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ABSTRACT

We study the problem of testing hypotheses on the parametersof one- and two-factor stochas-
tic volatility models (SV), allowing for the possible presence of nonregularities such as singular
moment conditions and unidentified parameters, which can lead to non-standard asymptotic dis-
tributions. We focus on the development of simulation-based exact procedures – whose level can
be controlled in finite samples – as well as on large-sample procedures which remain valid under
non-regular conditions. We consider Wald-type, score-type and likelihood-ratio-type tests based on
a simple moment estimator, which can be easily simulated. Wealso propose aC(α)-type test which
is very easy to implement and exhibits relatively good size and power properties. Besides usual lin-
ear restrictions on the SV model coefficients, the problems studied include testing homoskedasticity
against a SV alternative (which involves singular moment conditions under the null hypothesis) and
testing the null hypothesis of one factor driving the dynamics of the volatility process against two
factors (which raises identification difficulties). Three ways of implementing the tests based on al-
ternative statistics are compared: asymptotic critical values (when available), a local Monte Carlo
(or parametric bootstrap) test procedure, and a maximized Monte Carlo (MMC) procedure. The size
and power properties of the proposed tests are examined in a simulation experiment. The results
indicate that theC(α)-based tests (built upon the simple moment estimator available in closed form)
have good size and power properties for regular hypotheses,while Monte Carlo tests are much more
reliable than those based on asymptotic critical values. Further, in cases where the parametric boot-
strap appears to fail (for example, in the presence of identification problems), the MMC procedure
easily controls the level of the tests. Moreover, MMC-basedtests exhibit relatively good power
performance despite the conservative feature of the procedure. Finally, we present an application to
a time series of returns on the Standard and Poor’s CompositePrice Index.

Key words: testing; exact test; Monte Carlo test; maximized Monte Carlo test; Wald test; LR test;
LM test; C(α) test; homoskedasticity; stochastic volatility; two-factor volatility; identification;
singular moment conditions; finance; stock prices.

JEL classification: C1, C12, C13, C15, C32, G1.
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RÉSUMÉ

Dans ce texte, nous étudions des tests d’hypothèses sur les paramètres de modèles de volatilité sto-
chastique (SV) à un ou deux facteurs, en permettant la présence de non-régularités, tels que la singu-
larité locale des conditions de moment définissant l’estimateur ou encore des paramètres de nuisance
non-identifiés, ce qui peut conduire à une théorie distributionnelle non standard. Nous développons
des procédures exactes dont la taille peut être contrôlée pour une taille donnée d’échantillon, ainsi
que des tests justifiés par des arguments asymptotiques, lesquels sont à la fois simples du point de
vue numérique et relativement fiables sur de petits échantillons. Nous considérons des critères de
types Wald, score et quotient de vraisemblance fondés sur unestimateur des moments (et non sur
le maximum de vraisemblance) qui est simple du point de vue numérique. Nous proposons aussi
un test de typeC(α) qui est très facile à utiliser et qui affiche de bonnes propriétés de niveau et
de puissance. Outre des tests de restrictions linéaires surles coefficients du modèle de volatilité
stochastique, les problèmes étudiés comprennent des testsd’homoscédasticité (contre un modèle
de volatilité stochastique) et des tests de l’hypothèse nulle d’une volatilité à un facteur contre une
volatilité à deux facteurs, lesquels soulèvent des problèmes de singularité locale et d’identification.
Nous comparons trois variantes différentes de chaque test suivant que l’on utilise des points cri-
tiques asymptotiques standards, une procédure de test de Monte Carlo (ou bootstrap paramétrique)
et une procédure de test de Monte Carlo maximisé (MMC). Le niveau et la puissance des procé-
dures proposées sont étudiées par simulation. Les résultats soulignent la supériorité du testC(α)
dans les cas réguliers, à la fois pour le niveau et la puissance, tandis que les tests de Monte Carlo
s’avèrent plus fiables que leurs homologues asymptotiques.En outre, dans des situations où le
bootstrap paramétrique ne parvient pas à contrôler le niveau (par exemple, en présence de prob-
lèmes d’identification), la procédure MMC contrôle facilement le niveau des tests. De plus, les tests
fondés sur la procédure MMC affichent une bonne puissance bien que cette méthode soit conser-
vatrice par construction. Finalement, nous présentons uneapplication à une série de rendements
quotidiens de l’indice boursier du Standard and Poor’s.

Mots clé: test d’hypothèse; test exact; tests de Monte Carlo; test de Monte Carlo maximisé; test de
Wald; test du score; test du quotient de vraisemblance; testC(α); volatilité stochastique; volatilité
à deux facteurs; identification; conditions de moments singulières; finance; prix d’actions.

JEL classification: C1, C12, C13, C15, C32, G1.
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1. Introduction

Modelling conditional heteroskedasticity is one of the central problems of financial econometrics.
The two main families of models for that purpose consist of ARCH-type processes, originally in-
troduced by Engle (1982), and stochastic volatility (SV) models proposed by Taylor (1994). Even
though GARCH-type models are more widely used than SV models, the latter may be preferable for
several reasons.First, SV models are directly connected to diffusion processes used in theoretical
finance and allow for a volatility process that does not depend on observable variables.Second,
as pointed out by Carnero, Peña and Ruiz (2004), kurtosis, volatility shock persistence and serial
correlation of squared variables differ markedly between GARCH and autoregressive SV models
(ARSV). This difference may explain why the estimated persistence is usually higher in GARCH
than in Gaussian ARSV models, and why GARCH models often require leptokurtic conditional
distributions.

GARCH models are relatively easy to estimate and remain muchmore popular than SV models.
In particular, evaluating the likelihood function of GARCHmodels is simple compared to SV mod-
els, for which it is difficult to obtain a likelihood in closedform. This is a general feature of most
nonlinear latent variable models, because the latent variables must be integrated out of the joint
density for the observed and latent processes, leading to anintegral of high dimensionality. As a
result, maximum likelihood (ML) methods are prohibitivelyexpensive from a computational view-
point, and alternative methods appear to be required for applying such models. This fundamental
difficulty may have prevented the widespread use of SV modelsand has made GARCH the model
of choice in practice.

Nevertheless, much progress has been achieved on the estimation of SV models. Besides
the quasi maximum likelihood approaches [Ruiz (1994)], or the generalized method of moments
(GMM) procedures [Andersen and Sørensen (1996)], simulation-based estimation has become more
attractive due to increasing computer power, and comprises: (1) indirect inference which has been
used to estimate SV models by Monfardini (1998); (2) the efficient method of moments applied to
SV models by Andersen, Chung and Sørensen (1999) and Chernov, Gallant, Ghysels and Tauchen
(2003); (3) simulated maximum likelihood, which can be implemented in SV models using im-
portance sampling; see Danielsson and Richard (1993), Danielsson (1994), Durham (2006, 2007).
Bayesian techniques can also be applied in this context through computer-intensive methods, such
as Markov Chain Monte Carlo (MCMC) methods, and appear to yield relatively good results; see
Jacquier, Polson and Rossi (1994), Chib, Nardari and Shephard (2002).

All these studies focus on the estimation of SV models. Test problems have received much
less attention. The available results on hypothesis testing for such models are rather incomplete
and scattered. These include: GMM-basedt-type tests on individual coefficients [Andersen and
Sørensen (1996), Andersen et al. (1999)], and various specification tests such as tests for goodness
of fit, diagnostic checking and model comparison; see Andersen and Sørensen (1996), Gallant,
Hsieh and Tauchen (1997), Andersen et al. (1999), Durham (2006, 2007). A systematic discussion
of hypothesis testing on SV model coefficients does not appear to be available. Further, even in
parametric SV models, all the available test procedures arebased on large-sample approximations
and do not address non-regular problems which show up naturally in this context, such as testing
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the hypothesis of homoskedasticity against a SV model, or testing the hypothesis of a one-factor SV
model against a two-factor SV model.

In this paper, we focus on hypothesis testing in parametric SV models. Our main objective is
to develop both exact tests as well as asymptotically justified procedures that are markedly more
reliable than those based on usual large-sample approximations, especially in the presence of non-
regularities and non-standard asymptotic distributions.The proposed procedures are also designed
to be computationally manageable.

Exploiting the fact that many SV models are parametric models involving only a finite number
of unknown parameters, our basic outlook is to develop finite-sample simulation-based procedures
as opposed to procedures based on establishing asymptotic distributions. For that purpose, we rely
on extensions of the basic idea of Monte Carlo (MC) tests originally proposed by Dwass (1957) and
Barnard (1963). When the distribution of a test statistic does not depend on (unknown) nuisance
parameters, the technique of MC tests yields an exact test provided one can generate a few i.i.d. (or
exchangeable) replications of the test statistic under thenull hypothesis; for example, 19 replications
are sufficient to get a test with level 0.05; see Dufour and Khalaf (2001). This technique can be
extended to test statistics which depend on nuisance parameters by considering maximized Monte
Carlo (MMC) tests; see Dufour (2006). MMC tests yield exact tests whenever the distribution of the
test statistic can be simulated as a function of the nuisanceparameters: no additional assumption on
its distribution is needed. Further, computationally moretractable versions of this procedure, such as
MMC tests on consistent set estimators of model nuisance parameters, provide asymptotically valid
tests irrespective of the presence of non-regularities andnon-standard asymptotic distributions, such
as those associated with identification problems. Parametric bootstrap tests may also be interpreted
as degenerate MMC tests, where the simulatedp-value function is evaluated at a single nuisance-
parameter point estimate. However, the asymptotic validity of the parametric bootstrap method
requires stronger assumptions than the MMC procedure and itmay fail to control the level of the
test even asymptotically, especially in non-regular problems (where the MMC procedure remains
valid). Thus, the only requirement for being able to use the MMC procedure is that one is able
to generate artificial data from the test statistic or from the model without the need to study the
asymptotic distribution of the test statistic nor even to establish its existence.

