIANT SCORE CASE. Let ψ∗ : Θ∗ →Θ be any continuously differentiable

function of θ ∗ ∈Θ∗ such that ψ∗ (ḡ(θ)) = 0 ⇔ ψ (θ) = 0, let m = p and suppose

(a) Dn∗ (ḡ(θ) ; Zn∗) = Dn (θ ; Zn) ,

(b) Î∗ [ḡ(θ)] = Î (θ) and Ĵ∗ [ḡ(θ)] = Ĵ (θ)K [ḡ(θ)] ,

where K (θ ∗) = ∂ ḡ−1 (θ ∗)/∂θ ′
∗ . Then, provided the relevant matrices are invertible, we have

T (ψ) = T∗ (ψ∗) (4.14)

where T stands for any one of the test statistics S (ψ) , LM (ψ) , LR(ψ) and DNW (ψ) . If θ̂ 0

n∗ =

ḡ(θ̂ 0

n) , we also have

PC∗(θ̃
0

n∗; ψ∗) = PC(θ̃ 0

n; ψ) . (4.15)

If ψ∗ (θ) = ψ
[
ḡ−1 (θ)

]
, the Wald statistic is invariant : W∗ (ψ∗) = W (ψ) .

Cases where (4.12) holds only have limited interest because they do not cover problems where

Dn is the derivative of an objective function, as occurs for example when M-estimators or (pseudo)

maximum likelihood methods are used :

Dn (θ ; Zn) =
∂Sn (θ ; Zn)

∂θ
. (4.16)

In such cases, one would typically have :

Sn∗ (θ ∗; Zn∗) = Sn (θ ; Zn)+κ (Zn∗)

where κ (Zn∗) may be a function of the Jacobian of the transformation Zn∗ = g(Zn) . To deal with

such cases, we thus assume that m = p, and

Dn∗ (θ ∗; Zn∗) = K (θ ∗)
′
Dn (θ ; Zn) = K [ḡ(θ)]′ Dn (θ ; Zn) . (4.17)
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From (2.3) and (4.17), it then follows that

√
nDn∗ (θ 0∗; Zn∗)

L−→
n→∞

N [0, I∗ (θ 0∗)] (4.18)

where θ 0∗ = ḡ(θ 0) and

I∗ (θ ∗) = K (θ ∗)
′
I [k (θ ∗)]K (θ ∗) = K [ḡ(θ)]′ I (θ)K [ḡ(θ)] . (4.19)

Further,

Hn∗ (θ ∗; Zn) = K [ḡ(θ)]′ Hn (θ ; Zn)K [ḡ(θ)]+
p

∑
i=1

Dni (θ ; Zn)K
(1)
i· [ḡ(θ)] (4.20)

where Dni (θ ; Zn) , i = 1, ... , p, are the coordinates of Dn (θ ; Zn) and

K
(1)
i· (θ ∗) =

∂ 2θ i

∂θ ∗∂θ ′
∗
(θ ∗) =

∂ 2ki

∂θ ∗∂θ ′
∗
(θ ∗) . (4.21)

By a set of arguments analogous to those used in Dagenais and Dufour (1991), it appears that all

the statistics [except the LR-type statistic] are based upon Hn and so they are sensitive to a repa-

rameterization, unless some specific estimator of J is used. At this level of generality, the following

results can be presented using the following notations : Î, Ĵ, P̂ are the estimated matrices for a pa-

rameterization in θ and Î∗, Ĵ∗, P̂∗ are the estimated matrices for a parameterization in θ ∗. The first

proposition below provides an auxiliary result on the invariance of generalized C(α) statistics for

the canonical reformulation ψ∗ (θ ∗) = 0, while the following one provides the invariance property

for all the statistics considered and general equivalent reparameterizations and hypothesis reformu-

lations.

Proposition 4.4 C(α) CANONICAL INVARIANCE TO REPARAMETERIZATIONS. Let ψ∗ (θ ∗) =
ψ
[
ḡ−1 (θ ∗)

]
, and suppose the following conditions hold:

(a) θ̃ 0

n∗ = ḡ(θ̃ 0

n) ,

(b) Dn∗(θ̃
0

n∗; Zn∗) = K
[
θ̃ 0

n∗
]′

D(θ̃ 0

n; Zn) ,

(c) Ĩ0∗ = K̃′Ĩ0K̃, J̃0∗ = K̃′J̃0K̃ ,

(d) Wn∗ = K̃−1Wn

(
K̃−1

)′
,

where Ĩ0, J̃0 and Wn are defined as in (3.24), and K̃ = K(θ̃ 0

n∗). Then, provided the relevant matrices

are invertible,

PC∗(θ̃
0

n∗; ψ∗,Wn∗) = PC(θ̃ 0

n; ψ,Wn) .

