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Maximum-liHEelihood-based inference procedures are generally very 
This popularity is mainly based on asymptotic optima@ properties and 
putational convenience. Given present-day computer speed and faciliti 
ever, practitioners can and should bring more aspects irnto their statistical utility 
function than just ease of computation and behavior in infinitely large sampks. 
Nowadays a more challenging and appropriate objective is to employ procedures 
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which optimize the actual efficiency and accuracy of inference from the finite set 
of sample data at hand. 

As far as test procedures are concerned, it is no longer a serious requirement 
today for the userfi-iendliness of a test procedure that it has a null distribution (if 
only asymptotically) which can be tabulated, Instead, these days the profession 
can be much better served if provided with testing techniques accompanied with 
software for producing (exact) p-values of the relevant statistics. Whether or not 
the null distributions of the test statistics involved are invariant to given design 
characteristics is no longer a relevant issue. The prime objectives now for test 
procedures should be: (i) control over level in finite samples, the most central 
problem being the elimination of nuisance parameters; (ii) optimality properties 
under conceivable relevant and verifiable circumstances, or at least a good record 
in controlled experiments; and (iii) computationali feasibility. Note also that a test 
procedure is meaningfi.d only if the model under the null hypothesis is testable, 
i.e. if it is sufficiently restricfive to make the probability of certain non-trivial 
events (defined in terms of the available observations) boundable by a small prob- 
ability (the level of the test) under all data-generating processes compatible with 
the null hypothesis. This is really a logical prerequisite of any testing exercise. 

Tn Dufour and Kiviet (1993, 1996) these goals are pursued in the context of 
the simple first-order dynamic regression model by combining procedures put 
forward in Dufour ( 1989, 1990) and Kiviet and Phillips ( 1990, 1992). In the 
classic format of econometrics teaching this model usually generates the first en- 
counter where the student is taught that (s)he may stick to the usual inference 
procedures (since they are still asymptotically valid under certain regularity con- 
ditions) although one has to accept that the magnitude of the approximation errors 
is unknown, and in principle unknowable, because it depends on the unknown 
values of the parameters of the model. Generally, bounds on such errors have 
not been established. Indeed, for certain problems (such as inference about long- 
run multipliers), the approximation error associated with any nuisance-parameter 
free asymptotic approximation must be arbitrarily bad on certain subsers of the 
parameter space; see &four ( 1996). Students are (still) taught just to live with 
this unpleasant situation and to find comfort in the thought that the larger the 
sample is, the smaller the committed errors will be. The relevant question how 
large a sample has to be in order to feel confident is usually left unanswered, or 
receives an answer that has no consequences for actual practice. That the com- 
mitted errors may be quite substantial has been assessed in various Monte Carlo 
studies; see e.g. Kiviet ( 1985) and Nankervis and Savin ( 1987). 

In this paper a considerably more general model is considered. We exam- 
ine exact inference procedures for the one-equation higher-order autoregressive- 
distributed lag model, indicated by AD@, pi,. . . , pJ), represented by 

(1) 



where the regressors are kite-order distributed lags of the (lagged-) 
variable and of J linearly independent regressors z(i)J = 1,. . . ,.I. Usin 
notation on polynomials in the lag- or backward-shift operator B, the 
also be expressed as 

where the order of the polynomial J(B) is p, and the order of the polynomials 
&(B) is pj,j = 1,. . . , J. We examine inference procedures concerning the Iagged- 
dependent regressor variable coefficients 3,1,. . . , IL, only. 

The goal af deriving operational finite-sample tests and confidence sets for the 
above model is achieved by combining three basic techniques. First, nuisance 
parameters (e.g., the unknown coefficients &ji> are eliminated by adding artifi- 
cial regressors (at least when estimating the unrestricted model). The appropriate 
artificial regressors are obtained by extending the methods proposed in Kiviet 
and Phillips (1992) and Dufour and Kiviet (1993). This approach may also be 
interpreted as the one where we consider a class of invariant tests selected to 
eliminate the relevant nuisance parameters. Second, since the test statistics so 
obtained continue to have fairly complex null distributions which are difhcult 
to compute analytically, even under a normality assumption on the errors (the 
Imhof algorithm cannot be applied here because one needs to compute distri- 
butions of multilinear forms in normal variables of order greater than two), we 
exploit the fact that the test statistics can be simulated easily and we use instead 
the technique of Monte Carlo tests originally suggested by Dwass (1957) and 
Barnard (1963). This technique replaces the original test proposed by a random- 
ized analogue (so it is really a different test) which involves simulating the null 
distribution of the test statistic by Monte Carlo (MC) techniques. Although they 
are related to tests based on a parametric bootstrap, for which only large+ampk 
justifications are available (see Efion and Tibshirani, 1993; Hall, 1992; Jeong and 
Maddala, 1993; and Vinod, 1993), MC tests have the important advantage of be- 
ing provably valid in finite samples: irrespective of the number of replications 
used, which can be quite small (e.g., 19 artificial replications would be sufficient 
to obtain a test with a level of 0.051, the MC test has the right lever. Further- 
more, as the number of replications goes to infinity, it becomes equivalent to 
the original non-randomized test from which it was derived. For further general 
discussions of randomized tests, the reader may consult Eehmann (1986, Chapter 
3), and for MC tests, Jiickel (1986) and Dufour (1995). Thirdly, we emphasize 
that finite-sample tests and confidence sets can be obtained relatively easily if 
we look Rrst at the hypothesis that specifies the full vector of the autoregressive 
coefficients and then employ projection-intersection techniques (similar to those 
used in Dufour, 1989, 1990) to make inferences on individual coeRicients or 
various parametric functions of interest (e.g., for testing a unit root hypothesis), 
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For further discussion of the importance of simultaneous inference (as opposed 
to marginal inference) in econometric models, see Dufour ( 1996). 

The general outline of this study is as follows. In Section 2 we highlight 
the problem to be tackled and we state the assumptions which will make the 
above model genuinely testable. In Section 3 we derive an exact test for a joint 
hypothesis on all p elements of the vector A = (A,, . . . , lp)‘. In Section 4 we 
examine tests on fewer than p restrictions on 3,; we focus on tests for the order 
of the lag-polynomial i,(B) and on tests for (multiple and/or seasonal) unit roots 
of A(B). In Section 5 we develop an exact test for tlic occurrence of structural 
change(s) in the values of the elements of the vectcrr A. Section 6 provides 
empirical illustrations of the various tests and makes comparisons with standard 
asymptotic results. Section 7 concludes and discusses the practical relevance of 
the results. 

We may rewrite model (1) in matrix notation as 

y= yib+xp+E, (3) 

where Y = [Y.l i --- i Y.,] is a T x p matrix with Y.i = (yl_i,. . . , yr_i)’ for 
i=l , . , , , p, and X. is a T xk matrix with k = J + ‘& pi* The k x 1 coefficient 
vector j? contains all coefficients aji in the appropriate order. From tZae particular 
temporal structure of the matrix Y it easily follows that, by introducing the 
TX T lower-triangula. matrix r and the TX p upper-triangular matrix Yo, we may 
write 

y - Y3, = ry - Yolk, (4) 

where 
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and 

Yo = 

-yo Y-l - * H-p 
0 yo - Y2-p 

. . . Y-I 

. . Yo 

. 0 

. * 

_Q ?? ?? * 0 

Now we can rewrite model (3) as T‘y = YoL+X$ +a, and since r is non-singular 
(irrespective of the actual value of R), we have 

y = r-’ Y&i + r-‘xp + r-5 (7) 

which, unlike (3), gives an explicit (reduced form) expression for all elements 
of the vector y. In our statistical analysis we shall treat both YO and X as if they 
were fixed. More formally our framework is derfrned by: 

Asswnption A. The T >c p and T x k regressor matrices Y and X ipt (3) haoe 
rank([Y :X]) = p + k with pPobabi!ity 1. The TX p matrix YO given in (6) md 
the matrix X are both stochastically independent of the T x 1 disturbance uector 
E (strong exogeneity), arzd E = aq ‘with o Q scalar scale factor and 21 a T x 1 
vector with a known distribution. The parameters 2.,/I and c are constant brat 
unknown, with o E R:, p E Rk, A E 9~. C IV, where 9;. is a priori specified. 