Even though the general approach proposed here can be applied to a wide array of setups and
relatively general SV models, we focus here on a relatively simple log-normal SV model of order
one with an autoregressive mean, which has been widely studied in the SV literature (usually in a
more restricted form); see Jacquier et al. (1994), Danielsson (1994), Gallant et al. (1997). Further,
for the sake of numerical tractability, we consider tests based on a simple two-step moment esti-
mator which is available in closed form. This estimator is studied in detail in Dufour and Valéry
(2006). However, the proposed test procedures by no way are restricted to being used with this spe-
cific estimator. In particular,anyconsistent estimator (GMM, SMM, indirect inference...) oreven
more efficient estimators such as the efficient method of moments or the simulated maximum like-
lihood estimator (SMLE) could be used instead (although theassociated computational cost may be
higher); see Danielsson (1994), Durham (2006, 2007). It is of interest to note here that the critical
requirement for the validity of consistent set estimate maximized Monte Carlo tests (CSEMMC) is
theconsistencyproperty for the estimate of the (nuisance) parameters, andnot its efficiency.
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To be more specific, the contributions of the paper can be summarized as follows.First, we
implement and compare the three standard test statistics,i.e. Wald-type, score-type and likelihood-
ratio-type tests based on the computationally simple moment estimator available in Dufour and
Valéry (2006). Further, we propose aC(α)-type test [see Neyman (1959), Dagenais and Dufour
(1991)] which turns out to be relatively easy to implement inour framework and exhibits remark-
ably good size and power properties. Under standard regularity conditions, these test criteria follow
asymptotic chi-square distributions under the null hypothesis. This holds, in particular, for linear
hypotheses on the coefficients of the SV models and various (sufficiently smooth) nonlinear hy-
potheses. However, in view of the fact that the asymptotic distribution may be quite unreliable in
finite samples, we suggest that such tests be implemented using MMC techniques (which are prov-
ably valid without further regularity conditions) and parametric bootstrapping. We also compare the
performances of the different test criteria.

Second, we study in greater detail three relatively important special hypotheses in the context
of the SV model, namely: (1) homoskedasticity (against the SV alternative); (2) the hypothesis of
stochastic volatility without persistence (against persistence in stochastic volatility); (3) one-factor
SV against a two-factor SV.

The first problem(testing homoskedasticity) is, of course, an important pre-test before trying
to include a latent factor to drive the dynamics of the volatility process which makes its estimation
much more complicated. However, moment conditions becomelocally singular in this case so that
standard regularity conditions are not anymore applicable. Further, score-type test criteria [LM and
C(α)] and Wald-type are no longer computable in this case – at least without modification – so that
they cannot be used. By contrast, bootstrap and MMC versionsof LR-type tests appear to work
well in this case.

The second problem[testing no persistence (or no clustering) in stochastic volatility] exhibits
some similarities with testing homoskedasticity but remains different for two reasons:first, volatility
is viewed as random but not persistent, which entails a non-Gaussian leptokurtic error distribution
(while, in the homoskedastic case, the disturbances are i.i.d. Gaussian);second, the moment con-
ditions donot imply singularities in the covariance matrices, which are invertible. Thus score-type
test criteria [LM andC(α)] and Wald-type can be computed in this case. In other words, testing
no persistence (or no clustering) in stochastic volatilityis a regular hypothesis for which standard
asymptotic distributions are applicable. Through simulation evidence, however, we find that asymp-
totic critical values can lead to under-rejection rates in small samples, while the bootstrap procedure
tends to over-reject. In contrast, the MMC method controls test level in all cases.

The third problem(testing one factor against two-factor SV) is motivated by the fact that stan-
dard SV models do not capture important features of asset returns distribution such astail thickness;
see Chernov et al. (2003) and Durham (2006, 2007). As a solution, a second factor in the volatil-
ity dynamics may account for tail behavior. Testing one-factor against two-factor SV introduces an
unidentified parameter under the null hypothesis [as in Hansen (1996), Andrews (2001) and Dufour,
Khalaf, Bernard and Genest (2004, section 3.2)], so that standard asymptotic regularity conditions
do not hold. In addition to the identification problem, the Jacobian of the moment conditions fails to
meet a required full-column rank condition. Therefore, under the third type of hypothesis, we have
the most degeneratetesting problem which combines both difficulties: an identification issue and
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a rank failure of the Jacobian. Thus, score-type criteria are not applicable because covariance ma-
trices are singular and Wald-type tests become utterly unreliable [see Dufour (1997, 2003)]. Even
bootstrapping appears to fail in this case. In contrast, we find that MMC-based LR-type tests work
well for that problem. It is also interesting to note that developing and justifying solutions such as
those based on the approach proposed by Davies (1977, 1987),Hansen (1996) and Andrews (2001)
would require considerable additional theoretical work. In contrast, the MMC approach works
transparently.

Fourth, we perform a Monte Carlo study to compare the finite-sample properties of the proce-
dures considered. We make two important observations: (1) in regular test problems,C(α)-type
tests exhibit good performance, especially when they are implemented in a simulated approach
(bootstrap or MMC); (2) in non-regular problems, the only procedure which is both widely applica-
ble and allows one to control test level is the MMC-based LR-type test.

Fifth, the proposed procedures are applied to the Standard and Poor’s Composite Price Index.
For this series, we find evidence that stochastic volatilityis present through a one-factor specification
with strong persistence.

The paper is organized as follows. Section 2 sets the framework underlying the one-factor and
two-factor SV models and reviews the estimation procedure used to implement the tests. The test
criteria considered and the associated confidence sets are discussed in Section 3. In Section 4,
we examine why some basic problems in this setup, such as testing homoskedasticity against SV
or testing one-factor SV against two-factor SV, lead to non-regularities. In Section 5, we review
the technique of Monte Carlo tests. Simulation results are presented in Section 6, while empirical
results on the Standard and Poor’s Composite Price Index 500return series appear in Section 7. We
conclude in Section 8.

2. Framework

2.1. One-factor SV model

The basic form of the stochastic volatility model we study here comes from Gallant et al. (1997).
Let us denote byyt the variable of interest. For example,yt can denote the first difference over a
short time interval, a day for instance, of the log-price of afinancial asset traded on security markets.

Assumption 2.1 The process{yt : t ∈ N} follows a stochastic volatility model of the type:

yt − µy =

Ly
∑

i=1

ci(yt−i − µy) + ut , (2.1)

ut = exp(wt/2)ryzt , (2.2)

wt =

Lw
∑

j=1

awjwt−j + rwvt , (2.3)
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whereµy, {cj}
Ly

j=1, ry, {awj}
Lw

j=1 andrw are unknown parameters andst = (yt, wt)
′ is initialized

from its stationary distribution.

In the above model, (2.1) is the mean equation, while (2.3) isthe volatility equation. We shall
call the model represented by (2.1) - (2.3) the stochastic volatility model of orderLw with autore-
gressive mean of orderLy [ARSV(Ly, Lw) for short]. The lag lengths of the autoregressive speci-
fications used in the literature are typically short. Usual configurations include(Ly, Lw) = (0, 1),
(1, 1) or (2, 2); see Andersen and Sørensen (1996), Gallant et al. (1997), andAndersen et al. (1999).
An important special case of (2.1) - (2.3) consists in setting cj = awj = 0, ∀j ≥ 2, andδ = (c, θ′)′

with θ = θ1, whereθ1 = (aw, ry, rw)′. We then have:

yt − µy = c(yt−1 − µy) + ut , |c| < 1 , (2.4)

ut = [ry exp(wt/2)]zt , (2.5)

wt = awwt−1 + rwvt , |aw| < 1 . (2.6)

Assumption 2.2 The vectors(zt, vt)′, t ∈ N are i.i.d. according to aN(0, I2) distribution.

Assumption 2.3 The processst = (yt, wt)
′ is strictly stationary.

The ARSV(Ly, Lw) process is Markovian of orderLs = max(Ly, Lw). Let us denote by

δ = (µy, c1, . . . , cLy , ry, aw1, . . . , awLw , rw)′ (2.7)

the parameter vector of the model. Here{yt} is observed, while{wt} is a latent variable. Accord-
ingly, the joint density of the observation vectory(T ) = (y1, . . . , yT ) is not available in closed
form, for it requires evaluating an integral with dimensionequal to the whole path of the latent
volatilities. Let

F (y1, . . . , yT ) = P[Y1 ≤ y1, . . . , YT ≤ yT |δ] ≡ F0(y(T )|δ)

denote its unknown distribution function.
We shall now focus on the ARSV(1, 1) model. To estimate it, we consider a two-step method

whose first step consists in applying ordinary least squares(OLS) to the mean equation which yields
a consistent estimate of the autoregressive parameterc and of the mean parameterµy, denoted by
ĉ, µ̂y and the residualŝut ≡ ut(ĉ) = yt − µ̂y − ĉ(yt−1 − µ̂y). Then, we apply in a second step a
method of moments to the residualsût to get the estimate of the parameterθ1 = (aw, ry, rw)′ of the
mean and volatility equations.1 Unlike the other estimators proposed in the financial literature for
estimating SV models, this two-step moment estimator is easy to implement and available in closed
form, an appealing feature for complicated latent variablemodels. Besides, its simplicity allows

1It is shown in Dufour and Valéry (2006) propositions 4.2 and 4.3 that replacingc by ĉ and usingût = ut(ĉ) has
no effect on the asymptotic variance ofθ̂. An interesting and potentially useful feature of the asymptotic distribution of
θ̂ stems from the fact that its covariance matrix does not depend on the distribution of the first-step conditional mean
estimator and consequently no effect is passed on the test statistics. Otherwise, substituting estimators for parameters
would affect the test results as shown in Pierce (1982).

5



for simulation-based inference and will be further exploited to obtain simulated testing procedures.
In the sequel we will focus on the particular case whereµy = 0 but all the results still hold in the
general case.

