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1. ANALYTIC FUNCTIONS 1

1. Analytic functions

1.1 Notation In this text, z refers to a complex number (z ∈ C), while f and g represent functions f :
E → C and g : F → C, where B(a; δ̄ ) ⊆ E ⊆ C, B

(

a; δ̄
)

⊆ F ⊆ C, B
(

a; δ̄
)

=
{

z ∈ C : |z−a| < δ̄
}

,
0 < δ̄ ≤ ∞ and a ∈ C. In other words, f and g are functions with complex values whose domains
are subsets E and F of the complex numbers containing an open ball centered at the point a.

1.2 Definition LIMIT OF A COMPLEX FUNCTION. Let b ∈ C. We say that f (z) converges to b

when z tends to a, denoted
lim
z→a

f (z) = b ,

iff the following property holds: for any ε > 0, there exists δ > 0 such that

|z−a| < δ and z 6= a ⇒ | f (z)−b| < ε .

1.3 Definition RIGHT AND LEFT LIMITS. Let b ∈C, x ∈ R and f : E →C, where B
(

a; δ̄
)

⊆ E ⊆ R

and a ∈ R. We say that f (x) converges to b when x tends to a from the left, denoted

lim
x→a−

f (x) = b or f (a−) = b ,

iff the following property holds: for any ε > 0, there exists δ > 0 such that

|x−a| < δ and x < a ⇒ | f (x)−b| < ε .

Similarly, we say that f (x) converges to b when x tends to a from the right, denoted

lim
x→a+

f (x) = b or f (a+) = b ,

iff the following property holds: for any ε > 0, there exists δ > 0 such that

|x−a| < δ and x > a ⇒ | f (x)−b| < ε .

1.4 Definition CONTINUOUS FUNCTION. We say that the function f is continuous at point a iff

lim
z→a

f (z) = f (a) .

1.5 Definition DERIVATIVE OF A COMPLEX FUNCTION. We say that the function f is differen-
tiable at point a iff there exists a number f ′ (a) ∈ C such that

lim
z→a

f (z)− f (a)

z−a
= f ′ (a) .

We call f ′ (a) the derivative of f (z) at a.

1.6 Remark We also denote f ′ (z) by d
dz

f (z) .
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1.7 Proposition CONTINUITY OF DIFFERENTIABLE FUNCTIONS. If the function f is differen-
tiable at point a, then it is continuous at point a.

1.8 Theorem PROPERTIES OF DIFFERENTIATION. Let z ∈ B
(

a; δ̄
)

⊆ E ∩F . If the functions f

and g are differentiable at point z, then

(1) d
dz

[c f (z)] = c f ′ (z) ,

(2) d
dz

[ f (z)+g(z)] = f ′ (z)+g′ (z) ,

(3) d
dz

[ f (z)g(z)] = f ′ (z)g(z)+ f (z)g′ (z) ,

(4) d
dz

[

f (z)
g(z)

]

= f ′(z)g(z)− f (z)g′(z)

g(z)2 , provided g(z) 6= 0 .

1.9 Theorem CHAIN RULE. Let h : G →C where B( f (a) ; δ 0)⊆ f (E)⊆ G ⊆C, B( f (a) ; δ 0) =
{z ∈ C : |z− f (a)| < δ 0} and 0 < δ 0 ≤ ∞. If the function f is differentiable at point a and if h is
differentiable at point f (a), then the composite function H (z) = h [ f (z)] is differentiable at point a

and
H ′ (a) = h′ [ f (a)] f ′ (a) .

1.10 Theorem DERIVATIVES OF IMPORTANT FUNCTIONS.

(1) If c is a complex constant, then
d

dz
(c) = 0 .

(2) If n is a real constant,

d

dz
(zn) = n zn−1, provided z 6= 0 when n < 1 .

(3) d
dz

(ez) = ez .

1.11 Theorem DERIVATIVE OF A REAL FUNCTION OF A COMPLEX VARIABLE. Suppose the
function f only takes real values at all points of the open ball B

(

a; δ̄
)

, i.e. f (z) ∈ R for any z ∈

B
(

a; δ̄
)

. If f is differentiable at point a, then f ′ (a) = 0.