In other words, we suppose that the lagged-dependent variables in (3) capture 
the essential stochastic dynamic features of the model, as occuring, for example, 
in Dickey-Fuller regressions. To assume that feedbacks are possible between the 
error term Q and the regressors in X, even under a weak exogeneity assumption, 
would complicate considerably the relevant finite-sample theory (see, for example, 
Mankiw and Shapiro, 1986; Campbell and Dufour, 1991, 1995) and thus would 
require either modelling the joint behavior of all the variables involved (i.e., a 
multivariate model) or finding tests whose level is not affected by the form of 
the xf process. Although certainly of interest, this goes well beyond the scope of 
the present paper. 

Formula (7) enables us to represent the dependence of the lagged-dependent 
regressor variables Y.i (and the full matrix of regressors Y) on fixed (observed 
and unobserved) and random (unobserved) elements. We have 

Y.j =L’y+ Yotj, i = l,...,p 
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where L is the Tx T matrix 

L= 

0 . . . . . 0’ 

1 0 . 

0 1 0 
?? 1 ?? ?? . (91 
. . . . ??

. . . . 
0 * * - 0 1 0 

and ri denotes the px 1 unit vector with a unit element in the ith position, all 
others being zero. Substitution of (7) into (8) yields 

Y.i = L’r-’ YO% + Yoli + L'r-'Xfi + OL'I+-'Fj 

=di(%)+Ci(%)XP+oCi(R)r, i= l,..-,p, 

where we intraduced the notation 

Cj(%) = L’r-’ and dj(jL) = Ci(n)YcL + Yari. (11) 

From this decomposition of Y+j in three terms the predetermined nature of Y.j 
straightforwardly emerges: the first two components are fixed, and the third 
stochastic component is a linear transformation of the vector E = aq, where the 
transformation matrix C(R) is lower triangular with zeros on the main 
diagonal and also on i - 1 lower subdiagonals. As will become clear below, 
it is the presence of the two fixed components in (10) that causes problems 
in finite samples when standard least-squares or (pseudo-) maximum-likelihood 
inference methods are applied to model (3). 

We shall illustrate the problem with the standard procedure for the case of 
testing a joint hypothesis on all p coefficients in 3,, i.e. 

r-r&“): i! = 20 against HI (3,): 2 # 3.0, (12) 

where %a is a p-element vector of known real numbers. In the standard test 
procedure ordinary least-squares estimation is performed and the F-statistic, 

r 
dju = 

T - p - k 

P 
[ 

(y - Yi,o)'M[X](y - Ylo J _ * 1 9 

y'A!f[Y :x]y 
(13) 

is employed (for any full column rank T x~r matrix A, M[A] = 1~ - A(A’A )-‘A’). 
Under Ho(L) and usual regularity conditions 

3j+kF(p, T - p - k). (14) 



Here F( p, T - p - k) denotes the F-distribution with p and T - p - k 
of freedom respectively, and E indicates the approximate (asymptotic) v 
of statement (14). Even if ?I is multivariate standard normally distri 
actual finite-sample distribution of statistic 9;. under I&(A) is rather ~ornp~~~ated 
and depends inter alia on the nuisance parameters j? and cr, which in practice are 
unknown. 

This non-similarity of the test can be seen as follows. We have 

(y - Y&)‘M[X](JJ - YAo)/o* = q’iW[X]q under He(A). (15) 

When q m N[O,Ir] this follows a ;c*( T - k) distribution. Complications arise, 
however, if in the minimization of the sum of squared residuals not all elements of 
iE are restricted as in the denominator of (ES), where no constraints are imposed. 
Using well-known resuhs from partitioned regression (see Dufour and Kiviet, 
1993), we find 

y’M[Y iX]y = &‘M[X]q - o*tj'M[X]Y{ Y'M[X]Y}-' Y'IM[X]q. (16) 

Hence, under HO(%), 

F. - 
T-p-k +wm /. - 

P q’M[X]q - ~~%&r]Y{ Y’h4[X]Y}-’ Y’lqXlg 
- 1 1 . (17) 

From ( 10) we find that under Ho( 3,) 

from which it becomes obvious that $M[X]Y{ Y’M[X]Y}-’ Y’M[X]q, even un- 
der normality of q, has a distribution which is fairly complicated and depends on 
nuisance parameters. Y is stochastic, as it is determined by 17, and ( 17) does not 
reduce to a simple ratio of quadratic forms in pi, as in the standard case. Because 
of the presence of the two fixed components in (10) and (18) the scale factor B 
does not drop out. Moreover, the distribution of (17) depends on the value of jJ. 
Both #I and tr are unknown nuisance parameters when testing Ho(L). Below, we 
consider an alternative to the test statistic 9j_+ Under R = 14 this alternative will 
still have a complicated distribution function which is determined by 14 and X, 
but its distribution will be invariant to the unknown values /I and 0, and hence 
enables one to produce exact inference on 1. 

3. An exact joint test for the complete 1 vector 

The nuisance components revealed above can be removed by extending th.e 
model, and testing 3, = ilo (or an extension of this null) in an appropriately 
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augmented model. We can obtain a pivota! tes t statistic by extending the set 
of strongly exogenous regressors X by some matrix 2. This is chosen such that 

IX if] has full column rank white M[X %I, unlike M[X] in (17), annihilates all 
the nuisance components from Y. The p-values of such a statistic can be obtained 
by Monte Carlo methods. Such p-values are exact, even in a simulation analysis 
with a finite number of replications, when the test statistic is not considered 
in the usual fashion, but as a so-called Monte Carlo test, where the stochastic 
nature of both the test statistic and the sample of simulation drawings from its 
null distribution are taken into account. In the remainder of this section we show 
how to construct X and how to obtain exact p-values. 

From (18) and using (1 I), we find that the first nuisance component of Y is 
given by the TX p matrix 

. 
c,(ao) = [C,(%o): . . . i C&o)1 (20) 

is a Tx( pT) matrix. The dependence of the matrix D&o) on 34 is, of course, no 
problem since 2.0 is known. Extending the set of regressors [Y iXJ of the model 
by including &(A), however, leads to removing the first nuisance component 
from the relevant test statistic. 

It is less straightforward how to remove the second nuisance component of Y, 
because of its dependence on the unknown vector p. It equals 

= q&)[Ip @ X][Ip @ p]- (21) 

Jn order to annihilate this TX p component we have to project off the space 
spanned by the columns of the TX pk matrix 

Xp@*) = q&)[l, c3 X] = [C,(Ro)x :. . ???? I c,qno)x1. (22) 

Note that the T x (k + p + pk) matrix [X i D,(&) i X,(&J] does not neces- 
sarily have full column rank. We therefore define the TX iii matrix X,(&) such 
that [X iX,I&)] has full column rank m = k + rii, whilst the columns of the 
latter matrix span the same space as is spanned by the columns of the matrix 
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[X i Dp(&) i Xp(&)]. Consequently, if A = I.Q, we have 

= ~iwx ~$ml~(~oH~p @ ql = cwl, Aoh (23) 

where the TX p matrix Y(g, &) is introduced to simpli@ the notation below. 
Consider now testing 3, = ;lo in the extended model 

y = Y3, +x- + &<I& -I- sq, cw 

where the 6 regressors $(&J) are redundant and hence actually fi s 0. We can 
proceed in two ways. We can either test 

&(A.) : /, = & (leaving /I and B unconstrained) (2% 

or 

&&B) : il= aI), p=o. 

