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1. Model-free linear regression and ordinary least squares

1.1. Notations

We wish to explain or predict a variabyghroughk otherxs, xo, ..., Xc. We T observations on each
variable:

Y1

y = y.z : dependent variable (to explain)

\as
X1

X2i . .
X = : , 1=1... k:explanatory variables.

XTi

Usually, the explanatory variables are represented by thdéx matrix

X11 X2 --- Xk X{

Xp1 Xp2 ottt Xok X5
X:[X17X27-"7Xk]: : : : = : )

XT1 XT2 0 XTk Xg

whereX; is ak x 1 vector:
X = (%1,%2,---, Xk) , t=21,....T.
We wish to represent each observatjpas a function oki1, .. ., X:
Ve =Xa1B1 +X%2By+ - +%kBx + &, t=1,...,T (1.1)

whereg; is a “residual” which is left unexplained by the explanatory variables. fittdel can also
be written in the following matrix form:

y=XB+¢ (1.2)

wheree = (€1, €2,..., 1)’



1.2. The least squares problem

1.2.1 Ingeneral, we cannot obtain a “perfectfigt =0, t=1,...,T).Inview of this, a natural
approach (proposed by Gauss) consists in minimizing the sum of sqesiddals:

T

iftz = ZL Ve — 1By — - — XuBi?

t t=

= (y=XB) (y—XB)=S(B) .

We consider the problem:
Min (y — XB) (y—XB) .

Since
S(B) = (Y —B'X) (y—XB) =yy—2B'X'y+ B'X'XB,

we have:

dS(B) _ / /
B 2X'y+2X'XB .
To compute the above, we use the following result on differentiation witledsp a vectox :
J(xa)
ox = a, (1.3)
O(XAX) ,
I (A+A)x. (1.4)

For any poini3 = f? such thaS(B) is a minimum, we must have:

9S(B)

. oY/ T
W p=p= 2X'y+2X'XB =0

hence A
(X’X) B = X'y : normal equations

1.2.2 Whenrank(X) = k, we must haveank(X'X) = k so that(X'X) " exists. In this case, the
normal equations have a unique solution:

B=(X'X)"'Xy. (1.5)
OnceB is known, we can compute the “fitted values” and the “residuals” of the model.

1.2.3 The model fitted values are



where

P = x(x’x)*lx’ (projection matrix)
P = P,PP=P (symmetric idempotent matrix).

1.2.4 The model residuals are:
E=y-XB=y-y=y-Py=(1-P)y=My
where

PX = X,MX=0, (1.6)
PM = P(I-P)=0,MP=0. (1.7)

1.2.5 Each column oM is orthogonal with each column of:

X'M =0,
XM=0, i=1,...k.

Residuals and regressors are orthogonal:

X& = X'My=0
= X&=0, i=1...k
T
= iTE€= Zlét =0, ifthe matrixX contains a constant
t=

whereé = (£1,&,,..., &7) etit = (1,1,...,1)".
1.2.6 Fitted values and residuals are orthogonal:
Y& =yPMy=0. (1.8)
1.2.7 The vectoly can be decomposed as the sum of two orthogonal vectors:
y=Py+(I-P)y=y+&. (1.9)
1.2.8 For any vectol3,

SB) = (y-XBY (y—XxB) = (y-xB) (y—xB)+(B-8) xx(B-p)

B
(v-xB) (v-x2) =s(f)

Y
I

for

(y-XB) (y=XB) = [y-xB+x(B-p)| [y-xB+x(B-5)]



= [erx(f —;3)}' &+x(B-B)
 teva(p-g) xe+ (i-g) xx(5-5)
= &+ (B-p) xx(B-p)

This directly verifies thaf = B minimizesS(f).

2. Classical linear model

In order to establish the statistical propertiesfiof/ve need assumptions ¢hande. The following
assumptions define ttebassical linear mode(CLM).

2.1 Assumption y=XB+¢

wherey is aT x 1 vector of observations on a dependent variable ,
X is aT x k matrix of observations on explanatory variables,

B is ak x 1 vector of fixed parameters,

€ is aT x 1 vector of random disturbances.