Theorem 4.5 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL EQUIVALENT HY-

POTHESIS REFORMULATIONS. Let ψ∗ : Θ∗ → Θ be any continuously differentiable function of

θ ∗ ∈Θ∗ such that ψ∗ [ḡ(θ)] = 0 ⇔ ψ (θ) = 0, let m = p and suppose :

(a) Dn∗ (ḡ(θ) ; Zn∗) = K [ḡ(θ)]′ Dn (θ ; Zn) ,

(b) Î∗ [ḡ(θ)] = K [ḡ(θ)]′ Î (θ)K [ḡ(θ)] ,
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(c) Ĵ∗ [ḡ(θ)] = K [ḡ(θ)]′ Ĵ (θ)K [ḡ(θ)] ,

where K (θ ∗) = ∂ ḡ−1 (θ)/∂θ ′
∗ . Then, provided the relevant matrices are invertible, we have

T (ψ) = T∗ (ψ∗) (4.22)

where T stands for any one of the test statistics S (ψ) , LM (ψ) , LR(ψ) and DNW (ψ) . If θ̃ 0

n∗ =

ḡ
(
θ̃ 0

n

)
, we also have

PC∗
(
θ̃ 0

n∗; ψ∗
)

= PC
(
θ̃ 0

n; ψ
)
, (4.23)

and, in the case where ψ∗ (θ) = ψ
[
ḡ−1 (θ)

]
,

W∗ (ψ∗) = W (ψ) .

It is of interest to note here that condition (a) and (b) of the latter theorem will be satisfied if

Dn (θ ; Zn) = 1
n ∑n

t=1 ht (θ ; zt) and each individual “score” gets transformed after reparameterization

according to the equation

ht∗
(
ḡ(θ) ; zt∗

)
= K [ḡ(θ)]′ ht (θ ; zt) , t = 1, , . . . , n, (4.24)

where Dn∗
(
ḡ(θ) ; Zn∗

)
= 1

n ∑n
t=1 ht∗

(
ḡ(θ) ; zt∗

)
. Consequently, in such a case, any estimator Î (θ) of

the general form (3.5) will satisfy (b) provided the matrix WI(n) remains invariant under reparame-

terizations. This will be the case, in particular, for most HAC estimators of the form (3.8) as soon

as the bandwidth parameter Bn only depends on the sample size n. However, this may not hold if Bn

is data-dependent [as considered in Andrews and Monahan (1992)].

Despite the apparent “positive nature” of the invariance results presented in this section, the

main conclusion is that none of the proposed test statistics is invariant to general reparameteriza-

tions, especially when the score-type function is derived from an objective function. This is due,

in particular, to the behaviour of moment (or estimating function) derivatives under nonlinear repa-

rameterizations. As shown in Dagenais and Dufour (1991), this type of problem is already apparent

in fully-specified likelihood models where LM statistics are not invariant to general reparameteri-

zations when the covariance matrix is estimated through the Hessian of the log-likelihood function

(i.e., derivatives of the score function). When the true likelihood is not available, test statistics must

be modified to control the asymptotic level of the test. Reparameterizations involve derivatives of

score-type function (or pseudo-likelihood second derivatives), even in the case of LR-type statistics

(see Theorem 4.5). In other words, the adjustments required to deal with an incompletely speci-

fied model (no likelihood function) make invariance more difficult to achieve, and building valid

invariant test procedures becomes a challenge.

5. Invariant test criteria

In this section, we propose two ways of building invariant test statistics. The first one is based

on modifying the LR-type statistics proposed by Newey and West (1987) for GMM setups, while

the second one exploits special properties of the linear exponential family in pseudo-maximum
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likelihood models.4

5.1. Modified Newey–West LR-type statistic

Consider the LR-type statistic

DNW (ψ) = n
[
Mn

(
θ̂ 0

n; Ĩ0

)
−Mn

(
θ̂ n; Ĩ0

)]

where Mn(θ ; Ĩ0) = Dn (θ ; Zn)
′
Ĩ−1
0 Dn (θ ; Zn) , proposed by Newey and West (1987, hereafter NW).

In this statistic, Ĩ0 is any consistent estimator of the covariance matrix I (θ 0) which is typically

a function of a “preliminary” estimator θ̄ n of θ : Ĩ0 = Î
(
θ̄ n

)
. The minimized value of the objec-

tive function Mn(θ ; Ĩ0) is not invariant to general reparameterizations unless special restrictions are

imposed on the covariance matrix estimator Ĩ0.
However, there is a simple way of creating the appropriate invariance as soon as the func-

tion Î (θ) is a reasonably smooth function of θ . Instead of estimating θ by minimizing Mn(θ ; Ĩ0),
estimate θ by minimizing Mn

(
θ ; Î (θ)

)
. For example, such an estimation method was studied by

Hansen, Heaton and Yaron (1996). When the score vector Dn and the parameter vector θ have the

same dimension (m = p), the unrestricted objective function will typically be zero [Dn(θ̂ n; Zn) = 0],

so the statistic reduces to DNW (ψ) = nMn(θ̂
0

n, Ĩ0). When m > p, this will typically not be the case.

Suppose now the following conditions hold :

Dn∗ (ḡ(θ) ,Zn∗) = K [ḡ(θ)]′ Dn (θ ; Zn) , (5.1)

Î∗ (ḡ(θ)) = K [ḡ(θ)]′ Î (θ)K [ḡ(θ)] . (5.2)

Then, for θ ∗ = ḡ(θ) ,

Mn∗
(
θ ∗; Î∗ (θ ∗)

)
≡ Dn∗

(
ḡ(θ) , Zn∗

)′
Î∗ (ḡ(θ))−1

Dn∗
(
ḡ(θ) ,Zn∗

)

= Dn (θ ; Zn)
′
Î (θ)−1

Dn (θ ; Zn) . (5.3)

Consequently, the unrestricted minimal value Mn(θ̂ n; Î(θ̂ n)) and the restricted one Mn(θ̂
0

n; I(θ̂ 0

n)) so

obtained will remain unchanged under the new parameterization, and the corresponding J and the

LR-type statistics, i.e.