1.12 Definition ANALYTIC FUNCTION. If there exists a positive constant ε > 0 such that the
function f is differentiable at all points z such that |z−a| < ε , we say that the function is analytic

at point a. If the function f is analytic at all points of a domain D ⊆ C, we say that f is analytic on
the domain D.

1.13 Remark An analytic function is also called a holomorphic function.
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1.14 Definition SINGULAR POINT. If a function f is not analytic at point z0, but for any ε > 0
there exists a point z1 such that |z1 − z0| < ε and f is analytic at z1, we say that z0 is a singular
point (or a singularity) of the function f . If, furthermore, there exists a radius R > 0 such that f is
analytic on the disk 0 < |z− z0| < R, we say that z0 is an isolated singular point of the function f .

1.15 Theorem OPERATIONS ON ANALYTIC FUNCTIONS. If the functions f and g are analytic at
point a, then

(1) the functions f (z)+g(z) and f (z)g(z) are analytic at point a ;

(2) the function f (z)/g(z) is analytic at point a provided g(a) 6= 0.

1.16 Theorem COMPOSITION OF ANALYTIC FUNCTIONS. Let h : G → C where B( f (a) ; δ 0) ⊆
f (E) ⊆ G ⊆ C, B( f (a) ; δ 0) = {z ∈ C : |z− f (a)| < δ 0} and 0 < δ 0 ≤ ∞. If the function f is
analytic at point a and if h is analytic at point f (a), then the composed function (h◦ f )(z) = h [ f (z)]
is analytic at point a.

1.17 Theorem INFINITE DIFFERENTIABILITY OF ANALYTIC FUNCTIONS. If the function f is
analytic at point a ∈ C, then f has derivatives of all orders at a, and the derivative functions are also
analytic at point a.

1.18 Theorem IMPORTANT ANALYTIC FUNCTIONS.

(1) Any polynomial of degree n,

f (z) = a0 +a1z+ · · ·+anzn (1.1)

where a0,a1, . . . , an ∈ C, is analytic at all points z ∈ C.

(2) A rational function
f (z) = P(z)/Q(z) (1.2)

where P(z) and Q(z) are polynomials of degrees p and q, is analytic everywhere, except
when Q(z) = 0.

(3) The functions ez, cos(z) and sin(z) are analytic everywhere.

(4) The function log(z) is analytic everywhere except at z = 0.

2. Power series

2.1 Definition POWER SERIES. Let {an}
∞
n=0 ⊆ C, z0 ∈ C and z ∈ C. We call the series

∑∞
n=0 an (z− z0)

n a power series centered at z0. The numbers an are the coefficients of the series.

2.2 Remark In this definition and the sequel, we will use the convention 00 = 1.
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2.3 Theorem CONVERGENCE RADIUS OF A POWER SERIES (ABEL-HADAMARD). Let
∑∞

n=0 an(z− z0)
n a power series and

α = limsup
n→∞

|an|
1/n , R = 1/α ,

where R = ∞ when α = 0, and R = 0 when α = ∞. Then the series ∑∞
n=0 an(z− z0)

n converges
absolutely if |z− z0| < R and diverges if |z− z0| > R. Further, if 0 ≤ ρ < R, the convergence is
uniform for |z− z0| ≤ ρ.

2.4 Remark We call R the convergence radius of the series ∑∞
n=0 an (z− z0)

n. The expression 1/R =

limsup
n→∞

|an|
1/n is the Hadamard formula for the convergence radius.

2.5 Corollary ABSOLUTE CONVERGENCE OF POWER SERIES. If the power series
∑∞

n=0 an (z− z0)
n converges for z = z1, where z1 6= z0, then it converges absolutely for any z such

that |z− z0| < |z1 − z0| .

2.6 Corollary BOUNDS ON COEFFICIENTS OF POWER SERIES. Let ∑∞
n=0 an (z− z0)

n a power
series whose convergence radius is R, and let ε > 0.

