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ABSTRACT

We study the problem of testing hypotheses on the parametesse- and two-factor stochas-
tic volatility models (SV), allowing for the possible preme of nonregularities such as singular
moment conditions and unidentified parameters, which cad te non-standard asymptotic dis-
tributions. We focus on the development of simulation-bdaskact procedures — whose level can
be controlled in finite samples — as well as on large-sampegutures which remain valid under
non-regular conditions. We consider Wald-type, score@gpd likelihood-ratio-type tests based on
a simple moment estimator, which can be easily simulatedal@¢epropose &'(«)-type test which

is very easy to implement and exhibits relatively good siz gower properties. Besides usual lin-
ear restrictions on the SV model coefficients, the problenmied include testing homoskedasticity
against a SV alternative (which involves singular momendaons under the null hypothesis) and
testing the null hypothesis of one factor driving the dynasrof the volatility process against two
factors (which raises identification difficulties). Threays of implementing the tests based on al-
ternative statistics are compared: asymptotic criticdles (when available), a local Monte Carlo
(or parametric bootstrap) test procedure, and a maximizeaté/Carlo (MMC) procedure. The size
and power properties of the proposed tests are examinedimuation experiment. The results
indicate that th&'(«)-based tests (built upon the simple moment estimator dlaila closed form)
have good size and power properties for regular hypothedele Monte Carlo tests are much more
reliable than those based on asymptotic critical valuegthEy in cases where the parametric boot-
strap appears to fail (for example, in the presence of itieation problems), the MMC procedure
easily controls the level of the tests. Moreover, MMC-batesds exhibit relatively good power
performance despite the conservative feature of the puweeérinally, we present an application to
a time series of returns on the Standard and Poor’s Comgeside Index.

Key words: testing; exact test; Monte Carlo test; maximized Monte €eet; Wald test; LR test;
LM test; C'(«) test; homoskedasticity; stochastic volatility; two-factolatility; identification;
singular moment conditions; finance; stock prices.
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RESUME

Dans ce texte, nous étudions des tests d’hypothéses swarbeagtres de modéles de volatilité sto-
chastique (SV) a un ou deux facteurs, en permettant la ppésknnon-régularités, tels que la singu-
larité locale des conditions de moment définissant I'egtiomaou encore des parametres de nuisance
non-identifiés, ce qui peut conduire a une théorie distiobmelle non standard. Nous développons
des procédures exactes dont la taille peut étre contréliéeyme taille donnée d'échantillon, ainsi
gue des tests justifiés par des arguments asymptotiqgugaglesont a la fois simples du point de
vue numérique et relativement fiables sur de petits échargil Nous considérons des critéres de
types Wald, score et quotient de vraisemblance fondés sastimateur des moments (et non sur
le maximum de vraisemblance) qui est simple du point de vueéniglue. Nous proposons aussi
un test de type’(«) qui est trés facile a utiliser et qui affiche de bonnes progsiéle niveau et
de puissance. Outre des tests de restrictions linéaireesuoefficients du modéle de volatilité
stochastique, les problemes étudiés comprennent degdtbsteoscédasticité (contre un modele
de volatilité stochastique) et des tests de I'hypotheske miaine volatilité a un facteur contre une
volatilité & deux facteurs, lesquels soulévent des probdede singularité locale et d’'identification.
Nous comparons trois variantes différentes de chaque uestng que I'on utilise des points cri-
tiques asymptotiques standards, une procédure de test i I@arlo (ou bootstrap paramétrique)
et une procédure de test de Monte Carlo maximisé (MMC). Leanivet la puissance des proce-
dures proposées sont étudiées par simulation. Les résatiatignent la supériorité du teSt«)
dans les cas réguliers, a la fois pour le niveau et la puissdandis que les tests de Monte Carlo
s'averent plus fiables que leurs homologues asymptotigi@soutre, dans des situations ou le
bootstrap paramétrique ne parvient pas a contrbler le miyear exemple, en présence de prob-
Iémes d'identification), la procédure MMC contréle facilemh le niveau des tests. De plus, les tests
fondés sur la procédure MMC affichent une bonne puissanceduie cette méthode soit conser-
vatrice par construction. Finalement, nous présentonsapp#ication a une série de rendements
quotidiens de 'indice boursier du Standard and Poor’s.

Mots clé: test d’hypothése; test exact; tests de Monte Carlo; testat@dMCarlo maximisé; test de
Wald; test du score; test du quotient de vraisemblance(tgs}; volatilité stochastique; volatilité
a deux facteurs; identification; conditions de momentsugiares; finance; prix d'actions.

JEL classification: C1, C12, C13, C15, C32, G1
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1. Introduction

Modelling conditional heteroskedasticity is one of thetcalnproblems of financial econometrics.
The two main families of models for that purpose consist ofCkRtype processes, originally in-
troduced by Engle (1982), and stochastic volatility (SV)d®is proposed by Taylor (1994). Even
though GARCH-type models are more widely used than SV motleddatter may be preferable for
several reasond=irst, SV models are directly connected to diffusion processed ustheoretical
finance and allow for a volatility process that does not ddpam observable variablesSecong
as pointed out by Carnero, Pefia and Ruiz (2004), kurtosiatility shock persistence and serial
correlation of squared variables differ markedly betweekRGH and autoregressive SV models
(ARSV). This difference may explain why the estimated stesice is usually higher in GARCH
than in Gaussian ARSV models, and why GARCH models ofteniredeptokurtic conditional
distributions.

GARCH models are relatively easy to estimate and remain rmarie popular than SV models.
In particular, evaluating the likelihood function of GARGHbdels is simple compared to SV mod-
els, for which it is difficult to obtain a likelihood in closddrm. This is a general feature of most
nonlinear latent variable models, because the latenthlasamust be integrated out of the joint
density for the observed and latent processes, leading iategral of high dimensionality. As a
result, maximum likelihood (ML) methods are prohibitivedypensive from a computational view-
point, and alternative methods appear to be required fdymgpsuch models. This fundamental
difficulty may have prevented the widespread use of SV maalaishas made GARCH the model
of choice in practice.

Nevertheless, much progress has been achieved on the temtimé SV models. Besides
the quasi maximum likelihood approaches [Ruiz (1994)],har generalized method of moments
(GMM) procedures [Andersen and Sgrensen (1996)], sinomdiased estimation has become more
attractive due to increasing computer power, and compri{ggsndirect inference which has been
used to estimate SV models by Monfardini (1998); (2) the iefficmethod of moments applied to
SV models by Andersen, Chung and Sgrensen (1999) and Ch&attant, Ghysels and Tauchen
(2003); (3) simulated maximum likelihood, which can be iempkented in SV models using im-
portance sampling; see Danielsson and Richard (1993).el3aon (1994), Durham (2006, 2007).
Bayesian techniques can also be applied in this contextigfreomputer-intensive methods, such
as Markov Chain Monte Carlo (MCMC) methods, and appear tl ydatively good results; see
Jacquier, Polson and Rossi (1994), Chib, Nardari and She¢ha02).

All these studies focus on the estimation of SV models. Tedsblpms have received much
less attention. The available results on hypothesis tg$tinsuch models are rather incomplete
and scattered. These include: GMM-basgdsipe tests on individual coefficients [Andersen and
Sgrensen (1996), Andersen et al. (1999)], and variousfggsimn tests such as tests for goodness
of fit, diagnostic checking and model comparison; see Arafeend Sgrensen (1996), Gallant,
Hsieh and Tauchen (1997), Andersen et al. (1999), Durha®6(ZZ07). A systematic discussion
of hypothesis testing on SV model coefficients does not apjoebe available. Further, even in
parametric SV models, all the available test procedurebased on large-sample approximations
and do not address non-regular problems which show up tigtimahis context, such as testing



the hypothesis of homoskedasticity against a SV model stinggthe hypothesis of a one-factor SV
model against a two-factor SV model.

In this paper, we focus on hypothesis testing in paramewier®dels. Our main objective is
to develop both exact tests as well as asymptotically jastifirocedures that are markedly more
reliable than those based on usual large-sample appragimsaespecially in the presence of non-
regularities and non-standard asymptotic distributidrtse proposed procedures are also designed
to be computationally manageable.

Exploiting the fact that many SV models are parametric nodw®lolving only a finite number
of unknown parameters, our basic outlook is to develop fiséteple simulation-based procedures
as opposed to procedures based on establishing asympsitibudions. For that purpose, we rely
on extensions of the basic idea of Monte Carlo (MC) testdmalty proposed by Dwass (1957) and
Barnard (1963). When the distribution of a test statistieddnot depend on (unknown) nuisance
parameters, the technique of MC tests yields an exact tegided one can generate a few i.i.d. (or
exchangeable) replications of the test statistic undentitidnypothesis; for example, 19 replications
are sufficient to get a test with level 0.05; see Dufour andl&h@001). This technique can be
extended to test statistics which depend on nuisance pteesri®/ considering maximized Monte
Carlo (MMC) tests; see Dufour (2006). MMC tests yield exast$ whenever the distribution of the
test statistic can be simulated as a function of the nuispacEmeters: no additional assumption on
its distribution is needed. Further, computationally ntosetable versions of this procedure, such as
MMC tests on consistent set estimators of model nuisan@eeters, provide asymptotically valid
tests irrespective of the presence of non-regularitiesnandstandard asymptotic distributions, such
as those associated with identification problems. Paran&iotstrap tests may also be interpreted
as degenerate MMC tests, where the simulatedlue function is evaluated at a single nuisance-
parameter point estimate. However, the asymptotic vgliditthe parametric bootstrap method
requires stronger assumptions than the MMC procedure andyitfail to control the level of the
test even asymptotically, especially in non-regular poitd (where the MMC procedure remains
valid). Thus, the only requirement for being able to use tHd®Iprocedure is that one is able
to generate artificial data from the test statistic or from thodel without the need to study the
asymptotic distribution of the test statistic nor even tiallsh its existence.

