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ABSTRACT

We propose generalized C(α) tests for testing linear and nonlinear parameter restrictions in mod-

els specified by estimating functions. The proposed procedures allow for general forms of serial

dependence and heteroskedasticity, and can be implemented using any root-n consistent restricted

estimator. The asymptotic distribution of the proposed statistic is established under weak regularity

conditions. We show that earlier C(α)-type statistics are included as special cases. The problem

of testing hypotheses fixing a subvector of the complete parameter vector is discussed in detail as

another special case. We also show that such tests provide a simple general solution to the problem

of accounting for estimated parameters in the context of two-step procedures where a subvector of

model parameters is estimated in a first step and then treated as fixed.

Key words: Testing; C(α) test; Estimating function; Generalized method of moment (GMM); Se-

rial dependence; Pseudo-likelihood; M-estimator; Nonlinear model; Score test; Lagrange multiplier

test; Heteroskedasticity.
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1. INTRODUCTION 1

1. Introduction

The C(α) statistic introduced by Neyman (1959) embodies a general mechanism for dealing with

nuisance parameters in tests of composite hypotheses. The basic idea of the method can be con-

veniently explained by using parameter subvector testing as an example. One first considers a

score-type function for the tested parameter. The score function is then orthogonalized with respect

to directions associated with the nuisance parameters under the null hypothesis. This removes the

impact of the estimation error on the nuisance parameter: the residual vector from the projection

– the effective score function – evaluated at the auxiliary estimator of the nuisance parameter is

asymptotically equivalent to the effective score function evaluated at the true parameter. It is easy

to see that the latter is asymptotically normally distributed, and consequently its normalized form –

the C(α) statistic – has an asymptotic chi-square distribution under the null hypothesis.

The C(α) test enjoys a local optimality property while being computationally attractive (a few

artificial regressions would be enough in many circumstances) and uses only
√

n-consistent estima-

tor for the nuisance parameters which may not be asymptotically normal or even may not have an

asymptotic distribution. When the restricted maximum likelihood (ML) estimator is used, the statis-

tic reduces to Rao’s score statistic. It is also useful to stress that the objects projected on the space

spanned by the nuisance parameter scores can be more general functions [called Cramér functions

by Neyman (1959)], not necessarily the score function associated with the parameters of interest.

For further discussions of C(α) tests and references, see Le Cam (1956), Bhat and Nagnur (1965),

Bühler and Puri (1966), Bartoo and Puri (1967), Moran (1970, 1973), Chibisov (1973), Chant

(1974), Ray (1974), Singh and Zhurbenko (1975), Foutz (1976), Vorob’ev and Zhurbenko (1979),

Bernshtein (1976, 1978, 1980a, 1980b, 1981), Le Cam and Traxler (1978), Neyman (1979), Tarone

(1979, 1985), Tarone and Gart (1980), Wang (1981, 1982), Basawa (1985), Ronchetti (1987), Smith

(1987a, 1987b), Berger and Wallenstein (1989), Hall and Mathiason (1990), Paul and Barnwal

(1990), Wooldridge (1990), Dagenais and Dufour (1991), Davidson and MacKinnon (1991, 1993),

Kocherlakota and Kocherlakota (1991), Dufour and Dagenais (1992), Bera and Yoon (1993), Jag-

gia and Trivedi (1994), Rao (1996), Bera and Bilias (2001), Pal (2003), Dufour and Valéry (2009),

Chaudhuri and Zivot (2011), Bontemps and Meddahi (2012).

In spite of numerous generalizations and modifications in parametric models, extensions of the

C(α) test to other types of estimation criteria, e.g. estimating equations [Durbin (1960), Godambe

(1960, 1991), Small and McLeish (1994), Basawa, Godambe and Taylor (1997), Heyde (1997)],

minimum distance, or the generalized method of moments [GMM, Hansen (1982), Hall (2004)],

appear to be scarce. In particular, work on such tests has focused on linear hypotheses (especially,

hypothesis setting the value of a parameter subvector) and/or independent observations; see Basawa

(1985).

In this paper, we propose and study a general C(α)-type statistic in estimating-function and

GMM setups, with weakly specified temporal dependence and heteroskedasticity. The proposed

generalized statistic is quite comprehensive and includes earlier C(α)-type statistics as special cases,

as well as a wide spectrum of new ones. The null hypothesis takes the form of a general constraint

(linear or nonlinear) on model parameters. This extends the C(α) test proposed by Smith (1987a)

for nonlinear restrictions in parametric likelihood models. The asymptotic distribution of the test
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statistic is derived under a set of weak regularity conditions, allowing for general forms of serial

dependence and heteroskedasticity.

A number of important special cases of the extended test statistic are discussed in detail. These

include testing whether a parameter subvector has a given value – for which we give a number of

alternative forms and special cases – and accounting for parameter uncertainty in two-stage pro-

cedures. The latter problem has considerable practical importance. Due to the fact that nonlinear

estimating functions are often difficult to estimate, it is convenient to estimate some parameters by

an alternative simpler method, and then use these estimates as if they were known. Such procedures

can however modify the distributions of test statistics and induce distortions in test levels; see Gong

and Samaniego (1981), Pagan (1984, 1986), Murphy and Topel (1985), and Newey and McFadden

(1994). So it is important to make corrections for such effects. We underscore that generalized

C(α) tests can provide relatively simple solutions to such difficulties in the context of estimating

functions and GMM estimation, again in presence of general forms of serial dependence and het-

eroskedasticity. We first discuss tests based on a general first-stage estimator, as well as tests based

on a two-stage GMM estimation.

The paper is organized as follows. Section 2 lays out the general framework considered in the

paper and introduces the C(α) statistic. The regularity conditions are stated and the asymptotic

properties of the generalized C(α) statistic are studied in Section 3. We discuss the forms that the

C(α) statistic takes in some special cases in Section 4. Section 5 considers the problem of testing

the value of parameter subvector. We formulate the C(α) statistic for models estimated by two-step

procedures in Section 6. We briefly conclude in Section 7.

2. Generalized C(α) statistic

We consider an m× 1 vector estimating (or score-type) function Dn (θ ; Zn) which depends on an

n× k data matrix Zn = [z1,z2, . . . , zn]
′
and a parameter vector θ ∈Θ ⊆ R

p such that

Dn (θ ; Zn)
p−→

n→∞
D∞ (θ ; θ 0) (2.1)

where Dn (θ ; Zn) is typically the sample mean of an estimating function, such as Dn (θ ; Zn) =
1
n ∑n

t=1 h(θ ; zt), D∞ (· ; θ 0) is a mapping from Θ to R
m, and θ 0 denotes the “true” parameter vector.

The parameter θ is estimated by minimizing a criterion function of the form

Mn (θ , Wn) = Dn (θ ; Zn)
′
Wn Dn (θ ; Zn) (2.2)

where Wn is a symmetric positive definite matrix. This setup comprises as special cases the method

of estimating functions [Durbin (1960), Godambe (1960, 1991), Small and McLeish (1994), Basawa

et al. (1997), Heyde (1997)], the generalized method of moments [Hansen (1982), Hall (2004)],

maximum likelihood, pseudo-maximum likelihood, M-estimation and instrumental-variable meth-

ods.

A common assumption in such contexts consists in assuming that

Eθ 0
[Dn (θ 0; Zn)] = 0 (2.3)
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where Eθ [ · ] represents the expected value under any data distribution such that θ can be interpreted

as the true parameter vector, along with a number of additional regularity assumptions which allow

the application of central limit theorems and laws of large numbers, such as:

√
nDn (θ 0; Zn)

L−→
n→∞

N [0, I (θ 0)] , (2.4)

Jn (θ 0; Zn) =
∂Dn (θ 0; Zn)

∂θ ′
p−→

n→∞
J (θ 0) , (2.5)

where I (θ 0) and J (θ 0) are m×m and m× p full-column rank matrices. In Section 3, we relax the

assumptions (2.3) and (2.5).

The hypothesis we wish to test has the form

H0 : ψ (θ) = 0 (2.6)

where ψ (θ) is a p1 × 1 continuously differentiable function of θ with 1 ≤ p1 ≤ p, and the p1 × p

matrix

P(θ) =
∂ψ
∂θ ′ (2.7)

has full row-rank p1 (at least in an open neighborhood of θ 0).

Let θ̂ n be the unrestricted estimator of θ obtained by minimizing Mn (θ , Wn), θ̂ 0

n the correspond-

ing constrained estimator under H0, and θ̃ 0

n any other restricted estimator of θ under H0. Let us also

denote estimators of I (θ) and J (θ) by În (θ) and Ĵn (θ) respectively, where θ may be replaced by

unrestricted and restricted estimators of θ to obtain estimators of I (θ 0) and J (θ 0). If

Dn (θ ; Zn) =
1

n

n

∑
t=1

h(θ ; zt) , (2.8)

we may use the standard formula

Ĵn (θ) =
∂Dn(θ ; Zn)

∂θ ′ = Jn (θ ; Zn) . (2.9)

Depending on the problem at hand, different forms of În (θ) may be considered. The standard

estimator appropriate for random sampling models is

În (θ) =
1

n

n

∑
t=1

h(θ ; zt)h(θ ; zt)
′ . (2.10)

Some authors also argue that the centered version of (2.10) given by

În (θ) =
1

n

n

∑
t=1

[

h(θ ; zt)−h(θ)
][

h(θ ; zt)−h(θ)
]′

(2.11)
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where h(θ) = 1
n

n

∑
t=1

h(θ ; zt) , can yield power improvements; see Hall (2000).