2.2 Assumption E(g) =0.
2.3 Assumption E[eg'] = 02l .
2.4 Assumption X is fixed (non-stochastic).

2.5 Assumption rank(X) =k<T.

From the assumption 2.1 - 2.4, we see that:

XiB
E(y) = E(y[X)=XB= :
XiB

B1

= (X1, %2,..., %) B:Z

Bk

= X131+X232+“‘+Xkﬁka
V() = V(y|X)=0%

g2 0 --- 0
0 o2 0

= : .| =V(e)
0 O g2



If, furthermore, we add the assumption tladbllows a multinormal (or Gaussian) distribution, we
get the normal classical linear model (NCLM).

2.6 Assumption ¢ follows a multinormal distribution.

3. Linear unbiased estimation

From the assumptions 2.1 - 2.5, we can make the following observations.
3.1 B is linear with respect tg.

PROOF fi has the forrrfi = Ay, whereA = (X’X)*lx’ is a non-stochastic matrix. O

3.2 B=(XX)IX(XB+e) =B+ (X'X) XE.
3.3 [§ is an unbiased estimator Bf

PROOF E(B) =B+ (X'X) 'X'E(e) = B. O

3.4 V(B) =a?(X'X) ",

PrROOF
V(B) = E[(B-B)(B-B)]
— E[(X'X)"'Xeg’X (X'X) ]
= (X'X)TTXE (g8) X (X'X)
— g?(xX'x)"
where the last identity follows from Assumption 2.3. O

3.5 Theorem GAUSS-MARKOV THEOREM. [3 is the best estimator @ in the class of linear

linear unbiased estimato{BLUE) of 3, i.e.V (B) —V(B) is a positive semidefinite matrix for any
linear unbiased estimatot UE) B of B. In particular, if3 = Cy andD = C— (X’X) X/, then

V(B) =V(B) +0?DD’ .



PROOF Sinceﬁ is unbiased and
-1

C=D+ (X'X) "X/,
we have:
E(B) = E{[D+(x%)X|(xB+e)]
= DXB+p
= B,
hence
DX=0 and CX=I.
Consequently, .
B=Cy=CXB+Ce=p+Cs¢
and .
B—B:CS’
hence
V(B) = E[(B-B)(B-B)]=E[Cee’C] =
= D+ (XX) X [D'+X (X'X)" l]
— 0?[DD' + (X'X) '] = 0?DD’ + 02 (X'X)
= DD’+V(B)
and

V(B) -V (B) = o?DD’

is a positive semidefinite matrix.

3.6 Corollary Letw be ak x 1 vector of constants. Then,
V(WB) > V(W)
for any linear unbiased estimatﬁrof B.

PROOF SinceE (B) :E(,@) = 3, we have:

E(wﬁ) - E(wﬁ) —wg,

Vv (V\/B) — WV (B) wW=w [aZDD’+v (3)} w

= o’WDD'wW+wV ([3) w

-1

(3.1)



_ oZV\/DD’w+v(\A/[3) zV(V\/B) :

for wDD'w > 0. d

In particular, we must have:

VB) =V(B). i=1. k.

3.7 Theorem GENERALIZED GAUSS-MARKOV THEOREM. LetL be ar x k fixed matrix and
y=LB. Theny=Lp is the BLUEY, i.e. V(y)—V (y) is a positive semidefinite matrix for any
linear unbiased estimatgrof y. In particular, ify = Cy andD = C — L (X'X) X/, then

V(y) = V(§) +o?DD’

and
C(y-vy=0
PROOF Sinceyis unbiased and
C=D+L(X'X) X’
we have
E(Y) = E{(D+L(X'X) 'X](XB+¢e)}
= DXB+LB=DXB+y
=Y,
hence
DX=0 and CX=L.
Consequently,
Yy = Cy=CXB+Ceg
= LB+Ce=y+Ce
and

V(y) = E[(y—y)(y—y)'] =E[Cee'C| = o°CC
— O?[D+L(XX) T X][D +X (X'X) L]
= o?[DD'+L (X'X) 'L
— 0%DD' 4 0% (X'X) ‘L' = 0°DD' + V(LB)
= 0°DD'+V(y),



SO
V() —V(y) = o°DD’ (3.2)

is a positive semidefinite matrix, and
C(1,7) = E[cee’X(X'X) "L

— 02X (X'X) T = 02 (X'X) !