For testing the p restrictions f&(A) in model (24) we use statistic 

Under &(A) the first term in square brackets simplifies to 

This is pivotal (it only depends on the fixed and known Yo, X and E-0, sarad on 
the stochastic vect_ar pt, which has a known distribution). For testing the p + 6 
restrictions &(A, 13) in (24) we use 

g-= T-p-k-* 
A# p+pii 

(y- yAo)‘~[X](y-- Yb) _ 1 I . y'M[Y ix i&(&)]y 
(2% 

Under &,(A, b) the first term in square brackets is again pivotal. It is 

dWXlV 

i.e. invariant with respect to /I and 6, but dependent on X, YO and &. 
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Approximate critical- or p-values of tests (27) and (29) can be obtained from 
lWonte Carlo experiments. However, exact p-values can easily be obtained from 
a finite number of simulation experiments for a closely related test procedure; 
see &four and Kiviet (1993, 1996). We illustrate this for (29). 

First, generate N- I (where N= 100 or N= 1000, for instance) independent 
T-element vectors qj (j = 1,. . . , N - I ), which follow the same known distribution 
as ~7 = ~/a. From each vector Q, a drawing ~j i(j) from the true null distribution “. 
of the test statistic can be obtained, i.e. 

*j.,,iCj> = 
T-p-it-fi $"tXIVj 

p-+-G 
-1. 

I${M[Xi2(i.O)] + M[Y(qj,J-O)] - IT}qj 1 
To the series ($J( I), . . . , -@$N - 1 )l, we add 

.k&v 3 = 3; /j_ (32) ., 

which represents the realization of the test statistic from the actual sample data. 
Next, we order the values si,~( 1 ), . . . , @i ,$N) in increasing order. We indicate 
the position of ??~j_,~(N) after this ordering by a(N). Of course, g(N) is a dis- 
crete random variable; the positive integers 1 through N are its domain, and 
since under the null all $~&j) are i.i.d., each one of the possible outcomes has 
probability l/N. Instead of S$, we use B?(N ) in the simulation or randomization 
test procedure as our test statistic. This is done in the following way. From our 
one and only realization of model (3), i.e. one realization of E, we obtain one 
realization of statistic & 13, and, after gcncrating a random series of N - 1 Monte 
Carlo realizations of the‘&1 distribution (3 I), we have obtained one realization 
of the simulation test statistic, which we indicate by i&(N). Then the p-value of 
the simulation test statistic k(N), which is based on *;_,j, is given by 

9(&,N,&)=P[.9(N)&'(N)I 8,(1.,b)] . . 
N-&N)+1 = 

N ’ 
(33) 

Asymptotically (N 3 oo), this test procedure coincides with the procedure wiizre 
statistic ~~j fi is used in combination with its exact null distribution. For finite N, 
we have a ‘hifferent procedure; its power will be related to the power of test ~j 13, 
but it is also characterized by N. However, even for finite N the randomized test 
is perfectly exact, since the probability to commit a type I error never exceeds the 
chosen significance level when we reject &(i., /3) if and only if P(i,o, N, si,~) is 
smaller than this level. 



Although it is akin to a bootstrap (especially a parametric bootstrap)* t 
technique is conceptually different, as emphasized by Hall ( I994, pp. 2342 
It was originally proposed by Dwass ( 1957) and Barnard 4 1963) as a 
to perform exuct tests based on statistics whose null dis~bution is 
but can be simulated fairly easily. Bootstrap techniques were introd 
later (Efion, f979) and, to date, have only an asymptotic (T -+ 30) 
(for reviews, see Efron and Tibshirani, 1993; Hall, 1992; Jeong an 
1993; Vinod, 1993). In a Monte Carlo test, the fundamental test one 
to perform is replaced by a randomized analogue, strictly speaking a 
test, which has precisely the right level by a ‘blurring’ phenomenon CM 
1979). This involves some power loss with respect to the (infeasible) 
mental test, although it is typically quite small (99 replications will usually be 
quite sufficient for a 5% level test), and the Monte Carlo test becomes equiv- 
alent to the fundamental test as the number of replications increases. For fur- 
ther discussion, see Dwass ( 1957), lMarriott ( 1979), Sijickel ( 1986) and Dufour 
(1995). 

Because of the validity of /? = 0, the test &A,b seems logically the most at- 
tractive, and therefore may in general be more powerful than test g;_. Below, 
however, we will see that there is no uniform power diflerence between the two 
procedures. For the case p = 1 (first-order dynamics) the procedures devel 
above all simplify to variants of those presented in Dufour and Kiviet ( 1993), 
where, for two particular data sets, experimental evidence is provided that sus- 
tains the conjectured ‘frequent superiority’ of procedures that exploit fi z 0. In 
that study, it is also shown that exact procedures such as developed here may 
even be valuable in circumstances where the distribution of the disturbances is 
unknown or misspecified and where the regressors are weakly instead of strongly 
exogenous, sliiCC, under usual regularity assumptions, the suggested procedures 
will nonetheless be asymptotically valid and, although nonexact now, may often 
involve less serious finite-sample inaccuracies than the crude standard asymptotic 
inference techniques. 

Finally, it is worthwhile noting here that the tests based on the statistics defined 
in (27) and (29) are both invariant to transformations yf + yr,,t = -p+ 1,. _. , T 
such that 

y* - Y&J = c(y - Y&J)+&4 (34) 

where c # 0 and 7 f Rk are arbitrary constants [for another use of this invariance 
group in the context of a dynamic model, see Dufour and King ( f99I )j. Rlore 
precisely, we consider a class of tests invariant with respect to the transformations 
(34) selected so that the null distribution of the test statistic does not d 
on nuisance parameters. The latter feature is obtained by adding t 
regressors x;,(&) to the regression (at least when estimating the m 
the alternative). Since uniformly most powerful tests are not generally available in 
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autoregressive models (see Anderson, 1948), it is natural to consider a restricted 
class of tests such as a set of invariant tests. Because invariant test statistics 
have rn.111 distributions that do not depend on nuisance parameters, invariant tests 
may be interpreted as a subclass of similar tests. An alternative approach to 
eliminate nuisance parameters here would consist in characterizing directly the 
wider class of similar tests and then trying to find an optimal (or better) test 
in this class. This could be done, for example, by finding statistics that are 
sti#Swt for the nuisance parameters (at least under the null hypothesis) and then 
considering critical regions whose level is constant conditional on the sufficient 
statistics (tests with Ne_vmarm structure); see Lehmann (1986, Chapter 5) and 
Hillier ( 1987) for general descriptions and illustrations of this technique. In some 
cases, the required conditional distribution can be worked out relatively easily, 
but unfortunately this does not appear to be the case here even if one uses 
Monte Carlo techniques (we need to condition on events of zero probability). 
By contrast, as already emphasized in Durbin and Watson ( 1971) and Dufour 
and King (199 1) for analogous test problems in dynamic models, invariant tests 
can be defined in terms of relatively simple transformations of the data (e.g., 
maximal inuariwts) and are thus quite easy to implement, especially when they 
are combined with the technique of MC tests. 