(1) If 0 < R ≤ ∞, there exists an integer N, such that |an| <
(

1
R

+ ε
)n

for n > N.

(2) If 0 < R < ∞, there is an infinity of values of n for which |an| >
(

1
R
− ε

)n
.

(3) If R = 0, there is an infinity of values of n for which |an| > εn.

2.7 Theorem UNIFORM ABSOLUTE CONVERGENCE OF POWER SERIES. If the power series
∑∞

n=0 an(z− z0)
n converges absolutely for z = z1, where z1 6= z0, then it converges absolutely and

uniformly on the closed disk D = {z ∈ C : |z− z0| ≤ |z1 − z0|} .

2.8 Proposition CONVERGENCE RADIUS AND RATIO CRITERION. Let ∑∞
n=0 an (z− z0)

n be a
power series whose convergence radius is R. Then

liminf
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ R ≤ limsup
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

.

Further, if lim
n→∞

|an+1/an| exists or lim
n→∞

|an+1/an| = ∞, then R = lim
n→∞

|an+1/an| .

2.9 Theorem CONVERGENCE CONDITION ON THE UNIT CIRCLE. Let ∑∞
n=0 anzn be a power

series whose convergence radius is 1. If {an}
∞
n=0 is a sequence of real numbers such that

(a) an+1 ≤ an, ∀n , and

(b) lim
n→∞

an = 0,

then the series ∑∞
n=0 anzn converges at any point of the circle |z| = 1, except possibly at z = 1.
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2.10 Theorem CONTINUITY OF POWER SERIES ON THE UNIT CIRCLE (ABEL). If the series
∑∞

n=0 an converges, then the function ∑∞
n=0 anzn, where |z| < 1, tends to ∑∞

n=0 an when z → 1 so that
|1− z|/(1−|z|) remains bounded.

2.11 Corollary CONTINUITY OF REAL POWER SERIES ON THE UNIT CIRCLE. If {an}
∞
n=0 is a

sequence of real numbers such that ∑∞
n=0 an converges, and if the power series f (x) = ∑∞

n=0 anxn

converges for |x| < 1, where x ∈ R, then lim
x→1−

f (x) exists and

lim
x→1−

f (x) =
∞

∑
n=0

an .

2.12 Remark If the series ∑∞
n=0 an does not converge, the limit lim

x→1−
f (x) may or may not exist.

In general, the existence of the limit lim
x→1−

f (x) does not guarantee the convergence of the series

∑∞
n=0 an. There are however cases where the existence of the limit lim

x→1−
f (x) implies the convergence

of ∑∞
n=0 an (Tauberian theorems). The following theorem provides an example.

2.13 Theorem CRITERION FOR CONVERGENCE AND CONTINUITY OF REAL POWER SERIES ON

THE UNIT CIRLE (TAUBER). If {an}
∞
n=0 is a sequence of real numbers such that f (x) = ∑∞

n=0 anxn

converges for |x| < 1, where x ∈ R, if lim
n→∞

(nan) = 0 and if lim
x→1−

f (x) exists, then the series ∑∞
n=0 an

converges and lim
x→1−

f (x) = ∑∞
n=0 an.

2.14 Theorem UNICITY OF POWER SERIES COEFFICIENTS. If ∑∞
n=0 an (z− z0)

n and
∑∞

n=0 bn (z− z0)
n are two power series which converge for |z− z0| < R, where R > 0, and if the

limits of these series coincide on a sequence of points {zk}
∞
k=1 such that 0 < |zk| < R, ∀k, and

lim
k→∞

zk = z0, then

an = bn , ∀n .

2.15 Corollary UNICITY OF POWER SERIES COEFFICIENTS IN A CIRCLE. If ∑∞
n=0 an (z− z0)

n

and ∑∞
n=0 bn (z− z0)

n are two power series which converge for |z− z0| < R, where R > 0, and if the
limits of these series coincide for any z in the circle |z− z0| < R, then

an = bn , ∀n .