J = nMn

(
θ̂ n; Î(θ̂ n)

)
, (5.4)

D̄(ψ) = n
[
Mn

(
θ̂ 0

n; Î(θ̂ 0

n)
)
−Mn

(
θ̂ n; Î(θ̂ n)

)]
, (5.5)

4The reader may note that further insight can be gained on the invariance properties of test statistics by using differen-

tial geometry arguments; for some applications to statistical problems, see Bates and Watts (1980), Amari (1990), Kass

and Vos (1997), and Marriott and Salmon (2000). Such arguments may allow one to propose reparameterizations and “in-

variant Wald tests”; see, for example, Bates and Watts (1981), Hougaard (1982), Le Cam (1990), Critchley, Marriott and

Salmon (1996), and Larsen and Jupp (2003) in likelihood models. As of now, such procedures tend to be quite difficult to

design and implement, and GMM setups have not been considered. Even though this is an interesting avenue for future

research, simplicity and generality considerations have led us to focus on procedures which do not require adopting a

specific parameterization.
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are invariant to reparameterizations of the type considered in (4.17) - (4.19). Under standard regular-

ity conditions stated in Appendix B on the convergence of Dn (θ ; Zn) and Î (θ) as n→∞ (continuity,

uniform convergence), it is easy to see that D̄ and DNW are asymptotically equivalent (at least under

the null hypothesis) and so have the same asymptotic χ2 (p1) distribution. The proof of this claim

is available in Dufour, Trognon and Tuvaandorj (2013b).

5.2. Pseudo-maximum likelihood methods

5.2.1. PML methods

Consider the problem of making inference on the parameter which appears in the mean of an en-

dogenous G×1 random vector yt conditional on an exogenous random vector xt :

E(yt | xt) = f (xt ; θ) ≡ ft (θ) , V (yt | xt) = Ω0(xt) (5.6)

where ft(θ) is a known function and θ is the parameter of interest. (5.6) provides a non-linear

generalized regression model with unspecified variance. Even if a likelihood function with a finite

number of parameters is not available for such a semi-parametric model, θ can be estimated through

a pseudo-maximum likelihood (PML) technique which consists in maximizing a chosen likelihood

as if it were the true undefined likelihood; see Gouriéroux, Monfort and Trognon (1984c).5 In

particular, it is shown in the latter reference that this pseudo-likelihood must belong to the specific

class of linear exponential distributions adapted for the mean. These distributions have the following

general form:

l(y; µ) = exp [A(µ)+B(y)+C(µ)y] (5.7)

where µ ∈ R
G and C(µ) is a row vector of size G. The vector µ is the mean of y if

∂A

∂ µ
+

∂C

∂ µ
µ = 0 .

Irrespective of the true data generating process, a consistent and asymptotically normal estima-

tor of θ can be obtained by maximizing

n

∏
t=1

exp
{

A
(

ft(θ)
)
+B(yt)+C

(
ft (θ)

)
yt

}
(5.8)

or equivalently through the following equivalent programme:

max
θ

n

∑
t=1

{
A
(

ft (θ)
)
+C
(

ft (θ)
)
yt

}
with

∂A

∂ µ
+

∂C

∂ µ
µ = 0 . (5.9)

The class of linear exponential distributions contains most of the classical statistical models, such

5For further discussion of such methods, the reader may consult: Gong and Samaniego (1981), Gouriéroux, Monfort

and Trognon (1984a), Trognon (1984), Bourlange and Doz (1988), Trognon and Gouriéroux (1988), Gouriéroux and

Monfort (1993), Crépon and Duguet (1997) and Jorgensen (1997).

.
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as the Gaussian model, the Poisson model, the Binomial model, the Gamma model, the negative

Binomial model, etc. The constraint in the programme (5.9) ensures that the expectation of the

linear exponential pseudo-distribution is µ . The pseudo-likelihood equations have an orthogonal

condition form:

Dn(θ) =
n

∑
t=1

∂ f ′t
∂θ

[
∂C

∂ µ
(

ft(θ)
)] (

yt − ft(θ)
)

= 0 . (5.10)

The PML estimator solution of these first order conditions is consistent and asymptotically normal

N
[
0, (J′I−1J)−1

]
, and we can write:

J (θ) = Ex

{(
∂ f ′t
∂θ

)[
∂C

∂ µ
(

ft (θ)
)](∂ f ′t

∂θ

)′}
, (5.11)

I (θ) = Ex

{(
∂ f ′t
∂θ

)[(
∂C

∂ µ
(

ft (θ)
))

Ω0

(
∂C

∂ µ
(

ft (θ)
))′](∂ f ′t

∂θ

)′}
. (5.12)

These matrices can be estimated by:

Ĵ =
1

n

n

∑
t=1

(
∂ f ′t
∂θ
(
θ̂
))[∂C

∂ µ
(

ft(θ̂)
)](∂ f ′t

∂θ
(
θ̂
))′

, (5.13)

Î =
1

n

n

∑
t=1

St

(
θ̂
)

St

(
θ̂
)′

, (5.14)

where

St

(
θ̂
)

=

(
∂ f ′t
∂θ
(
θ̂
))[∂C

∂ µ
(

ft(θ̂)
)] (

y− ft(θ̂)
)
. (5.15)