4. Exact tests ora sp~ial characteristics of the lag-polynomial A(B) 

in models with higher-order dynamics (p > 1 ), we seldom want to test a hy- 
pothesis such as (12), where the complete vector ;1 is specified under the null. 
The most relevant example of this case is probably represented by a, G 0 for 
testing the presence of any lagged-dependent variables at all. Usually, however, 
we want to test less specific general characteristics of the lag-polynomial J(B), 
expressed by fewer than p linear restrictions. 

A particularly relevant case is a test for the actual order of the lag-polynomial, 
i.e. 

* 
A p = Rp_] = * * * = &+, = 0. (35) 

Here r zero restrictions (1 < r < p) are tested in order to check whether the 
order of the polynomial can be reduced from p to p - r. Another relevant case 
is the test for the presence of characteristic roots of the lag-polynomial of a 
particular value. Mere the case of one or more (seasonal) unit roots deserves 
special attention. The single restriction that represents at least one unit root is 

A_, + %z + - - * + %p = I. (36) 

The presence of a second unit root implies the validity of the hypothesis: 
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Our framework also extends to the seasonal unit root case, The assumption &at 
the lag-polynomial J(B) can be factorized as 

l(B) = (1 -B-p??(B) = (1 -B)(I tB)(l +BZ)2(B) (381 

implies four linear restrictions on the 3, coefficients. These are given by (36) 

-42 + ;bLj - i&j + ?? ?? ?? = 1. (39c) 

The latter two correspond to the two complex unit roots of (38), and (39a) fol- 
lows from the minus unity root. Testing the four restrictions jointly or some (com- 
bination) of them separately using asymptotic methods is discussed in Dickey et 
al. (1984) and Hylleberg et al. (1990). Our procedures allow to produce exact 
tests for these various hypotheses. 

Exact test procedures for r linear restrictions on the p elements of the coef- 
ficient vector E, can be obtained from the exact tests on the complete vector 1. 
Here we derive a general procedure, and we return to the various particuhu cases 
of interest given above in the illustrations in Section 6. As a building block for 
dealing with the case r < p, we need an exact confidence set with confidence 
coefficient 1 - 01 for the complete coefficient vector A. This is given by 

where, for the sake of brevity, we again only deal with the case where the 
test statistic *; fi is being used. The dependence of the set on the value of M 
should be undektood in the following broad sense: the calculation of the p-values 
P(;zO, N,gJ,$) is for each and every value & performed on the basis of the same 
set of randomly generated T-element vectors (vi,. . . , pl,+ 1). 

The actual construction of set (40) for an empirical example requires exten- 
sive computations in order to establish to a prescribed degree of precision the 
boundaries of the confidence region. However, as it turns out, the test procedure 
for r( < p) restrictions on J(B) developed below does not require the explicit 
construction of the po-dimensional set (40). We define a general ~p~~~~~ 
of the r linear restrictions to be tested. Let R be a known t x p matrix with 
rank(R) = r, where 1 < r < p - 1 , and let 

0 = Ri. w 
Hence, 0 is an rx 1 vector of linearly independent lineti transformations of K. 
We want to devise an exact test procedure for 

Ho(O) : 0 = 80 against HI (0) : 6 # 00, WI 



338 J. F Kiviet, J.-M. Dufour / Journal of Econometrics 80 (1997) 325-353 

where 80 is a known u-element vector (for the case r = 1, we may also consider 
one-sided alternatives). For that purpose, we define the set 

Obviously, we have 

I - cx = P[% E Vi(or, N,,_$] <P[tl E (e&t, N,e#$], (44) 

so that (43) establishes a conservative confidence set for 0. In order to test 
Ho(@) of (42) for a specific known 00 value at level a one only has to check 
whether some 1.0 E RP exists which obeys the following two requirements: (i) 
%c E %‘j_(r,N,$i,p) and (ii) R&J = 00. I&(8) is rejected when such a A0 value 
cannot be found; as soon as the search process establishes one 3.0 value that 
obeys the two requirements ‘acceptance’ of II@) is legitimate, If I&(O) and 
Assumption A are both true then the probability of rejection does not exceed 
the level X. To assess how conservative such a test is, it would be of interest to 
determine its size (as opposed to the level), i.e. the supremum of the rejection 
probability over all parameter vectors compatible with the null hypothesis, but 
this appears to be extremely difficult to do. 

In practice, the search for a J.0 value that satisfies the two requirements stated 
above is a camputer-intensive problem. The procedure is relatively simple if r is 
large. For r = p - 1, the search is only over a straight line. If r < p - 1 [as 
it will often be, see (36~(39)J more substantial numerical problems arise. Our 
approach employed in the empirical examples of Section 6 is as follows. Given 
the matrix R, we can find a ( p - Y)X p matrix R such that R+ = [R’ I I?]’ is 
non-singular. Then we consider the reparametrization of E, to 0” , where 11+ is a 
px II vector: 

This reparametrization facilitates the search process since it enables one to impose 
the above-mentioned requirement (ii) directly, and makes the search solely over 
the space 90 of the parameter 8 E 90 E I%‘+, where 9~ is actually determined 
by 9; and R, and may even be of smaller dimension than p - r. 

Let the (p - Y)X I vector 8;’ be the ith value of 6 that is to be checked. So, 
the (in)validity of *P(>$‘, N, ~~j.,/i) 2 a is verified, where 

Now the only problem left for executing the test is to devise a strategy for 
starting and updating the series (a;‘; i = 1,. . .I, in combination with the design 
of a stopping criterion. This criterion is obvious for the case where an acceptable 
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1;) value has been found [this implies ‘acceptance’ of I&(O)], but Hess so 
all values of AI;:’ according to (46) checked so far gave p-values smaller 
[II, and it looks rather unlikely that an acceptab%e v&e of i$‘, 
requirements, will be found. In the implementation used in the empirical 
below, we enhance the probability of finding an acceptable test value 

are such in the 330 space) straightaway, by taking for $‘I the estimated value of 
8 obtained when estimating 

y= Y(R+)-l(R+l*)+xptc= Y(R+)-‘e++xp+E w 
under the r constraints 8 = 00 = R&. 

Several finite-sample tests of parameter constancy against the presence of struc- 
tural change for a linear regression model with one lagged-dependent variable are 
proposed in Dufour and Kiviet (1996). In that study we considered two distinct 
cases, depending on whether 3, is assumed to bc constant under the akemative 
or not. In the first case (3L fixed), we studied two categories of tests: analysis- 
of-covariance (AOC) type tests against alternatives where /3 may change at 4 
known breakpoints, and CUJSUM-me tests which are built against less specific 
alternatives. In the second case, we studied again two types of tests: predictive 
tests and AOC-type tests against alternatives where 3, may change at one ~~WVII. 
breakpoint. For all these four types of tests we found exact procedures. 
work satisfactorily, except for the last situation mentioned, i.e. the AOC change 
in I test. All four structural change test procedures can now be generalized for 
the higher-order dynamic model by employing the results obtained in Section 3 
of the present study. Since the focus of this paper is on inference rega 
and because the procedures developed for the higher-order model here 
a simple alternative to the unsatisfactory (because of low power) ch 
test developed eatlier {whilst the generalization to the p > 1 case is rather trivia1 
for the other structural change tests), we shall only consider another and rn~re 
promising AOC-type test on structural change in the p-element vector 4. 