2.16 Theorem DIFFERENTIABILITY OF POWER SERIES. Let f (z) = ∑∞
n=0 an (z− z0)

n for
|z− z0| < R, where R > 0 and ∑∞

n=0 an (z− z0)
n is a power series whose convergence radius is R.

Then the function f (z) is analytic (and thus differentiable) on the disk |z− z0| < R, and

f ′ (z) =
∞

∑
n=1

n an (z− z0)
n−1

where the power series ∑∞
n=1 n an (z− z0)

n−1 has convergence radius R. If, furthermore, 0 <
R < ∞ and f (z) is a function such that f (z) = ∑∞

n=0 an (z− z0)
n at every point where the series
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∑∞
n=0 an (z− z0)

n converges, then there is at least one point on the circle |z− z0| = R where the
function f (z) is not analytic.

2.17 Remark In other words, we can obtain the derivative of the function f (z) = ∑∞
n=1 an (z− z0)

n

by differentiating the series term by term, and the derivative series has the same convergence radius
as the original series.

2.18 Corollary DIFFERENTIABILITY AT ALL ORDERS OF POWER SERIES. Let f (z) =

∑∞
n=0 an (z− z0)

n for |z− z0| < R, where ∑∞
n=0 an (z− z0)

n is a power series whose convergence ra-
dius is R. Then the function f (z) has derivatives of all orders, and these derivatives can be obtained
by differentiating the series term by term. The derivative series all have the same convergence radius
R, and

an =
f (n) (z0)

n!
, n = 0,1,2, ...

where f (n) (z) is the derivative of order n of f (z) .

2.19 Theorem INTEGRABILITY OF POWER SERIES. Let ∑∞
n=0 an (z− z0)

n be a power series
whose convergence radius is R, let f (z) = ∑∞

n=0 an (z− z0)
n for |z− z0|< R, C a contour (continuous

curve) in the interior of the convergence circle |z− z0| < R, and g(z) a continuous function on C.
Then

∫

C

f (z)g(z)dz =
∞

∑
n=0

an

∫

C

g(z)(z− z0)
n

dz .

2.20 Definition TWO-SIDED POWER SERIES. Let {an}
∞
n=−∞, z0 ∈C and z ∈C. We call two-sided

power series a series of the form ∑∞
n=−∞ an (z− z0)

n. This series converges when the two series
∑∞

n=0 an(z− z0)
n and ∑−1

n=−∞ an (z− z0)
n converge. Otherwise, we say it diverges.

2.21 Proposition CONVERGENCE ANNULUS OF TWO-SIDED POWER SERIES. Let
∑∞

n=0 an (z− z0)
n and ∑∞

n=1 a−n (z− z0)
n be power series whose convergence radii are R1 and R2

respectively, where R1 > 0 and R2 > 0.

(1) If 1/R2 < R1, the series ∑∞
n=−∞ an (z− z0)

n converges for 1/R2 < |z− z0| < R1 and diverges
when |z− z0| > R1 or |z− z0| < 1/R2 .

(2) If R1 < 1/R2, the series ∑∞
n=−∞ an (z− z0)

n diverges everywhere.

(3) If R1 = 1/R2, the series ∑∞
n=−∞ an(z−z0)

n diverges everywhere except possibly on the circle
|z− z0| = R1 .

3. Taylor and Laurent series

3.1 Theorem TAYLOR SERIES. Let f be an analytic function at any point of the open disk

D = {y ∈ C : |z− z0| < R} , where z0 ∈ C and 0 < R ≤ ∞ .
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Then there exists a unique sequence {an}
∞
n=0 in C such that

f (z) =
∞

∑
n=0

an (z− z0)
n , ∀z ∈ D .

Further,

an = f (n) (z0)/n! =
1

2πi

∫

C

f (z)dz

(z− z0)
n+1 , n = 0, 1, 2, . . .

where C = {z ∈ C : |z− z0| = ρ} and ρ is any radius such that 0 < ρ < R.

3.2 Remark In other words, an analytic function on the interior of a circle centered at z0 can be
written in the interior of this circle as a power series of (z− z0). Further, this series is unique. The
integral

∫

C

is evaluated counterclockwise.