Since ∂C
∂ µ
(

ft(θ̂)
)

and yt − ft(θ̂) are invariant to reparameterizations, Î and Ĵ are modified only

through
∂ f ′t
∂θ

. Further,

f ∗t (θ ∗) = f ∗t [ḡ(θ)] = ft (θ) ,
∂ f ∗t
∂θ ′

∗
=

(
∂ f ∗t
∂θ ′

)(
∂θ
∂θ ′

∗

)
=

(
∂ ft

∂θ ′

)
K [ḡ(θ)] (5.16)

and

Î∗ = K
[
ḡ(θ̂)

]′
ÎK
[
ḡ(θ̂)

]
, Ĵ∗ = K

[
ḡ(θ̂)

]′
ĴK
[
ḡ(θ̂)

]
. (5.17)

The Lagrange multiplier, score and C (α)-type pseudo-asymptotic tests are then invariant to a repa-

rameterization, though of course Wald tests will not be generally invariant to hypothesis reformu-

lations. Consequently, this provides a strong argument for using pseudo true densities in the linear

exponential family (instead of other types of densities) as a basis for estimating parameters of con-

ditional means when the error distribution has unknown type.

The estimation of the J matrix could be obtained through direct second derivative calculus of
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the objective function. For example, when yt is univariate (G = 1), we have:

J̃ =
1

n

n

∑
t=1

(
∂ ft

∂θ
(θ̂)

)[
∂C

∂ µ
(

ft(θ̂)
)](∂ ft

∂θ
(θ̂)

)′

− 1

n

n

∑
t=1

(
∂ ft

∂θ
(θ̂)

)[
∂ 2C

∂ µ2

(
ft(θ̂)

)](∂ ft

∂θ
(θ̂)

)′ (
yt − ft(θ)

)

−1

n

n

∑
t=1

[
∂ 2 ft

∂θ∂θ ′ (θ̂)

](
∂C

∂ µ
(

ft(θ̂)
)) (

yt − ft(θ̂)
)

The first two terms of this estimator behave after reparameterization as Ĵ, but the last term is based

on second derivatives of ft(θ) and so leads to non-invariance problems [see (3.4) and (4.20)].

The two last terms of J vanish asymptotically, they can be dropped as in the estimation method

proposed by Gouriéroux et al. (1984c). For the invariance purpose, to discard the last term is the

correct way to proceed.

5.2.2. Quasi generalized PML (QGPML) methods

Gouriéroux et al. (1984c) pointed out that some lower efficiency bound can be achieved by a two-

step estimation procedure, when the functional form of the true conditional second order moment

of yt given xt is known:

V (yt |xt) = Ω0(xt) = g(xt ,α0) = gt(α0) .

The method is based on various classical exponential families (negative-binomial, gamma, normal)

which depend on an additional parameter η linked with the second order moment of the pseudo-

distribution. If µ and Σ are the expectation and the variance-covariance matrix of this pseudo-

distribution: η = Ψ(µ, Σ), where Ψ defines for any µ , a one to one relationship between η and

Σ .
The class of linear exponential distributions depending upon the extra parameter η is of the

following form:

l∗(y,µ,η) = exp{A(µ,η)+B(η,y)+C(µ,η)y} .

If we consider the negative binomial pseudo distribution A(µ,η) = −η ln
(

1+ µ
η

)
and C(µ,η) =

ln
(
µ/(η + µ)

)
; if otherwise we use the Gamma pseudo distribution: A(µ,η) = −η ln(µ) and

C(µ,η) =−η
µ . In the former case: η =Ψ(µ,σ2) = µσ2/(1−σ2) and in the latter η =Ψ(µ,σ2) =

µ2σ2.
With preliminary consistent estimators α̃ , θ̃ of α , θ where θ̃ and α̃ are equivariant with respect

to ḡ, computed for example as in Trognon (1984), the QGPML estimator of θ is obtained by solving

a problem of the type

max
θ

n

∑
t=1

l∗
(

yt , ft(θ),Ψ
(

ft(θ̃), gt(α̃)
))

.

The QGPML estimator θ̂ of θ is strongly consistent and asymptotically normal:
√

n(θ̂ − θ 0)
L→
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N
[
0, ΣQ

]
with

ΣQ =

{
Ex

[(
∂ f ′t
∂θ

)
gt(α0)

−1

(
∂ ft

∂θ ′

)]}−1

, I0 = J0 = Ex

[(
∂ f ′t
∂θ

(θ 0)

)
gt(α0)

−1

(
∂ ft

∂θ ′ (θ 0)

)]
.

I0 and J0 can be consistently estimated by:

Î =
1

n

n

∑
t=1

St(θ̂ , α̃ , θ̃)St(θ̂ , α̃, θ̃)′ , Ĵ =
1

n

n

∑
t=1

(
∂ f ′t
∂θ

(θ̂)

)[
∂C

∂ µ

(
ft(θ̂),Ψ

(
ft(θ̃), gt(α̃)

))]( ∂ ft

∂θ ′ (θ̂)

)
,

where

St(θ̂ , α̃, θ̃) =
∂ f ′t
∂θ

[
∂C

∂ µ

(
ft(θ̂), Ψ

(
ft(θ̃), gt(α̃)

))]
(yt − ft(θ̂)).