Under the assumptions2.1 to 2.3, with µy = 0 andci = awi = 0, ∀i ≥ 2, the perturbation
termut has the following moments for positive even values ofj andk:

µk(θ1) ≡ E(ukt ) = rky
k!

2(k/2)(k/2)!
exp

[k2

8
r2w/(1 − a2

w)
]

, (2.8)

µj, k(l|θ1) ≡ E(ujtu
k
t+l)

= rj+ky

j!

2(j/2)(j/2)!

k!

2(k/2)(k/2)!
exp

[ r2w
8(1 − a2

w)
(j2 + k2 + 2jka|l|w )

]

. (2.9)

Odd moments are equal to zero. In particular, forj = 2, j = 4 andj = k = 2 andl = 1, we have:

µ2(θ1) = E(u2
t ) = r2y exp[(1/2)r2w/(1 − a2

w)] , (2.10)

µ4(θ1) = E(u4
t ) = 3r4y exp[2r2w/(1 − a2

w)] , (2.11)

µ2, 2(1|θ1) = E[u2
tu

2
t−1] = r4y exp[r2w/(1 − aw)] ; (2.12)

see Dufour and Valéry (2006). Let

κ =
µ4(θ1)

µ2
2(θ1)

(2.13)

be the kurtosis coefficient of the process. It is easy to see thatκ ≥ 3, with κ > 3 as soon asrw 6= 0
(i.e., when the volatility is not constant). Solving the above moment equations corresponding to
j = 2, j = 4 andl = 1 yields the following expressions: providedκ > 3,

aw = log

[

µ2, 2(1|θ1)

µ2
2(θ1)

]

/ log(κ/3) (2.14)

hence

ry =
31/4µ2(θ1)

µ4(θ1)1/4
=

(3µ2
2(θ1)

κ

)1/4
, rw =

[

(1 − a2
w) log

(

κ/3
)]1/2

, if κ > 3. (2.15)

If κ ≤ 3, the volatility is constant and it is natural to set

aw = rw = 0 and ry =
√

µ2(θ1) if κ ≤ 3 . (2.16)

Given the latter definitions, it is easy to compute a method-of-moment estimator forθ1 =
(aw, ry, rw)′ on replacing the theoretical moments by sample counterparts based on the residuals
ût. Let θ̂ denote the method-of-moments estimator ofθ1. Typically, E(u2

t ), E(u4
t ) andE(u2

tu
2
t−1)
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are approximated by:

µ̂2 =
1

T

T
∑

t=1

û2
t µ̂4 =

1

T

T
∑

t=1

û4
t , µ̂2, 2(1) =

1

T − 1

T
∑

t=2

û2
t û

2
t−1 (2.17)

respectively. This yields the following estimators of the stochastic volatility coefficients:

âw =







∆ if ãw > ∆ ,
ãw if |ãw| ≤ ∆ ,
−∆ if ãw < −∆ ,

(2.18)

r̂y =
(

3µ̂2
2/κ̂

)1/4
if κ̂ > 3,

= µ̂
1/2
2 if κ̂ ≤ 3,

(2.19)

r̂w =
[

(1 − â2
w) log

(

κ̂/3
)]1/2

if κ̂ > 3,
= 0 if κ̂ ≤ 3,

(2.20)

whereκ̂ = µ̂4/µ̂
2
2 and

ãw = log

[

µ̂
2, 2(1)

µ̂2

2
(θ1)

]

/ log(κ̂/3) if κ̂ > 3,

= 0 if κ̂ ≤ 3.
(2.21)

In (2.18),∆ is a number close to one which is used to bound the estimator away from the stationary
boundary. This is important to avoid numerical instability. In the simulations and application below,
we used∆ = 0.99, but a value closer to one could be considered. Under the assumptions of the
model, the restriction̂κ ≥ 3 must hold with probability converging to one. Provided|aw| < ∆,
the estimator̂θ = [âw, r̂y, r̂w]

′
is consistent and asymptotically normally distributed; see Dufour

and Valéry (2006) for a detailed presentation of its asymptotic properties.2 However, the Monte
Carlo tests procedure used later in the paper is restricted by no way to this specific estimator. Thus,
any consistent estimator (e.g., GMM, SMM) or even more efficient estimators such as the efficient
method of moments (see Chernov et al. (2003)) or the simulated maximum likelihood estimator
(SMLE) could be used instead (although the associated computational cost may be higher), see
Durham (2006, 2007) and may induce power gains.

2.2. Two-factor SV model

A simple single-factor SV model appears to be sufficient to capture the salient properties of volatility
such as randomness and persistence. It is the shape of the conditional distribution of financial returns
which constitutes the problem; see Chernov et al. (2003) andDurham (2006, 2007). Standard SV
models cannot match the high conditional kurtosis of returns (tail thickness) documented in the

2The estimated covariance matrix estimated is is
(

Ĵ ′Î−1Ĵ
)−1

with Ĵ = J
(

θ̂
)

, J(θ) = ∂µ

∂θ′ andÎ = Ω̂∗, whereΩ̂∗

is defined by (3.3) and (3.4). Standard errors are the square roots of the corresponding variances from this covariance
matrix.
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financial literature, for example in the case of equities. Trying to capture nonlinearities in financial
returns has important implications for risk management andoption pricing.

Consequently, we also consider a two-factor specification driving the dynamics of the volatility
process of the following form:

yt − µy = c(yt−1 − µy) + ut , |c| < 1 , (2.22)

ut = [ry exp(wt/2 + ηt/2)]zt , (2.23)

wt = awwt−1 + rwv1t , |aw| < 1 , (2.24)

ηt = aηηt−1 + rηv2t , |aη| < 1 , (2.25)

(zt, v1t, v2t) are i.i.d. Gaussian vectors such thatzt ∼ N(0, 1) and

( v1t, v2t) ∼ N(0, Σv) , Σv =

[

1 ρ12

ρ12 1

]

, E[( v1t, v2t)zt] = 0 . (2.26)

We shall call the above model represented by equations (2.22) - (2.26) the autoregressive stochastic
volatility model with two factors. Letθ2 = (aw, ry, rw, aη, rη, ρ12)

′ denote the parameter corre-
sponding to the two-factor SV model. We derive the moment conditions used in a just-identified
GMM framework, which are stated in the proposition below.

Proposition 2.4 MOMENTS OF THE TWO-FACTOR SV PROCESS. Under the assumptions(2.22)
to (2.26), we have for positive even values ofj andk :

E(ukt ) = rky
k!

2(k/2)(k/2)!
exp

[

k2

8
r2w/(1 − a2

w) +
k2

8
r2η/(1 − a2

η) +
k2

4

rwrηρ12

1 − awaη

]

,

E[ujtu
k
t+l] = rj+ky

j!

2(j/2)(j/2)!

k!

2(k/2)(k/2)!
exp

[

r2w
8(1 − a2

w)

(

j2 + k2 + 2jka|l|w
)

+
r2η

8(1 − a2
η)

(

j2 + k2 + 2jka|l|η
)

+
1

8

(

2j2 + 2k2 + 2jka|l|η + 2jka|l|w
) rwrηρ12

1 − awaη

]

. (2.27)

The proof of this proposition is given in Appendix A. In particular, forj = 2, 4, 6 andj = k,
the above formulae yield the following moments:

E(u2
t ) = r2y exp

(

1

2

r2w
1 − a2

w

+
1

2

r2η
1 − a2

η

+
rwrηρ12

1 − awaη

)

≡ µ2(θ2) , (2.28)

E(u4
t ) = 3 r4y exp

(

2r2w
1 − a2

w

+
2r2η

1 − a2
η

+
4rwrηρ12

1 − awaη

)

≡ µ4(θ2) , (2.29)

8



E(u6
t ) = 15 r6y exp

(

9

2

r2w
1 − a2

w

+
9

2

r2η
1 − a2

η

+
9rwrηρ12

1 − awaη

)

≡ µ6(θ2) , (2.30)

E[u2
tu

2
t−1] = r4y exp

(

σ2

2

)

= µ2, 2(1|θ2) , (2.31)

E[u4
tu

4
t−1] = 9 r8y exp(2σ2) = µ4, 4(1|θ2) , (2.32)

E[u6
tu

6
t−1] = 225 r12y exp

(

9

2
σ2

)

= µ6, 6(1|θ2) , (2.33)

where

σ2 ≡ Var(wt + ηt + wt−1 + ηt−1) =
2r2w

1 − a2
w

+
2r2η

1 − a2
η

+
4rwrηρ12

1 − awaη
+

2awr
2
w

1 − a2
w

+
2awrwrηρ12

1 − awaη
+

2aηrwrηρ12

1 − awaη
+

2aηr
2
η

1 − a2
η

. (2.34)

These moment conditions constitute a just-identified GMM setup we shall use below in order
to test the number of SV factors in the volatility process. The associated estimators, however, are
not available in closed form, in contrast with the one-factor setup. But the moment conditions
(2.28) - (2.33) yield a GMM estimator in the usual way throughnonlinear optimization techniques.

It is important to note that another set of moment conditions(larger or simply different) could
be used to estimate the two-factor model. This might lead to more precise estimates and eventually
more powerful tests. Finding better or “optimal” moment conditions goes beyond the scope the
present paper. But the general testing approach proposed below remains applicable if different sets
of moment conditions are employed.

3. Test statistics and confidence sets

We are concerned with testing a null hypothesis of the form:

H0(ψ0) : ψ(θ) = ψ0 .