In this paper, we stress applications to time series data where serial dependence is present. In

view of this, we focus on “heteroskedasticity-autocorrelation consistent” (HAC) covariance matrix

estimators which account for the potential serial correlation and heteroskedasticity in the sequence

{h(θ ;zt)}∞
t=1:

În (θ) =
n−1

∑
j=−n+1

k̄ ( j/Bn) Γ̂n( j, θ) (2.12)

where k̄ (·) is a kernel function, Bn is a bandwidth parameter (which depends on the sample size

and, possibly, on the data), and

Γ̂n( j, θ) =















1
n

n

∑
t= j+1

h(θ ; zt)h(θ ; zt− j)
′ , if j ≥ 0 ,

1
n

n

∑
t=− j+1

h(θ ; zt+ j)h(θ ; zt)
′ , if j < 0 .

(2.13)

The reader is referred to Newey and West (1987b), Andrews (1991), Andrews and Monahan (1992),

Hansen (1992), Cushing and McGarvey (1999), Kiefer, Vogelsang and Bunzel (2000), and Kiefer

and Vogelsang (2002, 2005) for further properties of covariance estimators of the form (2.12).

We now consider the problem of formulating a test statistic for H0 using a general restricted

estimator of θ 0. This means that we wish to use statistics based on estimators which may not

be obtained by minimizing the objective function Mn in (2.2). This is motivated by the fact that

minimizing Mn often constitutes a difficult numerical problem plagued by instabilities. Similarly,

while some local efficiency arguments suggest taking Wn = Î−1
n [see Hansen (1982, Theorem 3.2),

Davidson and MacKinnon (1993, Section 17.3), Gouriéroux and Monfort (1995, Section 9.5.2),

Hall (2004, Section 3.6)], ill-conditioning can make this choice infeasible or harmful. So we allow

here for a general weighting matrix Wn.

In order to obtain a unified test criterion which includes several other score-type statistics, we

consider the following general “score-type” function:

s
(

θ̃ 0

n; Wn

)

=
√

nQ̃ [Wn]Dn

(

θ̃ 0

n; Zn

)

where θ̃ 0

n is a consistent restricted estimate of θ 0 such that ψ(θ̃ 0

n) = 0 and
√

n(θ̃ 0

n −θ 0) is asymp-

totically bounded in probability,

Q̃ [Wn] := P̃n(J̃
′
nWn J̃n)

−1J̃ ′
nWn ,

P̃n = P
(

θ̃ 0

n

)

, J̃n = Ĵn

(

θ̃ 0

n

)

, and Wn is a symmetric positive definite (possibly random) m×m matrix

such that

plim
n→∞

Wn = W0 , det(W0) 6= 0.



3. DISTRIBUTION OF THE GENERALIZED C(α) STATISTIC 5

Under general regularity conditions (see Section 3), we have:

s
(

θ̃ 0

n; Wn

) L−→
n→∞

N
[

0,Q(θ 0) I (θ 0)Q(θ 0)
′]

where

Q(θ 0) = plim
n→∞

Q̃ [Wn] = P(θ 0)
[

J (θ 0)
′
W0 J (θ 0)

]−1
J (θ 0)

′
W0

and rank [Q(θ 0)] = p1. This suggests the following generalized C (α) criterion:

PC
(

θ̃ 0

n; ψ, Wn

)

= nD̃′
n Q̃ [Wn]

′{
Q̃ [Wn] Ĩn Q̃ [Wn]

′}−1
Q̃ [Wn] D̃n (2.14)

where D̃n = Dn

(

θ̃ 0

n; Zn

)

and Ĩn = În(θ̃
0

n) . We show in Section 3 that the asymptotic distribution of

PC
(

θ̃ 0

n; ψ,Wn

)

is χ2 (p1) under H0. The proposed test statistic includes as a special case several

statistics proposed in the statistical and econometric literatures. We discuss these as well as other

special cases in sections 4, 5 and 6.

3. Distribution of the generalized C(α) statistic

In this section, we derive the asymptotic distribution of the generalized C(α) statistic defined in

(2.14) under the following set of assumptions. ‖·‖ refers to the Euclidean distance, applied to

either vectors or matrices.

Assumption 3.1 EXISTENCE OF SCORE-TYPE FUNCTIONS.

Dn(θ , ω) =
(

D1n(θ , ω), . . . , Dmn(θ , ω)
)′

, ω ∈ Z , n = 1, 2, . . .

is a sequence of m×1 random vectors, defined on a common probability space (Z , AZ , P), which

are functions of a p×1 parameter vector θ , where θ ∈Θ ⊆ R
p and Θ is a non-empty open subset

of R
p. All the random variables considered here as well in the following assumptions are functions

of ω, so the symbol ω may be dropped to simplify notations [e.g., Dn(θ) := Dn(θ ,ω)]. There is a

unique vector θ 0 ∈Θ called the “true parameter value”.

Assumption 3.2 SCORE ASYMPTOTIC NORMALITY.

√
nDn(θ 0)

p−→
n→∞

D̄∞(θ 0) where D̄∞(θ 0) ∼ N [0, I(θ 0)] .

Assumption 3.3 NON-SINGULARITY OF THE SCORE VARIANCE. I(θ) is nonsingular for any

θ ∈Θ which satisfies the restriction ψ(θ) = 0.

Assumption 3.4 SCORE EXPANSION. For θ in a non-empty open neighborhood N0 of θ 0, Dn(θ)
admits an expansion of the form

Dn(θ , ω) = Dn(θ 0, ω)+ J(θ 0)(θ −θ 0)+Rn(θ , θ 0, ω)
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for ω ∈ DJ , where DJ is an event with probability one (i.e., P[ω ∈ DJ] = 1) and J(θ) is an m× p

(nonrandom) matrix function of θ and the remainder Rn(θ , θ 0, ω) satisfies the following condition:

for any ε > 0 and δ > 0, we have

limsup
n→∞

P
[

{ω : rn(δ , θ 0, ω) > ε}
]

≤UD(δ , ε, θ 0)

rn(δ , θ 0, ω) = sup

{‖Rn(θ , θ 0, ω)‖
‖θ − θ 0‖

: θ ∈ N0 and 0 < ‖θ − θ 0‖ ≤ δ
}

,

UD(δ , ε, θ 0) ≥ 0 and lim
δ↓0

UD(δ , ε, θ 0) = 0 .

Assumption 3.5 CONSISTENT ESTIMATOR OF J(θ 0). There is a sequence of m× p random

matrices Jn(θ , ω) and a non-empty open neighborhood V0 of θ 0 such that, for all ε > 0 and δ > 0,

limsup
n→∞

P
[

{ω : ∆n(θ 0, δ , ω) > ε}
]

≤UJ(δ , ε, θ 0)

where

∆n(θ 0, δ , ω) := sup{‖Jn(θ , ω)− J(θ 0)‖ : θ ∈V0 and 0 ≤ ‖θ − θ 0‖ ≤ δ}
and UJ(δ , ε, θ 0) is a non-random function such that

UJ(δ , ε, θ 0) ≥ 0 and lim
δ↓0

UJ(δ , ε, θ 0) = 0.

Assumption 3.6 ASYMPTOTIC SCORE NON-DEGENERACY. rank[J(θ)] = p for any θ ∈Θ which

satisfies the restriction ψ(θ) = 0.

Assumption 3.7 RESTRICTION DIFFERENTIABILITY. ψ(θ) is a p1 × 1 continuously differen-

tiable vector function of θ with derivative P(θ) :=
∂ψ
∂θ ′ .

Assumption 3.8 RESTRICTION RANK. rank [P(θ)] = p1 for any θ ∈ Θ which satisfies the re-

striction ψ(θ) = 0.

Assumption 3.9 ESTIMATOR
√

n CONVERGENCE. θ̃ 0

n := θ̃ 0

n(ω) is a consistent estimator of θ 0,

i.e.,

plim
n→∞

(

θ̃ 0

n −θ 0

)

= 0 ,

such that
√

n
(

θ̃ 0

n −θ 0

)

is asymptotically bounded in probability, i.e.,

limsup
n→∞

P
[

{ω :
√

n
∥

∥θ̃ 0

n −θ 0

∥

∥ ≥ y}
]

≤U(y; θ 0) ,∀y > 0 ,

where U(y; θ 0) is a function such that lim
y→∞

U(y; θ 0) = 0.
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The latter assumption requires that the auxiliary estimator θ̃ 0

n be
√

n-consistent only under the

null hypothesis H0, and corresponds to Neyman’s (1959) local
√

n-consistency assumption. It may

also be written
√

n
(

θ̃ 0

n −θ 0

)

= Op(1) under H0.