Even though the general approach proposed here can bedafipkewide array of setups and
relatively general SV models, we focus here on a relativehpke log-normal SV model of order
one with an autoregressive mean, which has been widelyestudithe SV literature (usually in a
more restricted form); see Jacquier et al. (1994), Dardal$$994), Gallant et al. (1997). Further,
for the sake of numerical tractability, we consider testseblaon a simple two-step moment esti-
mator which is available in closed form. This estimator igdgd in detail in Dufour and Valéry
(2006). However, the proposed test procedures by no wayanéated to being used with this spe-
cific estimator. In particulamny consistent estimator (GMM, SMM, indirect inference...)even
more efficient estimators such as the efficient method of nmégnar the simulated maximum like-
lihood estimator (SMLE) could be used instead (althoughagsmciated computational cost may be
higher); see Danielsson (1994), Durham (2006, 2007). It isterest to note here that the critical
requirement for the validity of consistent set estimate im&ed Monte Carlo tests (CSEMMC) is
the consistencyroperty for the estimate of the (nuisance) parametersnanits efficiency.



To be more specific, the contributions of the paper can be sarined as follows.First, we
implement and compare the three standard test statistic8yald-type, score-type and likelihood-
ratio-type tests based on the computationally simple morastimator available in Dufour and
Valéry (2006). Further, we propose(¥ «)-type test [see Neyman (1959), Dagenais and Dufour
(1991)] which turns out to be relatively easy to implemenbim framework and exhibits remark-
ably good size and power properties. Under standard regutanditions, these test criteria follow
asymptotic chi-square distributions under the null hypeitt. This holds, in particular, for linear
hypotheses on the coefficients of the SV models and variatficiently smooth) nonlinear hy-
potheses. However, in view of the fact that the asymptostriution may be quite unreliable in
finite samples, we suggest that such tests be implementegl M C techniques (which are prov-
ably valid without further regularity conditions) and pareatric bootstrapping. We also compare the
performances of the different test criteria.

Secondwe study in greater detail three relatively important sdtypotheses in the context
of the SV model, namely: (1) homoskedasticity (against tealBernative); (2) the hypothesis of
stochastic volatility without persistence (against peesice in stochastic volatility); (3) one-factor
SV against a two-factor SV.

The first problem(testing homoskedasticity) is, of course, an importanttpst before trying
to include a latent factor to drive the dynamics of the vétgtprocess which makes its estimation
much more complicated. However, moment conditions bedogaly singularin this case so that
standard regularity conditions are not anymore applicablether, score-type test criteria [LM and
C'(a)] and Wald-type are no longer computable in this case — at Ve#sout modification — so that
they cannot be used. By contrast, bootstrap and MMC versibhR-type tests appear to work
well in this case.

The second problenftesting no persistence (or no clustering) in stochastlatiiy] exhibits
some similarities with testing homoskedasticity but remalifferent for two reasonéirst, volatility
is viewed as random but not persistent, which entails a naas&an leptokurtic error distribution
(while, in the homoskedastic case, the disturbances alle Gaussian)second the moment con-
ditions donotimply singularities in the covariance matrices, which aneertible. Thus score-type
test criteria [LM andC(«)] and Wald-type can be computed in this case. In other woedsing
no persistence (or no clustering) in stochastic volatikty regular hypothesis for which standard
asymptotic distributions are applicable. Through simataevidence, however, we find that asymp-
totic critical values can lead to under-rejection ratesmak samples, while the bootstrap procedure
tends to over-reject. In contrast, the MMC method contreds fevel in all cases.

Thethird problem(testing one factor against two-factor SV) is motivated luy fact that stan-
dard SV models do not capture important features of assehsetlistribution such asil thickness
see Chernov et al. (2003) and Durham (2006, 2007). As a epluti second factor in the volatil-
ity dynamics may account for tail behavior. Testing onddaagainst two-factor SV introduces an
unidentified parameter under the null hypothesis [as in Bla($996), Andrews (2001) and Dufour,
Khalaf, Bernard and Genest (2004, section 3.2)], so thatlaral asymptotic regularity conditions
do not hold. In addition to the identification problem, thealzian of the moment conditions fails to
meet a required full-column rank condition. Therefore, emithe third type of hypothesis, we have
the most degenerattesting problem which combines both difficulties: an idicdition issue and



a rank failure of the Jacobian. Thus, score-type criteéanat applicable because covariance ma-
trices are singular and Wald-type tests become utterlyliabie [see Dufour (1997, 2003)]. Even
bootstrapping appears to fail in this case. In contrast, meetfiat MMC-based LR-type tests work
well for that problem. It is also interesting to note that eleping and justifying solutions such as
those based on the approach proposed by Davies (1977, 188%en (1996) and Andrews (2001)
would require considerable additional theoretical work. cbntrast, the MMC approach works
transparently.

Fourth, we perform a Monte Carlo study to compare the finite-sampidpgrties of the proce-
dures considered. We make two important observations:n(t@gular test problems;(«)-type
tests exhibit good performance, especially when they ameimented in a simulated approach
(bootstrap or MMC); (2) in non-regular problems, the onlggadure which is both widely applica-
ble and allows one to control test level is the MMC-based Bettest.

Fifth, the proposed procedures are applied to the Standard amid Boonposite Price Index.
For this series, we find evidence that stochastic volatgigresent through a one-factor specification
with strong persistence.

The paper is organized as follows. Section 2 sets the framkewalerlying the one-factor and
two-factor SV models and reviews the estimation procedsesl o implement the tests. The test
criteria considered and the associated confidence setssmgssed in Section 3. In Section 4,
we examine why some basic problems in this setup, such asgésimoskedasticity against SV
or testing one-factor SV against two-factor SV, lead to negularities. In Section 5, we review
the technique of Monte Carlo tests. Simulation results aesgnted in Section 6, while empirical
results on the Standard and Poor’'s Composite Price IndexédOth series appear in Section 7. We
conclude in Section 8.

2. Framework

2.1. One-factor SV model

The basic form of the stochastic volatility model we studyeheomes from Gallant et al. (1997).
Let us denote by, the variable of interest. For examplg, can denote the first difference over a
short time interval, a day for instance, of the log-price fihancial asset traded on security markets.

Assumption 2.1 The processy; : t € N} follows a stochastic volatility model of the type:

Ly
Yt — My = Zci(ytfi — ) +u (2.1)
i=1
us = exp(wn/2ry | (2.2)
LUJ
wy = Z QpjWi—j + Tyt , (2.3)
j=1



L, T
wherep,, {c;};2, ry, {awj}f;“l andr,, are unknown parameters ang = (y;, w)" is initialized

from its stationary distribution.

In the above model, (2.1) is the mean equation, while (2.8)asvolatility equation. We shall
call the model represented by (2.1) - (2.3) the stochastatility model of orderL,, with autore-
gressive mean of orddr, [ARSV(L,, L,,) for short]. The lag lengths of the autoregressive speci-
fications used in the literature are typically short. Usuwailfgurations includ¢L,, L,,) = (0, 1),

(1, 1) or (2, 2); see Andersen and Sgrensen (1996), Gallant et al. (1997Aratetsen et al. (1999).
An important special case of (2.1) - (2.3) consists in sgttin= a,,; = 0, Vj > 2, andd = (c, 0')’
with 6 = 6, whereb; = (ay,, ry, r)". We then have:

Yt — phy = c(ye—1 — pty) tue, || <1, (2.4)
= [y exp(w /)20 (2.5)
Wi = QuWi—1 + Ty,  |ay| < 1. (2.6)

Assumption 2.2 The vectorsz;, v;)’, t € N are i.i.d. according to av (0, I) distribution.

Assumption 2.3 The process; = (y¢, w;)’ is strictly stationary.

The ARSML,, L,,) process is Markovian of orddr; = max(L,, L,,). Let us denote by
5 - (,U'y7 Cly «vvy CLya Tyu Awly « -+ 5y ALy Tw)/ (27)

the parameter vector of the model. Héig} is observed, whil§w, } is a latent variable. Accord-

ingly, the joint density of the observation vectgf) = (y1, ... , yr) is not available in closed

form, for it requires evaluating an integral with dimensiequal to the whole path of the latent
volatilities. Let

F(y1, .-, yr) =PY1 < w1, ..., Y7 < yr|d] = Fo(yr)1d)

denote its unknown distribution function.

We shall now focus on the ARSY, 1) model. To estimate it, we consider a two-step method
whose first step consists in applying ordinary least sqU&ES) to the mean equation which yields
a consistent estimate of the autoregressive parameted of the mean parametgy,, denoted by
¢, fi, and the residualg; = wu(¢) = y¢ — f1, — ¢(ye—1 — f1,,)- Then, we apply in a second step a
method of moments to the residualsto get the estimate of the paramefier= (a.,, 7y, 7,)’ Of the
mean and volatility equatiortsUnlike the other estimators proposed in the financial ltteneafor
estimating SV models, this two-step moment estimator ig tmasnplement and available in closed
form, an appealing feature for complicated latent variabtedels. Besides, its simplicity allows

It is shown in Dufour and Valéry (2006) propositions 4.2 an8 that replacing: by ¢ and usingii; = u:(¢) has
no effect on the asymptotic variancebf An interesting and potentially useful feature of the astotip distribution of
0 stems from the fact that its covariance matrix does not debenthe distribution of the first-step conditional mean
estimator and consequently no effect is passed on the &istiss. Otherwise, substituting estimators for paramset
would affect the test results as shown in Pierce (1982).



for simulation-based inference and will be further ex@dito obtain simulated testing procedures.
In the sequel we will focus on the particular case wheye= 0 but all the results still hold in the
general case.