In Dufour and Miviet ( 1996) we obtained a test of the constancy of E, 
case of one known breakpoint under the alternative by considering the di 
between two particular (viz. invariant with respect to b and a) esti 
obtained from the two separate subsamples, respectively. Thus, it was av 
obtain the test statistic from estimating the model Corn the Ml sample u 
alternative hypothesis, which involves two regressors both including 
lagged-dependent variable observations. Bn the present study we have 
to deal with comparable multiple dynamic models, and hence it should now be 
possible to develop an AOC-type test. 
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We consider the case where there may by g ( 2 1) changes in the value of the 
parameter vector E, at g given breakpoints, viz. at 

We define 

h(i) = 1 T 2 1 

for i = 1 
for i = g7+ *ig7 

9 

and the Tx T matrices H, such that Hr = IT, &+I = 0 and 

1 
I 

f+o: 0 1 for 1= 2,...,T. 

(49) 

(50) 
lo i IT-r+1 _I 

We also define the Tx T matrices 

Gi = Hh(i) - Hh(i+t 1, for i = 1, 

the T x T(g + 1) matrix 

and the p(g -I- 1 )x 1 coefficient vector 

. ..I 399 (51) 

(52) 

(53) 

where IP, i = 1 , . . . , g, are px 1 vectors, Now we generalize model (3) to 

Y = G(Jg+l @ Y)x + q’ + E. (54) 

This parametrization entails that over the period from observation 1 through Tt - 1 
the coefficient vector relating to the regressors Y is 1, from yq through T this 
coefficient vector is )1, + JP7 whilst it is A -t At’) from Ti through Tj+t - 1 (where 
i = l,...,g- 1). 

For model (54) we shall consider tests of the hypothesis 

which involves pg restrictions, and of 

Ho(I) : I = 10, where & = (A&O’)‘, (56) 
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which involves p(g + 1) restrictions, i.e. 2 = A() and A(1) 
set-up concerns structurat changes in the lagged-dependent variable toe 
only, but it is straightforward to allow for changes in (elements of) tbe 
as well (under both the null and the alternativej by a~~ro~~ate~y rede 
and fi. For the sake of simplicity, we assume that the values Ti and the matrix 
[Y i X] are such that all elements of the coefkient vector 1 are estimable, i.e. 
[G&+1 @ Y) iX] has till cohnnn rank. 

Ho(X), given in (56), is a hypothesis which restricts all (transformed) fagged- 
dependent variable coefficients of (54), so in a properly augmented model exact 
tests can be constructed for the hypotheses fro(x) and &,(I, fi). Analogous to 
what we did in Section 3, l&(X) is tested by the statistic 

which does not constrain the redundant regressor coefficients under the null, while 
for testing A&j?) we use 

??gra T-p(g+l)-fi (Y - Wd’Jwl~Y - YJO) = _ 1 

., p(g+ I)+fi-k 
y'M[G(Zg+i 8 Y) tX i&,(&,)]y 

which involves fi - k extra zero restrictions on the redundant ~qpssoss. 

Here &(&) is a TX@ - k) matrix which is built as fot2ows. Under &(A) we 
have 

where the matrices L+,(& ), X,(b) and ($(I*) are as defined in ( 19), (22) and 
(2 1 ), respectively. Hence, in order to obtain similarity of both test statistics, 
[X i if,(&)] must have full column rank pii and span the same column space as 
[X i G&+1 @I Dp( 34)) i G(tq+r @ X,(?.O))]. Writing 

the denominator of the first term in square brackets in (57) and (58) can 
written (aRer division by 02) as 
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which shows that under Ho(x) the two test statistics are pivotal indeed, and can 
be used in a simulation test procedure to yield exact inference. 

Testing H,(j) or &(I, #?) can be interesting, for instance, for the case p=l, 
g=l and i,o = 1 (to check whether a unit root is valid also over the second part 
of a sample), but more generally - and similar to the procedures developed in 
the foregoing section - these tests are building blocks for exact (conservative) 
inference on (55), which does not constrain ;1,. This hypothesis is ‘acceptable’ 
if for some value & the hypothesis I&(x) or I&(x, p) is not rejected, If I&( 1) 
or &(i, fi) is rejected for all & values located in a confidence set for 1 then 
H&F),..*, I?) should be rejected too. 

6. Illustrations 

For illustrative purposes we use a data set analyzed and published in David- 
son and MacKinnon ( 1985), henceforth DM, containing Canadian quarterly data 
on housing starts (HIS), gross national expenditure in l971$ (Y) and real in- 
terest rates (RR). DM focus on testing the most appropriate functional form of 
the relationship between these variables, allowing for a simple dynamic speci- 
fication. Here we shall adopt a particular functional form of the long-run equi- 
librium relationship [we use hs=ln(HS) as the dependent variable, and RR and 
y=ln( Y) as the explanatory variables], but focus on the most appropriate specifi- 
cation of the short-run dynamics. We shall use and compare (as far as possible) 
both the results of the usual asymptotic and the here developed finite-sample 
techniques. 

Regression 1 is the model specification as preferred by DM (they remark, 
however, that it does not provide grounds for complacency!). Note that all three 
right-hand side variables are lagged one period. DM give an obvious economic 
explanation for that, and also remark that this makes the model much more useful 
for forecasting purposes, We add to this that if an adequate specification does not 
require contemporaneous explanatory variables indeed, this enhances the stren@h 
of the exogeneity characteristics of the regressor variables other than hs_1, and, 
although it does not imply the strong exogeneity of RR_ 1 and y-1 , it will 
help to uphold (or approximate more closely) the validity of our Assumption 
A. On the other hand, however, we realize that the seasonal filter tha; has been 
applied (the available series were seasonally adjusted by a regression technique 
that allowed for time-varying seasonal@) may undermine strong and even weak 
exogeneity. Since we use a smaller sample than DM, our results are slightly dif- 
ferent (we withhold more initial observations in order to examine in a next stage 
higher-order dynamics). All standard asymptotic empirical results presented here 
have been obtained by version 7 of PcGive (see Doornik and Hendry, 1992). 
Estimates of the asymptotic standard errors of coefficient estimates are given in 
parentheses, and p-values based on asymptotic null distributions are given in 
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brackets. When these are smaller than the nominal level of ]I% this is marked 
with two asterisks, and with one when smaller than 5% 

Regression 1. Simple forecasting model for hs: f956( I ) to 1982(4) 

hs = 2.4768 +0.6097hs_ I -0.0411RR_1 +O.l827Y_t 
(0.5380) (0.0700) (0.0087) (0.0547) 

R2 = 0.795, c? = 0.1420, RSS = 2.0987, il’ = 108 

AR(I, 103)=0.0940 [75.98%3 AR(3,101) = 2.1487 [9.88%] 

AR(2,102) = 1.4453 [24.05%] AR(4,lOO) = 2.4660 [4.97%] * 

ARCW(4,96) = 0.8228 [S 1.38%] H(9,94) = 0.6228 [77.49%] 

R( 1,203) = 0.0158 [90.03%] 

N(2) = 3.0495 [21.77%] (SK = -0.32; EK = 0.55) 

Although the fit is not marvelous, all four coefficients appear highly significant. 
Most diagnostics approve this specification. Only tests for serial correlation (of 
fourth order or higher) in the disturbances expose weaknesses in this specification 
(possibly of the dynamics); AR(ut , ~2) is an LM test against serial correlation of 
order ~1 , transformed such that its null distribution is approximately F(Q, 2~). 
ARCH( ~1, 02) denotes a statistic that under the null hypothesis of no autore- 
gressive conditional heteroscedasticity of order ttt is approximately distributed 
as F(ut, ~2). H(ul, ~2) tests for correlation between the squared residuals and 
the regressors and their squares (and eventually cross-products), and under un- 
conditional homoscedasticity it is approximately F( ut , ~2 ) distributed. R( 1,~) is 
the RESET test for significance of the squared-fitted values which should be 
compared with the F( 1, ~2) distribution, and N(2) is asymptotically x*(2) dis- 
tributed when the disturbances are normal; SK is the skewness, and EK the excess 
curtosis. 