Assumption 3.10 RESTRICTED ESTIMATOR. ψ(θ̃ 0

n) = ψ(θ 0) = 0 with probability 1.

Assumption 3.11 CONSISTENT ESTIMATOR OF SCORE COVARIANCE MATRIX. Ĩn, n ≥ 1, is a

sequence of m×m symmetric nonsingular (random) matrices such that plim
n→∞

Ĩn = I(θ 0) .

Assumption 3.12 WEIGHT MATRIX CONVERGENCE. Wn, n ≥ 1, is a sequence of m×m symmet-

ric nonsingular (random) matrices such that plim
n→∞

Wn = W0 where W0 is nonsingular.

The following proposition establishes the asymptotic distribution of the generalized C(α) statis-

tic PC
(

θ̃ 0

n; ψ,Wn

)

in (2.14).

Proposition 3.1 ASYMPTOTIC DISTRIBUTION OF GENERALIZED C(α) STATISTIC. Let Q̃n :=

Q̃[Wn] = P̃n [J̃ ′
n Wn J̃n]

−1J̃ ′
n Wn where J̃n = Jn(θ̃

0

n; Zn), P̃n = P(θ̃ 0

n). If the assumptions 3.1 to 3.12 are

satisfied, then, under H0,

√
nQ̃n Dn(θ̃

0

n; Zn)
L−→

n→∞
N

[

0, Q(θ 0)I(θ 0)Q(θ 0)
′] (3.1)

where Q(θ 0) = P(θ 0)
[

J(θ 0)
′W0J(θ 0)

]−1
J(θ 0)

′W0 , and

PC(θ̃ 0

n; ψ , Wn) = nDn

(

θ̃ 0

n; Zn

)′
Q̃ ′

n

[

Q̃n Ĩn Q̃ ′
n

]−1
Q̃n Dn

(

θ̃ 0

n; Zn

) L−→
n→∞

χ2(p1) . (3.2)

It is of interest to note here that the assumptions 3.4 and 3.5 do not require that Dn(θ , ω) be

differentiable with respect to θ . This is allowed by making a direct assumption on the existence of

a linear expansion of Dn(θ , ω) around θ 0 [Assumption 3.4]. For the same reason, Jn(θ , ω) does

not have to be continuous with respect to θ .

Since the differentiability of Dn(θ , ω) with respect to θ is a common assumption, we will

now show that the high-level assumptions 3.4 and 3.5 hold in the standard case where Dn(θ , ω)
is differentiable, with probability limit J(θ), and both Jn(θ , ω) and J(θ) are continuous at least at

every point in a neighborhood of θ 0. More precisely, consider the following assumptions.

Assumption 3.13 SCORE DIFFERENTIABILITY. Dn(θ ,ω) is almost surely (a.s.) differentiable

with respect to θ , for all n, in a non-empty open neighborhood N1 of θ 0. The derivative matrix of

Dn(θ ,ω) is denoted

Jn(θ , ω) =
∂Dn(θ ,ω)

∂θ ′ (3.3)

where the sequence of matrices Jn(θ , ω), n ≥ 1, is well-defined for ω ∈ DJ and DJ is an event with

probability one (i.e., P[ω ∈ DJ] = 1).
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Assumption 3.14 SCORE DERIVATIVE UNIFORM CONVERGENCE. Dn(θ , ω) satisfies the follow-

ing conditions:

(a) Jn(θ , ω) is continuous with respect to θ for all θ ∈ N2, ω ∈ DJ and n ≥ 1;

(b) sup
θ∈N2

‖Jn(θ , ω)− J(θ)‖ p−→
n→∞

0 .

We then have the following implication, which shows that Proposition 3.1 still holds if the as-

sumptions 3.4 and 3.5 are replaced by the (stronger) assumptions 3.13 and 3.14. Another implication

is that J(θ) is continuous at θ = θ 0 in this special case.

Proposition 3.2 SUFFICIENCY OF SCORE JACOBIAN CONTINUITY AND UNIFORM CONVER-

GENCE. Suppose the assumptions 3.1 to 3.3 hold. Then the assumptions 3.13 and 3.14 entail

that:

(a) J(θ) is continuous at θ = θ 0;

(b) both the assumptions 3.4 and 3.5 also hold.

4. Alternative C(α)-type statistics

It will be of interest to examine a number of special forms of the general statistic proposed in Sec-

tion 2. In particular, the statistic PC(θ̃ 0

n; ψ,Wn) nests several C(α)-type and score-based statistics

proposed in the statistical and econometric literatures, as well as new ones.1 It will be of interest to

spell out some of these.

On taking Wn = Ĩ−1
n , as suggested by efficiency arguments, PC(θ̃ 0

n; ψ,Wn) reduces to

PC(θ̃ 0

n; ψ) = nDn

(

θ̃ 0

n; Zn

)′
W̃n Dn

(

θ̃ 0

n; Zn

)

(4.1)

where θ̃ 0

n is any root-n consistent estimator of θ which satisfies ψ(θ̃ 0

n) = 0, and

W̃n = Ĩ−1
n J̃ ′

n

(

J̃ ′
n Ĩ−1

n J̃n

)−1
P̃ ′

n

[

P̃n

(

J̃ ′
n Ĩ−1

n J̃n

)−1
P̃ ′

n

]−1
P̃n

(

J̃ ′
n Ĩ−1

n J̃n

)−1
J̃ ′

n Ĩ−1
n

with P̃n = P(θ̃ 0

n), Ĩn = În(θ̃
0

n) and J̃n = Ĵn(θ̃
0

n).
When the number of equations equals the number of parameters (m = p) , we have Q̃ [Wn] =

P̃n J̃−1
n and PC(θ̃ 0

n; ψ ,Wn) does not depend on the choice of Wn:

PC(θ̃ 0

n; ψ, Wn) = PC
(

θ̃ 0

n; ψ
)

= nDn

(

θ̃ 0

n; Zn

)′
(J̃−1

n )′P̃ ′
n

[

P̃n

(

J̃ ′
n Ĩ−1

n J̃n

)−1
P̃ ′

n

]−1
P̃n J̃−1

n Dn

(

θ̃ 0

n; Zn

)

. (4.2)

In particular, this will be the case if Dn (θ ; Zn) is the derivative of a (pseudo) log-likelihood function.

1For further discussion of C(α) tests, the reader may consult Basawa (1985), Ronchetti (1987), Smith (1987a), Berger

and Wallenstein (1989), Dagenais and Dufour (1991), and Kocherlakota and Kocherlakota (1991).
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For m ≥ p, when θ̃ 0

n is obtained by minimizing Mn (θ) = Dn (θ ; Zn)
′
Ĩ−1
n Dn (θ ; Zn) subject to

ψ (θ) = 0, where Ĩn is an estimator of I(θ 0), we can write θ̃ 0

n = θ̂ 0

n and PC
(

θ̃ 0

n; ψ,Wn

)

is identical

to the score-type statistic suggested by Newey and West (1987a):

S (ψ) = nDn(θ̂
0

n; Zn)
′Î−1

n Ĵn

(

Ĵ ′
n Î−1

n Ĵn

)−1
Ĵ ′

n Î−1
n Dn(θ̂

0

n; Zn) (4.3)

where În = În(θ̂
0

n) and Ĵn = Ĵn(θ̂
0

n). This statistic is closely related with the Lagrange-multiplier-type

(LM-type) statistic

LM (ψ) = n λ̂
′
n P̂n

(

Ĵ ′
n Î−1

n Ĵn

)−1
P̂′

n λ̂ n (4.4)

where P̂n = P(θ̂ 0

n) and λ̂ n is the Lagrange multiplier in the corresponding constrained optimization

problem. Indeed, upon using the first-order condition

Jn

(

θ̂ 0

n; Zn

)′
Ĩ−1
n Dn

(

θ̂ 0

n; Zn

)

= P
(

θ̂ 0

n

)′λ̂ n , (4.5)

we see easily that

S (ψ) = LM (ψ) . (4.6)

In (correctly specified) parametric models, we have I(θ) =−J(θ) and the C(α) statistic in (4.2)

reduces to

PC
(

θ̃ 0

n; ψ
)

= nDn

(

θ̃ 0

n; Zn

)′
Ĩ−1
n P̃ ′

n

[

P̃n Ĩ−1
n P̃ ′

n

]−1
P̃n Ĩ−1

n Dn

(

θ̃ 0

n; Zn

)

(4.7)

where Dn

(

θ̃ 0

n; Zn

)

is the score of the log-likelihood function and Ĩn is the Fisher information ma-

trix or a consistent estimate, each evaluated at the auxiliary estimator θ̃ 0

n. The extension of C(α)
statistics to a general parameter constraint given in (4.7) was first proposed by Smith (1987b) in a

likelihood setting; see Dagenais and Dufour (1991) for further discussion of this test statistic.