Under the assumptiorz1to 2.3, with , = 0 and¢; = ay; = 0, Vi > 2, the perturbation
termu, has the following moments for positive even valueg ahdk:

k! k2
— ky _ k 9 9
Nk(el) = E(Ut) = Tym exp |:§T‘w/(1 — aw)} s (28)
p; k(1101) = E(ulufy)
gk ]! k! r2 o s
"y 2(j/2)(j/2)!2(k/2)(k/2)!eXp [8(1—@3)(‘7 +k +2jk‘aw)}. (2.9)

Odd moments are equal to zero. In particular,jfer 2, j = 4 andj = k = 2 andl/ = 1, we have:

pa(61) = E(uf) = ry expl(1/2)r5, /(1 — ai,)], (2.10)

pa(01) = E(ug) = 3ry exp[2ry, /(1 — a3,)] (2.11)

p2,2(1]61) = Efufui_1] = ryexp[ry, /(1 — aw)]; (2.12)
see Dufour and Valéry (2006). Let o)
(b

SN @19

be the kurtosis coefficient of the process. It is easy to sae:thr 3, with x > 3 as soon as,, # 0
(i.e, when the volatility is not constant). Solving the above neommequations corresponding to
j =2,j=4andl = 1yields the following expressions: provided> 3,

1|0
w =1 [%} /log(:/3) (2.14)
hence
/
ry = 3;;:?12)(32) _ (3H%’£91)>1/4 = (- log (n/3)]1/2, fr>3  (215)

If x <3, the volatility is constant and it is natural to set
ay =1y =0 and ry = /po(61) if £ <3. (2.16)

Given the latter definitions, it is easy to compute a methbohoment estimator fo; =
(ay, Ty, Ty)" ON replacing the theoretical moments by sample counterpaged on the residuals
;. Let§ denote the method-of-moments estimato® of Typically, E(u?), E(u}) andE(u?u? )



are approximated by:

T T
1 . N
T Zu? Zut e, o T 1 Z fuf 1 (2.17)
t=1 t=2
respectively. This yields the following estimators of thechastic volatility coefficients:
A if G, > A,
oy = ay  iflay| < A, (2.18)

—A if a4, < —A,

[
2.19
e if &<3, 19
. 2 - /2 4 &
o = [(1—ay)log (#/3)] 7 if &> 3, (2.20)
-0 if £ <3,
wherei = i, /f13 and
~ o ﬂz,z(l) 3 if &
Gw = 1og[ﬂ%(91) } [log(k/3) if & >3, (2.21)
— if & <3

In (2.18),A is a number close to one which is used to bound the estimatay &ram the stationary
boundary. This is important to avoid numerical instahilitythe simulations and application below,
we usedA = 0.99, but a value closer to one could be considered. Under the gtisuns of the
model, the restrictiork > 3 must hold with probability converging to one. Provided,| < A,
the estimatof) = [Qys Ty, fw]' is consistent and asymptotically normally distributede Beufour
and Valéry (2006) for a detailed presentation of its asympforopertiess However, the Monte
Carlo tests procedure used later in the paper is restrigtem lvay to this specific estimator. Thus,
any consistent estimatoe.g, GMM, SMM) or even more efficient estimators such as the eifici
method of moments (see Chernov et al. (2003)) or the simtulisiaximum likelihood estimator
(SMLE) could be used instead (although the associated ceatigual cost may be higher), see
Durham (2006, 2007) and may induce power gains.

2.2. Two-factor SV model

A simple single-factor SV model appears to be sufficient iwa the salient properties of volatility
such as randomness and persistence. Itis the shape of ttidammal distribution of financial returns

which constitutes the problem; see Chernov et al. (2003)urttam (2006, 2007). Standard SV
models cannot match the high conditional kurtosis of retuftail thickness) documented in the

2The estimated covariance matrix estimated i6i&/ ~'.J) ™" with J = J(8), J(9) = 2% and] = ., where(2.

is defined by (3.3) and (3.4). Standard errors are the sqoats of the corresponding variances from thls covariance
matrix.



financial literature, for example in the case of equities/ifig to capture nonlinearities in financial
returns has important implications for risk managementapitbn pricing.

Consequently, we also consider a two-factor specificatitwing the dynamics of the volatility
process of the following form:

Yo =y = (U1 —py) Fur, el <1, (2.22)
w = [ryexp(we/2+n./2)|z, (2.23)

W = QuWi—1 + TwU1e, |Gy <1, (2.24)

Ny = anNy_q + T2t , |an| <1, (2.25)

(2, v1t, vor) are i.i.d. Gaussian vectors such that- N (0, 1) and

1
(vit, var) ~ N(O, X)), Xy = [ i Piz ] , E[(vie, var)z] = 0. (2.26)
We shall call the above model represented by equations)(2226) the autoregressive stochastic
volatility model with two factors. Leby = (aw, 7y, rw, an, 7, p12)’ denote the parameter corre-
sponding to the two-factor SV model. We derive the momenditimms used in a just-identified
GMM framework, which are stated in the proposition below.

Proposition 2.4 MOMENTS OF THE TWGFACTOR SV PROCESS Under the assumption&.22)
to (2.26), we have for positive even valuesjandk :

k! k2 k2 k2 ryrnp
ky _ .k R 2y 2y BT ooy oy BT TwlnPro
E(ug) =y 207 (1 /2)] exp | T/ (1 —ay) + 3 o/ (1 —ay) + T1—apay

j, k _ .tk J: k! Tw .2 2 |
Eluy vy ] ) 2072 (j/2)1 2072 (k2] exp[8(1 ey (7% + k* + 2jkal))
2
"n 2 | 12 1
— k“+ 25k
+8(1—a%)(] + k* + 2jka,)
1 w
+2 (2% + 2k + 2kal!l 4 2jkal) P12 | (2.27)
8 K 1 — ayay

The proof of this proposition is given in Appendix A. In palar, forj = 2, 4, 6 andj = k,
the above formulae yield the following moments:

1 72 1 r2 TwTnpP
E(u?) = r2 W — WP ) = (6 2.28
() = e (G + G + T ) = (), 2.29

2r2 2r7 47T P12

E 4 :3 4 w
(1) "y exp<1 —a  1—aZ 1-aya,

)EM%% (2.29)



9 r2 9 12 97y Tnp
E(ul) = 1578 — -1 e 2.30
() = 1505 (§ o+ Sl T ) < er), @30
2 2 4 o’
Elujui_1] =r, eXP(;) = pa,2(1]02), (2.31)
Elujui_i] = 97y exp(20%) = puy, 4(1]62). (2:32)
9
Elujug_y] = 2257, exp<502> = p1g,6(1/62) , (2.33)
where
o2 22 4 Q12
0% = Var(wy +n; + we—1 + 1) = "w_ . _“n Twi™nP12 Aw"y

2 2 2
l1—ai 1-a 1 —aya, 1-—ag

2
2auTwTyp12 | 20yTwTypra | 2007y

— _ — 2
1 —aypay 1 —aypay 1 ay

(2.34)

These moment conditions constitute a just-identified GMMigave shall use below in order
to test the number of SV factors in the volatility process.e Hssociated estimators, however, are
not available in closed form, in contrast with the one-factetup. But the moment conditions
(2.28) - (2.33) yield a GMM estimator in the usual way throungimlinear optimization techniques.

It is important to note that another set of moment conditigasger or simply different) could
be used to estimate the two-factor model. This might leaddemrecise estimates and eventually
more powerful tests. Finding better or “optimal” moment ditions goes beyond the scope the
present paper. But the general testing approach proposea temains applicable if different sets
of moment conditions are employed.

3. Test statistics and confidence sets

We are concerned with testing a null hypothesis of the form:

Ho(g) - 9(0) = 1.
Further, we assume that the derivative of the constraints

_ o

P(8) = o

has full row rank, le# be the unrestricted estimator afigithe constrained estimator obtained by
minimizing the following criterion

A~

M;3(0) = [gr(Ur) — w(0)]' 2 gr(Ur) — 1(6)] (3.1)



where g7 (Ur) denotes the vector of empirical moments based on the résieator Ur corre-
sponding tau(#). f2, denotes a consistent estimator(af,

2, = lim E{T [G0(Ur) = u(60)] [0 (Ur) — 1(60)]'}, (3.2)

with 8, denoting the true value & A consistent estimataf2, which accounts for the autocorrela-
tion betweenu?, u#, ..., can easily be obtained using a Bartlett kernel:

2
3

Q. =Ty + @_Eé%jym+m> (3.3)
k=1
where .
Fi= 2 3 loes(Or) — w@oer) — w(B) (3.4)
t=k+1

0 is a consistent estimator ¢f g,(Ur) = [u?, iy, a2a? ;] for the SV model (2.4)-(2.6), and
g:(Up) = [a2, af, af, 4302, afal |, aSab ) for the SV model (2.22)-(2.26). In a just-
identified framework, the choice of weight matix ! is irrelevant.