The dynamic misspecification of Regression 1 is apparent from estimation of 
a higher-order dynamic ARX-mode!, viz. AD(4,4,4), see Regression 2. Although 
the fit is still not spectacular, all diagnostics, except N(2), are found to have high 
p-values, and the restrictions imposed by Regression 1 are strongly rejected (by 
the asymptotic methodology). It is noteworthy that (in congruence with the DM 
findings) the two current explanatory variables RR and y are both insignificant 
(when tested by asymptotic tests under the maintained hypothesis of weak exo- 
geneity of all regressors), and that - despite the serious multicollinearity among 
these 15 regressors - 11 coefficients have absolute t-ratio’s above unity and six 
above two. Note that the last four hypotheses tested fit precisely into the format 
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of Section 4. At the end of this Section we shall examine what inference can be 
obtained on the order of the polynomial 3,(B) by our exact procedures. 

Regression 2. AD(4,4,4) model for hs: 1956( 1) to 1982(4) 

hs = 2-7888 +0.6544hs_ 1 -O.O66ORR_ 1 + 1.0744& 1 
(0.6743) (0.1004) (0.0252) (1.0653) 

-0.1 643hs_2 +0.2328hs_3 -0.2452hs_4 
(0.1142) (0.1172) (0.0978) 

+O.O086RR +o.o507RR_2 -0.0645RR_3 +0.0289RIL4 
(0.0166) (0.0270) (0.0264) (O.OI 86) 

+0.4941y +0.8558~_~ -2,3794y-3 +0.2444y-4 
(0.9020) (1.0343) (0.9963) (0.8625) 

R2 = 0.842, c! = 0.1321, RSS=1.6251, T = 108 

AR( 1,92) = 0.4303 [5 1.35%] AR(4,89) = 0.258 1 [90.40%3 
N(2) = 5.8766 [5.30%] (SK = -0.52; EK = 0.65) 

F(3,90) = 0.1411 [93.51%] (addition of seasonal dummies) 
F(3,90) = 0.4974 [68.50%] (additi ,n of fifth-order lags) 

F(11,93) = 2.4637 [0.94%1* * (reduction to Regression I) 
F(3,93) = 0.2 128 [88.73%1 (omission of the regressors RR, y, y-4) 
F( 1,93) = 6.2873 [1.39%]* (reduction of polynomial A(B) to order 3 
F(2,93) = 3.4992 [3.43%]* (reduction of polynomial J(B) to order 2 
F(3,93) = 2.74 15 [4.76%]* (reduction of polynomial L(B) to order 1 
F(4,93) = 13.723 [O.OO%] * * (reduction of polynomial J.(B) to order 0 

From a conventional augmented Dickey-Fuller analysis all three variables show 
a univariate behavior that does not differ significantly from non-stationary pro- 
cesses with one unit root. In this respect, we focus on variable hs only. From 
Regression 3 we see that a sixth-order autoregression (in the usual differenced 
form with one lagged regressor in levels) with an intercept and no seasonal dum- 
mies nor a linear trend (both have extremely low F-values) yields an acceptable 
statistical representation of the dynamic structure. The series of tests on further re- 
duction of the order of the dynamics performed fit completely into the framework 
of Section 4 and will be ‘exactified’ below. They involve zero restrictions on the 
lagged dhs regressors; the first iF(6,95) test also restricts the coefficient of hs-t 
to unity. The last two tests mentioned for Regression 3 involve a zero restriction 
on regressor hs_ 1 (i.e. a unit root). Therefore, the standard p-value presented 
for the second F(6,95) test (this also reduces the order p to one) is unfounded 
(and therefore preceded by ‘!‘), since the approximation of the asymptotic null 
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distribution by the F distribution is improper here. For testing the significance of 
hs_1, the Dickey-Fuller critical values are asymptotically valid. 

Regression 3. Univariate AR(6) plzo&l for hs: 1957(3) to 1982(4) 

Ahs = 1.0164 -O.O951hs_, -0.0830 Ahs-l -0.1781 Ahs_2 
(0.5697) (0.0534) (0.0998) (0.0967) 

+0.1034 Ahs_j -0.1773 Ahs14 -0.1664 Ahs-5 
(0.1004) (0.0957) (0.0988) 

R2 = 0.191 , & = 0.1436 , RSS = 1.95794 , T = 102 

AR( 1,94) = 0.0781 [7&050/g] AR(4,91) = 0.4983[73.70%] 
N(2) = 7.5412 [2.30%]* (SK = -0.57; EK = 0.78) 
F(2,93 ) = 0.2842 [75.32%] (addition of two more lags) 
F( 1995) = 2.8396 [9.53%] {reduction of polynomial n(B) to order 5) 
F(2,95) = 2.8165 [6.48%] (reduction of polynomial L(B) to order 4) 
F(3,95) = 3.1541 [2.84%]* {reduction of polynomial L(B) to order 3) 
F(4,95 ) = 3.3309 [1.34%]* (reduction of polynomial 3,(B) to order 2) 
F(5,95) = 2.7848 [2.16%1* {reduction of polynomial J.(B) to order 1) 
F(6,95) = 54.513 [O.OOo/] o * * (reduction of polynomial J_(B) to order 0) 
F(6,95) = 3.7402 [!0.22%1 (reduction to random walk with drift) 
ADF = -1.780 [> lo%] 

The procedures developed in the foregoing sections, which are to be employed 
now, produce p-values on any type of linear hypothesis on E,, including unit 
root cases. These are valid asymptotically (see Dufour and Kiviet 1993), and are 
even exactly correct in finite samples when the distribution of the disturbances 
is specified properly. To obtain empirical results the exact procedures have been 
programmed in the GAUSS 386 System. We first focus on tests on the dynamic 
specification and the presence of unit roots in the univariate model for hs. The 
first two blocks of results in Table 1 concern tests of various null hypotheses 
which fully specifjr (r = 6 = p) the A(B) polynomial of the model analyzed in 
Regression 3. F refers to the standard test ( 13) of p restrictions on K(B); the 
F* and F** columns refer to the statistics (27) and (29), respectively. These 
test the same restrictions in an augmented model, where F** also imposes the 
zero restrictions on the redundant regressors. The table gives p-values which, for 
the asymptotic tests have been obtained with respect to the F distribution. (NB: 
This is only valid when the null hypothesis specifies the coefficients 14 such t 
all roots of J(B) are located outside the unit circle.) For the exact tests the p- 
values are obtained by confronting the test statisttcs with a series of N - f = 499 
simulated drawings from their true null distribution. Unless stated otherwise, we 
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assume normality of the disturbances in the exact procedures. In the first bloc 
of the table we present results, labelled (a)-(k), for sample size T 
in Regression 3) and in the second block we analyze the same null h 
(a)-(k) for a subsample of size T = 52. The last three results in the third bkk 
regard structural change tests. 