U=v().,

CT-9:9) = C(7.9) - C(3.9) =V(7) ~V(7) =0. 33

3.8 Corollary QUADRATIC GAUSS-MARKOV OPTIMALITY . LetQ be ar x r positive semidefi-
nite fixed matrix and. ar x k fixed matrix,y = L3 andy = L. Then

E[(7-y)QV-v)] ZE[(7-v)QA¥-V)]
for any linear unbiased estimatpof y.
PROOF Lety=CyandD =C—L(X'X) *X". Then

E[(V-v)Q(¥-v)] = E[trQ(y—y)(7-v)]
= trQE[(Y-y)(V—V)]
= trQ[o?DD'+V ()]

o?tr (QDD') +1r [QV (§ )]

(
o?r (D'QD) +trQE [( y—v)']
= 2tr (D'QD) +E[tr ( (;/— V)]
= o’tr (D' QD) [ Y/ v-v]
> [(V Y Q(y—v)]
sinceQis p.s.d.= D'QDis p.s.d.= trD'QD > 0. d

3.9 Corollary For any LUE ofy of y =L,

trv (

3
~
<
—~
>
~

PROOF



by Corollary 3.8 withQ =1. O

3.10 Lemma PROPERTIES OF MATRIX DOMINANCE If A= B+ C whereB is a p.d. matrix and
Cis a p.s.d. matrix, then

(@) Aisp.d.,

(b) Bl <IA[,

(c) B1-Alisp.s.d.

3.11 Corollary LetL be arr x k fixed matrix,y = LB andy = L[?. Then
V() =V (V)

for any LUEY of y.

PROOF Sincey is the BLUE ofy (by the generalized Gauss-Markov theorem), we have:

V(i) =V +C 3.

5
~

whereCis p.s.d. If[V (y)| =0, then|V (y)| < |V (Y) [, forcar|V(y)| > 0. If [V(¥)| > 0, thenV (y)
is p.d. This entails tha¥ () is also p.d. andV (y) | < |V (V) |. O

3.12 y=XB+Pe, € =My=Me.

PROOF

y = Py=P[XB+e¢]=XB+Pe, carPX=X,
£ = My=M[XB+¢g]=Meg, carMX=0.
]
3.13 E(y) =XB,E(8) =0.
PROOF
E(y) = EXB+Peg]=XB+PE(e)=XB,
E(8) = E(y—y)=XB-XB=0.
O]



3.14 V() = 02P, V(&) = oM.

PROOF

) = V(XB) =XV(B)X'=0?X (X'X)"
) = V(My)=MV(y)M' =g2M .

V(
V(

X'=0%P,

AN

3.15 yis the best linear unbiased estimatos.

PrRoOOF This follows directly on takind. = X in the generalized Gauss-Markov theorem.

3.16 ¢ is the best linear unbiased estimator (BLUE¥ofn the sense thd (£ — &) =0 and
V(E—¢)—V(E—¢) isap.s.d. matrix
for for LUE £ of ¢.
PROOF Sinceg is a LUE ofe, we must have:
§=Ay and E(¢—¢)=0.
Consequently,

E() = E(AY)
= E[AXB+€)]=AXB=0,V8,

which entails that

AX =0,
E=AXB+¢e)=Ac.

Let
B=A—M where M=1—X(XX)"'X'.
Then
AX=[B+M]X=BX=0, since MX=0,
hence

10



= V[(B+M)e—¢|=V[B+M-I)¢g]
= E[B+M—l)e' (B +M—1)]
— @?[B—X(X'X) X [B =X (X'X) X]
= 0?[BB +X (X'X) X,
and
V(E-¢g) = E[(M=1)eg'(M—1)]
— 02(1-M) = a®X (X'X) 'X’,
so that
V(E—¢g)=0’BB+V(E—¢).
Thus
V(E—g)-V(E—¢)=0’BB
a p.s.d. matrix.
3.17 C(B,28) =C(B,y—XB) =
PROOF
C(B2) = ElB-p)E]=El(xx) " XeeM
— g?(X'X) 'X'M=0.
3.18 C(%,&) =0.
PROOF

3.19 Estimation of 02. Sincec? =E(g?),t =1,..., T, it is natural to consider the residuals of

the regression which can be viewed as estimations of the error ggrms

g=y—XB=My=M(XB+¢)=Me,

11



82=288=¢MMe=¢Me,
t=
hence
E[€'8] = E[e¢'Me] =E]tr (¢Me)]
= E|[tr (Meg')] =tr [ME (g¢')]
= o%rM,
where
M = trly =X (X'X) X = trly —tr [X (X'X) "X
= trly —tr XX (X'X) ] = triy —trli
— T—k.
Thus,
E(¢'8) = o*(T-K
ge ]
E[T—k = 0

3.20 The statistic
P =¢88/(T-k =yMy/(T -k

is an unbiased estimator of, ands? (X’X) "t is an unbiased estimator Vf(fi) = g2 (X'X)" %
E(s) = o2,
E[£(xX) Y] = o?(xx) "
4. Prediction

In the previous section, we studied how one can estifiatethe linear regression model. Suppose
now we know the matrix, of explanatory variables fan additional periods (or observations). We
wish to predict the corresponding valuesyof

Yo=XoB +¢€o

where
E(g0) =0,V (&) = 0%Im,E (g¢£p) = 0.