The Wald-type statistic is defined as

& = TI(0) — ol [PI'T0) P 7 [(0) — o) (3.5)
whereP = P(0), I = I(0) = 2.(0), J = J(8) = 24(8). The score-type statistic is based on

the gradient of the objective function with respecttevaluated at the constrained estimator. This
gradient is

O 00)25" n(Bo) — 32(0)] = Jols (n(Bo) — (0] 36)

wherely = I(6o) = 2.(6o), Jo = J(fo) = 24 (fo) , and the test statistic is

Dr =

& = TDp(JpIy  Jo) ™D = T(u(Bo) — gr(Ur)) Wolu(bo) — gr(Ur)] , (3.7)

with W, = I 1JO(JO 1Jo) 1JOI L. Finally, the difference between the restricted and unre-
stricted optlmal values of the objective function is caltkd LR-type statistic:

€9 = T[Mj(Bo) — M7(9)] . (3.8)
Provided
T[M7(0) — M7(0)] 720 (3.9)

uniformly in a neighborhood of the true distribution, where

A~

g7 (Ur) — u(0))' 2 ar(Ur) — 1(0)] (3.10)

M(0)

10



the three test statistic8Y , ¢5 and¢$ follow a x2(v) distribution asymptotically under the null
hypothesis (with standard regularity conditions), where the number of constraints.
We also consider th€'(«)-type test statistic defined by

~ ~ A~

PC(0o) = T[u(0o) — gr(Ur)) Wolu(8o) — gr(Ur)] (3.11)

where
W() = jalj() (jéfoilj())ilpé [P() (jéfofljo)ilpé] 7lpo(j(l)]~071j0)71j6[~071

with Jo = J(00) = 2(6o), Io = I(80) = 2*(6y), and Py = P(6y). by is any root-n consistent
estimator off that satisfies)(fy) = 0. Below, for the ARSV(1, 1) model, 6, will be obtained
by imposing the constraints in the analytic expressionfi®funrestricted method-of-moments es-
timator 6 defined by (2.18) - (2.21), yielding a consistent restrictstimator without the need to
perform a nonlinear optimization. Again, under standagll&ity conditions, the’(«)-type test
statistic is asymptotically distributed like& (v) variable under the null hypothesis; see Davidson
and MacKinnon (1993, page 619) and Dufour and Trognon (2B@dposition 3.1).

In the simulations, we will focus on parametric functiondtu form

w0 =10 ¢ ) =6,

in which case the null hypothesiy(v,) : ¥ (0) = 1, simplifies to Hy(v,) : 051 = 6%. For
example, we may hav| = ay,, 051 = (ay, Tv)’

Tests may also be used to build confidence sets for model pégesn LetSy = S (g, y(1))
denote one of the four previous test statistics computed fhe sample pointgy = (y1, - .. , y7)
and under the hypothesigy() : ¥(0) = 1. If the acceptance region of the test () :
P(0) = 1y has the form

Ao) ={yry = (Y1, -, yr) € Y S(%os Y1) < c(a)} (3.12)

wherec(«) is the critical point for a test with level, the corresponding confidence set is the set of
valuesy, which are not rejected by such tests:

Cw(y(T)) = {9 : S(¥o, y(T)) <c(a)} = {vg : G[S(¥y, Z'J(T))] > a} (3.13)
whereG(-) denotes the-value function. These sets are connected to each otheelsgthivalence
Yy € AYg) & Yo € Cyr)) - (3.14)

>From the level condition

PrlY & A(vg)] < a, VF € Ho(vyg),

11



it follows that

PrlY € A(g)] = 1—a, VF € Ho(ty),
Prlto € C(Y)] = PrlY € A(Yo)] > 1 —a, VF€Ho(tg), V4o € o,

and
Prlw(0) e C(Y)]>1—a, foralld,

which means that’, (Y") is a confidence set with leveél— o for 4(9).

Following this methodology, confidence sets can be builtaioy parameter of the volatility
process by finding the values of the parameter for whichptivalue function is greater than or
equal toa, yielding a confidence set with levél— «.

4. Non-regular problems

We investigate in this section three interesting test mnmisl. The first one consists in testing the
homoskedasticity hypothesis,, = r, = 0) against the SV alternative; the second one involves
testing a SV hypothesis without persisteriag = 0) against persistence in SV; the third problem
is a test of one-factor SVa,, = r, = 0) against two-factor SV. Although these hypotheses are
quite relevant in the context of SV models, they raise stedikdifficulties. Indeed, under such null
hypotheses, standard regularity conditions turn out toibted, thus making the problems non-
regular (although in somewhat different ways), so that taedard distributional theory presented
in Section 3 does not apply anymore.

Let us consider first the problem of testing homoskedasticit, = r, = 0), which can be
written(0) = 0 with ¢ () = (aw, rw)’. In this case, we have two restrictions, and the matrix

o (100
PW)‘@‘(O 1 0>

has full rank two, so it appears to be regular. However, thellian of the moment conditionsd,,
the derivative matrix of the moments with respect to the S¥ffodents) does not have full rank
when evaluated at a point that satisfies the null hypothesisising the analytical expressions for
the derivatives of:(6) with respect t& = (a., 7w, 7y), as given in Appendix B, we see that

0 0 2ry
o _ {0 0 127«3} (4.1)
0

whena,, = r,, = 0, s0 that the Jacobiady /00" has at most rank one (instead of three in the full-
rank case). But GMM identification requires a full-rank Jaien; see Newey and McFadden (1994,
p. 2127). An important regularity condition is violated. i haises estimation difficulties and was
handled by redefining the estimator in this case: waget r,, = 0 andr, = /j5(61) whenk <

3; see equations (2.16) - (2.21) above.
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A violation of the rank condition entails that the scoredshstatistics [the score add «)-type
statistics] involve non-invertible matrices, so that #héssts are not applicable (at least, without
modifications). Furtherdu/06’ typically has full rank when it is evaluated at a point thaeslo
not satisfy the null hypothesis, for example at an unrdstligoint estimate of, as in Wald-
type statistics. Therefore, the ranka@f/060’, when evaluated at an unrestricted point estimatg of
generally exceeds the rank@f /00’ evaluated at the truéwhena,, = r,, = 0 holds. This is again
a violation of a standard regularity condition, and the Wathtistic has a non-regular asymptotic
distribution; see Andrews (1987) and Lutkepohl and Bur@®{).

Second, the problem of testing no persistence in the SVajisome similarities with testing
homoskedasticitya,, = r, = 0). Indeed, under the null hypothesig = 0,

Var(u) = rzE[exp(rwvt)] E(th) = 7‘5 exp(rﬁ}/2) 4.2)

is invariant over time. However, both hypotheses (= 0 anda,, = r, = 0) have important
statistical implications for estimation as well as for thek of the Jacobian matrix associated with
w(#). Two points are worth being emphasized here.

1. Undera,, = 0, the volatility is stochastic, whereas it is deterministibema,, = r,, = 0.
Whena,, = 0, the kurtosis coefficient always remains greater than 3 fay > 0 [ =
3exp(r2)]: the scale factoexp(r,v;) is lognormal, sai; has a leptokurtic distribution. In
view of this distinction, the estimatéris defined differently under the two hypotheses: under
a, = 0,it is defined by substituting sample analogs in equationk4{2- (2.15), whereas
undera,, = r, = 0 (so thats = 3), we seta,, = 7, = 0 and use the sample analog of

Ty = /(1) .

2. Undera,, = 0, the Jacobian

o 0 rwrg exp[1/2(r2)] 2ryexp[l/2(r2)]
50 0 12ryryexp(2ry,)  12r) exp(2r) (4.3)
7“307“;1 exp(r2) 2rwr3 exp(r2) 4r3 exp(ry,)

has full-column rank almost everywhere, except precisdhem,, = 0 as well (provided
ry # 0). Indeed,r, andr, are identifiable whem,, = 0, because they are uniquely de-
termined by the second and fourth moments.ofsee equation (2.15)]. However, values of
aq, close to zero may lead to irregular statistical propertgsi(ar to what occurs under the
homoskedasticity hypothesis).

Third, when testing one-factor SM,, = r,, = 0) against a two-factor SV, the correlation para-
meterp,, = corr(vy, vy;) becomes unidentified under the null hypothesis. Then, as1j, the Ja-
cobian of the moment conditions (2.28) - (2.33) does not fal:€olumn rank wher,, = r,, = 0;
see Appendix C. This again creates a singularity, and stdndgularity conditions are violated.
In particular, score-type statistics are not applicabligh@ut modification), and the distributions of
all test criteria may be affected. This problem is similathiie one originally studied by Davies
(1977, 1987). Similar situations arise when one tries tbdigmificance for both AR and MA para-
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meter simultaneously in an ARMA model and also for both coigffits in standard GARCH(1, 1)
model?

More generally, it is well known that identification failureor conditions close to identification
failure (such as weak instruments) — can make methods basathla-type statistics fundamentally
invalid — even though they remain computable — and requipmitant adjustments to critical values
used with other test statistics, such as LR-type statjstexs Dufour (1997, 2003) and Stock, Wright
and Yogo (2002). In Section 6, we present simulation evidemgich shows this is indeed the case
here for LR-type statistics. Although adjustments — suchasds similar to those considered by
Davies (1977, 1987), Dufour (1989), Hansen (1996), André@91), Dufour and Khalaf (2002)
— might be developed, justifying and applying such methoei® lwould require a considerable
theoretical effort.

In this paper, we take a different approach based on usingerglenethod which is completely
immune to possible singularities and identification proideas well as relatively easy to apply. If
no nuisance parameter were present in the distributionediet$t statistic under the null hypothesis,
an exact test could indeed easily be obtained by applyindetttenique of MC tests [as done, for
example, in Dufour et al. (2004) for the Bera and Ra (1993)dgainst ARCH-M heteroskedastic-
ity]. However, the nuisance-parameter problem does notrgty dnere, and we propose to solve it
by using the technique of maximized Monte Carlo tests; sde(2006). We will now describe
succinctly this method.