Further, we assume that the derivative of the constraints

P (θ) =
∂ψ

∂θ′

has full row rank, let̂θ be the unrestricted estimator andθ̂0 the constrained estimator obtained by
minimizing the following criterion

M∗
T (θ) ≡ [ḡT (ÛT ) − µ(θ)]′Ω̂−1

∗ [ḡT (ÛT ) − µ(θ)] (3.1)
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where ḡT (ÛT ) denotes the vector of empirical moments based on the residual vector ÛT corre-
sponding toµ(θ). Ω̂∗ denotes a consistent estimator ofΩ∗,

Ω∗ = lim
T→∞

E{T
[

ḡT (UT ) − µ(θ0)
][

ḡT (UT ) − µ(θ0)
]′
} , (3.2)

with θ0 denoting the true value ofθ. A consistent estimator̂Ω∗ which accounts for the autocorrela-
tion betweenu2

t , u
4
t , ..., can easily be obtained using a Bartlett kernel:

Ω̂∗ = Γ̂0 +

K(T )
∑

k=1

(

1 −
k

K(T ) + 1

)

(Γ̂k + Γ̂ ′
k) (3.3)

where

Γ̂k =
1

T

T
∑

t=k+1

[gt−k(ÛT ) − µ(θ̃)][gt(ÛT ) − µ(θ̃)]′ (3.4)

θ̃ is a consistent estimator ofθ, gt(ÛT ) = [û2
t , û

4
t , û

2
t û

2
t−1]

′ for the SV model (2.4) - (2.6), and
gt(ÛT ) = [û2

t , û
4
t , û

6
t , û

2
t û

2
t−1, û

4
t û

4
t−1, û

6
t û

6
t−1]

′ for the SV model (2.22) - (2.26). In a just-
identified framework, the choice of weight matrix̂Ω−1

∗ is irrelevant.
The Wald-type statistic is defined as

ξWT = T [ψ(θ̂) − ψ0]
′
[

P̂ (Ĵ ′Î−1Ĵ)−1P̂ ′
]−1

[ψ(θ̂) − ψ0] (3.5)

whereP̂ = P (θ̂), Î = I(θ̂) = Ω∗(θ̂), Ĵ = J(θ̂) = ∂µ
∂θ′

(θ̂) . The score-type statistic is based on
the gradient of the objective function with respect toθ evaluated at the constrained estimator. This
gradient is

DT =
∂µ′

∂θ
(θ̂0)Ω̂

−1
∗ [µ(θ̂0) − ḡT (ÛT )] = Ĵ ′

0Î
−1
0 [µ(θ̂0) − ḡT (ÛT )] (3.6)

whereÎ0 = I(θ̂0) = Ω∗(θ̂0), Ĵ0 = J(θ̂0) = ∂µ
∂θ′

(θ̂0) , and the test statistic is

ξST = TD′
T (Ĵ ′

0Î
−1
0 Ĵ0)

−1DT = T [µ(θ̂0) − ḡT (ÛT )]′Ŵ0[µ(θ̂0) − ḡT (ÛT )] , (3.7)

with Ŵ0 = Î−1
0 Ĵ0(Ĵ

′
0Î

−1
0 Ĵ0)

−1Ĵ ′
0Î

−1
0 . Finally, the difference between the restricted and unre-

stricted optimal values of the objective function is calledthe LR-type statistic:

ξCT = T [M∗
T (θ̂0) −M∗

T (θ̂)] . (3.8)

Provided
T [M∗

T (θ) −MT (θ)] −→
T→∞

0 (3.9)

uniformly in a neighborhood of the true distribution, where

MT (θ) ≡ [ḡT (ÛT ) − µ(θ)]′Ω−1
∗ [ḡT (ÛT ) − µ(θ)] , (3.10)
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the three test statisticsξWT , ξ
S
T and ξCT follow a χ2(ν) distribution asymptotically under the null

hypothesis (with standard regularity conditions), whereν is the number of constraints.
We also consider theC(α)-type test statistic defined by

PC(θ̃0) = T [µ(θ̃0) − ḡT (ÛT )]′W̃0[µ(θ̃0) − ḡT (ÛT )] (3.11)

where
W̃0 = Ĩ−1

0 J̃0

(

J̃ ′
0Ĩ

−1
0 J̃0

)−1
P̃ ′

0

[

P̃0

(

J̃ ′
0Ĩ

−1
0 J̃0

)−1
P̃ ′

0

]−1
P̃0

(

J̃ ′
0Ĩ

−1
0 J̃0

)−1
J̃ ′

0Ĩ
−1
0

with J̃0 = J(θ̃0) = ∂µ
∂θ′

(θ̃0), Ĩ0 = I(θ̃0) = Ω∗(θ̃0), andP̃0 = P (θ̃0). θ̃0 is any root-n consistent

estimator ofθ that satisfiesψ(θ̃0) = 0. Below, for the ARSV(1, 1) model, θ̃0 will be obtained
by imposing the constraints in the analytic expressions of the unrestricted method-of-moments es-
timator θ̂ defined by (2.18) - (2.21), yielding a consistent restrictedestimator without the need to
perform a nonlinear optimization. Again, under standard regularity conditions, theC(α)-type test
statistic is asymptotically distributed like aχ2(ν) variable under the null hypothesis; see Davidson
and MacKinnon (1993, page 619) and Dufour and Trognon (2001,Proposition 3.1).

In the simulations, we will focus on parametric functions ofthe form

ψ(θ) = (1, 0)

(

θs1
θs2

)

= θs1 ,

in which case the null hypothesisH0(ψ0) : ψ(θ) = ψ0 simplifies toH0(ψ0) : θs1 = θ0
s1. For

example, we may haveθs1 ≡ aw, θs1 ≡ (aw, rw)′.
Tests may also be used to build confidence sets for model parameters. LetS0 = S(ψ0, y(T ))

denote one of the four previous test statistics computed from the sample pointsy(T ) = (y1, . . . , yT )
and under the hypothesisH0(ψ0) : ψ(θ) = ψ0. If the acceptance region of the test forH0(ψ0) :
ψ(θ) = ψ0 has the form

A(ψ0) = {y(T ) = (y1, . . . , yT ) ∈ Y : S(ψ0, y(T )) ≤ c(α)} (3.12)

wherec(α) is the critical point for a test with levelα, the corresponding confidence set is the set of
valuesψ0 which are not rejected by such tests:

Cψ(y(T )) = {ψ0 : S(ψ0, y(T )) ≤ c(α)} = {ψ0 : G[S(ψ0, y(T ))] ≥ α} (3.13)

whereG(·) denotes thep-value function. These sets are connected to each other by the equivalence

y(T ) ∈ A(ψ0) ⇔ ψ0 ∈ C(y(T )) . (3.14)

>From the level condition

PF [Y 6∈ A(ψ0)] ≤ α , ∀F ∈ H0(ψ0) ,
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it follows that

PF [Y ∈ A(ψ0)] ≥ 1 − α , ∀F ∈ H0(ψ0) ,

PF [ψ0 ∈ C(Y )] = PF [Y ∈ A(ψ0)] ≥ 1 − α , ∀F ∈ H0(ψ0) , ∀ψ0 ∈ Ψ0,

and
PF [ψ(θ) ∈ C(Y )] ≥ 1 − α , for all θ,

which means thatCψ(Y ) is a confidence set with level1 − α for ψ(θ).
Following this methodology, confidence sets can be built forany parameter of the volatility

process by finding the values of the parameter for which thep-value function is greater than or
equal toα, yielding a confidence set with level1 − α.

4. Non-regular problems

We investigate in this section three interesting test problems. The first one consists in testing the
homoskedasticity hypothesis(aw = rw = 0) against the SV alternative; the second one involves
testing a SV hypothesis without persistence(aw = 0) against persistence in SV; the third problem
is a test of one-factor SV(aη = rη = 0) against two-factor SV. Although these hypotheses are
quite relevant in the context of SV models, they raise statistical difficulties. Indeed, under such null
hypotheses, standard regularity conditions turn out to be violated, thus making the problems non-
regular (although in somewhat different ways), so that the standard distributional theory presented
in Section 3 does not apply anymore.

Let us consider first the problem of testing homoskedasticity (aw = rw = 0), which can be
writtenψ(θ) = 0 with ψ(θ) = (aw, rw)′. In this case, we have two restrictions, and the matrix

P (θ) =
∂ψ

∂θ′
=

(

1 0 0
0 1 0

)

has full rank two, so it appears to be regular. However, the Jacobian of the moment conditions (i.e.,
the derivative matrix of the moments with respect to the SV coefficients) does not have full rank
when evaluated at a point that satisfies the null hypothesis:on using the analytical expressions for
the derivatives ofµ(θ) with respect toθ = (aw, rw, ry), as given in Appendix B, we see that

∂µ

∂θ′
=





0 0 2ry
0 0 12r3y
0 0 4r3y



 (4.1)

whenaw = rw = 0, so that the Jacobian∂µ/∂θ′ has at most rank one (instead of three in the full-
rank case). But GMM identification requires a full-rank Jacobian; see Newey and McFadden (1994,
p. 2127). An important regularity condition is violated. This raises estimation difficulties and was
handled by redefining the estimator in this case: we setaw = rw = 0 andry =

√

µ2(θ1) whenκ ≤
3; see equations (2.16) - (2.21) above.
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A violation of the rank condition entails that the score-based statistics [the score andC(α)-type
statistics] involve non-invertible matrices, so that these tests are not applicable (at least, without
modifications). Further,∂µ/∂θ′ typically has full rank when it is evaluated at a point that does
not satisfy the null hypothesis, for example at an unrestricted point estimate ofθ, as in Wald-
type statistics. Therefore, the rank of∂µ/∂θ′, when evaluated at an unrestricted point estimate ofθ,
generally exceeds the rank of∂µ/∂θ′ evaluated at the trueθ whenaw = rw = 0 holds. This is again
a violation of a standard regularity condition, and the Waldstatistic has a non-regular asymptotic
distribution; see Andrews (1987) and Lütkepohl and Burda (1997).

Second, the problem of testing no persistence in the SV displays some similarities with testing
homoskedasticity(aw = rw = 0). Indeed, under the null hypothesisaw = 0,

Var(ut) = r2yE
[

exp(rwvt)
]

E(z2
t ) = r2y exp(r2w/2) (4.2)

is invariant over time. However, both hypotheses (aw = 0 andaw = rw = 0 ) have important
statistical implications for estimation as well as for the rank of the Jacobian matrix associated with
µ(θ). Two points are worth being emphasized here.