The natural “predictor” in this case is:

Yo = XoB = %o (X'X) Xy . (4.1)

12



We can then show the following properties.
4.1 Yo is an unbiased estimator ¥§[3 :
E(Yo) =XB =E(Yo), E(Yo—Yo) =0.
42 V(J0) =V (XoB) = %oV (B) X5 = 92X (XX) "X,
4.3 C(yo,Y0) =0.
PROOF
Congo) = E|0-%aB) (XoB - Xop) |

= E [so (B —B)/Xé] —E [s0g'X (X'X) " %g| =0.

4.4 Yo is best linear unbiased estimatorXf3, in the sense that (Yo) — V (Yo) is a p.s.d. matrix
for any linear unbiased estimatgy 6f Xof3. In particular, ifyg = CyandD = C — Xg (X’X)*lx’,
then

V (Yo) =V (Yo) + 0°DD" .

PROOF This follows directly from the generalized Gauss-Markov theorem. O

The “prediction errors” are given by:

& = Yo—Yo="Yo—XoB
= XoB+£o—XoB=eo+Xo(B—B)-

4.5 Yy is alinear unbiased predictor (LUP) v
E[éo] =0.

PROOF Yo = Xof3 and
E[€)] = E[yo—Yo] = XoB —XoB =0.

13



4.6 V(&) =02 |Im+Xo (X'X) 1 Xg] -
PrRoOF

V(Yo—%o) = V(¥o)+V(¥o)—C(Yo,%) — C(Yo,Yo)
= 0P+ %% (X'X) X
02 [Im+Xo (X'X) X -

O
4.7 Theorem Y is the best linear unbiased predictor (BLUP)ygf in the sense that (yo — Yo) —
V(yo—VYo) is a p.s.d. matrix for any LURfy of yo. In particular, if§o = Cy andD =C —
Xo(X'X)" X!, then
V (Yo —¥o) =V (Yo — Jo) + 0°DD’ .
PROOF
V (Yo—Yo) =V (Yo) +V (Yo) — C (Yo, o) — C (o, Yo)
where
C(Yo,%0) =E [£0€'C'] =0
for, by the generalized Gauss-Markov theorem,
E[Yo] = XoB = CX=Xg=Yo=C(XB+¢)=XB+Ce.
Further,V (o) = V (Yo) + 0?DD’ andV (yo) = 0?Im. Consequently,
V(yo—Y0) = 0%m+V(Yo)+c’DD’
= [0Pn+ 02X (X'X) " xg| + 0?DD!
= V(yo—Yo)+0°DD’.
]

5. Estimation with Gaussian errors

If we wish to build confidence intervals and perform hypothesis tests,age a more complete
specification of the error distribution. The standard hypothesis for thisasgome that the errors
follow a Gaussian distribution.

14



5.1 Assumption & ~ Ny [0,0%7].

This means that the errogg are i.i.d.N [O, 02} . We can now completely establish the distribu-
tion of the least squares estimator.

5.2 y~N[XB,0%7], sincey=XB +e.
53 B~N [[3, a2 (x’X)*l} , since = (X'X) " 1Xy.

The probability density function of is given by:

1 1(y—XB) (y—X
L(y; XB, 0%l7) = 2 exp{z(y B)oéy B)} :

54 = (X’X) X'y and&? = &' /T are the maximum likelihood estimators@fanda? respec-
tively.

PROOF To maximizel is equivalent to maximizing liL.). Since

T
——In

5In(2m) ~ 21n(0%) ~ o= (y—XB (v~ X)
2
——In

SN2~ 2n(0%) — 53 [y~ 2yXB+ BX'XB] |

In(L) =

the first-order conditions (which are necessary) for a maximum is:

0(';{(;—)) _ 72fi2 [-2X'y+2(X'X)B] =0,
0%5)) = _;%+T;(Y—XB)/(V_XB):O’

hence
(XX)B = Xy,B=(X'X)"XYy,
62 = (y—Xﬁ)’(y—Xﬁ)/T-

Further the second-order derivative oflly is:

9B ap o
which is negative semidefinite as required for a maximum. O

5.5 y=Xp ~Nr [XB,0%P].