5. Testing a subvector

A common problem in statistics consists in testing an hypothesis of the form

H0 : θ 1 = θ̄ 10 (5.1)

where θ 1 is a subvector of θ , and θ̄ 10 is a given possible value of θ 1, i.e. we consider ψ (θ) =
θ 1 − θ̄ 10. Without loss of generality, we can assume that θ = (θ ′

1,θ ′
2)

′ where θ 1 is a p1 ×1 vector

and θ 2 is a p2 ×1 vector, and denote θ 0 = (θ ′
10,θ ′

20)
′ the “true value” of θ . In this case,

P(θ) = [Ip1
, 0p1×p2

] (5.2)

where Ip1
is the identity matrix of order p1 and 0p1×p2

is the p1 × p2 zero matrix. Let θ̃ 0

n be a

restricted
√

n-consistent estimator of θ . We can then write θ̃ 0

n = (θ̄ ′
10, θ̃

0′
2n)

′ where θ̃ 0

2n is a
√

n-

consistent estimator of θ 2.
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Let us partition J(θ) and J̃n = Jn(θ̃
0

n; Zn) conformably with θ = (θ ′
1,θ ′

2)
′:

J(θ) = [J·1(θ), J·2(θ)] , J̃n = [J̃n·1, J̃n·2] = [J̃n·1(θ̃
0

n; Zn), J̃n·2(θ̃
0

n; Zn)] , (5.3)

where J·i(θ) and J̃n·i = J̃n·i(θ̃
0

n; Zn) are m× pi matrices, i = 1, 2 . Let also

J̃∗n = W
1/2
n J̃n = [J̃∗n·1, J̃∗n·2] , J̃∗n·i = W

1/2
n J̃n·i i = 1, 2, (5.4)

and conformably partition the matrix J̃ ′
n Wn J̃n and its inverse (J̃ ′

n Wn J̃n)
−1:

J̃ ′
nWn J̃n =

[

(J̃ ′
nWn J̃n)11 (J̃ ′

nWn J̃n)12

(J̃ ′
nWn J̃n)21 (J̃ ′

nWn J̃n)22

]

=

[

J̃ ′
n·1Wn J̃n·1 J̃ ′

n·1Wn J̃n·2
J̃ ′

n·2Wn J̃n·1 J̃ ′
n·2Wn J̃n·2

]

, (5.5)

(J̃ ′
nWn J̃n)

−1 =

[

(J̃ ′
nWn J̃n)

11 (J̃ ′
nWn J̃n)

12

(J̃ ′
nWn J̃n)

21 (J̃ ′
nWn J̃n)

22

]

, (5.6)

where (J̃ ′
n Wn J̃n)i j and (J̃ ′

n Wn J̃n)
i j are pi × p j matrices, i, j = 1, 2. We denote P[Z] = Z(Z′Z)−1Z′

the projection matrix on the space spanned by the columns of a full-column rank matrix Z, and

M[Z] = I −Z(Z′Z)−1Z′.
Let us now assume that the matrix (J̃ ′

n Wn J̃n)22 is invertible. This entails that (J̃ ′
n Wn J̃n)

11 is

invertible and, on using standard rules for multiplying partitioned matrices,

[

(J̃ ′
nWn J̃n)

11
]−1

(J̃ ′
nWn J̃n)

12 = −(J̃ ′
nWn J̃n)12[(J̃

′
nWn J̃n)22]

−1

= −(J̃ ′
n·1Wn J̃n·2)(J̃

′
n·2Wn J̃n·2)

−1 , (5.7)

(J̃ ′
nWn J̃n)

11 =
[

(J̃ ′
n·1Wn J̃n·1)− J̃ ′

n·1Wn J̃n·2(J̃
′
n·2Wn J̃n·2)

−1J̃ ′
n·2Wn J̃n·1

]−1
; (5.8)

see Harville (1997, Theorem 8.5.11). We can then rewrite Q̃ [Wn] as

Q̃ [Wn] = P̃n(J̃
′
nWn J̃n)

−1J̃ ′
nWn

= [Ip1
,0p1×p2

]

[

(J̃ ′
nWn J̃n)

11 (J̃ ′
nWn J̃n)

12

(J̃ ′
nWn J̃n)

21 (J̃ ′
nWn J̃n)

22

][

J̃ ′
n·1

J̃ ′
n·2

]

Wn

=
[

(J̃ ′
nWn J̃n)

11J̃ ′
n·1 +(J̃ ′

nWn J̃n)
12 J̃ ′

n·2
]

Wn

= (J̃ ′
nWn J̃n)

11
[

J̃ ′
n·1 +

(

(J̃ ′
nWn J̃n)

11
)−1

(J̃ ′
nWn J̃n)

12 J̃ ′
n·2

]

Wn

= (J̃ ′
nWn J̃n)

11
[

J̃ ′
n·1 − (J̃ ′

n·1Wn J̃n·2)(J̃
′
n·2Wn J̃n·2)

−1 J̃ ′
n·2

]

Wn

= Ṽ−1
n·1|2 J̃ ′

n·1|2Wn (5.9)

where

J̃n·1|2 = J̃n·1 − J̃n·2(J̃
′
n·2Wn J̃n·2)

−1J̃ ′
n·2Wn J̃n·1 = W

−1/2
n M[J̃∗n·2]J̃

∗
n·1 , (5.10)

Ṽn·1|2 = (J̃ ′
n·1Wn J̃n·1)− J̃ ′

n·1Wn J̃n·2
(

J̃ ′
n·2Wn J̃n·2

)−1
J̃ ′

n·2Wn J̃n·1
= J̃∗′n·1M[J̃∗n·2]J̃

∗
n·1. (5.11)
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Using (5.9), we get:

Q̃ [Wn] D̃n = Ṽ−1
n·1|2 J̃ ′

n·1|2Wn D̃n

= Ṽ−1
n·1|2

[

J̃ ′
n·1Wn D̃n − (J̃ ′

n·1Wn J̃n·2)(J̃
′
n·2Wn J̃n·2)

−1J̃ ′
n·2Wn D̃n

]

, (5.12)

J̃ ′
n·1|2Wn D̃n = J̃ ′

n·1Wn D̃n − (J̃ ′
n·1Wn J̃n·2)(J̃

′
n·2Wn J̃n·2)

−1J̃ ′
n·2Wn D̃n , (5.13)

Q̃ [Wn] Ĩn Q̃ [Wn]
′ = Ṽ−1

n·1|2 J̃ ′
n·1|2Wn ĨnWn J̃n·1|2 Ṽ−1

n·1|2

= Ṽ−1
n·1|2 J̃∗′n·1M[J̃∗n·2]W

1/2
n ĨnW

1/2
n M[J̃∗n·2]J̃

∗
n·1 Ṽ−1

n·1|2 , (5.14)

where D̃n = Dn

(

θ̃ 0

n; Zn

)

. The generalized C(α) statistic then takes the form:

PC1

(

θ̃ 0

n; θ̄ 10, Wn

)

= PC
(

θ̃ 0

n; ψ, Wn

)

= nD̃ ′
nWn J̃n·1|2

(

J̃ ′
n·1|2Wn ĨnWn J̃n·1|2

)−1
J̃ ′

n·1|2Wn D̃n

= nD̃ ′
nW

1/2
n M[J̃∗n·2]J̃

∗
n·1 Σ̃n(Wn)

−1 J̃∗′n·1M[J̃∗n·2]W
1/2
n D̃n (5.15)

where

Σ̃n(Wn) = J̃∗′n·1M[J̃∗n·2](W
1/2
n ĨnW

1/2
n )M[J̃∗n·2]J̃

∗
n·1

and the matrix Ṽ−1
n·1|2 cancels out.

It is also of interest to note that the transformed score S̃n·1|2 = J̃ ′
n·1|2 Wn D̃n in PC1

(

θ̃ 0

n; θ̄ 10,Wn

)

is by construction uncorrelated with S̃n·2 = J̃ ′
n·2Ĩ−1

n D̃n asymptotically. This follows on observing

that:
√

n

[

S̃n·1|2
S̃n·2

]

=
√

nR̃n D̃n
L−→

n→∞
N

[

0, R̄(θ 0)I(θ 0)R̄(θ 0)
′] (5.16)

where

R̃n =

[

J̃ ′
n·1|2Wn

J̃ ′
n·2 Ĩ−1

n

]

p−→
n→∞

R(θ 0) =

[

J·1|2(θ 0)
′W0

J·2(θ 0)
′I(θ 0)

−1

]

, (5.17)

J·1|2(θ 0) = J·1(θ 0)− J·2(θ 0)[J·2(θ 0)
′W0 J·2(θ 0)]

−1J·2(θ 0)
′W0 J·1(θ 0) , (5.18)

and the asymptotic covariance matrix between
√

nS̃n·2 and
√

nS̃n·1|2 is

[

J·2(θ 0)
′I(θ 0)

−1
]

I(θ 0)
[

W0 J·1|2(θ 0)
]

= J·2(θ 0)
′ [W0 J·1|2(θ 0)

]

= 0 . (5.19)

Indeed, the above orthogonality can be viewed as the source of the evacuation of the distribution of√
n
(

θ̃ 0

n −θ 0

)

from the asymptotic distribution of the generalized C(α) statistic: using the assump-

tions 3.4 and 3.9 [see (A.5)], we see easily that, under H0,

J·1|2(θ 0)
′W0

√
n
[

Dn(θ̃
0

n)−Dn(θ 0)
]

= J·1|2(θ 0)
′W0 J(θ 0)

√
n
(

θ̃ 0

n −θ 0

)

+op(1)
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= J·1|2(θ 0)
′W0 J·2(θ 0)

√
n
(

θ̃ 0

2n −θ 20

)

+op(1) = op(1) . (5.20)

Thus the asymptotic null distribution of the modified score used by the generalized C(α) statistic

does not depend on the limit distribution of the nuisance parameter estimator θ̃ 0

n, and similarly for

the generalized C(α) statistic.