3.3 Corollary CAUCHY INEQUALITIES. Under the conditions of Theorem 3.1, suppose that
| f (z)| ≤ M for z ∈C (ρ), where C (ρ) = {z ∈ C : |z− z0| = ρ} and 0 < ρ < R. Then

|an| = | f n (z0)|/n! ≤ M/ρn,n = 0,1,2, . . . .

3.4 Remark The Cauchy inequalities entail: for ρ < 1, the coefficients of the Taylor series must
decline at an exponential rate which depends on the convergence radius.

3.5 Corollary EQUIVALENCE BETWEEN ANALYTICITY AND THE EXISTENCE OF A TAYLOR SE-
RIES. Let D = {z ∈ C : |z− z0| < R} where z0 ∈ C and 0 < R ≤ ∞. Then a function f is analytic on
the domain D iff there exists a unique sequence {an}

∞
n=0 in C such that

f (z) =
∞

∑
n=0

an (z− z0)
n ,∀z ∈ D .

3.6 Theorem ZEROS OF ANALYTIC FUNCTIONS. Let f be an analytic function at point z0, such
that f (z0) = 0. If f (n) (z0) = 0, n = 1, 2, . . . , m− 1, but f (m) (z0) 6= 0, where m ≥ 1, then there
exists a radius R > 0 such that the function f can be written

f (z) = (z− z0)
m

g(z)

for |z− z0|< R, where the function g(z) is analytic at z0, and g(z) 6= 0 for |z− z0|< R. If f (n) (z0) =
0, n = 1, 2, . . . , then there exists a radius R > 0 such that f (z) = 0 for |z− z0| < R.

3.7 Remark The latter theorem implies that the zeros of a non-zero analytic function are isolated:
unless all the derivatives of f are zero, we can find a radius R > 0 such that z0 is the only point
where the function cancels in the disk |z− z0| < R. We call z0 a root of the function f , and m its
multiplicity.
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3.8 Theorem FACTORIZATION OF AN ANALYTIC FUNCTION. Let f be an analytic function on an
open convex domain U ⊆ C. If the function f has only a finite number p of distinct roots z1, . . . , zp,
then the function f can be written

f (z) = (z− z1)
m1 ...(z− zp)

mp g(z) ,z ∈U

where m1, . . . , mp are the multiplicities of the roots z1, . . . , zp and g(z) is an analytic function on U

such that g(z) 6= 0 for any z ∈U.

3.9 Remark In other words, an analytic function with a finite number of roots is finite can be
written as the product of a polynomial with the same roots and an analytic function which is different
from zero everywhere. An open disk C = {z ∈ C : 0 ≤ (z− z0) < R} where R > 0 is a convex set.
The latter theorem remains valid when U is a convex and connected set.

3.10 Theorem SIMPLIFICATION RULE. Let U ⊆ C an open and connected set. If f and g are two
analytic functions on U such that

f (z)g(z) = 0 , ∀z ∈U ,

then f (z) = 0 , ∀z ∈U , or g(z) = 0 , ∀z ∈U.

3.11 Remark If f , g and h are three analytic functions on U such that f (z)h(z) = g(z)h(z), ∀z∈U ,
and if h(z) 6= 0 for at least one value of z ∈U , then

[ f (z)−g(z)]h(z) = 0

and we can conclude that f (z) = g(z) , ∀z ∈U.

3.12 Theorem LOCAL SEPARABILITY OF ANALYTIC FUNCTIONS. Let f be an analytic function
which is not constant on an open connected set U . Then, for w ∈ C and z0 ∈U , there exists a radius
R > 0 such that f (z) 6= w for 0 < (z− z0) < R.

3.13 Remark In other words, if the function is not constant, we can find a radius R > 0 such that
f (z) takes the value w at least one time in the disk 0 ≤ |z− z0| < R.

3.14 Theorem LAURENT SERIES. Let C0 and C1 be two circles centered at z0 such that C0 is
contained in C1, i.e.

C0 = {z ∈ C : |z− z0| = R0} ,C1 = {z ∈ C : |z− z0| = R1} where 0 ≤ R0 < R1 ≤ ∞ .