5. Monte Carlo tests

The technique of Monte Carlo tests was originally been pseddoy Dwass (1957) for implementing
permutation tests and did not involve nuisance parameidrs. technique was also independently
proposed by Barnard (1963); for a review, see Dufour and &H@0D01). It has the great attraction
of providingexact(randomized) tests based on any statistic whose finite{sedigiribution may be
intractable but can be simulated. We briefly review the mekmgy of Monte Carlo tests covering
both cases, first without nuisance parameters and then wifamce parameters. The technique
of Monte Carlo tests provides a simple method allowing onepdace the unknown or intractable
theoretical distribution”'(y|d), whered = (¢, 6)’, by its sample analogue based on the statistics
S1(9), ..., Sy(9) simulated under the null hypothesis.

For the sake of clarity, let us first consider the case wheneumsance parameter is present.

1. Using the observed sample, we calculate the relevaitate,.

2. Using draws undeH,, we generate N simulated samples ... , Sy.

3For various econometric examples and discussions of thisigm, the reader may consult Andrews and Ploberger
(1995), Bera and Ra (1995), Hansen (1996), Andrews (200&rg,BRa and Sarkar (1998), Andrews (2001) and Dufour
et al. (2004).
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3. Then we consider the following simulated survival fuooti
A 1
Grly; SIN) =+ > s(Si—y)
=1
and the associategvalue function

R NGn(y) +1
) = TR

wheres(z) = 1if z > 0, ands(z) = 0 if z < 0. If the distribution ofS is continuous anav
is chosen so that(/NV + 1) is an integer, then

Plpn(So) < o] = a, underH,
which means that the critical regigny (Sy) < « has sizex.

In most econometric models, the relevant case is the oneewther distribution of the test
statistic depends on nuisance parameters. To deal witttdniplication, the MC test procedure
can be modified as follows, whebaepresents the true parameter vector.

1. To test the null hypothesis B
Hy:6 €8,

we use first the observed sample to calculate the relevdististaenoted bys.
2. For each € 2y, we generatéV replications ofS: S1(9), ..., Sy (9).

3. Using these simulations we compute the correspondinglatadp-value function:

NGy[ylo] + 1

PN (yld] = N+l

4. Thep-value functionpy[Sy|d] as a function ofy is maximized over the parameter values
compatible with the null hypothesig), and H is rejected if
sup{pn(So|d) : 6 € 2} < . (5.1)

If the number of simulated statistic$ is chosen so that(/N + 1) is an integer, then we have
underHy:
Plsup{pn(50]9) : 0 € 20} < a] < «, (5.2)

which means that we have a test with lewelfor a proof, see Dufour (2006).

Because of the maximization in the critical region (5.1) thst is called anaximized Monte
Carlo (MMC) test. MMC tests provide valid inference under geneegjularity conditions such as
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almost-unidentified models or time series processes imglmit roots. In particular, even though
the moment conditions defining the estimator are deriveceutite stationarity assumption, this
does not question in any way the validity miaximizedVIC tests, unlike the parametric bootstrap
whose distributional theory is based on strong regulaityditions. Only the power of MMC tests
may be affected.

A simplified approximate version of the MMC procedure cam\alite its computational load
whenever a consistent point or set estimaté isfavailable. To do this, we reformulate the setup in
order to allow for an increasing sample s{Zé).

1. To test the null hypothesis
H0:5€Qo, with 2, € (2, 9075(2),
we use first the observed sample to calculate the relevdrstistaenoted byStg.

2. We consideC'r, T > 1y, a sequence of (possibly random) subset&ahstead of(2y, such

that )
lim P[é € Cp| =1 underH. (5.3)
T—oo
3. For each € Cr, we generatéV replications ofS: S71(d), ..., Spn(6), withT > I .

4. Using these simulations we compute the correspondinglaiedp-value function:

NGrylyld] +1

pTN[?/|5] = N+ 1

5. Thep-value functionprn[S7|0] is maximized with respect in Cr, andH is rejected if
sup{prn(Stold) : 6 € Cr} < av. (5.4)

If the number of simulated statistid§ is chosen so that (/N + 1) is an integer, we have
underHy:

Tlim Plsup{prn(St0l0) : 6 € Cr} < a] <, (5.5)

i.e,, we control for the level asymptotically.

In practice, it is easy to find a consistent set estimai® wfhenever aonsistenpoint estimate
61 of & is available (e.g. a GMM estimator or a more efficient estonatich as the SMLE; see
Danielsson (1994), Durham (2006, 2007)).

For instance, any set of the form

Cr=1{6e :||br—4| <d} (5.6)
with d a fixed positive constant independentigfsatisfies (5.3). The consistent set estimate MMC

(CSEMMC) method is especially useful when the distributidithe test statistic is highly sensitive
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to nuisance parameters. Here, possible discontinuitiéseimsymptotic distribution are automat-
ically overcome through a numerical maximization over atbat contains the true value of the
nuisance parameter with probability one asymptoticallhil@there is no guarantee for the point
estimate to converge sufficiently fast to overcome the diticoity). It is worth noting that there
is no need to maximize thevalue function with respect to unidentified parameterseuride null
hypothesis (which corresponds @, in the two-factor SV framework). Thus, parameters which
are unidentified under the null hypothesis can be set to aey fimlue and the maximization be
performed only over the remaining identified nuisance patars. When there are several nuisance
parameters, one can use simulated annealing, an optiorizakjorithm which does not require
differentiability. Indeed?y [So|d] is step-type function which typically has zero derivatiatsost
everywhere, except on isolated points where it is not difidable. For an example where this is
done on a VAR model involving a large number of nuisance patars, see Dufour and Jouini
(2006).

Finally, if the setCr in (5.4) is reduced to a single point estimate i.e. Cr = {47}, we get
alocal MC (LMC) test X

prN(StoloT) < (5.7)

which can be interpreted asparametric bootstragest. Even ifd, is a consistent estimate 6f
(under the null hypothesis), the condition (5.3) is not Ulgwsatisfied in this case, so additional as-
sumptions are needed to show that the parametric bootstapdgure yields an asymptotically valid
test. It is computationally less costly but clearly lessusitio violations of regularity conditions
than the MMC procedure; for further discussion, see Duf@d06).

6. Simulation results

In this section, we present some simulation evidence on tite-sample properties of the proce-
dures described in the previous sections. In particulapreeide results on the actual level of the
Wald, score, LR and’(«a)-type tests for the three main hypotheses discussed: (hyfhathesis of
non-persistence in volatility (against persistence iratiliy); (2) homoskedasticity (against the SV
alternative); (3) one-factor SV against a two-factor S\iéehways of implementing the tests are
considered: asymptotic critical values, parametric boaps and MMC. We also present results on
power for the three types of hypotheses described above.

The Wald-type statistic [defined in equation (3.5)] is ea#ddl at the unrestricted method-of-
moments estimatat. The score-type statistic [defined in (3.7)] is evaluatetthatestricted estima-
tor 8, which minimizes the criteriol/}.(#) in (3.1) under the constraint,, = 0. The C(a)-type
statistic [defined in (3.11)] is evaluated at the restricstimatord, of 6, wheref is obtained by
settinga,, = 0 in the analytical expressions of the unrestricted metHeti@ments estimatof in
(2.18) - (2.21). Further, the LR-type test statisfik({2) = ¢$ corresponds to the difference be-
tween the restricted and the unrestricted optimal valuéiseobbjective function, with the restricted
objective function evaluated b and(? = Q(é). The weighting matrix? is estimated by a Bartlett
kernel estimator with the bandwidth varying with the sangite,i.e. K = [0.1597""/3], where] - |
denotes the integer part of the enclosed number; see Neweyest (1994).
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Let S denote the test statistic which alternately takes the fdrione of the four test statistics
mentioned, and, the statistic computed from the “pseudo-true” data obthlmesimulation under
the true data generating process. The critical regions thevillowing forms:

Ra = {8 > xa()}
for the asymptotic tests, wheRdx?(v) > x2(v)] = a andv is the number of constraints tested,
. <0
Rp = {pn[So[0 ] < a}
for the bootstrap test, and

Rarve = { sup{prn(Srold) : 6 € Cr} < af,

where
. NGN[zld] + 1
pulels] = TONIOEL,
R 1 X
Gnlz; S(N, 6)] = N ;5(51'(5) —x),

for the MMC-based test.d is a consistent point restricted estimate dof= (c, §')',; 0 is
the vector of the SV parameters.§j, 6 = (ay, ry, 7y)" for the one-factor SV model§ =
(@, Ty, Tw, an, Ty, p12) for the two-factor SV model], and'r is a restricted consistent set es-
timator of§.