15



5.6 &=Me~ Nr[0,0°M].

5.7 & andp are independent, becauset 3 are multinormal and:([B, £)=0.

5.8 & andyare independent, becausandyare multinormal and (y, £) =0 .

5.9 Lemma DISTRIBUTION OF AN IDEMPOTENT QUADRATIC FORM IN LI.D. GAUSSIAN VARI-

ABLES. LetQ be aT x T symmetric idempotent matrix of rank< T. If € ~ Nt [O, JZIT] ,
then

£'Qe/0% ~ x*(q) .

PrROOF SinceQ is a symmetric idempotent matrix, there isTax T orthogonal matrixC, i.e.

CC =C'C = Iy, such that
_(1qg O
CQC’_< : 0> ,

£'Qe = €/C'CQCCe = (Ce)' (CQC) (Ce) .

hence

Further,

e ~ N[0,0%] =Ce~N[0,0°CC]
= Ce~NJ[0,0%] .

Letv=Ce = (Vi,Vo,...,vr)". Then

V1,Va,..., Vr are i.i.d.N [0, 07]

and
£Qe = V(CQC)v
Vi
g O V2
= (Vl,Vz,...,VT)<8 O)
VT
= Vo4 +VEH0 VG, +0VE
q
— Vt2
t=
This entails

16



Whereg“ﬂgN[O 1], t=1,...,T,

and
£'Qe/0® ~ x*(q) -
O
5.10 A
ﬂ - E ~ 2(1- —k)
o2 02
PrRoOOF This follows directly on applying Lemma 5.9 witQ = M and the fact that {fM) =
K. O
5.11 LetRbe aqg x k fixed matrix. Then,
. 2 )1
RB ~ N [RB,G R(X'X) R’] . (5.2)

FurtherRB ands? are independent.

PROOF f3 ~ N[B 02 (X'X)~ }entallsRB N [RB 0?R(X'X)™ 1R} Sincef andz are indepen-

dent,RB and&’¢ are also independent, so iR ands? = & '€ /(T — k) are independent. O

5.12 LetRbe aq x k fixed matrix of rankg, r = RB and
“ “ , ron—1.1" 1 =~
SRB) = RB—1] [R(XX)'R| "[RB—1].

Then A

S(R.B)/0%~ x*(a) - (53)
Further,S(R,B) ands’ are independent.
PROOF A A

RB-r=R(B-B)
and

R(B-B) ~Nq[0,0%R(XX) 'R .

17



Thus,

6. Confidence and prediction intervals

6.1. Confidence interval for the error variance

In the normal classical linear model, we have:
g'8/0% = (T-K /0%~ x3(T—k) .

Thus, we can finé andb such that

PIXET—K) >b] =2,
P[x*(T k) <4 :%,
Pla< x?(T—k) <b] :1—<%+%) =1-a,

which entails that

P{ag (T;s)szﬁb] =1-a
e
P{U_J()Sz<02<(-r_:)sz]=1—a

It is important to note this is not the smallest confidence intervatifor

6.2. Confidence interval for a linear combination of regres®n coefficients

Consider now the linear combinatioff3. Then

WB—wWpB~N [o, 2w (x'x)*lw} ,

18



hence .
wp-wp

~NJ[O,1
2P N[0y

whereA = /W (X’X)~*w. Sinceo is unknown, consider:

wp—wp
A
WB-wWB WB-wp  [(T-kKe
Ao e 0D /GZ(T—k)

o2

whereX andY are independen¥, ~ N[0, 1] andX ~ x?(T —k). Thus,t follows a Student distri-
bution withT — k degrees of freedom:
t~t(T—k)

hence
P—ta2 <t(T—k) <tgo] =1-a

whereP [t (T —k) > ty/5] = a/2 and
P [V\/B—ta/zsa <wWp gm/[3+ta/zsa} —1-a.