Let f be an analytic function on C0 and C1 as well as on the domain between these two circles. Then
there exists a unique two-sided sequence {an}

∞
n=−∞ in C such that

f (z) =
∞

∑
n=−∞

an (z− z0)
n
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for any z such that R0 < |z− z0| < R1, where

an =
1

2πi

∫

C1

f (z)dz

(z− z0)
n+1 , for n = 0, 1, 2, . . .

=
1

2πi

∫

C0

f (z)dz

(z− z0)
n+1 , for n = −1, −2, . . . .

Further, for any circle C = {z ∈ C : |z− z0| = R} where R0 < R < R1,

an =
1

2πi

∫

C

f (z)dz

(z− z0)
n+1 , n = 0, ±1, ±2, . . . .

3.15 Remark The line integrals
∫

C0

,
∫

C1

and
∫

C

are evaluated counterclockwise.

3.16 Corollary LAURENT SERIES NEAR AN ISOLATED SINGULARITY. If f is an analytic func-
tion at any point of the disk |z− z0| < R, where R > 0, except possibly at z0, then there exists a
unique two-sided sequence {an}

∞
n=−∞ in C such that

f (z) =
∞

∑
n=−∞

an (z− z0)
n

for any z such that 0 < |z− z0| < R.

3.17 Remark In other words, if z0 is a singular point of the function f , the function f can be
represented by a Laurent series on the disk 0 < |z− z0| < R. If, furthermore, an = 0 for n < 0, the
Laurent series reduces to a Taylor series, and we can redefine the function f at z0 so that the latter
is analytic at z0 and thus everywhere on the disk 0 ≤ |z− z0| < R. In such a case, we say that the
singular point z0 is removable. When a function f is analytic at any point of the disk |z− z0| < R, it
is clear we must have an = 0 for n < 0.

3.18 Corollary GENERALIZED CAUCHY INEQUALITIES. Under the conditions of Theorem 3.14,
suppose that | f (z)| ≤ M for z ∈C(R), where C(R) = {z ∈ C : |z− z0| = R} and R0 < R < R1. Then

|an| ≤ M/Rn , n = 0, ±1, ±2, . . . .

3.19 Definition PRINCIPAL AND REGULAR PARTS OF A LAURENT SERIES. In a Laurent series
∑∞

n=−∞ an (z− z0)
n, we call the series ∑−1

n=−∞ an (z− z0)
n the principal part of the series, while the

series ∑∞
n=0 an (z− z0)

n is called the regular part of the series.

4. Sums, products and ratios of power series

4.1 Theorem POINTWISE CONVERGENCE. Let ∑∞
n=0 an (z− z0)

n and ∑∞
n=0 bn (z− z0)

n be two
convergent power series whose limits are f (z) and g(z) respectively at a given point z. Then the
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following properties hold:

(1) c f (z) = ∑∞
n=0 can (z− z0)

n ,∀c ∈ C ;

(2) f (z)+g(z) = ∑∞
n=0 (an +bn)(z− z0)

n ;

(3) if f (z) or g(z) converges absolutely, then

f (z)g(z) =
∞

∑
n=0

cn (z− z0)
n (4.1)

where cn = ∑n
k=0 akbn−k ; furthermore, if the two series f (z) and g(z) converge absolutely, the

series ∑∞
n=0 cn (z− z0)

n converges absolutely;

(4) if

(a) b0 6= 0 ,

(b) the series h(z) = ∑∞
n=0 dn (z− z0)

n where the coefficients dn are obtained by solving the
equations ∑n

k=0 akbn−k = an, n = 0, 1, . . . ,converges,

(c) g(z) or h(z) converges absolutely,

(d) g(z) 6= 0 ,

then
f (z)

g(z)
=

∞

∑
n=0

dn (z− z0)
n . (4.2)