Since ∂C
∂ µ

(
ft(θ̂),Ψ

(
ft(θ̃), gt(α̃)

))
and yt − ft(θ̂) are invariant to reparameterizations if θ̃ and α̃

are equivariant, we face the same favorable case as before:

Î∗ = K[ḡ(θ̂)]′ Î K[ḡ(θ̂)] , Ĵ∗ = K[ḡ(θ̂)]′ Ĵ K[ḡ(θ̂)] ,

and the Wald, Lagrange multiplier, score pseudo-asymptotic tests are invariant to a reparameteri-

zation. These quasi-generalized pseudo-asymptotic tests are locally more powerful than the corre-

sponding pure pseudo-asymptotic tests under local alternatives [see Trognon (1984)].

Furthermore the quasi-generalized LR statistic (QGLR) is invariant provided, the first-step es-

timators θ̃ and α̃ are equivariant under reparameterization. And as shown in Trognon (1984), the

QGLR statistic is asymptotically equivalent to the other pseudo-asymptotic statistic under the null

and under local alternatives.

6. Numerical results

In order to illustrate numerically the (non-)invariance problems discussed above, we consider the

model derived from the following equations:

yt = γ +β 1x
(λ )
1t +β 2x

(λ )
2t +ut , ut

i.i.d.∼ N[0, σ 2] , t = 1, . . . , n, (6.1)

where x
(λ )
it = (xλ

it − 1)/λ , i = 1, 2, xit > 0 with x
(λ )
it = log(xit) for λ = 0, and the explanatory

variables x1t and x2t are fixed. The null hypothesis to be tested is:

H0 : λ = 1 . (6.2)

The log-likelihood associated with this model is:

l =
n

∑
t=1

l[yt ; γ, β 1,β 2, λ , σ2] , (6.3)
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Table 1. Test statistics for H0 : λ = 1 for different measurement units

5 moment models

Two-step GMM CUP-GMM Pseudo ML

k D̄ Wald Score C(α) D̄ Wald Score C(α) LR Mod. score

0.2 0.001 44.750 84.810 33.972 5.771 44.750 5.771 5.066 66.408 31.060

0.4 0.000 44.746 47.692 16.726 5.771 44.746 5.771 0.922 66.408 31.060

0.6 0.001 44.745 42.983 14.106 5.771 44.745 5.771 4.482 66.408 31.060

0.8 0.010 44.744 39.161 12.369 5.771 44.744 5.771 5.282 66.408 31.060

1.0 0.056 44.743 35.676 10.593 5.771 44.743 5.771 5.3838 66.408 31.060

3.0 34.629 44.743 118.876 42.124 5.771 44.743 5.771 0.6720 66.408 31.060

5.0 1.641 44.743 62.195 34.746 5.771 44.743 5.771 2.5545 66.408 31.060

7.0 0.282 44.742 61.766 34.953 5.771 44.742 5.771 3.9336 66.408 31.060

10.0 0.068 44.739 61.147 34.465 5.771 44.739 5.771 4.5010 66.408 31.060

l[yt ; γ, β 1,β 2, λ , σ2] = −1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
u2

t , t = 1, . . . , n. (6.4)

It is easy to see that changing the measurement units on x1t and x2t leaves the form of model (6.1)

and the null hypothesis invariant. For example, if both x1t and x2t are multiplied by a positive

constant k, i.e.

x1t∗ = kx1t , x2t∗ = kx2t , (6.5)

(6.1) can be reexpressed in terms of the scaled variables x1t∗ and x2t∗ as

yt = γ∗ +β 1∗x
(λ )
1t∗ +β 2∗x

(λ )
2t∗ +ut , (6.6)

where the power parameter λ remains the same and

γ∗ = γ − k(λ )k−λ
2

∑
i=1

β i , β i∗ = β ik
−λ , i = 1, 2. (6.7)

On interpreting model (6.1) as a pseudo-model and (6.3) as a pseudo-likelihood, we will exam-

ine the effect of rescaling on GMM-based and pseudo-likelihood tests. Moment equations can be

derived from the above model by differentiating the log-likelihood with respect to model parameters

and equating the expectation to zero. This yields following five moment conditions:

E [ut ] = 0 , E

[
utx

(λ )
1t

]
= 0 , E

[
utx

(λ )
2t

]
= 0 , (6.8)

E

[
ut

λ

(
2

∑
i=1

β i

[
xλ

it lnxit − x
(λ )
it

]
)]

= 0 , E
[
u2

t −σ2
]
= 0 , t = 1, . . . , n . (6.9)
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Table 2. Test statistics for H0 : λ = 1 for different measurement units

6 moment models

Two-step GMM CUP-GMM

k D̄ Wald Score C(α) D̄ Wald Score C(α)
0.2 0.016 416.546 106.734 54.462 19.480 359.380 11.107 3.189

0.4 0.036 221.829 108.142 54.852 19.480 83.743 16.296 7.318

0.6 0.248 213.918 107.764 52.818 19.480 40.481 18.637 7.063

0.8 1.068 178.757 106.053 47.539 19.480 34.101 17.678 0.661

1.0 3.562 139.364 103.364 37.915 19.480 35.580 17.769 5.215

3.0 47.490 46.214 110.751 7.960 19.480 45.146 15.250 4.650

5.0 1.651 129.698 48.704 6.518 19.480 59.667 13.367 4.611

7.0 1.511 384.944 49.719 9.978 19.480 118.911 13.937 5.639

10.0 2.031 905.870 50.264 10.747 19.480 406.974 14.162 6.136

These equations provide an exactly identified system of equations. To get a system with 6 moment

equations (hence overidentified), we add the equation:

E [utx1tx2t ] = 0 . (6.10)

To get data, we considered the sample size n = 200 and generated yt according to equation (6.1) with

the parameter values γ = 10, β 1 = 1.0, β 2 = 1.0, λ =−1.0, σ 2 = 0.85. The values of the regressors

x1t and x2t were selected by transforming the values used in Dagenais and Dufour (1991).6

Numerical values of the GMM-based test statistics for a number of rescalings are reported in

Table 1 for the 5 moment system (6.8) - (6.9) and in Table 2 for the 6 moment system (6.8) - (6.10).