1. Underaw = 0, the volatility is stochastic, whereas it is deterministic whenaw = rw = 0.
Whenaw = 0, the kurtosis coefficientκ always remains greater than 3 forrw > 0 [κ =
3exp(r2w)]: the scale factorexp(rwvt) is lognormal, sout has a leptokurtic distribution. In
view of this distinction, the estimator̂θ is defined differently under the two hypotheses: under
aw = 0, it is defined by substituting sample analogs in equations (2.14) - (2.15), whereas
underaw = rw = 0 (so thatκ = 3), we setaw = rw = 0 and use the sample analog of
ry =

√

µ2(θ1) .

2. Underaw = 0, the Jacobian

∂µ

∂θ′
=





0 rwr
2
y exp[1/2(r2w)] 2ry exp[1/2(r2w)]

0 12rwr
4
y exp(2r2w) 12r3y exp(2r2w)

r2wr
4
y exp(r2w) 2rwr

4
y exp(r2w) 4r3y exp(r2w)



 (4.3)

has full-column rank almost everywhere, except precisely whenrw = 0 as well (provided
ry 6= 0). Indeed,rw andry are identifiable whenaw = 0, because they are uniquely de-
termined by the second and fourth moments ofut [see equation (2.15)]. However, values of
aw close to zero may lead to irregular statistical properties (similar to what occurs under the
homoskedasticity hypothesis).

Third, when testing one-factor SV(aη = rη = 0) against a two-factor SV, the correlation para-
meterρ12 = corr(v1t, v2t) becomes unidentified under the null hypothesis. Then, as in (4.1), the Ja-
cobian of the moment conditions (2.28) - (2.33) does not havefull-column rank whenaη = rη = 0;
see Appendix C. This again creates a singularity, and standard regularity conditions are violated.
In particular, score-type statistics are not applicable (without modification), and the distributions of
all test criteria may be affected. This problem is similar tothe one originally studied by Davies
(1977, 1987). Similar situations arise when one tries to test significance for both AR and MA para-
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meter simultaneously in an ARMA model and also for both coefficients in standard GARCH(1, 1)
model.3

More generally, it is well known that identification failure– or conditions close to identification
failure (such as weak instruments) – can make methods based on Wald-type statistics fundamentally
invalid – even though they remain computable – and require important adjustments to critical values
used with other test statistics, such as LR-type statistics; see Dufour (1997, 2003) and Stock, Wright
and Yogo (2002). In Section 6, we present simulation evidence which shows this is indeed the case
here for LR-type statistics. Although adjustments – such asbounds similar to those considered by
Davies (1977, 1987), Dufour (1989), Hansen (1996), Andrews(2001), Dufour and Khalaf (2002)
– might be developed, justifying and applying such methods here would require a considerable
theoretical effort.

In this paper, we take a different approach based on using a general method which is completely
immune to possible singularities and identification problems, as well as relatively easy to apply. If
no nuisance parameter were present in the distribution of the test statistic under the null hypothesis,
an exact test could indeed easily be obtained by applying thetechnique of MC tests [as done, for
example, in Dufour et al. (2004) for the Bera and Ra (1995) test against ARCH-M heteroskedastic-
ity]. However, the nuisance-parameter problem does not go away here, and we propose to solve it
by using the technique of maximized Monte Carlo tests; see Dufour (2006). We will now describe
succinctly this method.

5. Monte Carlo tests

The technique of Monte Carlo tests was originally been proposed by Dwass (1957) for implementing
permutation tests and did not involve nuisance parameters.This technique was also independently
proposed by Barnard (1963); for a review, see Dufour and Khalaf (2001). It has the great attraction
of providingexact(randomized) tests based on any statistic whose finite-sample distribution may be
intractable but can be simulated. We briefly review the methodology of Monte Carlo tests covering
both cases, first without nuisance parameters and then with nuisance parameters. The technique
of Monte Carlo tests provides a simple method allowing one toreplace the unknown or intractable
theoretical distributionF (y|δ), whereδ = (c, θ′)′, by its sample analogue based on the statistics
S1(δ), . . . , SN (δ) simulated under the null hypothesis.

For the sake of clarity, let us first consider the case where nonuisance parameter is present.

1. Using the observed sample, we calculate the relevant statistic S0.

2. Using draws underH0, we generate N simulated samplesS1, . . . , SN .

3For various econometric examples and discussions of this problem, the reader may consult Andrews and Ploberger
(1995), Bera and Ra (1995), Hansen (1996), Andrews (2001), Bera, Ra and Sarkar (1998), Andrews (2001) and Dufour
et al. (2004).
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3. Then we consider the following simulated survival function

ĜN [y; S(N)] =
1

N

N
∑

i=1

s(Si − y)

and the associatedp-value function

p̂N (y) =
NĜN (y) + 1

N + 1

wheres(x) = 1 if x ≥ 0, ands(x) = 0 if x < 0. If the distribution ofS is continuous andN
is chosen so thatα(N + 1) is an integer, then

P[p̂N (S0) ≤ α] = α , underH0,

which means that the critical region̂pN (S0) ≤ α has sizeα.

In most econometric models, the relevant case is the one where the distribution of the test
statistic depends on nuisance parameters. To deal with thiscomplication, the MC test procedure
can be modified as follows, wherēδ represents the true parameter vector.

1. To test the null hypothesis
H0 : δ̄ ∈ Ω0 ,

we use first the observed sample to calculate the relevant statistic denoted byS0.

2. For eachδ ∈ Ω0, we generateN replications ofS: S1(δ), . . . , SN (δ).

3. Using these simulations we compute the corresponding simulatedp-value function:

p̂N [y|δ] =
NĜN [y|δ] + 1

N + 1
.

4. Thep-value functionp̂N [S0|δ] as a function ofδ is maximized over the parameter values
compatible with the null hypothesis(Ω0),andH0 is rejected if

sup{p̂N (S0|δ) : δ ∈ Ω0} ≤ α . (5.1)

If the number of simulated statisticsN is chosen so thatα(N + 1) is an integer, then we have
underH0:

P[sup{p̂N (S0|δ) : δ ∈ Ω0} ≤ α] ≤ α , (5.2)

which means that we have a test with levelα; for a proof, see Dufour (2006).

Because of the maximization in the critical region (5.1) thetest is called amaximized Monte
Carlo (MMC) test. MMC tests provide valid inference under generalregularity conditions such as
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almost-unidentified models or time series processes involving unit roots. In particular, even though
the moment conditions defining the estimator are derived under the stationarity assumption, this
does not question in any way the validity ofmaximizedMC tests, unlike the parametric bootstrap
whose distributional theory is based on strong regularity conditions. Only the power of MMC tests
may be affected.

A simplified approximate version of the MMC procedure can alleviate its computational load
whenever a consistent point or set estimate ofδ is available. To do this, we reformulate the setup in
order to allow for an increasing sample size(T ).

1. To test the null hypothesis

H0 : δ̄ ∈ Ω0 , with Ω0 ∈ Ω, Ω0 6= ∅ ,

we use first the observed sample to calculate the relevant statistic denoted byST0.

2. We considerCT , T ≥ I0, a sequence of (possibly random) subsets ofΩ instead ofΩ0, such
that

lim
T→∞

P
[

δ̄ ∈ CT
]

= 1 underH0. (5.3)

3. For eachδ ∈ CT , we generateN replications ofS: ST1(δ), . . . , STN (δ), with T ≥ I0 .

4. Using these simulations we compute the corresponding simulatedp-value function:

p̂TN [y|δ] =
NĜTN [y|δ] + 1

N + 1
.

5. Thep-value functionp̂TN [ST0|δ] is maximized with respect toδ in CT , andH0 is rejected if

sup{p̂TN (ST0|δ) : δ ∈ CT } ≤ α . (5.4)

If the number of simulated statisticsN is chosen so thatα(N + 1) is an integer, we have
underH0:

lim
T→∞

P[sup{p̂TN (ST0|δ) : δ ∈ CT } ≤ α] ≤ α , (5.5)

i.e., we control for the level asymptotically.

In practice, it is easy to find a consistent set estimate ofδ̄, whenever aconsistentpoint estimate
δ̂T of δ̄ is available (e.g. a GMM estimator or a more efficient estimator such as the SMLE; see
Danielsson (1994), Durham (2006, 2007)).

For instance, any set of the form

CT = {δ ∈ Ω : ‖δ̂T − δ‖ < d} (5.6)

with d a fixed positive constant independent ofT , satisfies (5.3). The consistent set estimate MMC
(CSEMMC) method is especially useful when the distributionof the test statistic is highly sensitive
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to nuisance parameters. Here, possible discontinuities inthe asymptotic distribution are automat-
ically overcome through a numerical maximization over a setthat contains the true value of the
nuisance parameter with probability one asymptotically (while there is no guarantee for the point
estimate to converge sufficiently fast to overcome the discontinuity). It is worth noting that there
is no need to maximize thep-value function with respect to unidentified parameters under the null
hypothesis (which corresponds toρ12 in the two-factor SV framework). Thus, parameters which
are unidentified under the null hypothesis can be set to any fixed value and the maximization be
performed only over the remaining identified nuisance parameters. When there are several nuisance
parameters, one can use simulated annealing, an optimization algorithm which does not require
differentiability. IndeedĜN [S0|δ] is step-type function which typically has zero derivativesalmost
everywhere, except on isolated points where it is not differentiable. For an example where this is
done on a VAR model involving a large number of nuisance parameters, see Dufour and Jouini
(2006).

Finally, if the setCT in (5.4) is reduced to a single point estimateδ̂T , i.e. CT = {δ̂T }, we get
a local MC (LMC) test

p̂TN (ST0|δ̂T ) ≤ α , (5.7)

which can be interpreted as aparametric bootstraptest. Even ifδ̂T is a consistent estimate ofδ
(under the null hypothesis), the condition (5.3) is not usually satisfied in this case, so additional as-
sumptions are needed to show that the parametric bootstrap procedure yields an asymptotically valid
test. It is computationally less costly but clearly less robust to violations of regularity conditions
than the MMC procedure; for further discussion, see Dufour (2006).