Just for curiosity we test in result (a) the 6 restrktions where 14, as given in the 
table, equals the least-squares estimate of i. As expected, all p-values are equal 
or close to unity, especially for the larger sample. Result (b) fully relates to the 
(one but last) test in Regression 3, where the reduction of the model to a simple 
random walk with drift is examined, i.e. ia,t = 1 and &JJ = 0 for j >, 2. Like 
the standard F test, also the asymptotic F* and F** tests seem to reject this 
hypothesis, but note that due to the unit root the asymptotic null distributions 
differ from F (therefore we marked the improper p-values again by ‘!‘). We 
observe that the correct actual finite-sample p-values of the F* and F** tests lead 
to conflicting inferences at the 5% level. Contrary to our intuition the Ip-values 
of F* are found to be smaller than those of F** in the first block of the table. 

We first discuss the results for the full sample and neglect, for the moment, the 
F** results. So, from (b) we see that the exact F* test rejects the random walk 
with drift specification. However, according to results (c) and (d), a stationary 
non-zero mean AR( 1) process with an autocorrelation coefficient of 0.9 or 0.8, 
although rejected by the asymptotic F, is acceptable on basis of the exact proce- 
dure. The results (c) and (d), where r = 6, imply that conservative tests for the 
hypotheses I+, = m m . = &,+.+r = 0, for 5 2 r 3 1, do not lead to rejection either. 
For r= 1,2 this is in agreement with the corresponding asymptotic results given in 
Regression 3, but we find conflict between the exact and asymptotic procedures 
for 3 < Y d 5. On the whole, we will see that the rejection probability of the 
asymptotic tests seems too high (i.e. the p-values are too low). Results (e) and 
(f) are specially tailored for producing inference on the order of the ~lynomial 
R(B) , hence on fewer than p restrictions (although the null hypotheses actu- 
ally tested do involve p restrictions). Here we used a 10 value obtained from 
(46), where 00 is chosen such that the r restrictions are imposed, and the p - r 
elements of 00 are chosen equal to their least-squares estimate under the r re- 
strictions; see (47). We argued in Section 4 that in that way an extensive search 
may be avoided because rejection of the p restrictions will be less likely than 
for most other possible values of 80. In (e) this strategy is followed to test the 
AR( 1) specification and (f) tests the AR(2) model. We find a somewhat more 
marked acceptance of the AR( 1) and the AR(2) specifications indeed, whereas 
the asymptotic F again produces rejections. In (g) we find a unanimous overall 
rejection of the omission of all lagged hs regressors. 

Next we perform ADF-type exact unit root tests. In (h) initially the one unit 
root restriction (36) has been imposed, and the remaining p-1 restrictions re- 
sulted from constrained estimation. We see that the AR(6) model with one unit 
root is not rejected, which is in agreement with the asymptotic ADF result given 
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in Regression 3. In (i) restriction (37) is imposed as well. Hence, here we test 
for two unit roots. Hypothesis (i) is rejected, and we are inclined to believe that 
a t%rther search through the appropriate C&space will not lead to acceptance of 
the 1(2) hypothesis. Results (j ) and (k) relate to the so-called HIEGY seasonal 
unit roots tests, see Hylleberg et al. (1990). In (j) the 34 vector obeys the four 
restrictions (36) and (39a)-(39c). We find a clear rejection of the occurrence of 
a factor (1 - B4) in 3,(B) (which is no real surprise, given that hs is seasonally 
adjusted). In (k) the two restrictions (36) and (39a) are tested jointly and rejected 
by the exact F* test. 

In the second block of Table ! we perform the same type of analysis, omitting 
the first 50 of the 102 sample dati\. We now see that the F** p-values are lower 
[except in (k)] than the F* values, as they usually are according to our experience. 
As far as we can see, the atypical results in this respect for the present fill data 
set are just a rather exceptional case, due to the (accidental) relatively small 
residuals obtained for the first observations in this sample. This aspect is relevant 
because of the following, In all tests performed in the first two blocks of Table 
1 we found pn = 7. Hence, of the 12 redundant regressors only 6 had to be taken 
into account (we used a singular-value decomposition with a tolerance of lO_* ). 
It can be made plausible that in this simple model, where X consists of one 
column of unit elements only, the appropriate matrix 2 consists of columns 
which are determined by a (linearly or nonlinearly) trended variable (heavily 
determined by the values of the elements of 10) and by the columns of the matrix 
[ZP i 01’. Hence, since the redundant regressors are closely related to the dummy 
variables that would annihilate the contribution of the initial observations, they 
happen to have a minor effect in the present model on the obtained residual 
sum of squares, and therefore the F** test is less powerfut in the full sample. 
In contrast, we find in the subsample that the F*” exact p-values are not only 
smaller than the F* values, but that they are often also smaller than the asymptotic 
Fp-values. This boosts our expectations regarding the relative power of the exact 
procedures. 

In order to try the exact structural change tests developed in Section 5 we 
tested the constancy of the i, vector over the two separate parts of the sample. 
Note that 1 < fi < 25. In result (a’) we consider the unrestricted AR(6) model. 
The chosen 39 value is the il estimate obtained under the alternative specification. 
We see that constancy of 3, is acceptable (ti = 11). In (b’) the null model is a 
simple random walk with drift over the fill sample, and the alternative model is 
an AR(6) with a break in all 3, coefficients at rr . Here the two exact tests give 
conflicting results (iii = 9). In (k’) the & value is equal to (k) for T = 102. 
Hence, roots +l and - 1 are imposed. These were accepted for the second sub- 
sample and gave conflicting results over the full sample. Now, imposing them 
and testing for constancy, we find p-values above 5% (fi = 14). 

To check the sensitivity of our exact results to the normality assumption, we 
also performed the simulation procedures under two alternative distributional as- 
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Table 2 
Exact p-values (% ) in the univariate model for ks of Regression 3 (k = I (intempt); p = 6; r = 
6; N = 500) 

T = 52 : 1970( 1) to 1982(4) T = 102 : 1957(3) to 1982(4) 

SK= -1; EK= 1.5 Cauchy SK= -1; EK= 1.5 

F” F”* F* F*” F* F ** 
Cauchy 

F* F”* 

(a) 99.8 88.2 98.4 46.4 100.0 99.8 89.2 67.0 
(b) 10.4 5.4 7.4 14.2 5.6 14.0 5.8 13.0 
(e) 31.8 14.2 17.2 t7.6 5.8 15.8 6.0 13.2 
td) 34.8 16.6 18.2 17.8 6.8 16.0 5.2 12.8 
(e) 35.6 16.8 18.4 17.8 7.8 18.2 5.8 13.4 
(9 35.6 16.8 18.4 17.8 9.2 20.0 6.8 t3.6 
(6) 0.2 0.2 0.4 6.4 0.2 0.2 0.2 2.2 
(h) 96.8 84.4 85.4 44.2 99.8 100.0 99.8 77.2 
(i) 0.8 2.2 6.6 12.2 0.6 2.4 4.4 9.0 
(j) 0.2 0.4 5.6 8.2 0.2 0.2 2.4 3.4 
(k) 19.8 26.2 16.4 19.8 4.4 12.6 10.0 13.2 

sumptions. We examined the changes in the p-values when it is assumed that 
the q vector consists of independent elements obtained from either the Cauchy 
distribution (which has no finite moments) or fkom a normalized and sign-changed 
x2 distribution. In the latter case we took qr = -(v, - 8)/4, where vt N x2 (8). It 
can be shown that this yields disturbances with SK= - 1 and EK = 1.5 , which 
is not too far from the values actually obtained in the regressions. The results are 
collected in Table 2. For the transformed x2 disturbances we find slightly lower 
p-values for the smaller sample size; for T= 102 the results are very close to the 
normal case. The effects of Cauchy disturbances are more pronounced. Qften the 
F* and F”* results are affected in an opposite way. 