Results for the pseudo-likelihood tests appear in Table 1. Graphs of the non-invariant test statistics

are also presented in figures 1 - 4. In these calculations, the first-step estimator of the two-step GMM

tests is obtained by minimizing Mn (θ) in (2.5) with Wn = Im (equal weights), while the second step

uses the weight matrix defined in (3.4). No correction for serial correlation is applied (although this

could also be studied).

These results confirm the theoretical expectations of the theory presented in the previous sec-

tions. Namely, the GMM-based test statistics [D̄(ψ), Wald, score, C(α)] are not invariant to mea-

surement unit changes and, indeed, can change substantially (even if both the null and the alterna-

tive hypotheses remain the same under the rescaling considered here). Noninvariance is especially

strong for the overidentified system (6 equations). In contrast, the D̄(ψ) and score tests based on the

continuously updated GMM criterion are invariant. The same holds for the LR and adjusted score

criteria based on linear exponential pseudo likelihoods.

6The numerical values of x1t , x1t and yt used are available from the authors upon request. It is important to note that

this is not a simulation exercise aimed at studying the statistical properties of the tests, but only an illustration of the

numerical properties of the test statistics considered.
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Figure 1. Two-step GMM tests based on 5 moment conditions
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Figure 2. CUP GMM tests based on 5 moment conditions
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Figure 3. Two-step GMM tests based on 6 moment conditions
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Figure 4. CUP GMM tests based on 6 moment conditions
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7. Empirical illustration: linear stochastic discount factor models

In the context of linear stochastic discount factor model, it is shown that procedures based on non-

invariant test statistics could lead to drastically different results depending on the form of identifying

restrictions imposed. While an in-depth analysis of this problem is provided by Burnside (2010)

from the perspective of model misspecification and identification, we aim to shed light on this issue

from invariance considerations. The linear stochastic discount factor model is described by the

following two equations:

E [mtR
e
t ] = 0, (7.1)

mt = a− f ′t b, (7.2)

where mt is the stochastic discount factor (SDF); ft is a k × 1 vector of factors; Re
t is the excess

return (the difference between the gross asset return and the risk free rate); a and b are scalar and

p× 1 vector of unknown parameters, respectively; E[·] is an expectation operator conditional on

information up to time t −1. The equations (7.1) and (7.2) can equivalently be written as

E
[
(a− f ′t b)Re

t

]
= 0. (7.3)

Since the unknowns a and b are not identified individually, we consider the following two

normalizations [see Burnside (2010), Cochrane (2005)]:

Normalization 1 : E

[mt

a
Re

t

]
= 0

Normalization 2 : E

[
mt

E[mt ]
Re

t

]
= 0.

By applying the normalizations to (7.3), we have

E
[
(1− f ′t θ)Re

t

]
= 0 , E

[
(1− ( ft −µ f )

′θ ∗)R
e
t

]
= 0, (7.4)

where µ f = E[ ft ], θ = b/a and θ ∗ = b/E[mt ]. The implied two sets of sample moments are:

Dn(θ ;Zn) =

(
1
n ∑n

t=1(R
e
t −Re

t f ′t θ)
1
n ∑n

t=1 ft −µ f

)
, Dn∗(θ ∗,Zn∗) =

(
1
n ∑n

t=1(R
e
t −Re

t ( ft −µ f )
′θ ∗)

1
n ∑n

t=1 ft −µ f

)
.

It is clear that the sample moments satisfy

Dn∗ (ḡ(θ) ,Zn∗) = K [ḡ(θ)]′ Dn (θ ; Zn)

with K [ḡ(θ)] = diag{a/E[mt ],1}; one set of moments can be derived from the other by affine

transformation of ft . Let Î∗(θ ∗) be the HAC estimator of I(θ ∗) with Bartlett kernel and Î(θ) be
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Table 3. J statistic for the validity of (7.4) under different identifying restrictions

(p-values in parentheses)

Two-step GMM CUP-GMM

Normalization 1 Normalization 2 Normalization 1 Normalization 2

QS Bartlett QS Bartlett QS Bartlett QS Bartlett

0.218 0.106 17.214 5.670 1.235 1.774 1.759 1.866

(0.897) (0.949) (0.000) (0.059) (0.539) (0.412) (0.415) (0.393)

defined similarly. Then we have

Î∗ (ḡ(θ)) = K [ḡ(θ)]′ Î (θ)K [ḡ(θ)] .

Therefore, by virtue of equation (5.3), the continuously updated GMM (CUP-GMM) objective func-

tion and the statistic D̄ are invariant to affine transformation of ft i.e., they are not affected by the

form of normalization employed. The model is estimated using the observed returns on 5 stocks

[Weis Markets (WMK), Unisys Corporation (UIS), Orbital Sciences Corporation (ORB), Mattel

(MAT) and Abaxis (ABAX)], and the three factors Rm-Rf [return of the market portfolio (Rm)

minus the risk-free return (Rf)], SMB [Small (market capitalization) Minus Big] and HMB [High

(book-to-market ratio) Minus Low] from the Fama-French data set over the period from January

5th, 1993 - March 16th, 1993. All calculations were carried out in R Version 3.0.2 (R Develop-

ment Core Team (2013)) using the package gmm developed by Pierre Chaussé [Chaussé (2010)].