4.2 Theorem CONVERGENCE IN A CIRCLE. Let f (z) = ∑∞
n=0 an (z− z0)

n and g(z) =

∑∞
n=0 bn (z− z0)

n be two power series whose convergence radii are R1 and R2 respectively, where
R1 > 0 and R2 > 0. Then

(1) for any c ∈ C, the series ∑∞
n=0 can (z− z0)

n converges absolutely for |z− z0| < R1 and

∞

∑
n=0

can (z− z0)
n = c f (z) for |z− z0| < R1 ; (4.3)

(2) the series ∑∞
n=0 (an +bn)(z− z0)

n converges absolutely for |z− z0| < min{R1,R2} and

∞

∑
n=0

(an +bn)(z− z0)
n = f (z)+g(z) for |z− z0| < min{R1,R2} ; (4.4)

(3) the series ∑∞
n=0 cn (z− z0)

n , where cn = ∑n
k=0 akbn−k, converges absolutely for |z− z0| <

min{R1,R2} , and

∞

∑
n=0

cn (z− z0)
n = f (z)g(z) , for |z− z0| < min{R1, R2} ; (4.5)
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(4) if g(z) 6= 0 for |z− z0| < R, where 0 < R ≤ min{R1,R2} , and {dn}
∞
n=0 is the sequence of coef-

ficients obtained by solving the equations

n

∑
k=0

dkbn−k = an,n = 0, 1, . . . , (4.6)

then the series ∑∞
n=0 dn (z− z0)

n converges absolutely for |z− z0| < R, and

∞

∑
n=0

dn (z− z0)
n = f (z)/g(z) , for |z− z0| < R; (4.7)

when g(z0) = b0 6= 0, the coefficients dn are unique and there exists a radius R > 0 such that
g(z) 6= 0 for |z− z0| < R.

4.3 Theorem MACLAURIN SERIES FOR A RATIONAL FUNCTION. If

f (z) = P(z)/Q(z) (4.8)

where P(z) = ∑p
n=0 anzn and Q(z) = ∑q

n=0 anzn are polynomials of degree p and q respectively, and
Q(0) 6= 0, then

f (z) =
∞

∑
n=0

dnzn, for |z| < R ,

where R = min
{

|z∗1| , . . . ,
∣

∣z∗q
∣

∣

}

> 0, z∗1, . . . , z∗q are the roots (possibly non distinct) of polynomial
Q(z) and the coefficients dn are obtained by solving the equations

n

∑
k=0

dkbn−k = an, n = 0, 1, . . . , (4.9)

with an ≡ 0 for n > p and bn ≡ 0 for n > q. Further, the series ∑∞
n=0 dnzn converges absolutely for

|z| < R.

5. Singularities

5.1 Definition POLE AND ESSENTIAL SINGULARITY. Let f be an analytic function on the disk
0 < |z− z0| < R. We say that f has a pole at point z0 if lim

z→z0
| f (z)| = ∞. If the point z0 is a singular

point which is neither removable nor a pole, we say that it is an essential singular point.

5.2 Theorem CHARACTERIZATION OF ISOLATED SINGULARITIES. Let f be an analytic function
with an isolated singular point at z0. Then

(1) z0 is a removable singular point

⇔ lim
z→z0

(z− z0) f (z) = 0
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⇔ lim
z→z0

f (z) = c , for some c ∈ C .

(2) z0 is a pole

⇔ the function g(z) = 1/ f (z) has a removable singular point at z0

⇔ there is a positive integer m (m > 0) and an analytic function h(z) on a disk |z− z0| < R,
where R > 0, such that h(z0) 6= 0 and f (z) = h(z)/(z− z0)

m

⇔ there is a positive integer m such that lim
z→z0

(z− z0)
m

f (z) = c, where c ∈ C

⇔ there is a positive integer m such that the function g(z) = (z− z0)
m

f (z) has a removable
singular point at z0.

5.3 Definition ORDER OF A POLE. If z0 is a pole of the function f such that

lim
z→z0

(z− z0)
m

f (z) = c 6= 0, for some c ∈ C ,

we say that z0 is a pole of order m.