For MMC tests of the non-persistence hypothesis in the sifagitor SV mode(a,, = 0), the
setCr over which we maximize the simulatedvalue is:

O = {(e, ryrw) : le— ¢ < 0.15, ¢ <0.99, |r, — 7] <03, |r, — 7| < 0.3} (6.1)

whereé is the least squares estimatescdbased on fitting the AR(1) model (2.1) with no drift]
and (ffél), ﬁ(j)) are the restricted GMM estimate 6f,, r,,) in the one-factor model [based on
minimizing M7.(#) subject to the restriction,, = 0]. The bounds of 0.15 far and 0.3 for the scale
parameters approximately correspond to 7 and 2 standas erespectively. However, any fixed
bound associated with a consistent estimator will lead tasymptotically valid test provided that
the probability of covering the true parameter converges® as the sample size goes to infinity.
For the homoskedasticity hypothesis, = r,, = 0), the corresponding set is

O = {(e, my) : Je — ] < 0.15, |¢| < 0.99, |r, — 7| < 0.3} (6.2)

A

whererf) is the corresponding restricted GMM estimate pfbased on minimizing\/;.(#) subject
to the restrictiona,, = r,, = 0]. Finally, for testing the one-factor model against the taotér
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model(a, =, =0), Cris

C = {(¢, aw, ry, ) t e — &) < 0.15, [¢] < 0.99, |ay — aP)] < 0.15, |ay| < 0.99,
ry — 73] < 0.3, |ry — 7| < 0.3} (6.3)

wheref§3), fﬁf) and dz(f) are restricted moment estimates of the two-factor modedgtyaf the
moment equations in (2.28) - (2.33)]. Since the number afange parameters is relatively small,
maximization was achieved through a grid search (with goseparated by a distance (63 for
each coefficient). Note that many other restricted consiststimates of the relevant nuisance
parameters could be used to build the gets

The nominal level isx = 0.05. The number of replications used for Monte Carlo tests is
N = 99, while the rejection frequencies are estimated wifh= 1000 for regular hypothesis tests
and M = 500 for non-regular onesT is the sample size of the serigswhose data generating
process is assumed to be specified as in equations (2.4) f¢2.6he one-factor SV model and
as in equations (2.22) - (2.25) for the two-factor SV modehlc@lations were performed with the
GAUSS software. The autoregressive parametgranda,, in the autoregressive specifications for
the volatility process are restricted to an interval ingidd, 1) to ensure stationarity.

In the power study (Section 6.2), the asymptotic criticahpoarelocally level-correctegdi.e.
the critical points are modified to ensure that the rejediiequency under the null hypothesis (for
the specific nuisance parameter values considered) is &m04al5; the corrected critical value is
obtained by simulating the test statistic under the nulldtlgpsis with a large number of replica-
tions# Corrected asymptotic critical values are estimated froimalstion with 10000 replications
(with 5000 replications) for the regular hypotheses ( far tfon-regular hypotheses). Bootstrap
tests are level-corrected by decreasing the thresholdruvitieh the bootstrap-value must fall to
ensure that the bootstrap test rejects with frequen@y0dfunder the null hypothesis; the corrected
threshold is estimated from a simulation with 10000 repices (with 5000 replications) for the
regular hypotheses (for the non-regular hypotheses).

6.1. Level

We will now examine the empirical levels of the tests. Theultsson testing volatility non-
persistencg Hy : a,, = 0) are reported in Table 1 (panel A). We can see from this taldé th
all bootstrap procedures exhibit notable over-rejecti@tss (above the nominal level 06f05), in
small samples (even with a sampl€eldf= 500), while the asymptotic tests under-reject. Indeed, the
asymptotic critical values appear to be conservative mdhse. The only procedures which do not
exhibit over-rejections in the cases considered are the M#IGions of all the tests. As expected
from theory, the latter may be conservative.

“We use the term “locally level-corrected” instead of “stx@rected” because a true size correction would require one
to ensure that the probability of rejecting the null hypsikeinderall distributionscompatible with null hypothesis (i.e.,
for all values of the nuisance parametgelse less than or equal to the level Theoretically, a complete size-correction
would be the most satisfactory correction to perform forindamparison of all the test procedures. However, finding
the appropriate size-corrected critical values requirasmaerical search that could not be performed in the confetkieo
present experiment.
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Table 1. Empirical levels of asymptotic, bootstrap and MMEt$, (nominal sizex = 5%).

Note - In this table

as well as in the other tables,

(A) Hy : a, = 0 (non-persistence)
One-factor SVe = 0.3, 7, = 0.5 One-factor SVe = 0.95, r, = 0.5
T Wald Score LR C(w) Wald Score LR C(w)
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC || Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
50 01| 114| 03 | 05| 65 2.4 0 [113| 09 |01 78 3.0 0 [118| 33 | 06| 5.2 3.0 0 [11.8| 38 | 01| 6.8 3.7
100 | 0.4 | 135| 05 | 0.1 | 103| 2.2 0 | 139 06 0 8.0 3.1 03| 132| 29 | 03| 94 4.2 0 | 140| 39 0 8.7 4.5
500 12| 145| 04 15| 9.2 1.8 11| 12.2 1.0 15| 74 2.7 0.9 | 147 11 14| 89 2.7 1.0 | 125| 2.0 15| 7.2 3.1
1000| 6.2 | 105| 05 | 65 | 6.8 25 | 72| 82 21 | 66| 59 2.8 6.2 |107| 10 | 6.7 | 7.2 27 | 70| 78 27 | 68| 6.0 3.0
2000 7.4 | 6.9 0.7 | 63| 4.9 21 | 64| 52 0.7 | 64| 45 2.2 68 | 6.8 1.1 | 63| 49 22 | 67| 52 11 | 63| 4.6 2.1
(B) Ho : ay =1, = 0 (homoskedasticity) (C) Hoy:ay=r, =0 (one factor)
One-factor SVe = 0.3, r, = 0.5 One-factor SV = 0.95, r, = 0.5 One-factor SV = 0.95, r, = 0.5
P12 =0.3, ap, =0.7, 1, =0.5

LR 50 | 100 | 500 | 1000 | 2000 | 5000 || 50 | 100 | 500 | 1000 | 2000 | 5000 | LR 500 | 1000 | 2000 | 5000 | 10000

Asy. 0 0 0 0 04 | 0.2 0 0 0 0 04 | 02 Asy | 9.6 | 17.6 | 16.6 | 21.6 | 24.4

Boot | 26| 34| 48| 28 | 56 | 3.6 4 |136|48| 28 | 58 | 3.2 Boot | 23.0| 20.0 | 146 | 15.0 | 17.8

MMC | 24| 3 | 44| 28 | 53 | 36 |[34|34|42)| 28 | 54 | 32 ||MMC | 20| 26 | 20 | 24 2.6

frequenei® reported in percentages. Simulations are computed@d 1
replications for panel (A)while they are computed on 500icagions for panel (B) and (C).
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Table 2. Empirical power of asymptotic, bootstrap and MM§ige

(A) Hi :a, = 0.8 (persistence) againgiy : a,, = 0 (hon-persistence)

One-factor SVe = 0.3, r, = 0.5

One-factor SVe = 0.95, r, = 0.5

T Wald Score LR C(a) Wald Score LR C(a)
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC || Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
50 14 | 64 2.2 04 | 6.5 1.2 01| 7.9 2.6 11 | 114| 83 19 | 8.0 7.6 08| 75 4.7 0.2 | 105| 94 0.4 | 10.6 | 11.7
100 | 3.6 | 155 | 3.3 21| 117 | 6.4 05| 215| 4.0 2.8 | 183 | 15.7 36 | 180| 104 | 1.3 | 155| 114 | 0.8 | 225 | 135 | 2.3 | 20.6 | 18.7
500 |459|545| 79 |325|382| 247 [ 306| 351| 86 |[349]| 41.2| 395 ||454| 544 | 320 | 315|426 | 32.7 | 31.9| 38.0| 295 | 33.4| 425 | 414
1000 | 86.6 | 67.0 | 23.6 | 59.9| 50.6 | 33.2 | 60.3| 43.2| 10.8 | 64.7| 579 | 42.3 || 87.0| 66.3| 57.2 | 57.8| 50.2 | 38.6 | 59.2| 41.1 | 33.6 | 63.5| 49.3| 455
2000| 99.0| 90.2 | 54.2 | 81.9| 80.3| 59.7 | 84.3| 83.8| 39.0 | 86.8| 829 | 70.3 || 99.0| 91.3 | 839 | 823|810 | 686 | 84.9| 84.1| 67.7 | 87.7| 83.6| 74.1
(B) Hj :ay = 0.9 (persistence) againéfy : a,, = 0 (non-persistence)
One-factor SVe = 0.3, r, = 0.5 One-factor SVe = 0.95, r, = 0.5
T Wald Score LR C(a) Wald Score LR C(a)
Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC || Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC | Asy | Boot | MMC
50 19 | 10.7| 34 1.0 | 9.6 2.4 06 | 143 | 4.8 20| 152| 128 || 29 | 116 | 120 | 09 | 131 | 9.7 0.7 | 149 | 150 | 2.6 | 20.8| 20.0
100 | 6.7 | 26.9| 6.1 41 | 236 119 | 22 | 315| 9.2 6.0 | 285| 259 || 79 | 281 | 201 | 42 | 214 | 218 | 24 | 31.7| 243 | 6.6 | 31.6| 345
500 |81.9| 71.7| 333 | 49.1| 545 | 374 | 48.7| 49.3| 206 | 53.6| 57.5| 55.8 || 81.6| 71.7 | 57.8 | 50.6 | 40.2 | 42.0 | 51.0| 48.3| 37.1 | 55.6| 59.3 | 50.3
1000 | 96.5| 84.4 | 63.0 | 58.9| 54.7 | 38.2 | 59.9| 53.0| 21.1 | 66.,5| 62.7 | 56.4 || 97.6| 83.2| 87.6 | 59.4| 57.8| 46.4 | 61.4| 54.4| 38.2 | 70.6 | 64.2 | 58.0
2000| 989| 954 | 84.2 | 73.0| 72.3| 516 | 789| 784 | 40.1 | 824| 79.2| 67.0 || 99.1| 96.0 | 94.1 | 744 | 740 | 59.5 | 81.0| 80.3| 59.5 | 84.6| 82.1 | 69.6
(C) Hi :aw =1y, = 0.5 (stochastic volatility) againsty : a.,, = r, = 0 (homoskedasticity) (D) Hi :ay,=r, = 0.8 (two factors)
againstt : a, = r, = 0 (one factor)
One-factor SV = 0.3, r, = 0.5 One-factor SVc = 0.95, r, = 0.5 One-factor SV = 0.95, r, = 0.5
p12 =03, a, =0.7, 7, =0.5