The data we use are readily available in the Finance data set contained in gmm. The estimation

methods are two-step GMM and CUP-GMM with covariance matrix estimated with Bartlett and

Quadratic Spectral (QS) kernels. Table 3 reports the values of J statistic for testing the validity

of the restrictions (7.4). For the two-step GMM, it is clear that the values of test statistics differ

greatly across the normalizations, and are sensitive to the choice of kernels. Furthermore, the test

rejects the null of correct specification under Normalization 2 with QS kernel, but the conclusion is

reversed under Normalization 1. In the case of CUP-GMM with Bartlett kernel, though there is a

small incongruity in the values of test statistics (possibly due to an optimization error), the model is

not rejected under both normalizations. The difference between test statistics under the CUP-GMM

with QS kernel may be attributed to the non-invariance of the objective function with QS kernel.

The main message of this exercise is that procedures based on non-invariant test statistics can be

quite sensitive to the identifying restrictions employed and may result in conflicting conclusions.

For a thorough discussion on the effect of normalizations on estimation and inferences, we refer the

reader to Hamilton, Waggoner and Zha (2007).
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8. Conclusion

In this paper, we have studied the invariance properties of hypothesis tests applicable in the context

of incompletely specified models, such as models formulated in terms of estimating functions and

moment conditions, which are usually estimated by GMM procedures, or models estimated by

pseudo-likelihood and M-estimation methods. The test statistics examined include Wald-type, LR-

type, LM-type, score-type, and C(α)-type criteria. We found that all these procedures are not

generally invariant to (possibly nonlinear) hypothesis reformulations and reparameterizations, such

as those induced by measurement unit changes. This means that testing two equivalent hypotheses

in the context of equivalent models may lead to completely different inferences. For example, this

may occur after an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we studied restrictions that can be imposed

on the objective functions used for pseudo-likelihood (or M-estimation) as well as the structure of

the test criteria used with estimating functions and GMM procedures to obtain invariant tests. In

particular, we showed that using linear exponential pseudo-likelihood functions allows one to ob-

tain invariant score-type and C(α)−type test criteria, while in the context of estimating function

(or GMM) procedures it is possible to modify a LR-type statistic proposed by Newey and West

(1987) to obtain a test statistic that is invariant to general reparameterizations. The invariance as-

sociated with linear exponential pseudo-likelihood functions is interpreted as a strong argument for

using such pseudo-likelihood functions in empirical work. Furthermore, the LR-type statistic is the

one associated with using continuously updated GMM estimators based on appropriately restricted

weight matrices. Of course, this provides an extra argument for such GMM estimators.
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A. Appendix: Assumptions for the generalized C(α) statistic

The asymptotic distribution of the generalized C(α) statistic defined in (3.24) is derived under the

following set of assumptions. Note ‖·‖ refers to the Euclidean distance, applied to either vectors or

matrices.

Assumption A.1 EXISTENCE OF SCORE-TYPE FUNCTIONS.

Dn(θ , ω) =
(
D1n(θ , ω), . . . , Dmn(θ , ω)

)′
, ω ∈ Z , n = 1, 2, . . .

is a sequence of m×1 random vectors, defined on a common probability space (Z , AZ , P), which

are functions of a p×1 parameter vector θ , where θ ∈Θ ⊆ R
p and Θ is a non-empty open subset

of R
p. All the random variables considered here as well in the following assumptions are functions

of ω, so the symbol ω may be dropped to simplify notations [e.g., Dn(θ) ≡ Dn(θ , ω)].

Assumption A.2 SCORE ASYMPTOTIC NORMALITY. There is a value θ 0 ∈Θ such that

√
nDn(θ 0)

p−→
n→∞

D∞(θ 0) where D∞(θ 0) ∼ N [0, I(θ 0)] .

Assumption A.3 NON-SINGULARITY OF THE SCORE VARIANCE. I(θ 0) is nonsingular.

Assumption A.4 SCORE DIFFERENTIABILITY. Dn(θ , ω) is almost surely (a.s.) differentiable

with respect to θ , for all n, in a non-empty open neighborhood N1 of θ 0. The derivative matrix of

Dn(θ ,ω) is denoted

Hn(θ , ω) =
∂Dn(θ , ω)

∂θ ′

where the sequence of matrices Hn(θ , ω), n ≥ 1, is well-defined for ω ∈ DH and DH is an event

with probability one (i.e., P[ω ∈ DH ] = 1).

Assumption A.5 SCORE DERIVATIVE CONVERGENCE. There is an m× p (nonrandom) matrix

function J(θ) and a non-empty open neighborhood N2 of θ 0 such that, for all ε > 0 and δ > 0,

limsup
n→∞

P
[
{ω : ∆n(θ 0, δ , ω) > ε}

]
≤UH(δ , ε, θ 0)

where

∆n(θ 0, δ , ω) ≡ sup{‖Hn(θ , ω)− J(θ 0)‖ : θ ∈ N2 and 0 ≤ ‖θ − θ 0‖ ≤ δ} ,

UH(δ , ε, θ 0) ≥ 0 and lim
δ↓0

UH(δ , ε, θ 0) = 0 .