6. Simulation results

In this section, we present some simulation evidence on the finite-sample properties of the proce-
dures described in the previous sections. In particular, weprovide results on the actual level of the
Wald, score, LR andC(α)-type tests for the three main hypotheses discussed: (1) thehypothesis of
non-persistence in volatility (against persistence in volatility); (2) homoskedasticity (against the SV
alternative); (3) one-factor SV against a two-factor SV. Three ways of implementing the tests are
considered: asymptotic critical values, parametric bootstrap, and MMC. We also present results on
power for the three types of hypotheses described above.

The Wald-type statistic [defined in equation (3.5)] is evaluated at the unrestricted method-of-
moments estimator̂θ. The score-type statistic [defined in (3.7)] is evaluated atthe restricted estima-
tor θ̂0 which minimizes the criterionM∗

T (θ) in (3.1) under the constraintaw = 0. TheC(α)-type
statistic [defined in (3.11)] is evaluated at the restrictedestimator̃θ0 of θ, whereθ̃0 is obtained by
settingaw = 0 in the analytical expressions of the unrestricted method-of-moments estimator̂θ in
(2.18) - (2.21). Further, the LR-type test statisticLR(Ω̂) ≡ ξCT corresponds to the difference be-
tween the restricted and the unrestricted optimal values ofthe objective function, with the restricted
objective function evaluated atθ̂0 andΩ̂ ≡ Ω(θ̂). The weighting matrixΩ̂ is estimated by a Bartlett
kernel estimator with the bandwidth varying with the samplesize,i.e.K = [0.159T 1/3], where[ · ]
denotes the integer part of the enclosed number; see Newey and West (1994).
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Let S denote the test statistic which alternately takes the form of one of the four test statistics
mentioned, andS0 the statistic computed from the “pseudo-true” data obtained by simulation under
the true data generating process. The critical regions havethe following forms:

Ra = {S0 > χ2
α(ν)}

for the asymptotic tests, whereP[χ2(ν) ≥ χ2
α(ν)] = α andν is the number of constraints tested,

RB = {p̂N [S0|δ̂
0
] ≤ α}

for the bootstrap test, and

RMMC =
{

sup{p̂TN (ST0|δ) : δ ∈ CT } ≤ α
}

,

where

p̂N [x|δ] =
NĜN [x|δ] + 1

N + 1
,

ĜN [x; S(N, δ)] =
1

N

N
∑

i=1

s
(

Si(δ) − x
)

,

for the MMC-based test. δ̂
0

is a consistent point restricted estimate ofδ = (c, θ′)′, ; θ is
the vector of the SV parameters [e.g., θ = (aw, ry, rw)′ for the one-factor SV model,θ =
(aw, ry, rw, aη, rη, ρ12)

′ for the two-factor SV model], andCT is a restricted consistent set es-
timator ofδ.

For MMC tests of the non-persistence hypothesis in the single-factor SV model(aw = 0), the
setCT over which we maximize the simulatedp-value is:

C
(1)
T = {( c, ry rw ) : |c− ĉ| ≤ 0.15, |c| ≤ 0.99, |ry − r̂(1)y | ≤ 0.3, |rw − r̂(1)w | ≤ 0.3} (6.1)

whereĉ is the least squares estimates ofc [based on fitting the AR(1) model (2.1) with no drift]
and (r̂

(1)
y , r̂

(1)
w ) are the restricted GMM estimate of(ry, rw) in the one-factor model [based on

minimizingM∗
T (θ) subject to the restrictionaw = 0]. The bounds of 0.15 forc and 0.3 for the scale

parameters approximately correspond to 7 and 2 standard errors, respectively. However, any fixed
bound associated with a consistent estimator will lead to anasymptotically valid test provided that
the probability of covering the true parameter converges toone as the sample size goes to infinity.
For the homoskedasticity hypothesis(aw = rw = 0), the corresponding set is

C
(2)
T = {(c, ry) : |c− ĉ| ≤ 0.15, |c| ≤ 0.99, |ry − r̂(2)y | ≤ 0.3} (6.2)

wherer̂(2)y is the corresponding restricted GMM estimate ofry [based on minimizingM∗
T (θ) subject

to the restrictionaw = rw = 0]. Finally, for testing the one-factor model against the two-factor
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model(aη = rη = 0), CT is

C
(3)
T = {(c, aw, ry, rw) : |c− ĉ| ≤ 0.15, |c| ≤ 0.99, |aw − â(3)

w | ≤ 0.15, |aw| ≤ 0.99,

|ry − r̂(3)y | ≤ 0.3, |rw − r̂(3)w | ≤ 0.3} (6.3)

where r̂(3)y , r̂
(3)
w and â(3)

w are restricted moment estimates of the two-factor model [based of the
moment equations in (2.28) - (2.33)]. Since the number of nuisance parameters is relatively small,
maximization was achieved through a grid search (with points separated by a distance of0.03 for
each coefficient). Note that many other restricted consistent estimates of the relevant nuisance
parameters could be used to build the setsCT .

The nominal level isα = 0.05. The number of replications used for Monte Carlo tests is
N = 99, while the rejection frequencies are estimated withM = 1000 for regular hypothesis tests
andM = 500 for non-regular ones.T is the sample size of the seriesyt whose data generating
process is assumed to be specified as in equations (2.4) - (2.6) for the one-factor SV model and
as in equations (2.22) - (2.25) for the two-factor SV model. Calculations were performed with the
GAUSS software. The autoregressive parametersaw andaη in the autoregressive specifications for
the volatility process are restricted to an interval inside(−1, 1) to ensure stationarity.

In the power study (Section 6.2), the asymptotic critical points arelocally level-corrected, i.e.
the critical points are modified to ensure that the rejectionfrequency under the null hypothesis (for
the specific nuisance parameter values considered) is equalto 0.05; the corrected critical value is
obtained by simulating the test statistic under the null hypothesis with a large number of replica-
tions.4 Corrected asymptotic critical values are estimated from a simulation with 10000 replications
(with 5000 replications) for the regular hypotheses ( for the non-regular hypotheses). Bootstrap
tests are level-corrected by decreasing the threshold under which the bootstrapp-value must fall to
ensure that the bootstrap test rejects with frequency of0.05 under the null hypothesis; the corrected
threshold is estimated from a simulation with 10000 replications (with 5000 replications) for the
regular hypotheses (for the non-regular hypotheses).

6.1. Level

We will now examine the empirical levels of the tests. The results on testing volatility non-
persistence(H0 : aw = 0) are reported in Table 1 (panel A). We can see from this table that
all bootstrap procedures exhibit notable over-rejectionsrates (above the nominal level of0.05), in
small samples (even with a sample ofT = 500), while the asymptotic tests under-reject. Indeed, the
asymptotic critical values appear to be conservative in this case. The only procedures which do not
exhibit over-rejections in the cases considered are the MMCversions of all the tests. As expected
from theory, the latter may be conservative.

4We use the term “locally level-corrected” instead of “size-corrected” because a true size correction would require one
to ensure that the probability of rejecting the null hypothesis underall distributionscompatible with null hypothesis (i.e.,
for all values of the nuisance parameters) be less than or equal to the levelα. Theoretically, a complete size-correction
would be the most satisfactory correction to perform for a fair comparison of all the test procedures. However, finding
the appropriate size-corrected critical values requires anumerical search that could not be performed in the context of the
present experiment.
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Table 1. Empirical levels of asymptotic, bootstrap and MMC tests, (nominal size:α = 5%).

(A) H0 : aw = 0 (non-persistence)

One-factor SV:c = 0.3, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5

T Wald Score LR C(α) Wald Score LR C(α)

Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC

50 0.1 11.4 0.3 0.5 6.5 2.4 0 11.3 0.9 0.1 7.8 3.0 0 11.8 3.3 0.6 5.2 3.0 0 11.8 3.8 0.1 6.8 3.7
100 0.4 13.5 0.5 0.1 10.3 2.2 0 13.9 0.6 0 8.0 3.1 0.3 13.2 2.9 0.3 9.4 4.2 0 14.0 3.9 0 8.7 4.5
500 1.2 14.5 0.4 1.5 9.2 1.8 1.1 12.2 1.0 1.5 7.4 2.7 0.9 14.7 1.1 1.4 8.9 2.7 1.0 12.5 2.0 1.5 7.2 3.1
1000 6.2 10.5 0.5 6.5 6.8 2.5 7.2 8.2 2.1 6.6 5.9 2.8 6.2 10.7 1.0 6.7 7.2 2.7 7.0 7.8 2.7 6.8 6.0 3.0
2000 7.4 6.9 0.7 6.3 4.9 2.1 6.4 5.2 0.7 6.4 4.5 2.2 6.8 6.8 1.1 6.3 4.9 2.2 6.7 5.2 1.1 6.3 4.6 2.1

(B) H0 : aw = rw = 0 (homoskedasticity) (C) H0 : aη = rη = 0 (one factor)

One-factor SV:c = 0.3, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5

ρ
12

= 0.3, aw = 0.7, rw = 0.5

LR 50 100 500 1000 2000 5000 50 100 500 1000 2000 5000 LR 500 1000 2000 5000 10000

Asy. 0 0 0 0 0.4 0.2 0 0 0 0 0.4 0.2 Asy 9.6 17.6 16.6 21.6 24.4
Boot 2.6 3.4 4.8 2.8 5.6 3.6 4 3.6 4.8 2.8 5.8 3.2 Boot 23.0 20.0 14.6 15.0 17.8
MMC 2.4 3 4.4 2.8 5.3 3.6 3.4 3.4 4.2 2.8 5.4 3.2 MMC 2.0 2.6 2.0 2.4 2.6

Note - In this table as well as in the other tables, frequencies are reported in percentages. Simulations are computed on 1000
replications for panel (A)while they are computed on 500 replications for panel (B) and (C).
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Table 2. Empirical power of asymptotic, bootstrap and MMC tests.