5.4 Theorem SINGULARITIES AND LAURENT SERIES. Let f be an analytic function with an
isolated singular point at z0 with Laurent series is

f (z) =
∞

∑
n=−∞

an (z− z0)
n for 0 < |z− z0| < R . (5.1)

Then

(1) z0 is a removable singular point ⇔ an = 0, ∀n < 0;

(2) z0 is a pole of order m ⇔ a−m 6= 0 and an = 0 for n < −m ;

(3) z0 is an essential singular point

⇔ an 6= 0 for an infinite number of negative values of n.

5.5 Theorem BEHAVIOR OF AN ANALYTIC FUNCTION NEAR AN ESSENTIAL SINGULARITY (PI-
CARD). Let f be an analytic function on the disk 0 < |z− z0| < R. If z0 is an essential singular
point, then for any complex number c ∈ C, except possibly one, there exists a sequence {zn}

∞
n=1

converging to z0 such that f (zn) = c, ∀n.

5.6 Remark Picard’s theorem means that in any neighborhood of z0 and for any complex number
c (except possibly one), the function f takes the value c an infinite number of times.
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6. Partial fractions

6.1 Theorem PARTIAL FRACTION EXPANSION OF RATIONAL FUNCTIONS. Consider the rational
function f (z) = P(z)/Q(z) where P(z) = ∑p

n=0 anzn is a polynomial of degree p (ap 6= c) and
Q(z) = (z− z1)

m1 (z− z2)
m2 · · · (z− zq)

mq is a polynomial of degree q∗ = ∑q
j=1 m j with q distinct

roots z1, . . . , zq of multiplicities m1, . . . , mq respectively (q ≥ 1, m j ≥ 1 for j = 1, . . . , q). Then the
function f (z) can be uniquely written in the form

f (z) = G(z)+
q

∑
j=1

G j [1/(z− z j)]

for any z ∈ C such that z 6= z j, j = 1, . . . , q, where

G j [1/(z− z j)] =
m j

∑
k=1

A jk/(z− z j)
k ,

A jk ∈ C, and G(z) is a polynomial. Further,

(1) if p < q∗, G(z) ≡ 0,

(2) if p ≥ q∗ and the polynomials P(z) and Q(z) have no common root, the degree of G(z) is
p−q∗ .

6.2 Theorem FACTORIZATION OF AN ANALYTIC FUNCTION WITH FINITE NUMBER OF POLES.
Let f be an analytic function everywhere on an open domain U ⊆ C except at a finite number

of singular points z1, . . . , zq which are poles of orders m1, . . . , mq respectively (q ≥ 1, m j ≥ 1 for
j = 1, . . . , q). Then there exists a function g(z) analytic everywhere on U such that g(z j) 6= 0, j =
1, . . . , p, and

f (z) = g(z)/ [(z− z1)
m1 (z− z2)

m2 · · ·(z− zq)
mq ]

for z ∈U and z 6= z j, j = 1, . . . , q. If, furthermore, the function f has a finite number of zeros, the
function f can be written

f (z) =
P(z)

Q(z)
h(z)

for z ∈ U and z 6= z j, j = 1, . . . , q, where P(z) and Q(z) are polynomials with no common root,
Q(z) = (z− z1)

m1 (z− z2)
m2 · · ·(z− zq)

mq and h(z) 6= 0 for z ∈U.

6.3 Theorem PARTIAL FRACTION EXPANSION OF AN ANALYTIC FUNCTION WITH FINITE NUM-
BER OF POLES. Let f be an analytic function everywhere on an open domain U ⊆ C except at a
finite finite number of singular points z1, . . . , zq which are poles of orders m1, . . . , mq (q ≥ 1, m j ≥ 1
for j = 1, . . . , q). Then the function f can be written in a unique way in the form

f (z) = g(z)+
q

∑
j=1

G j [1/(z− z j)]
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for any z ∈U such that z 6= z j, j = 1, . . . , q, where

G j [1/(z− z j)] =
m j

∑
k=1

A jk/(z− z j)
k ,

A jk ∈ C, and G(z) is analytic everywhere on U.
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