When Wn = Ĩ−1
n , the formula in (5.15) simplifies to:

PC1(θ̃
0

n; θ̄ 10) = nD̃ ′
n Ĩ−1

n J̃n·1|2
[

J̃ ′
n·1|2Ĩ−1

n J̃n·1|2
]−1

J̃ ′
n·1|2 Ĩ−1

n D̃n

= nD̃′
n Ĩ

−1/2
n M[J̃∗n·2]J̃

∗
n·1

[

J̃∗′n·1 M[J̃∗n·2]J̃
∗
n·1

]−1
J̃∗′n·1 M[J̃∗n·2]Ĩ

−1/2
n D̃n

= nD̃′
n Ĩ

−1/2
n P

[

M[J̃∗n·2]J̃
∗
n·1

]

Ĩ
−1/2
n D̃n (5.21)

where

J̃n·1|2 =
[

Im − J̃n·2
(

J̃′n·2Ĩ−1
n J̃n·2

)−1
J̃′n·2Ĩ−1

n

]

J̃n·1 = Ĩ
1/2
n M[Ĩ

−1/2
n J̃n·2 ]Ĩ

−1/2
n J̃n·1 , (5.22)

J̃∗n·1 = Ĩ
−1/2
n J̃n·1 , J̃∗n·2 = Ĩ

−1/2
n J̃n·2 . (5.23)

Upon using (5.16) - (5.19), we see that J̃′
n·1|2 Ĩ−1

n D̃n and J̃′n·2 Ĩ−1
n D̃n are asymptotically uncorrelated,

and

J̃ ′
n·1|2Ĩ−1

n D̃n = J̃ ′
n·1 Ĩ

−1/2
n M[Ĩ

−1/2
n J̃n·2 ]Ĩ

−1/2
n D̃n

= J̃ ′
n·1 Ĩ

−1/2
n {Im −P[Ĩ

−1/2
n J̃n·2 ]}Ĩ

−1/2
n D̃n (5.24)

where M[Ĩ
−1/2
n J̃n·2 ]Ĩ

−1/2
n D̃n is the residual from the projection of Ĩ

−1/2
n D̃n on Ĩ

−1/2
n J̃n·2. Further, on

applying the Frisch-Waugh-Lovell theorem, we see that

P
[

J̃∗n
]

= P
[

J̃∗n·2
]

+P
[

M[J̃∗n·2]J̃
∗
n·1

]

, (5.25)

hence

PC1(θ̃
0

n; θ̄ 10) = nD̃ ′
n Ĩ

−1/2
n

{

P
[

J̃∗n
]

−P
[

J̃∗n·2
]}

Ĩ
−1/2
n D̃n

= n
[

D̃ ′
n Ĩ−1

n J̃n

(

J̃ ′
n Ĩ−1

n J̃n

)−1
J̃ ′

n Ĩ−1
n D̃n − D̃ ′

n Ĩ−1
n J̃n·2

(

J̃ ′
n·2 Ĩ−1

n J̃n·2
)−1

J̃ ′
n·2 Ĩ−1

n D̃n

]

. (5.26)

Finally, let us consider parametric models where m = p and Dni(θ ; Zn) denotes the pi ×1 score

function (the derivative of the log-likelihood function) corresponding to θ i, i = 1,2, along with the

corresponding partition of D̃n and Ĩn :

D̃n =

[

D̃n1

D̃n2

]

=

[

Dn1(θ̃
0

n; Zn)

Dn2(θ̃
0

n; Zn)

]

, Ĩn =

[

Ĩn11 Ĩn12

Ĩn21 Ĩn22

]

, (5.27)

where D̃ni = Dni(θ̃
0

n; Zn) is a pi × 1 vector and Ĩni j is pi × p j matrix, i, j = 1,2. In such cases, we

have J(θ 0) = −I(θ 0), and upon setting J̃n = −Ĩn, the formulas in (5.21) and (5.26) reduce to a



6. TWO-STAGE PROCEDURES 13

simple difference between two statistics:

PC1(θ̃
0

n; θ̄ 10) = n
(

D̃n1 − Ĩn12 Ĩ−1
n22 D̃n2

)′(
Ĩn11 − Ĩn12 Ĩ−1

n22 Ĩn21

)−1(
D̃n1 − Ĩn12 Ĩ−1

n22 D̃n2

)

= n
[

D̃ ′
n Ĩ−1

n D̃n − D̃ ′
n2 Ĩ−1

n22 D̃n2

]

. (5.28)

6. Two-stage procedures

In this section, we formulate the C(α) statistic for estimating functions (or GMM-type) models

estimated by two-step procedures. The C(α) test procedure applies in a natural way to moment

condition models estimated by a two-step procedure, because a correction for the first-stage estima-

tion error is readily built into the statistic. Models of this kind typically involve a parameter vector

θ = (θ ′
1,θ ′

2)
′ where θ 1 is the parameter vector of interest (on which inference focuses), and θ 2

denotes a vector of nuisance parameters which is consistently estimated by an auxiliary estimate

θ̃ 0

2n obtained from the first-stage estimation. Gong and Samaniego (1981), Pagan (1984, 1986), and

Murphy and Topel (1985) among others study the properties of two-step estimation and testing pro-

cedures in a likelihood framework. Newey and McFadden (1994) deal with the problem in a GMM

framework, but do not consider the C(α) statistic.

In this section, we describe how generalized C(α) tests can provide relatively simple solutions to

such problems in the context of estimating functions and GMM estimation, with serial dependence.

We first consider the generic case where the nuisance vector θ 2 is estimated in a first stage, and

then treated as known for the purpose of testing the value of another parameter vector θ 1. Second,

we examine the special case of a two-step GMM estimation, where the estimation of the nuisance

parameter is based on a separate set of estimating functions (or moment conditions).

6.1. Tests based on general two-step estimation

Suppose we are interested in testing the restriction H0 : θ 1 = θ̄ 10 based on data Xn = [x1, . . . , xn] and

an m1 ×1 vector of estimating functions

Dn1(θ ; Xn) = Dn1(θ 1,θ 2; Xn) . (6.1)

In particular, we may assume Dn1(θ ; Xn) is a subvector of a larger vector

Dn(θ ; Xn) = [Dn1(θ ; Xn)
′, Dn2(θ ; Xn)

′]′. (6.2)

A typical setup is the one where

Dn1(θ ; Xn) =
1

n

n

∑
t=1

h1(θ 1,θ 2; xt) , (6.3)

Eθ [h1(θ 1,θ 2; xt)] = 0, t = 1, . . . , n, (6.4)

and h1(θ ; xt) = h1(θ 1,θ 2; xt) is a subvector of a higher-dimensional vector h(θ ; xt) =
[h1(θ ; xt)

′, h2(θ ; xt)
′]′ of estimating functions.
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If the dimension of Dn1(θ 1,θ 2; Xn) is large enough (m1 ≥ p) and the regularity conditions of

Proposition 3.1 are satisfied when Dn(θ ; Xn) is replaced by Dn1(θ ; Xn), we can build general C(α)-
type tests of H0 : θ 1 = θ̄ 10 based on Dn1(θ 1,θ 2; Xn). No information on the (eventual) left-out

estimating functions Dn2(θ ; Xn) is required. These features underscore the remarkable versatility of

estimating functions in conjunction with the generalized C(α) procedure described in this paper.

Let θ̃ 0

2n be an estimator of the nuisance parameter vector θ 2 obtained from the data Yn =

[y1, . . . , yn] which may be different from Xn.2 For example, θ̃ 0

2n may be based on an “auxiliary”

estimating function Dn2(θ ; Xn), but this is not required. Consider now the restricted estimator

θ̃ 0

n =
(

θ̄ ′
10, θ̃

0′
2n

)′
, and denote D̃n1 = Dn1

(

θ̃ 0

n; Xn

)

, Ĩn11, J̃n1i := Ĵn1i

(

θ̃ 0

n

)

and Wn11, the matrices cor-

responding to D̃n = Dn(θ̃
0

n; Zn), Ĩn, J̃n·i and Wn respectively for the system based on the estimating

function Dn1(θ ; Xn); D̃n1 has dimension m1 × 1, J̃n1i is m1 × pi, and Wn11 is m1 ×m1. In the case

where Dn1(θ ; Xn) is a subvector of Dn(θ ; Xn) as in (6.2), Ĩn11, J̃n1i and Wn11 are the corresponding

submatrices of Ĩn, J̃n·i and Wn respectively, where

Wn =

[

Wn11 Wn12

Wn21 Wn22

]

(6.5)

and Wni j is a pi × p j matrix, i, j = 1, 2.