(A) H1 : aw = 0.8 (persistence) againstH0 : aw = 0 (non-persistence)

One-factor SV:c = 0.3, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5

T Wald Score LR C(α) Wald Score LR C(α)

Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC

50 1.4 6.4 2.2 0.4 6.5 1.2 0.1 7.9 2.6 1.1 11.4 8.3 1.9 8.0 7.6 0.8 7.5 4.7 0.2 10.5 9.4 0.4 10.6 11.7
100 3.6 15.5 3.3 2.1 11.7 6.4 0.5 21.5 4.0 2.8 18.3 15.7 3.6 18.0 10.4 1.3 15.5 11.4 0.8 22.5 13.5 2.3 20.6 18.7
500 45.9 54.5 7.9 32.5 38.2 24.7 30.6 35.1 8.6 34.9 41.2 39.5 45.4 54.4 32.0 31.5 42.6 32.7 31.9 38.0 29.5 33.4 42.5 41.4
1000 86.6 67.0 23.6 59.9 50.6 33.2 60.3 43.2 10.8 64.7 57.9 42.3 87.0 66.3 57.2 57.8 50.2 38.6 59.2 41.1 33.6 63.5 49.3 45.5
2000 99.0 90.2 54.2 81.9 80.3 59.7 84.3 83.8 39.0 86.8 82.9 70.3 99.0 91.3 83.9 82.3 81.0 68.6 84.9 84.1 67.7 87.7 83.6 74.1

(B) H1 : aw = 0.9 (persistence) againstH0 : aw = 0 (non-persistence)

One-factor SV:c = 0.3, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5

T Wald Score LR C(α) Wald Score LR C(α)

Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC Asy Boot MMC

50 1.9 10.7 3.4 1.0 9.6 2.4 0.6 14.3 4.8 2.0 15.2 12.8 2.9 11.6 12.0 0.9 13.1 9.7 0.7 14.9 15.0 2.6 20.8 20.0
100 6.7 26.9 6.1 4.1 23.6 11.9 2.2 31.5 9.2 6.0 28.5 25.9 7.9 28.1 20.1 4.2 21.4 21.8 2.4 31.7 24.3 6.6 31.6 34.5
500 81.9 71.7 33.3 49.1 54.5 37.4 48.7 49.3 20.6 53.6 57.5 55.8 81.6 71.7 57.8 50.6 40.2 42.0 51.0 48.3 37.1 55.6 59.3 50.3
1000 96.5 84.4 63.0 58.9 54.7 38.2 59.9 53.0 21.1 66.5 62.7 56.4 97.6 83.2 87.6 59.4 57.8 46.4 61.4 54.4 38.2 70.6 64.2 58.0
2000 98.9 95.4 84.2 73.0 72.3 51.6 78.9 78.4 40.1 82.4 79.2 67.0 99.1 96.0 94.1 74.4 74.0 59.5 81.0 80.3 59.5 84.6 82.1 69.6

(C) H1 : aw = rw = 0.5 (stochastic volatility) againstH0 : aw = rw = 0 (homoskedasticity) (D) H1 : aη = rη = 0.8 (two factors)

againstH0 : aη = rη = 0 (one factor)

One-factor SV:c = 0.3, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5 One-factor SV:c = 0.95, ry = 0.5

ρ
12

= 0.3, aw = 0.7, rw = 0.5

LR 50 100 500 1000 2000 5000 50 100 500 1000 2000 5000 LR 500 1000 2000 5000 10000

Asy. 0.2 0.6 30 75.0 96.6 100 0.6 1.2 30.0 75.2 96.4 100 Asy 0.6 0.2 0.6 0.4 0.4
Boot 22.4 41.8 88.0 96.4 99.4 100 25.2 40.6 86.0 96.2 98.4 100 Boot 0.6 2.6 9.4 60.4 71.4
MMC 21.2 41.2 87.0 96.4 99.4 100 22.8 38.8 85.4 95.8 99.4 100 MMC 2.0 7.2 14.6 69.4 77.3

Note – All asymptotic tests are locally level-corrected. Bootstrap tests are locally level-corrected when the probability of type I error
exceeds 0.05. Locally-level corrected tests are not feasible in practice. Simulations are computed on 1000 replications for panel (A)
and (B) while they are computed on 500 replications for panel(C) and (D). All tests statistics are regularized with an identity matrix
when numerical instability arises in the simulation experiments leading to (almost) non-invertibility of the covariance matrix. The
simulated critical values (obtained on 5000 replications under the true DGP) for the level-corrected asymptotic LR test used in panel
(D) are7.452, 13.141, 22.848, 45.506 and77.499 for the sample sizesT = 500, 1000, 2000, 5000 and10000, respectively.

21



Results on testing homoskedasticity and the one-factor hypothesis appear in Table 1 (panel B
and C). Because these hypotheses lead to locally singular moment conditions, the score andC(α)-
type tests are not applicable here, while Wald tests often depend on covariance matrices which are
almost singular (generating numerically unstable behavior). So only LR-type tests are considered.
We see from the results that asymptotic LR-type tests are very conservative for the homoskedas-
ticity hypothesis but can severely over-reject for the one-factor hypothesis. Indeed, size distor-
tions increase with the sample size, indicating that standard critical values are not asymptotically
valid. Bootstrapping appears to correct the situation for the first hypothesis, but leaves notable
over-rejection rates in the second case. Of course, one cannot exclude the possibility of larger boot-
strap failures for different parameter configurations. Clearly, the two types of non-regular problems
studied are qualitatively different from the statistical viewpoint. Again, in all cases studied, the
MMC-based tests do not exhibit over-rejection rates.

6.2. Power

We will now study the empirical powers of the tests. In Table 2(panel A and B), we report empirical
powers for tests ofH0 : aw = 0. We can see from the results that theC(α) and the Wald-type tests
(built upon the closed-form moment estimator) have more power than the other tests. Further,
theC(α)-type test is easy to implement in this context since it does not require any optimization
procedure unlike the LR and the score-type tests. Further, although the MMC-based tests may
be conservative, their power is in fact quite close to the oneof the other tests and even perform
better, in some cases, than the level-corrected bootstrap and asymptotic tests in small samples (e.g.
for T = 50, 100 in Table 2). In the present situation, MMC-based tests are essentially (almost)
equivalent to (infeasible) level-corrected bootstrap tests, which suggest that they may dominate
size-corrected bootstrap tests (whose level would be controlled over the whole nuisance-parameter
space).

We also examine in Table 2 (panel C) the power of homoskedasticity tests (against one-factor
SV). Bootstrap and MMC-based LR-type tests exhibit good power – which increases with the sam-
ple size – and are very close to each other. Besides, they over-perform their asymptotic analog for
sample sizes less thanT = 2000. Note that the locally level-corrected asymptotic tests are not
feasible in practice (because critical values are computedusing unknown parameter values under
the null hypothesis).

For tests of the one factor hypothesis (panel D of Table 2), the power of LR-type tests – though
low in comparison with the other hypotheses studied previously – is sizeable and increases with
the sample size. On the other hand, detecting the presence ofa second factor in the volatility
process requires a sufficiently large sample. Thus, for average sample sizes, the MMC-LR procedure
has always more power than the corresponding (infeasible) locally level-corrected bootstrap test,
while the corresponding (infeasible) locally level-corrected asymptotic test has no power at all once
corrected for size distortions. Thus, the only valid feasible test which guarantees to control for the
level – unlike the asymptotic and bootstrap procedures – provides reasonable power.
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7. Empirical application

In this section, we test the three null hypotheses studied inthe simulation experiments from real
data on the Standard and Poor’s Composite Price Index (1928-87). We proceed in three steps in
order to select the more suitable specification for this specific data set. First, we test for the null
of homoskedasticity against an alternative of stochastic volatility. Second, we perform the test of
one factor against two factors in the volatility process. And finally, we implement the test of no-
persistence in the one-factor volatility process if the one-factor specification is appropriate.

7.1. Data

The data have been provided by Georges Tauchen where the efficient method of moments (EMM)
have been used by Gallant et al. (1997) to fit a SV model. The data to which we fit the stochastic
volatility models is a time series comprised of 16,127 dailyobservations,{ỹt}

16, 127
t=1 , on adjusted

movements of the Standard and poor’s Composite Price Index,1928-87. The raw series is the
Standard and Poor’s Composite Price Index (SP), 1928-87 (daily). The raw series is converted to
growth rates by the transformation100[log(SPt) − log(SPt−1)], and then adjusted for systematic
calendar effects, that is, systematic shifts in location and scale due to different trading patterns
across days of the week, holidays, and year-end tax trading.

7.2. Results

The unrestricted estimated value of(c, θ) for the one-factor model obtained from the data is:

[

ĉ, âw, r̂y, r̂w
]

=
[

0.129, 0.926, 0.829, 0.427
]

(0.007) (8.10) (1.91) (8.13)
(7.1)

where standard errors are given in parentheses; the latter are computed from the square root of
(Ĵ ′Î−1Ĵ)−1. We may conjecture that there is some persistence in the data during the period 1928-
87 what is statistically checked by performing the tests below. The restricted estimated values of
(c, θ) from the data are:

[

ĉ, â0
w, r̂

0
y, r̂

0
w

]

=
[

0.129, 0 , 0.785 , 1.152
]

(0.007) (0) (1.95) (1.77)
(7.2)

and the consistent restricted estimator derived from the closed-form expression of the unrestricted
moment estimator is equal to

[

ĉ, ã0
w, r̃

0
y, r̃

0
w

]

=
[

0.129, 0 , 0.829 , 1.133
]

(0.007) (0) (1.91) (1.66)
. (7.3)

Note the large discrepancy between the unrestricted and restricted estimates ofrw where the re-
stricted estimates may not be consistent if the null hypothesisH0 : aw = 0 is false.