6.3. Confidence region for a regression coefficient vector

We now wish to build a confidence region for a ved®ft of linear combinations of the elements of
B, whereR: g x k and has rank. Then

S(R.B)/0? = (RB—RB) (R(X'X) 'R] (RB—RB)/0®~ x*(q) .
Sinceo is unknown, let us consider:

SRB)/90>  X/q

F=SRp)/as= T _K/o2(T K X/ (T—K)

whereX; andX; are independent,

X1=S(RB)/o%~ x*(q) ,
Xo=(T—K /0%~ x2(T—K) .

ThusF follows a Fisher distribution witlig, T — k) degrees of freedom:

F~F(qT—K) .

19



If we defineF, by
PIF(a,T-kK) >Fd=0a,

the set of all vector®B such thaF < F; :

(RB—RB)'[R(X'X) *R] *(RB—RB)/q¢ < Fq .

is a confidence region with level-la for RB. This set is a an ellipsoictconfidence ellipsoid

6.4. Prediction intervals

Yo = XoB + €0
where
€ 2
<£0> N [070 IT+1] .
Further
Jo = %B, B=(XX)"XYy,
Jo—Yo = Xo(B—B)—e0~N{0,0%1+x(X'X) "x0]}.
hence Gy
0—Yo
b, ~NI[0,1],
1 Y2
whereA; = |14 x5 (X'X) xo} ,and
Yo—Yo ~t(T—K)

1

wheret, , satisfies
P [Jo—ta/2801 < Yo < Yo +1ta/o8M] =1-a.

6.5. Confidence regions for several predictions

We now consider the problem of predicting a vector of observatfgryenerated according to the

same model independently pf
Yo=XoB +¢€o,

( & > ~N[0,0%1 )] |

&o
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whereXg is known butyg is not observed. For predicting, let us define:

Jo = XoB, A
& = Yo—Yo=¢&—X(B—-B),
where
E(&) = O,
V(&) = 02[lntXo(X'X) x| = aDo,
& ~ N[0, 02n+X(XX) ] .
Consequently,

&V (&) T ~ X3(m),
&Dy'&/0? ~ Xx*(m) .

Sinceo? is unknown, we replace it bs?:
(T-K)$/a?~ x*(T —K) .

Further, since? is independent o andyp = XB, & is independent oy,

_ gDy'&%  &Dy'&/0%m
- mg ~ T-We/oed g~ FMTK,

F = (yo—f/o)’[Im—kXo(X’X)flx(’)}_l(yo—)?o)/mszNF(m,T—k).

Then the set of vectong such that
F S F(X (ma T-— k)

is a confidence region fgg with level 1—a.

7. Hypothesis tests
7.0.1 Letus now consider the problem of testing an hypothesis of the form
Ho V\/B =Wp (7.1)

wherew be ak x 1 vector of constant$o testHy, it is natural to consider the difference:

W —wWo =W (ﬁ—ﬁ) ~N [O,O’ZV\/ (X’X)_lw} :
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Under the assumptions of the Gaussian classical linear model, we then have:

V‘/BGZ\WO N[O.1] 4 = [w (XX) *w] v
t = WBS;WO ~t(T —K) .
This suggests the following tests idf :
rejectHo at levela againstw/8 —wp # 0 when|t| > t,, (two-sided test) (7.2)
rejectHo at levela againsw/3 —wg > 0 whent >t, (one-sided test) (7.3)
rejectHo at levela againstw/ 3 —wp < 0 whent < —t, (one-sided test). (7.4)

An important special case of the above problem consists in testing the ¥alog given component
of B:
Ho(Bio) : Bi = Bio

wheref; is an element of8.

Let us now consider the more general hypothesis which consists in testingltte of a general
vector linear transformation ¢ :

xl xlﬁ
Ho:RB=r=| ° |B= ?B (7.5)
W g

whereR s aq x k fixed matrix with full row rankjrank(R) = q].

7.0.2 Wald-type test A natural approach then consists in estima®fjby Rﬁ’,and then to ex-
amine the differenc®B — r. UnderHp,

RB~N[r, %], where Sgr=0?R(X'X) 'R .
We need a concept of distance betwé&ﬂr;landr. By (5.3),
W= (RB—r1)Z (RB—r) ~ x?(q) underHy .

We tend to rejecHy whenW is too large(W > c. However,o? and Zr are unknown. It is then
natural tom replace? by the estimats?, and>g by

Sr=SR(X'X) 'R
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This yields a Wald-type criterion:

W = (RB—1)5*(RB—)
— (RB-1) [FROX)R] T (RB 1)
= RB-1) [ROXX) R RE-1)/2
- SRB)/S.