LR 50 | 100 | 500 | 1000 | 2000 | 5000| 50 | 100 | 500 | 1000 | 2000 | 5000 || LR | 500 | 1000 | 2000 | 5000 | 10000

Asy. 02| 06| 30 | 75.0| 96.6 | 100 || 0.6 | 1.2 | 30.0| 75.2 | 96.4 | 100 Asy | 06| 02 | 06 | 04 0.4

Boot | 22.4|41.8|88.0| 96.4| 99.4| 100 (| 25.2| 40.6| 86.0| 96.2 | 98.4 | 100 Boot | 0.6 | 2.6 94 | 604 | 714

MMC | 21.2| 41.2| 87.0| 96.4 | 99.4 | 100 (| 22.8| 38.8| 85.4| 958 | 994 | 100 | MMC | 20| 7.2 | 146 | 694 | 773

Note — All asymptotic tests are locally level-corrected oBirap tests are locally level-corrected when the prdibabi type | error
exceeds 0.05. Locally-level corrected tests are not feasilpractice. Simulations are computed on 1000 replioatior panel (A)
and (B) while they are computed on 500 replications for p&@ghnd (D). All tests statistics are regularized with amiitg matrix
when numerical instability arises in the simulation expemnits leading to (almost) non-invertibility of the covaita matrix. The
simulated critical values (obtained on 5000 replicationdar the true DGP) for the level-corrected asymptotic LRused in panel

(D) are7.452, 13.141, 22.848, 45.506 and77.499 for the sample size$ = 500, 1000, 2000, 5000 and10000, respectively.




Results on testing homoskedasticity and the one-factoothgsis appear in Table 1 (panel B
and C). Because these hypotheses lead to locally singularemtaconditions, the score aiy «)-
type tests are not applicable here, while Wald tests oft@emt on covariance matrices which are
almost singular (generating numerically unstable behlavi®o only LR-type tests are considered.
We see from the results that asymptotic LR-type tests ang a@mservative for the homoskedas-
ticity hypothesis but can severely over-reject for the @awer hypothesis. Indeed, size distor-
tions increase with the sample size, indicating that stahdstical values are not asymptotically
valid. Bootstrapping appears to correct the situation fier first hypothesis, but leaves notable
over-rejection rates in the second case. Of course, on@taradude the possibility of larger boot-
strap failures for different parameter configurations.a@ige the two types of non-regular problems
studied are qualitatively different from the statisticééwpoint. Again, in all cases studied, the
MMC-based tests do not exhibit over-rejection rates.

6.2. Power

We will now study the empirical powers of the tests. In Tab{p&nel A and B), we report empirical
powers for tests offj : a,, = 0. We can see from the results that thén) and the Wald-type tests
(built upon the closed-form moment estimator) have moregyathan the other tests. Further,
the C'(«)-type test is easy to implement in this context since it dagsr@quire any optimization
procedure unlike the LR and the score-type tests. Furththiough the MMC-based tests may
be conservative, their power is in fact quite close to the ainthe other tests and even perform
better, in some cases, than the level-corrected bootstihpgymptotic tests in small samplesd.
for T = 50,100 in Table 2). In the present situation, MMC-based tests asergmlly (almost)
equivalent to (infeasible) level-corrected bootstragstewhich suggest that they may dominate
size-corrected bootstrap tests (whose level would be altetdrover the whole nuisance-parameter
space).

We also examine in Table 2 (panel C) the power of homoskeiigstests (against one-factor
SV). Bootstrap and MMC-based LR-type tests exhibit goodgyawwhich increases with the sam-
ple size — and are very close to each other. Besides, theypeviarm their asymptotic analog for
sample sizes less thah = 2000. Note that the locally level-corrected asymptotic tests ot
feasible in practice (because critical values are compusétg unknown parameter values under
the null hypothesis).

For tests of the one factor hypothesis (panel D of Table 2)ptwer of LR-type tests — though
low in comparison with the other hypotheses studied preshod is sizeable and increases with
the sample size. On the other hand, detecting the presenaesefond factor in the volatility
process requires a sufficiently large sample. Thus, foeaesample sizes, the MMC-LR procedure
has always more power than the corresponding (infeasibtgllly level-corrected bootstrap test,
while the corresponding (infeasible) locally level-catedd asymptotic test has no power at all once
corrected for size distortions. Thus, the only valid fekestest which guarantees to control for the
level — unlike the asymptotic and bootstrap procedures viges reasonable power.
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7. Empirical application

In this section, we test the three null hypotheses studigtidrsimulation experiments from real
data on the Standard and Poor's Composite Price Index (928We proceed in three steps in
order to select the more suitable specification for this ifipedata set. First, we test for the null
of homoskedasticity against an alternative of stochastlatiity. Second, we perform the test of
one factor against two factors in the volatility process.dAmally, we implement the test of no-
persistence in the one-factor volatility process if the-tawor specification is appropriate.

7.1. Data

The data have been provided by Georges Tauchen where thiergffitethod of moments (EMM)
have been used by Gallant et al. (1997) to fit a SV model. The tdatvhich we fit the stochastic
volatility models is a time series comprised of 16,127 daibgervations{7;};>'*", on adjusted
movements of the Standard and poor's Composite Price Intk28-87. The raw series is the
Standard and Poor’'s Composite Price Index (SP), 1928-8y)Xdahe raw series is converted to
growth rates by the transformatidf0[log(SF;) — log(SP;—1)], and then adjusted for systematic
calendar effects, that is, systematic shifts in locatiod acale due to different trading patterns

across days of the week, holidays, and year-end tax trading.

7.2. Results

The unrestricted estimated value(of #) for the one-factor model obtained from the data is:

&, aw, Py, F] = [0.129, 0.926, 0.829, 0.427 ]

(0.007) (8.10) (1.91) (8.13) (7.1)

where standard errors are given in parentheses; the ladecoaputed from the square root of
(J'I=1.J)~1. We may conjecture that there is some persistence in the détsgdhe period 1928-
87 what is statistically checked by performing the test®welThe restricted estimated values of
(¢, 8) from the data are:

e, ad, 70, 70] = [0.129, 0, 0.785, 1.152]

T oor) (0) (1.95) (1L77) (7.2)

and the consistent restricted estimator derived from thgecl-form expression of the unrestricted
moment estimator is equal to

e, ad, 70, /o] = [0.129, 0, 0.829, 1.133]

T 007 () (1.91) (1.66) (7:3)

Note the large discrepancy between the unrestricted amdcted estimates of,, where the re-
stricted estimates may not be consistent if the null hymith¥, : a,, = 0 is false.

In Table 3, we report tests based on the whole sample (16,487 abservations on the S&P
500), which covers the market crashes oft&ck Thursdayf October 1929 and of October 1987,
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the Cuban Missile Crisis (October 1962) and the Arab Oil EgbgOctober 1973). We then repeat
the tests on three sub-samples: 1928 - 1949, 1950 - 1969 q9d-1987.

We can see from the results in panel A of Table 3, that the treestons (asymptotic, bootstrap
and MMC) of the LR test do reject the null hypothesis of honeaglsticity in favor of a stochastic
volatility specification for the volatility process of th&8 500 index, except for the third sub-period
1970-1987 but witlp-values however very close to 0.05\alue=0.07).

More recently, Chernov et al. (2003) and Durham (2006, 2pf3)ide evidence that standard
single-factor SV models have some difficulties to model th@pge of the conditional distribution
of financial returns. In particular, Chernov et al. (2003pwtthat two-factor SV models better
accommodate richer dynamics such as the tail behavior ofd{onal) return distributions and
possibly capture some rapid moves in the dynamics of vitjatilring extreme market conditions.
The first factor may act as a long-memory component, whileséoend factor is expected to model
tail behavior. To check for that, we test the null of one faetgainst two factoréH, : a,, =, = 0)
in panel B of Table 3. All versions (asymptotic, bootstrap 4MC) of the LR test do not indicate
that a two-factor specification is needed for the S&P 500xnabdatility. Consequently, we chose a
one-factor specification for modelling the S&P 500 indexatidity.

We will now study in greater detail the volatility parameiarthe one-factor SV model by
testing the null hypothesis of no-persistence in the Valafirocess (panel C in Table 3). All tests,
asymptotic, bootstrap and MMC, reject the null hypothesiaapersistence in the volatility for
all the periods considered. Indeed, it is well known in thafficial literature that financial returns
display serial dependence in volatility.

To summarize, the results presented here indicate that-faotee model with strong volatility
persistence may be appropriate for the S&P 500 index dadigestiere.

8. Conclusion

In this paper, we have provided finite-sample proceduretefiing hypotheses on the parameters of
SV models, allowing for the possible presence of non-regekting problems (underidentification,
singularity issues) that can lead to non-standard asympdgdtributional theory. Besides usual
linear restrictions on SV coefficients, the problems stdidielude testing homoskedasticity against
a SV alternative and testing the one-factor SV against &etef SV, which raises singularity and
identification difficulties. In addition to the three standi#ests, we proposed to uS&«)-type tests
which are relatively easy to apply and displays good sizepameer properties (when applicable).