Making the appropriate substitutions in (5.15), we then get the following C(α)-type statistic for

H0 : θ 1 = θ̄ 10:

PC1

(

θ̃ 0

n; θ̄ 10,Wn11

)

= nD̃ ′
n1Wn11 J̃n11|2 Σ̃−1

n11|2 J̃ ′
n11|2Wn11 D̃n1 (6.6)

where Σ̃n11|2 = J̃ ′
n11|2Wn11 Ĩn11Wn11 J̃n11|2, and

J̃n11|2 = J̃n11 − J̃n12(J̃
′
n12Wn11 J̃n12)

−1J̃ ′
n12Wn11 J̃n11

= W
−1/2

n11 M[W
1/2

n11 J̃n12]W
1/2

n11 J̃n11 , (6.7)

Σ̃n11|2 = J̃ ′
n11|2Wn11 Ĩn11Wn11 J̃n11|2

= J̃ ′
n11W

1/2

n11 M[W
1/2

n11 J̃n12]W
1/2

n11 Ĩn11W
1/2

n11 M[W
1/2

n11 J̃n12]W
1/2

n11 J̃n11 . (6.8)

By Proposition 3.1, PC1

(

θ̃ 0

n; θ̄ 10, Wn11

)

has a χ2(p1) asymptotic distribution under H0. On taking

Wn11 = Ĩ−1
n11, PC1 takes the following simplified form:

PC1

(

θ̃ 0

n; θ̄ 10, Ĩ−1
n11

)

= nD̃ ′
n1 Ĩ

−1/2

n11 M̃12 Ĩ
−1/2

n11 J̃n11 Σ̃−1
n11|2 J̃ ′

n11Ĩ
−1/2

n11 M̃12 Ĩ
−1/2

n11 D̃n1 (6.9)

where M̃12 = M[Ĩ
−1/2

n11 J̃n12] and Σ̃n11|2 = J̃ ′
n11|2 Ĩ−1

n11 J̃n11|2 = J̃′n11 Ĩ
−1/2

n11 M̃12 Ĩ
−1/2

n11 J̃n11.

2The number of observations in the dataset Y could be different from n, say is equal to n2, n2 6= n. If the aux-

iliary estimate θ̃ 0
2n2

obtained from the second dataset satisfies
√

n2(θ̃
0
2n2

− θ 20) = Op(1), then
√

n(θ̃ 0
2n2

− θ 20) =
√

n/n2
√

n2(θ̃
0
2n2

− θ 20) = Op(1) provided n/n2 = O(1), and the arguments that follow remain valid. When a set of

estimating functions Dn22(θ 2) for the second dataset is considered, the argument presented here remains valid provided√
n2Dn22(θ 20) obeys a central limit theorem in addition to the previous conditions on the auxiliary estimate and the

sample sizes.
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When calculating the standard error of the estimator of θ 1, one needs to take into account

the sampling error associated with the first-stage estimator of the parameter θ 2; see Newey and

McFadden (1994). This is achieved transparently by the C(α) statistic, because its asymptotic

distribution does not depend on the asymptotic distribution of the first-stage estimator. Here, the

invariance of the the asymptotic distribution of PC1

(

θ̃ 0

n; θ̄ 10,Wn11

)

with respect to the distribution

of θ̃ 0

n is entailed by the orthogonality relation

J12(θ 0)
′[W011J11|2(θ 0)] = J12(θ 0)

′W011W
−1/2

011 M
[

W
1/2

011 J12(θ 0)
]

W
1/2

011 J11(θ 0)

=
[

W
1/2

011 J12(θ 0)
]′

M
[

W
1/2

011 J12(θ 0)
]

W
1/2

011 J11(θ 0) = 0 , (6.10)

where plim
n→∞

Wn11 = W011. This in turn implies that
√

n J̃ ′
n11|2Wn11 D̃n1 is asymptotically uncorrelated

with
√

n J̃ ′
n12Ĩ−1

n11 D̃n1 ; see (5.16) - (5.20) for a similar argument.

6.2. Tests based on a two-step GMM estimation

We now consider the case where the condition m1 ≥ p may not hold – so rank conditions for ap-

plying a C(α)-type test only based on h1 cannot hold (without other restrictions) – but we have m2

estimating functions Dn2(θ ; Xn) as in (6.2) which can be used to draw inference on θ 2 and account

for the uncertainty of θ 2 estimates, where m2 ≥ p2. Further, we suppose here that Dn2(θ ; Xn) only

depends on θ 2, i.e. Dn2(θ ; Xn) = Dn2(θ 2; Xn), with m1 ≥ p1 and m2 ≥ p2.

In particular, these assumptions may be based on a system of moment equations

Eθ

[

h1(θ 1,θ 2; xt)
h2(θ 2; yt)

]

= 0 , t = 1, . . . , n, (6.11)

where h2(θ 2; yt) is typically used to estimate the nuisance parameter θ 2 and

Dn2(θ 2; Yn) =
1

n

n

∑
t=1

h2(θ 2; yt) . (6.12)

In this context, the sample estimating function is

D̃n =

[

D̃n1

D̃n2

]

=

[

Dn1(θ̃
0

n; Xn)

Dn2(θ̃
0

2n; Yn)

]

(6.13)

with

J(θ) = [J·1(θ), J·2(θ)] =

[

J11(θ) J12(θ)
0m2×p1

J22(θ)

]

. (6.14)

The partitioned Jacobian estimator is then given by

J̃n = [J̃n·1, J̃n·2] =

[

J̃n11 J̃n12

0m2×p1
J̃n22

]

. (6.15)
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On assuming that the regularity conditions of Proposition 3.1 are satisfied, we can use here the

statistic PC1

(

θ̃ 0

n; θ̄ 10,Wn

)

defined in (5.15). Further, the form (6.15) yields useful restrictions on

the test statistic. We then have

PC1

(

θ̃ 0

n; θ̄ 10, Wn

)

= nD̃ ′
nWn J̃n·1|2

(

J̃ ′
n·1|2Wn ĨnWn J̃n·1|2

)−1
J̃ ′

n·1|2Wn D̃n (6.16)

with

J̃ ′
n·1|2Wn D̃n = J̃ ′

n11Wn11 D̃n1

+
[

J̃ ′
n11Wn12 D̃n2 − J̃′n·1Wn J̃n·2(J̃

′
n·2Wn J̃n·2)

−1J̃ ′
n·2Wn D̃n

]

. (6.17)

In this case, the correction for the estimation of θ 2 is accounted by the two last terms in the above

expression for J̃′
n·1|2 Wn D̃n.

For moment equations of the form (6.11), it is natural to consider separate weightings for D̃n1

and D̃n2, i.e.

Wn12 = W ′
n21 = 0 . (6.18)

On using both conditions (6.15) and (6.18), we see that

J̃ ′
n·1|2Wn D̃n = J̃ ′

n11Wn11 D̃n1

−J̃′n11Wn11J̃n12(J̃
′
n·2Wn J̃n·2)

−1
[

J̃ ′
n12Wn11 D̃n1 + J̃ ′

n22Wn22 D̃n2

]

, (6.19)

J̃ ′
n·2Wn J̃n·2 = J̃ ′

n12Wn11 J̃n12 + J̃ ′
n22Wn22 J̃n22 . (6.20)

Again the asymptotic distribution of the test statistic PC1

(

θ̃ 0

n; θ̄ 10,Wn

)

is χ2(p1) under the null

hypothesis H0 : θ 1 = θ̄ 10, irrespective of the asymptotic distribution of θ̃ 0

2n.

7. Conclusion

In this paper, we have introduced a comprehensive C(α) statistic based on estimating functions (or

GMM setups). As in Smith (1987a), the null hypothesis is specified in terms of a general possibly

nonlinear constraint, rather than a restriction fixing a parameter subvector. The proposed procedure

allows for general forms of serial dependence and heteroskedasticity, and can be implemented using

any root-n consistent restricted estimator. A detailed derivation of the asymptotic null distribution

of the statistic was provided under weak regularity conditions.