Since A A

we rejectHp at levela when
F>Fq(q,T—k). (7.6)

7.0.3 Likelihood ratio test Another approach to testindy consists in looking for a likelihood
ratio test. This test is based on focusing on the likelihood function:

1(y—XB) (y—X
L (y;XB,02l7) = (meexp{_z(y Bégy B)} ' -
Let )
L(Q)=max = max L (7.8)

i.e. we find values o3 anda? which maximize “the probability of the observed sample”, and

L(w)=max = max L (7.9)
B,o? (B,0%)cw
RB=r

i.e. we find values o8 ando? which maximize “the probability of the observed sample” and satisfy
Ho, where

Q={(B,0%):—w< P <+, i=1...k0<0?<+w},
w={(B,0%) € Q:RB=r}.

We see easily that A
0<L(®) <L(Q),

hence

-

&
IN
=

—

—~

>

~— b)
SN—

=

1Y
vV
=



We rejectHg when A
L(Q
L(&)

~—

LR(Y)

whereA , depends on the level of the test:

2/\07

PILR(Y) > Aa] =@ .

7.0.4 L(Q) is achieved whe = B ando? = 62

) 1 1 (7-xB) (v-xB)
L(Q) = (27T62)T/2exp 5 52 :<2n62 T/zexp{ 2}
B 2eAT2/2T/2: T/2 TT/ZAe/T/z 1772
ere] ™ o2 y-x8) (s-x8)
T/2,-T/2

AN/ ~
whereSy = <y—XB) (y—XB).
7.0.5 TofindL(&), it is equivalent to maximize

In(L) =~ In(2m) — 310 (0%) — o (v~ XB)' (y—XB)

under the constrairRB = r.Considero? as given. It is then sufficient to solve the problem:
M[;n (y=XB) (y—XB)
with restrictionr — RB = 0. Ton do this, we consider the Lagrangian function:

Z=(y—XB) (y=XB)—A'[r—RB] .

The optimumB :B must satisfy the first-order conditions:

%’;ﬂ = —2X'y+2(X'X)B+RA =0 (7.10)
0L ~
5y = '—RB=0. (7.11)
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On multiplying by (7.10) byR(X’X) ", we get:
—2R(X'X) T X'y+2RB+R(X'X) 'RA =0
R(XX) "RA =2R(X'X) *Xy—2r =2[RB 1|
A=2[R(XX) 'R - RB-1] .
By (7.10),
2(X'X)B = 2X'y—RA (7.12)

— 2X'y—2R [R(x/x)*lR/} [RB—r} (7.13)

hence

(}X) "Xy~ (XX) "R [R(XX) 'R| "[RB-T]
= B+ ()RR R [r—RB].

We see thaB does not depend am?. Substituting3 in In(L), we see that

whereS, = (y— Xf&)l (y— XB) , from which we get

dln(L) T S

do2 ~ 202 0

at the optimum, hence

5% =Su/T=(y-XB) (y-XB)/T.
A TT/26-T/2

The likelihood ratio test is given by the critical region:

L) _ <&J>T/ZZAG

So

or, equivalently,
Sw
S 2YT (7.14)



Since

we also see that

-1

So-Sa = (1-RB) [ROXX) "R] R (xx) (Xx)
R [R(XX) 'R N [r—RB|
= (- Rﬁ)/ [R(X'X)'R| N [ —RA]

-1 ~

— (RB—r) [R(X’X)_lR’} (RB—r)=SR, B)

= (as)F,
hence
F.%-"% _ (S-S9)/d
q< So/(T —K)
and
S Set+(a5)F _ (as)F q 2/T
S L= ER
T-

<:>quk<)\§/T—1):Fa.

The likelihood ratio test oHg : RB = r has the critical region

(Sv—S) /9

P S/ Tk

Z FG (an_k)

where
F~F(qT-K).

This is an easy method for testihty : R3 = r. Note also that:

B Sy T/2_ q T/2
w- (2) (a0
T

F = ;I((LRZ/T—l) .

$
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8. Estimator optimal properties with Gaussian errors

When errors are Gaussian, the OLS estimatofﬁ,i = 1...,k and & =

AN/ ~
(y—XB) (y—XB)/(T—k) have minimum variance in the class of all unbiased estimators
of B;,i=1,..., k anda? respectively [see Rao (1973, section 5a)].
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