Assumption A.6 SCORE EXPANSION. For θ in a non-empty open neighborhood N3 of θ 0, Dn(θ)
admits an expansion of the form

Dn(θ , ω) = Dn(θ 0, ω)+ J(θ 0)(θ −θ 0)+Rn(θ , θ 0, ω)
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for ω ∈ DH , where the remainder Rn(θ , θ 0, ω) satisfies the following condition: for any ε > 0 and

δ > 0, we have

limsup
n→∞

P
[
{ω : rn(δ , θ 0, ω) > ε}

]
≤UD(δ , ε, θ 0)

where

rn(δ , θ 0, ω) = sup

{‖Rn(θ , θ 0, ω)‖
‖θ − θ 0‖

: θ ∈ N3 and 0 < ‖θ − θ 0‖ ≤ δ
}

,

UD(δ , ε, θ 0) ≥ 0 and lim
δ↓0

UD(δ , ε, θ 0) = 0 .

Assumption A.7 SCORE DERIVATIVE NON-DEGENERACY. rank[J(θ)] = p, for all θ in a non-

empty open neighborhood N4 of θ 0.

Assumption A.8 RESTRICTION DIFFERENTIABILITY. ψ(θ) is a p1 × 1 differentiable vector

function of θ .

Assumption A.9 RESTRICTION RANK. There is a non-empty open neighborhood N5 of θ 0 such

that ψ(θ) is continuously differentiable with derivative P(θ) ≡ ∂ψ
∂θ ′ and such that

ψ(θ) = 0 and θ ∈ N5 ⇒ rank [P(θ)] = p1

where 0 ≤ p1 ≤ p.

Assumption A.10 ESTIMATOR
√

n CONVERGENCE. θ̃ 0

n ≡ θ̃ 0

n(ω) is a consistent estimator of θ 0,

i.e.,

plim
n→∞

(
θ̃ 0

n −θ 0

)
= 0 ,

such that
√

n
(

θ̃ 0

n −θ 0

)
is asymptotically bounded in probability, i.e.,

limsup
n→∞

P
[
{ω :

√
n
∥∥θ̃ 0

n −θ 0

∥∥≥ y}
]
≤U(y; θ 0) ,∀y > 0 ,

where U(y; θ 0) is a function such that lim
y→∞

U(y; θ 0) = 0.

Assumption A.11 RESTRICTED ESTIMATOR. ψ(θ̃ 0

n) = ψ(θ 0) = 0 with probability 1.

Assumption A.12 CONSISTENT ESTIMATOR OF SCORE COVARIANCE MATRIX. Ĩ0 is a weakly

consistent estimator of I(θ 0), i.e., plim
n→∞

Ĩ0 = I(θ 0) .

Assumption A.13 WEIGHT MATRIX CONSISTENCY. Wn, n ≥ 1, is a sequence of m×m matrices

such that plim
n→∞

Wn = W0 where W0 is nonsingular.
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B. Appendix: Assumptions for the modified NW LR-type statistics

This appendix presents the regularity conditions under which the modified Newey-West LR type

has asymptotically chi-square distributed.

Assumption B.1 COMPACT PARAMETER SPACE. θ ∈Θ , where Θ is a compact set of R
p.

Assumption B.2 OBJECTIVE FUNCTION CONTINUITY. Mn(θ) = Mn(θ , ω) is a real function on

Θ ×Z , such that Mn(θ , ω) is a continuous function of θ for all ω ∈ Z .

Assumption B.3 OBJECTIVE FUNCTION UNIFORM CONVERGENCE. There is a fixed (non-

random) function M(θ) such that

P({ω : max
θ

| Mn(θ , ω)−M(θ) |−→
n→∞

0}) = 1.

Assumption B.4 ASYMPTOTIC IDENTIFICATION. M(θ) has a unique minimum at θ = θ 0 in the

interior of Θ .

Assumption B.5 UNIFORM CONVERGENCE OF SECOND DERIVATIVES. Mn(θ , ω) is a twice

continuously differentiable function in θ and there is a fixed (non-random) function G(θ) such that

P

[
{ω : sup

θ

∥∥∥
∂ 2Mn

∂θ∂θ ′ (θ , ω)−G(θ)
∥∥∥−→

n→∞
0}
]

= 1.

Assumption B.6 OBJECTIVE FUNCTION ASYMPTOTIC REGULARITY. For all θ ∈Θ , G(θ) is a

nonsingular matrix.

Assumption B.7 OBJECTIVE FUNCTION ASYMPTOTIC NORMALITY.

√
n

∂Mn

∂θ
(θ 0; ω)

L−→
n→∞

N[0, H(θ 0)] .

Assumption B.8 RESTRICTION DIFFERENTIABILITY. ψ(θ) is a p1 × 1 differentiable vector

function of θ .

Assumption B.9 RESTRICTION RANK. There is a non-empty open neighborhood N5 of θ 0 such

that ψ(θ) is continuously differentiable with derivative P(θ) ≡ ∂ψ
∂θ ′ and such that

ψ(θ) = 0 and θ ∈ N5 ⇒ rank [P(θ)] = r1

where 0 ≤ r1 ≤ p1.
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Smith, R. J. (1987), ‘Alternative asymptotically optimal tests and their application to dynamic spec-

ification’, Review of Economic Studies LIV, 665–680.
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