Finally, we employed various of the exact procedures in the context of an 
econometric model on housing starts. In Table 3 we examine tests on the order 
of the J(B) polynomial and a few other hypotheses, in a restricted version of 
the model of Regression 2 (the regressors RR, y and y-4 have been omitted). 
IIere the maximum number of redund+ c+4L. ~~;essors that may be required is 36, 
whereas actually only 12 had to be used. In result (A) we test again the vaIucs of 
the least-squares estimates and find a plausible result. In (I3) we find conflicting 
evidence on the hypothesis that the polynomial 1(B) can be reduced to (I - B). 
From (C) we see that we cannot omit all lagged-dependent variables, but (D), 
(E) and (I?) show that reduction of the order of the J.(B) polynomial to B is 
acceptable (which is in conflict with the results of asymptotic tests in the 
with no redundant regressors; see also Regression 2). Result (G) indicat 
a (1-B) factor in L(B) while maintaining g=4 is acceptable. In (HI) we test 
for structural change. Now the maximum number of redundant regressors is ?2, 
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Table 3 
Exact inference in a model for hs (Regression 2 with 3 constraints) (k = 8 ; p = 4 ; r = 4 ; N = 
500 ; q w N[O,I], T = 108 : 1956( 1) to 1982(4) ; T, = 57 : break at 1970( 1)) 

Null hypothesis p-values (%) 

Elements of vector j_k Asymptotic Exact 

4u j-0.2 4,3 20.4 F F* F ** F* F”* 

0.6649 -0.1641 0.2255 -0.2556 100.0 98.0 87.3 99.2 89.4 
1 .oooil 0.0 0.0 0.0 !O.O !O.O !0.2 0.8 5.8 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 
0.6463 -0.1576 0.0630 0.0 13.3 18.2 46.7 29.0 51.8 
0.6407 -0.1187 0.0 0.0 11.5 13.3 43.0 20.4 49.4 
0.5711 0.0 0.0 0.0 6.1 10.8 40.4 18.6 49.4 
0.8735 -0.1275 0.3642 -0.1102 !O.O !O. 1 !2.4 17.0 27.0 
0.7103 -0.2782 0.3111 -0.3462 56.0 61.0 30.5 71.2 37.4 

whereas we actually had to use only 20. The chosen 34 value is the i, estimate 
obtained when a break is allowed for; constancy is not rejected. 

In the original DM specification of Regression 1, which seems dynamically 
misspecified, further restrictions on 3.(B) should not be tested. We only checked 
whether structural change tests would expose the inadequacy of this model. This 
is not the case. Taking Tr=57, the relevant exact tests have p-values slightly 
above 50% , whilst the p-value of the asymptotic test on the significance of ;?(I) 
is as disappointing, viz. 45% . This completes our use of these data on building 
starts. The reader should realize that these computations were not undertaken to 
throw new light on the house building industry, but only serve to illustrate the 
performance of new techniques for the econometric model building industry. 

Standard test procedures used in econometrics to find an adequate specifka- 
tion of the short-run dynamics and long-run relationships in linear autoregressive 
distributed lag models typically only have an asymptotic justification and are 
non-exact in finite samples. Actual sample sizes are finite, and usually this size 
is fixed in the short run. Also, asymptotic large sample arguments, which may be 
very useful for the (dis)qualification of (in)consistent techniques in particular cir- 
cumstances, cannot make actual sample sizes larger. To content oneself with the 
empirical results of asymptotically valid techniques just like that, usually implies 
that one accepts risks to draw false inferences that cannot be kept under control. 
In science in general, and in econometric statistical methodology in particular, 
such situations should be suppressed where possible. 
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Here we develop alternative inference procedures for single (reduce 
dynamic linear regression models which are exact under Assumptive A, 
demonstrate their feasibility in illustrative empirical models. We 
procedures for exact inference on the coefficients of the lagged 
ables. These, however, will allow to obtain exact inference re 
any type of linear or nonlinear restriction on any of the parame$ers 
models, as is demonstrated in Dufour and Kiviet ( 1993) for the first-o 
namic model. The procedures make use of redundant regressor variables which 
annihilate nuisance parameter dependence and yield similarity of the test statis- 
tics. This allows us to use them as ‘randomized tests’, which implies that exact 
p-values can be obtained from a limited number of haonte Carlo replications. Crit- 
ics on these exact techniques that may be put forward are, among other things, 
that: 

(i) the addition of redundant regressors, although accomplishing full control over 
the level of the tests, will lead to power loss; 

(i.i) the requirement to adequately specify the distribution function of the distur- 
bances cannot be fulfilled in practice since we lack (economic) theory on 
how to specify disturbance terms; 

iii) the requirement that the regressors, apart from the lagged-dependent variables, 
have to be strongly exogenous will not be fulfilled in most models of practical 
interest; 

(iv) the simulation tests involve too much computational efforts. 

Our response is as follows: 
(i) Indeed we find that the standard asymptotic tests may (often but not system- 

atically) have smaller p-values than the exact tests, but that does not mean that 
they have more power. Power can only be discussed if we know the size, and 
is the basic weakness of the asymptotic methods: their actual finite-sample stze 
depends on unknown parameters and the chosen nominal significance level is as 
firm on the actual size as the level of a pitfall. The p-values of the standard tests 
can only be judged after size correction. I-Iowever, using the same sort of tests 
after addition of redundant regressors, and assessment of their true ~niten~mple 
null distribution via simulation, works in fact as a size correction. It certainly 
seems likely that more redundant regressors lead to less power. Therefore, it is 
comforting that we found that the actual number of redundant regressors required 
is much less than the theoretical number, due to linear dependencies. IMoreover, 
from the results in Dufour and Kiviet ( 1993) we know that when more restric- 
tions are tested fewer redundant regressors are required. Wence, if we do nut test 
just 3, but also elements of p, even fewer redundant regressors are required. 

(ii) If the actual distribution of the disturbances is very non-normal 
usual regularity assumptions) then the accuracy of asymptotic methods, al 
asymptotically still correct, will be very poor in finite samples. Our methods allow 
to perform a sensitivity analysis of the exact results under various dis~b~tional 
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assumptions. Moreover, they possess the same asymptotic validity properties as 
the standard procedures (although the latter are even non-exact when the true 
distribution of the disturbances is known). 

(iii) In case of weakly exogenous regressors we can again invoke the same 
asymptotic arguments as are used for the standard procedures. Our procedures 
are indeed only fully exact when the regressors are strongly exogenous. Although 
we agree that this is one of the weaker elements in the methods proposed here, 
the standard procedures suffer from the same weakness. Further research on the 
seriousness of this aspect in empirically relevant cases should be done (also 
including size and power comparisons), If the inaccuracies in inference which 
And their origin in conditioning are really serious, then it could be worthwhile to 
abandon conditioning and to model not only the endogenous, but also the weakly 
exogenous variables. Next, the present approach could be followed again to de- 
velop test statistics which are invariant with respect to the nuisance parameters 
in these enlarged models, thus allowing control over size. At the other end of 
the spectrum are the higher-order univariate AR models, possibly with an in- 
tercept, seasonal dummies and trends, which are used to characterize stationary 
and non- stationary (periodic) stochastic processes. These fit completely into our 
Assumption A so that exact versions of the ADF, HEGY and I(2) tests could be 
developed. Their relative performance should be further examined in controlled 
experiments, 

(iv) The exact test statistics are, like the standard tests, simple ratios of residual 
sums of squares. To obtain the exact p-value, a relatively short series of simulated 
independent realizations of the test statistic has to be generated. Nowadays this 
requires only a few lines of computer code and each application takes just a few 
seconds or less. 
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