In order to deal with the potential unreliability of asymfitccritical values and bootstrapping,
especially in cases where standard regularity conditiaihafe showed that the MMC test approach
provides a transparent way of dealing with such difficujtigelding both exact or asymptotically
valid tests without the need to establish a specific didiobal theory. In some cases (underiden-
tification case), the MMC method is the only one that yieldsvpbly valid tests. Further, in simu-
lations, we observed that the MMC method can indeed be ingiéea to produce valid inference
on SV models, works well from the viewpoint of controllingstdevels, and most of the time, does
not entail a considerable power loss with respect to altsen@usually infeasible) level-corrected
asymptotic or bootstrap approaches.
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Table 3. Empirical application on S&P500 index.

(A) Test of homoskedasticity Hy : a, =1 =0 (B) Test of one factor against two SV factorsHy : a,, = r,, =0
Asymptotic tests Bootstrap tests MMC tests Asymptotic tests Bootstrap tests MMC tests
So N=19[N=99 [ N=999 [ N=19 | N=99 [ N =999 So N=19[N=99 [ N=999 | N=19 | N=99 [ N =999
Sample 1928-1987; = 16127 Sample 1928-1987, = 16127
LR 9.71 [ 005 [ 001 | 0001 [ 005 | 001 [ 0.001 4149 [ 035 [ 033 | 0329 | 070 [ 070 [ 0681
Sample 1928-1949; = 6491 Sample 1928-1949; = 6491
LR 4258 | 005 [ 001 | 0001 | 005 | 001 [ 0.001 0435 [ 085 | 084 [ 0813 | 085 | 084 | 0813
Sample 1950-1969, = 5087 Sample 1950-1969; = 5087
LR 6.28 [ 005 [ 001 | 0003 [ 05 | 002 [ 0.003 2700 [ 030 | 021 [ 0153 | 035 [ 024 | 0222
Sample 1970-1987; = 4549 Sample 1970-1987; = 4549
LR 2.09 [ 010 | 007 | 0077 | 010 | 0.07 | 0.078 1141 [ o040 [ 028 | 0205 | 080 [ 077 [ 0747
(C) Testof no-persistence Hy : a,, = 0 (C) Testof no-persistence Hy : a,, =0
Asymptotic tests Bootstrap tests MMC tests Asymptotic tests Bootstrap tests MMC tests
So N=19[N=99 [ N=999 [ N=19 | N=99 [ N =999 So N=19[N=99 [ N=999 | N=19 | N=99 [ N =999
Sample 1928-1987; = 16127 Sample 1950-1969, = 5087
Wald 210.85 005 | 001 [ 0001 | 005 [ 001 | 0.001 93.01 0.05 | 001 | 0001 | 005 [ 001 | 0.001
Score|  1039.04 005 | 001 [ 0001 | 005 [ 001 | 0001 607.92 0.05 | 001 | 0001 | 005 [ 001 | 0.001
LR 25.49 005 | 001 [ 0001 | 005 [ 001 | 0001 11.95 005 | 001 | 0001 | 005 [ 001 | 0.001
C(a) 854.55 005 [ 001 [ 0001 | 005 | 001 | 0.001 304.66 005 | 001 [ 0001 | 005 | 0.01 | 0.001
Sample 1928-1949; = 6491 Sample 1970-1987; = 4549
Wald 112.95 005 | 001 [ 0001 | 005 [ 001 | 0.001 30.50 0.05 [ 001 | 0001 | 010 [ 0.8 [ 0.027
Score 269.72 005 [ 001 [ 0001 | 005 | 001 | 0.001 391.87 005 | 001 | 0001 | 005 | 0.01 | 0.001
LR 52.73 005 | 001 [ 0001 | 005 [ 001 | 0001 40.90 0.05 | 001 | 0001 | 005 [ 001 | 0.001
C(e) 185.47 005 | 001 [ 0001 | 005 [ 001 | 0001 165.03 0.05 | 001 | 0001 | 005 [ 001 | 0001

A varying bandwidth may entail some power loss in large saspherefore we set the bandwidthAo= 1 to maximize power in
the empirical application for all tests.



It is worth noting that Monte Carlo tests do not hinge on théhoé-of-moment estimator used
here. These can be applied as soon as a consistent estismtailable (e.g. GMM, SMM, EMM or
indirect inference). The only restriction is that the teatistic can be simulated, without the need to
study its asymptotic distribution nor even to establiste’istence. However, using estimators with
better finite-sample properties such as the SMLE [see Dsauiel (1994), Durham (2006, 2007)],
might improve the performance of the tests, but this isswes dmeyond the scope of the present
paper.

These testing procedures can easily be extended to accamenicher dynamics such as fat-
tailed and/or correlated errors [see Jacquier, Polson asdiR2004)], or multivariate stochastic
volatility structures [see Chib, Nardari and Shephard @0
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A. Appendix: Proofs

PROOF OFPROPOSITION2.4  If U ~ N(0, 1) thenE(U?**!) = 0,V p € NandE(U%?) =
(2p)!/[2Pp!] V p € N. Hence:

E(uy) = ryE(zf)Eexplk(w,/2 +1,/2)]

k! k2
_ k
= ’I"ym exp |:§ <Var(wt) —|—Var(7]t) —+ 2C0V(wt77]t)):|
k! k2 k2 k2 ryr p
o —a? _ R~ TwlnP12
ryQ(k/2)(k/2) exp[8 Tw (1 a ) 77/(1 a )+ 11—aya n:| (A.2)

where the second equality uses the definition of the Gaudsigatace transform ofw; ~
N[0, 72,/(1 — a2)] (of n respectively) and of the moments gf Further, using

E(w;) =0, Var(w;) =r,/(1—aj,), (A.2)

E(n,) =0, Var(n,) =r7/(1 —a3), (A3)

Cov(wy, we1) = agiry, /(1 = az) Cov(ny,m,y) = alflry /(1 —az), (A.4)
Cov(we,ny) = %, (A.5)

Cov(wy, 1p4y) = alllCov(wy, ), Cov(wy1,n,) = ali/Cov(wy, n,) (A.6)

we obtain the cross-moments:

: n Wl | Ny
Elufuly] = E{r)™ ezt eli( +§)+k<—2+ el

. . w
Lk
2

| 5t k!
= (j/z)!2<k/2>(k/2)!exp{ Var[ s m) (wt+l+m”)]}

2

= J! ! ! Qv v i TV
= " S Gy T Gy P 3 | 7 Verw) + 7 Var(n) + 7 Var(wn)
2 -2

k 27 27k
+Ivar(77t+l) + TCO’U(’wt,m) + ‘ZT

Cov(we, wiiy)
2k 2k 2k
+TCO’U(wtﬂ7t+l) + TCOU("?uth) + TCOU(UMHH)

2k
+TCOU(wt+la 77t+l):| }

v 90/2)(5/2)! 2k/2) (K /2)! 8(1 —a2)

2
™n 2 | 9 1

(24 k2 2k

+8(1—a%)(‘7 + k% + 2jkay,)

(2 + k2 + 2jkal'ly
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TwTnP12

+1[2j2 + 2k% + 2jka)ll + 2jkall] (A.7)
8 — Qyay
]
B. Appendix: Analytical moment derivatives for one-factor SV
The analytical expressions of the derivatives of the moroentlitions are given by:
O G 2.2 o Opg Tw 2 o
day ~ A—a2 vy o, T a—a) v Phaoay  ®D
Opg r2 Opy Qo 9 4 2r2
8'@ Ty eXp[2(1 _ a?ﬂ)] ) aaw (1 _ ?U)Qrwry eXp[(l _ a?ﬂ)] ) ( )
Opg _ Tw 4 2r, Opg _ 1o 3 o
oy 12(1 — agu)ry exp[(1 G%U)] ", 127, exp[(1 G%U)] , (B.3)
Otig o r2 4 r2 Opa, o 2ry 4 o
day, — (1- aw)er eXp[(l — aw)] C Or,  1—ay Y eXp[(l - aw)] ’ (B.4)
Oy o 3 72
= =4 w . B.
or, Ty exp[(l — aw)] (B.5)

All these derivatives evaluated @, = 0, r, = 0 gives the results stated in equation (4.1).

C. Appendix: Analytical moment derivatives for two-factor SV

The analytical expressions of the derivatives of the moroendlitions for the two-factor SV model
are given by:

2
Qalle) _ | el ] (1T
day, (1—a3) (1 —ayay)

7,2
n TwTnP12 >
)

1
51—a%u+§1—a727 1 — ayay

8#4(92):[ 4“?7T727 dayTwrypro 34 exp 2y I 2T727 _1_4"”107”77/)12
( Y 1 ’

day, 1—a2)? (1 - away)? —a  1—aZ 1—aya

O (0 9a, 12 Oty Ty T 9 72 9 12 Ory T
e 2):[( n'n + wwnp12]15r2exp< Tw oy wnpm)

day 1—a2)? (1 - ayway)? 21—a2 ' 21— az = 1—ayay

Opi, 2(02) 4 0%\ 9o®  Opy 4(02) 8 2 0o
Tan —(1/2)TyeXp<?>a—an7 Tan = 18Tyexp<20 )8—%,

2
— (9/2)r12225 exp<9%>

Do?

3#6,6(92) oo~
day, ’

Oay,
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where

) ) 9 2,.2 2
do?  Aayry Ay TwTyPra 205 TwTy P12 21Ty P12 2ary + 21y

da,  (1-a2)?  (I—away)?  (1-awa)? (I—apa,)? (1—a2)?

All these partial derivatives w.r.ta,, take the value zero when evaluatedagt= r, = 0. This
entails that the Jacobian of the moment conditions doesawet full-column rank without the need
to compute the other partial derivatives.
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