In Table 3, we report tests based on the whole sample (16,127 daily observations on the S&P
500), which covers the market crashes of theBlack Thursdayof October 1929 and of October 1987,
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the Cuban Missile Crisis (October 1962) and the Arab Oil Embargo (October 1973). We then repeat
the tests on three sub-samples: 1928 - 1949, 1950 - 1969 and 1970 - 1987.

We can see from the results in panel A of Table 3, that the threeversions (asymptotic, bootstrap
and MMC) of the LR test do reject the null hypothesis of homoskedasticity in favor of a stochastic
volatility specification for the volatility process of the S&P 500 index, except for the third sub-period
1970-1987 but withp-values however very close to 0.05 (p-value=0.07).

More recently, Chernov et al. (2003) and Durham (2006, 2007)provide evidence that standard
single-factor SV models have some difficulties to model the shape of the conditional distribution
of financial returns. In particular, Chernov et al. (2003) show that two-factor SV models better
accommodate richer dynamics such as the tail behavior of (conditional) return distributions and
possibly capture some rapid moves in the dynamics of volatility during extreme market conditions.
The first factor may act as a long-memory component, while thesecond factor is expected to model
tail behavior. To check for that, we test the null of one factor against two factors(H0 : aη = rη = 0)
in panel B of Table 3. All versions (asymptotic, bootstrap and MMC) of the LR test do not indicate
that a two-factor specification is needed for the S&P 500 index volatility. Consequently, we chose a
one-factor specification for modelling the S&P 500 index volatility.

We will now study in greater detail the volatility parameterin the one-factor SV model by
testing the null hypothesis of no-persistence in the volatility process (panel C in Table 3). All tests,
asymptotic, bootstrap and MMC, reject the null hypothesis of no-persistence in the volatility for
all the periods considered. Indeed, it is well known in the financial literature that financial returns
display serial dependence in volatility.

To summarize, the results presented here indicate that a one-factor model with strong volatility
persistence may be appropriate for the S&P 500 index data studied here.

8. Conclusion

In this paper, we have provided finite-sample procedures fortesting hypotheses on the parameters of
SV models, allowing for the possible presence of non-regular testing problems (underidentification,
singularity issues) that can lead to non-standard asymptotic distributional theory. Besides usual
linear restrictions on SV coefficients, the problems studied include testing homoskedasticity against
a SV alternative and testing the one-factor SV against two-factor SV, which raises singularity and
identification difficulties. In addition to the three standard tests, we proposed to useC(α)-type tests
which are relatively easy to apply and displays good size andpower properties (when applicable).

In order to deal with the potential unreliability of asymptotic critical values and bootstrapping,
especially in cases where standard regularity conditions fail, we showed that the MMC test approach
provides a transparent way of dealing with such difficulties, yielding both exact or asymptotically
valid tests without the need to establish a specific distributional theory. In some cases (underiden-
tification case), the MMC method is the only one that yields provably valid tests. Further, in simu-
lations, we observed that the MMC method can indeed be implemented to produce valid inference
on SV models, works well from the viewpoint of controlling test levels, and most of the time, does
not entail a considerable power loss with respect to alternative (usually infeasible) level-corrected
asymptotic or bootstrap approaches.
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Table 3. Empirical application on S&P500 index.

(A) Test of homoskedasticityH0 : aw = rw = 0 (B) Test of one factor against two SV factorsH0 : aw = rw = 0

Asymptotic tests Bootstrap tests MMC tests Asymptotic tests Bootstrap tests MMC tests

S0 N = 19 N = 99 N = 999 N = 19 N = 99 N = 999 S0 N = 19 N = 99 N = 999 N = 19 N = 99 N = 999

Sample 1928-1987,T = 16127 Sample 1928-1987,T = 16127

LR 9.71 0.05 0.01 0.001 0.05 0.01 0.001 4.149 0.35 0.33 0.329 0.70 0.70 0.681

Sample 1928-1949,T = 6491 Sample 1928-1949,T = 6491

LR 42.58 0.05 0.01 0.001 0.05 0.01 0.001 0.435 0.85 0.84 0.813 0.85 0.84 0.813

Sample 1950-1969,T = 5087 Sample 1950-1969,T = 5087

LR 6.28 0.05 0.01 0.003 0.5 0.02 0.003 2.700 0.30 0.21 0.153 0.35 0.24 0.222

Sample 1970-1987,T = 4549 Sample 1970-1987,T = 4549

LR 2.09 0.10 0.07 0.077 0.10 0.07 0.078 1.141 0.40 0.28 0.205 0.80 0.77 0.747

(C) Test of no-persistenceH0 : aw = 0 (C) Test of no-persistenceH0 : aw = 0

Asymptotic tests Bootstrap tests MMC tests Asymptotic tests Bootstrap tests MMC tests

S0 N = 19 N = 99 N = 999 N = 19 N = 99 N = 999 S0 N = 19 N = 99 N = 999 N = 19 N = 99 N = 999

Sample 1928-1987,T = 16127 Sample 1950-1969,T = 5087

Wald 210.85 0.05 0.01 0.001 0.05 0.01 0.001 93.01 0.05 0.01 0.001 0.05 0.01 0.001

Score 1039.04 0.05 0.01 0.001 0.05 0.01 0.001 607.92 0.05 0.01 0.001 0.05 0.01 0.001

LR 25.49 0.05 0.01 0.001 0.05 0.01 0.001 11.95 0.05 0.01 0.001 0.05 0.01 0.001

C(α) 854.55 0.05 0.01 0.001 0.05 0.01 0.001 304.66 0.05 0.01 0.001 0.05 0.01 0.001

Sample 1928-1949,T = 6491 Sample 1970-1987,T = 4549

Wald 112.95 0.05 0.01 0.001 0.05 0.01 0.001 30.50 0.05 0.01 0.001 0.10 0.03 0.027

Score 269.72 0.05 0.01 0.001 0.05 0.01 0.001 391.87 0.05 0.01 0.001 0.05 0.01 0.001

LR 52.73 0.05 0.01 0.001 0.05 0.01 0.001 40.90 0.05 0.01 0.001 0.05 0.01 0.001

C(α) 185.47 0.05 0.01 0.001 0.05 0.01 0.001 165.03 0.05 0.01 0.001 0.05 0.01 0.001

A varying bandwidth may entail some power loss in large samples, therefore we set the bandwidth toK = 1 to maximize power in
the empirical application for all tests.
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It is worth noting that Monte Carlo tests do not hinge on the method-of-moment estimator used
here. These can be applied as soon as a consistent estimator is available (e.g. GMM, SMM, EMM or
indirect inference). The only restriction is that the test statistic can be simulated, without the need to
study its asymptotic distribution nor even to establish itsexistence. However, using estimators with
better finite-sample properties such as the SMLE [see Danielsson (1994), Durham (2006, 2007)],
might improve the performance of the tests, but this issue goes beyond the scope of the present
paper.

These testing procedures can easily be extended to accommodate richer dynamics such as fat-
tailed and/or correlated errors [see Jacquier, Polson and Rossi (2004)], or multivariate stochastic
volatility structures [see Chib, Nardari and Shephard (2006)].
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A. Appendix: Proofs

PROOF OFPROPOSITION2.4 If U ∼ N(0, 1) thenE(U2p+1) = 0, ∀ p ∈ N andE(U2p) =
(2p)!/[2pp!] ∀ p ∈ N. Hence:

E(ukt ) = rkyE(zkt )E exp[k(wt/2 + ηt/2)]

= rky
k!

2(k/2)(k/2)!
exp

[

k2

8

(

Var(wt) + Var(ηt) + 2Cov(wt, ηt)

)]

= rky
k!

2(k/2)(k/2)!
exp

[

k2

8
r2w/(1 − a2

w) +
k2

8
r2η/(1 − a2

η) +
k2

4

rwrηρ12

1 − awaη

]

(A.1)

where the second equality uses the definition of the GaussianLaplace transform ofwt ∼
N[0, r2w/(1 − a2

w)] (of η respectively) and of the moments ofzt. Further, using

E(wt) = 0, Var(wt) = r2w/(1 − a2
w) , (A.2)

E(ηt) = 0, Var(ηt) = r2η/(1 − a2
η) , (A.3)

Cov(wt, wt+l) = a|l|w r
2
w/(1 − a2

w) Cov(ηt, ηt+l) = a|l|η r
2
η/(1 − a2

η) , (A.4)

Cov(wt, ηt) =
rwrηρ12

1 − awaη
, (A.5)

Cov(wt, ηt+l) = a|l|η Cov(wt, ηt), Cov(wt+l, ηt) = a|l|wCov(wt, ηt) (A.6)

we obtain the cross-moments:

E[ujtu
k
t+l] = E{rj+ky zjt z

k
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+
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2
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exp
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+
1

8
[2j2 + 2k2 + 2jka|l|η + 2jka|l|w ]

rwrηρ12

1 − awaη

]

. (A.7)

B. Appendix: Analytical moment derivatives for one-factor SV

The analytical expressions of the derivatives of the momentconditions are given by:

∂µ2

∂aw
=

aw
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w)2
r2wr

2
y exp[

r2w
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w)
] ,
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r2y exp[
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] , (B.1)
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All these derivatives evaluated ataw = 0, rw = 0 gives the results stated in equation (4.1).

C. Appendix: Analytical moment derivatives for two-factor SV

The analytical expressions of the derivatives of the momentconditions for the two-factor SV model
are given by:
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where

∂σ2

∂aη
=
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η
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2
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+

2a2
wrwrηρ12

(1 − awaη)2
+

2rwrηρ12

(1 − awaη)2
+

2a2
ηr

2
η + 2r2η

(1 − a2
η)

2
.

All these partial derivatives w.r.t.aη take the value zero when evaluated ataη = rη = 0. This
entails that the Jacobian of the moment conditions does not have full-column rank without the need
to compute the other partial derivatives.
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