The proposed generalized C(α)-type statistic includes earlier ones as special cases, as well as

a wide spectrum of new ones. A number of important special cases of the extended test statistic

were discussed in detail. These include testing whether a parameter subvector has a given value –

for which we give a number of alternative forms and special cases – and the important problem of

accounting for parameter uncertainty in two-stage procedures.
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Appendix

A. Proofs

PROOF OF PROPOSITION 3.1 To simplify notation, we shall assume throughout that ω ∈ DJ (an

event with probability 1) and drop the symbol ω from the random variables considered. In order to

obtain the asymptotic null distribution of the generalized C(α) statistic defined in (2.14), we first

need to show that P(θ̃ 0

n) and Jn(θ̃
0

n) converge in probability to P(θ 0) and J(θ 0) respectively. The

consistency of P(θ̃ 0

n), i.e.

plim
n→∞

[P(θ̃ 0

n)−P(θ 0)] = 0 , (A.1)

follows simply from the consistency of θ̃ 0

n [Assumption 3.9] and the continuity of P(θ) at θ 0 [As-

sumption 3.7]. Further, by Assumption 3.8, since P(θ) is continuous in open neighborhood of θ 0,
we also have

rank [P̃n] = rank [P(θ 0)] = p1 . (A.2)

Consider now Jn(θ̃
0

n). By Assumption 3.5, for any ε > 0 and ε1 > 0, we can choose δ 1 := δ (ε1, ε) >
0 and a positive integer n1(ε, δ 1) such that: (i) UJ(δ 1, ε, θ 0) ≤ ε1/2, and (ii) n > n1(ε, δ 1) entails

P [∆n(θ 0, δ ) > ε] = P
[

{ω : ∆n(θ 0, δ , ω) > ε}
]

≤UJ(δ 1, ε, θ 0) ≤ ε1/2 .

Further, by the consistency of θ̃ 0

n [Assumption 3.9], we can choose n2(ε1, δ 1) such that n >

n2(ε1, δ 1) entails P
[

‖θ̃ 0

n −θ 0‖ ≤ δ 1

]

≥ 1− (ε1/2). Then, using the Boole-Bonferroni inequality,

we have for n > max{n1(ε, δ 1), n2(ε1, δ 1)}:

P
[

‖Jn(θ̃
0

n)− J(θ 0)‖ ≤ ε
]

≥ P
[

‖θ̃ 0

n −θ 0‖ ≤ δ 1 and ‖Jn(θ̃
0

n)− J(θ 0)‖ ≤ ε
]

≥ P
[

‖θ̃ 0

n −θ 0‖ ≤ δ 1 and ∆n (θ 0, δ 1) ≤ ε
]

≥ 1−P
[

‖θ̃ 0

n −θ 0‖ > δ 1

]

−P
[

∆n (θ 0, δ 1) > ε
]

≥ 1− (ε1/2)− (ε1/2) = 1− ε1 .

Thus,

liminf
n→∞

P
[

‖Jn(θ̃
0

n)− J(θ 0)‖ ≤ ε
]

≥ 1− ε1 , for all ε > 0, ε1 > 0 ,

hence

lim
n→∞

P
[

‖Jn(θ̃
0

n)− J(θ 0)‖ ≤ ε
]

= 1 , for all ε > 0 , (A.3)

or, equivalently,

plim
n→∞

[

Jn(θ̃
0

n)− J(θ 0)
]

= 0 . (A.4)

By Assumption 3.4, we can write [setting 0/0 = 0] :

‖
√

n
[

Dn(θ̃
0

n)−Dn(θ 0)
]

− J(θ 0)
√

n(θ̃ 0

n −θ 0)‖ =
√

n‖Rn(θ̃
0

n, θ 0)‖
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=
‖Rn(θ̃

0

n, θ 0)‖
‖θ̃ 0

n −θ 0‖
√

n‖θ̃ 0

n −θ 0‖

where

‖Rn(θ̃
0

n, θ 0)‖
‖θ̃ 0

n −θ 0‖
≤ rn(δ , θ 0) when θ̃ 0

n ∈ N0 and ‖θ̃ 0

n −θ 0‖ ≤ δ

and limsup
n→∞

P [rn(δ , θ 0) > ε] < UD(δ , ε, θ 0). Thus, for any ε > 0 and δ > 0, we have:

P

[

‖Rn(θ̃
0

n, θ 0)‖
‖θ̃ 0

n −θ 0‖
≤ ε

]

≥ P
[

rn(δ , θ 0) ≤ ε , θ̃ 0

n ∈ N0 and ‖θ̃ 0

n −θ 0‖ ≤ δ
]

≥ 1−P
[

rn(δ , θ 0) > ε
]

−P
[

θ̃ 0

n /∈ N0 or ‖θ̃ 0

n −θ 0‖ > δ
]

hence, using the consistency of θ̃ 0

n,

liminf
n→∞

P

[

‖Rn(θ̃
0

n, θ 0)‖/‖θ̃ 0

n −θ 0‖ ≤ ε
]

≥ 1− limsup
n→∞

P [rn(δ , θ 0) > ε ]

− limsup
n→∞

P
[

θ̃ 0

n /∈ N0 or ‖θ̃ 0

n −θ 0‖ > δ
]

≥ 1−UD(δ , ε, θ 0) .

Since lim
δ↓0

UD(δ , ε, θ 0) = 0, it follows that lim
n→∞

P
[

‖Rn(θ̃
0

n, θ 0)‖/‖θ̃ 0

n −θ 0‖ ≤ ε
]

= 1 for any ε > 0,

or equivalently,

‖Rn(θ̃
0

n, θ 0)‖/‖θ̃ 0

n −θ 0‖
p−→

n→∞
0 .

Since
√

n(θ̃ 0

n −θ 0) is asymptotically bounded in probability (by Assumption 3.9), this entails:

√
n‖Rn(θ̃

0

n, θ 0)‖ =
‖Rn(θ̃

0

n, θ 0)‖
‖θ̃ 0

n −θ 0‖
√

n‖θ̃ 0

n −θ 0‖
p−→

n→∞
0 (A.5)

and

‖
√

n [Dn(θ̃
0

n)−Dn(θ 0)]− J(θ 0)
√

n(θ̃ 0

n −θ 0)‖
p−→

n→∞
0 . (A.6)

By Taylor’s theorem and assumptions 3.7 - 3.8, we also have the expansion:

ψ(θ) = ψ(θ 0)+P(θ 0)(θ −θ 0)+R2(θ , θ 0) , (A.7)

for θ ∈ N ⊆ N0 ∩V0, where N is a non-empty open neighborhood of θ 0 and

lim
θ→θ 0

‖R2(θ , θ 0)‖/‖θ − θ 0‖ = 0 ,
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i.e., R2(θ , θ 0) = o(‖θ − θ 0‖), so that, using Assumption 3.10,

√
nP(θ 0)(θ̃

0

n −θ 0) =
√

n [ψ(θ̃ 0

n)−ψ(θ 0)]−
√

nR2(θ̃
0

n, θ 0)

= −
√

nR2(θ̃
0

n, θ 0) (A.8)

for θ̃ 0

n ∈ N, and

‖
√

nP(θ 0)(θ̃
0

n −θ 0)‖ =
‖R2(θ̃

0

n, θ 0)‖
‖θ̃ 0

n −θ 0‖
√

n‖θ̃ 0

n −θ 0‖
p−→

n→∞
0 . (A.9)

By (A.2) and (A.4) jointly with the assumptions 3.3, 3.6, 3.7, 3.8, 3.11 and 3.12, we have:

rank [P̃n] = p1 , rank [J̃n] = p , rank [Ĩn] = m, rank [Wn] = m , (A.10)

so the matrices J̃n, Ĩn, and Wn all have full column rank. Since plim
n→∞

P̃n = P(θ 0) and plim
n→∞

J̃n = J(θ 0),

we can then write:

plim
n→∞

[

J̃ ′
nWn J̃n

]−1
=

[

J(θ 0)
′W0 J(θ 0)

]−1
, plim

n→∞
Q̃n = Q(θ 0) ,

plim
n→∞

Q̃n J̃n = plim
n→∞

Q̃n J(θ 0) = Q(θ 0)J(θ 0) = P(θ 0) ,

where Q̃n := Q̃[Wn] = P̃n[J̃
′
n Wn J̃n]

−1J̃ ′
n Wn. Then, using (A.6) and (A.9), it follows that:

plim
n→∞

{√
nQ̃n Dn(θ̃

0

n)−
√

nQ(θ 0)Dn(θ 0)
}

= plim
n→∞

{√
nQ̃n Dn(θ̃

0

n)−Q(θ 0)
√

nDn(θ 0)
}

− plim
n→∞

{

P(θ 0)
√

n(θ̃ 0

n −θ 0)
}

= plim
n→∞

{

Q̃n

[√
n [Dn(θ̃

0

n)−Dn(θ 0)]− J(θ 0)
√

n(θ̃ 0

n −θ 0)
]

}

+ plim
n→∞

{

[

Q̃n −Q(θ 0)
]√

nDn(θ 0)+
[

Q̃n J(θ 0)−P(θ 0)
]√

n(θ̃ 0

n −θ 0)
}

= plim
n→∞

{

Q̃n

[√
n [Dn(θ̃

0

n)−Dn(θ 0)]− J(θ 0)
√

n(θ̃ 0

n −θ 0)
]

}

= 0 .

We conclude that the asymptotic distribution of
√

nQ̃n Dn(θ̃
0

n) is the same as the one of

Q(θ 0)
√

nDn(θ 0), namely (by Assumption 3.2) a N
[

0,Vψ(θ 0)
]

distribution where

Vψ(θ) = Q(θ) I(θ)Q(θ)′

and Vψ(θ 0) has rank p1 = rank [Q(θ 0)] = rank[P(θ 0)]. Consequently, the estimator

Ṽψ(θ̃ 0

n) = Q̃n Ĩn Q̃ ′
n (A.11)
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converges to Vψ(θ 0) in probability and, by (A.10),

rank
[

Ṽψ(θ̃ 0

n)
]

= p1. (A.12)

Thus the test criterion

PC(θ̃ 0

n; ψ, Wn) = nDn(θ̃
0

n; Zn)
′Q̃ [Wn]

′{
Q̃ [Wn] Ĩn Q̃ [Wn]

′}−1
Q̃ [Wn]Dn(θ̃

0

n; Zn)

has an asymptotic χ2(p1) distribution.

PROOF OF PROPOSITION 3.2 Consider the (non-empty) open neighborhood N = N1 ∩N2 of θ 0.
For any θ ∈ N and ω ∈ Z , we can write

‖J(θ)− J(θ 0)‖ ≤ ‖Jn(θ , ω)− J(θ)‖+‖Jn(θ 0, ω)− J(θ 0)‖
+ ‖Jn(θ , ω)− Jn(θ 0, ω)‖

≤ 2 sup
θ∈N

‖Jn(θ , ω)− J(θ)‖+‖Jn(θ , ω)− Jn(θ 0, ω)‖

By Assumption 3.14(b), we have

plim
n→∞

(

sup
θ∈N

‖Jn(θ , ω)− J(θ)‖
)

≤ plim
n→∞

(

sup
θ∈N2

‖Jn(θ , ω)− J(θ)‖
)

= 0

and we can find a subsequence {Jnt
(θ ,ω) : t = 1,2, . . .} of {Jn(θ ,ω) : n = 1,2, . . .} such that

sup
θ∈N

{‖Jnt
(θ , ω)− J(θ)‖} −→

t→∞
0 a.s.

Let

CS =
{

ω ∈ Z : lim
t→∞

(

sup
θ∈N

‖Jnt
(θ , ω)− J(θ)‖

)

= 0
}

and ε > 0. By definition, P [ω ∈CS] = 1. For ω ∈CS, we can choose t0(ε, ω) such that

t ≥ t0(ε,ω) ⇒ 2 sup
θ∈N

{‖Jnt
(θ , ω)− J(θ)‖} < ε/2 .

Further, since Jn(θ , ω) is continuous in θ at θ 0, we can find δ (n, ω) > 0 such that

‖θ −θ 0‖ < δ (n,ω) ⇒‖Jn(θ , ω)− Jn(θ 0, ω)‖ < ε/2 .

Thus, taking t0 = t0(ε, ω) and n = nt0 , we find that ‖θ −θ 0‖ < δ (nt0 ,ω) implies

‖J(θ)− J(θ 0)‖ <
ε
2

+
ε
2

= ε .
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In other words, for any ε > 0, we can choose δ = δ (nt0 ,ε) > 0 such that

‖θ −θ 0‖ < δ ⇒‖J(θ)− J(θ 0)‖ < ε ,

and the function J(θ) must be continuous at θ 0. Part (a) of the Proposition is established.

Set ∆ n(N2, ω) := sup{‖Jn(θ , ω)− J(θ)‖ : θ ∈ N2} . To get Assumption 3.5, we note that

∆n(θ 0, δ , ω) : = sup{‖Jn(θ , ω)− J(θ 0)‖ : θ ∈ N2 and 0 ≤ ‖θ − θ 0‖ ≤ δ}
≤ ∆ n(N2, ω)

for any δ > 0 , hence, by Assumption 3.14(b),

limsup
n→∞

P
[

{ω : ∆n(θ 0, δ , ω) > ε}
]

≤ limsup
n→∞

P
[{

ω : ∆ n(N2, ω) > ε
}]

≤ UJ(δ , ε, θ 0)

for any function UJ(δ , ε, θ 0) that satisfies the conditions of Assumption 3.5. The latter thus holds

with V0 any non-empty open neighborhood of θ 0 such that V0 ⊆ N2.

To obtain 3.4, we note that 3.14 entails Dn(θ , ω) is continuously differentiable in an open

neighborhood of θ 0 for all ω ∈ DJ, so that we can apply Taylor’s formula for a function of several

variables [see Edwards (1973, Section II.7)] to each component of Dn(θ , ω) : for all θ in an open

neighborhood U of θ 0 (with U ⊆ N2), we can write

Din(θ , ω) = Din(θ 0, ω)+ Jn

(

θ̄ i
n(ω), ω

)

i·(θ − θ 0)

= Din(θ 0, ω)+ J(θ 0)i·(θ − θ 0)+Rin

(

θ̄ i
n(ω), θ 0, ω

)

, i = 1, . . . , m,

where Jn(θ , ω)i· and J(θ)i· are the i-th rows of Jn(θ , ω) and J(θ) respectively,

Rin

(

θ̄ i
n(ω), θ 0, ω

)

=
[

Jn(θ̄
i
n(ω), ω)i·− J(θ 0)i·

]

(θ − θ 0)

and θ̄ i
n(ω) belongs to the line joining θ and θ 0. Further, for θ ∈U,

∣

∣Rin

(

θ̄ i
n(ω), θ 0, ω

)∣

∣ ≤
∥

∥Jn(θ̄
i
n(ω), ω)i·− J(θ 0)i·

∥

∥ ‖θ − θ 0‖
≤

∥

∥Jn(θ̄
i
n(ω), ω)− J(θ 0)

∥

∥ ‖θ − θ 0‖
≤ ‖θ − θ 0‖ sup{‖Jn(θ , ω)− J(θ)‖ : θ ∈ N2} , i = 1, . . . , m,

hence, on defining N0 = U ,

Rn(θ , θ 0, ω) =
[

R1n

(

θ̄ 1
n (ω), θ 0, ω

)

, . . . , Rmn

(

θ̄ m
n (ω), θ 0, ω

)]′
,

we see that

‖Rn(θ , θ 0, ω)‖ ≤
m

∑
1=1

∣

∣Rin

(

θ̄ i
n(ω), θ 0, ω

)∣

∣



A. PROOFS 22

≤ m ‖θ − θ 0‖ sup
θ∈N2

{‖Jn(θ , ω)− J(θ)‖}

and

rn(δ , θ 0, ω) : = sup

{‖Rn(θ , θ 0, ω)‖
‖θ − θ 0‖

: θ ∈ N0 and 0 < ‖θ − θ 0‖ ≤ δ
}

≤ m sup{‖Jn(θ , ω)− J(θ)‖ : θ ∈ N2}

Thus rn(δ , θ 0, ω)
p−→

n→∞
0 and

limsup
n→∞

P
[

{ω : rn(δ , θ 0, ω) > ε}
]

≤UD(δ , ε, θ 0) (A.13)

must hold for any function that satisfies the conditions of Assumption 3.4. This completes the

proof.
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Singh, A. C. and Zhurbenko, I. G. (1975), ‘The power of the optimal asymptotic tests of composite

statistical hypotheses’, Proceedings of the National Academy of Sciences 72(2), 577–580.



REFERENCES 27

Small, C. G. and McLeish, D. L. (1994), Hilbert Space Methods in Probability and Statistical

Inference, John Wiley and Sons, New York.

Smith, R. J. (1987a), ‘Alternative asymptotically optimal tests and their application to dynamic

specification’, Review of Economic Studies LIV, 665–680.

Smith, R. J. (1987b), ‘Testing the normality assumption in multivariate simultaneous limited depen-

dent variable models’, Journal of Econometrics 34, 105–123.

Tarone, R. E. (1979), ‘Testing the goodness of fit of the binomial distribution’, Biometrika

66(3), 585–590.

Tarone, R. E. (1985), ‘On heterogeneity tests based on efficient scores’, Biometrika 72(1), 91–95.

Tarone, R. E. and Gart, J. J. (1980), ‘On the robustness of combined tests for trends in proportions’,

Journal of the American Statistical Association 75(369), 110–116.

Vorob’ev, L. S. and Zhurbenko, I. G. (1979), ‘Bounds for C(α)-tests and their applications’, Theory

of Probability and its Applications 24, 253–268.

Wang, P. C. C. (1981), ‘Robust asymptotic tests of statistical hypotheses involving nuisance param-

eters’, The Annals of Statistics 9(5), 1096–1106.

Wang, P. C. C. (1982), ‘On the computation of a robust version of the optimal C(α) test’, Commu-

nications in Statistics-Simulation and Computation 11(3), 273–284.

Wooldridge, J. M. (1990), ‘A unified approach to robust, regression-based specification tests’,

Econometric Theory 6, 17–43.


