Sequences and series *

Jean-Marie Dufour[†] McGill University

First version: March 1992 Revised: January 2002, October 2016 This version: October 2016 Compiled: January 10, 2017, 15:36

^{*} This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on *Mathematics of Information Technology and Complex Systems* (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).

[†] William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 414, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 4400 ext. 09156; FAX: (1) 514 398 4800; e-mail: jean-marie.dufour@ mcgill.ca. Web page: http://www.jeanmariedufour.com

Contents

Lis	t of Definitions, Assumptions, Propositions and Theorems	iii
1.	Definitions and notation	1
2.	Convergence of sequences	4
3.	Convergence of series	6
4.	Convergence of transformed series	11
5.	Uniform convergence	13
6.	Proofs and references	15

List of Tables

List of Figures

List of Definitions, Assumptions, Propositions and Theorems

			1
1.4	Definition :	Supremum and infimum	1
1.5	Definition :	Bounded set in \mathbb{C}	1
		1	1
		1	2
1.9	Definition :		2
1.11	Definition :	Convergence in a set	2
			2
1.13	Definition :		2
1.14	Definition :	I	3
1.15	Definition :	Upper and lower limits	3
1.17	Definition :	Accumulation point	3
1.18	Definition :	Partial sum and series	3
1.20	Definition :	Absolute and conditional convergence	3
1.21	Definition :	Two-sided sequence	4
1.22	Definition :	Double sequence	4
			4
2.1	Theorem : (Convergence criterion for complex sequences	4
2.2	Theorem : H	Properties of convergent sequences	4
2.3	Theorem : (5
2.4			5
2.5	Theorem : (Convergence of real sequences	5
2.6			6
3.1			6
3.2	Proposition	: Alternative forms of the Cauchy criterion for series	6
3.3	Theorem : N	Necessary conditions for convergence of a series	7
3.4	Corollary :	Divergence criterion for a series	7
3.5	Theorem : (Characterization of absolute convergence	7
3.7	Theorem : (Criterion for absolute convergence of a series	7
3.8	Corollary :	Divergence criterion for a series	7
3.9	Theorem : (Comparison criterion for convergence of a series	7
3.10			7
		÷ •	8
			8
			8

	Theorem : Relation between the root and ratio convergence tests	9
3.15	Theorem : Cauchy criterion for convergence of a series	9
3.16	Theorem : Gauss criterion for convergence of a series	9
3.17	Theorem : Integral criterion for convergence of a series	9
	Theorem : Dirichlet criterion for convergence of a series of products	9
3.19	Corollary : Alternating series convergence criterion (Leibniz)	10
3.20	Theorem : Abel criterion for convergence of a series of products	10
3.22	Theorem : Abel-Dini criterion for convergence of a series of ratios	10
3.23	Theorem : Landau criterion for convergence of a series of products	10
3.25	Theorem : Convergence of an arithmetically weighted mean	10
3.26	Theorem : Cesaro convergence	11
4.1	Theorem : Convergence of linearly transformed series	11
4.2	Definition : Convolution	11
4.4	Theorem : Sufficient condition for convergence of the product of two series (Cauchy-	
	Mertens)	11
4.5	Theorem : Limit of the product of two series (Abel)	12
	Theorem : Necessary and sufficient condition for convergence of the product of two series	12
	Theorem : Necessary and sufficient condition for convergence of the product of two series Theorem : Aggregation of terms in a series	12 12
4.6 4.7		
4.6 4.7 4.8	Theorem : Aggregation of terms in a series	12
4.6 4.7 4.8 4.9	Theorem : Aggregation of terms in a series Definition : Rearrangement	12 12
4.6 4.7 4.8 4.9 4.10	Theorem : Aggregation of terms in a series	12 12 12
4.6 4.7 4.8 4.9 4.10 4.11	Theorem : Aggregation of terms in a series	12 12 12 12
4.6 4.7 4.8 4.9 4.10 4.11 4.12	Theorem : Aggregation of terms in a series	12 12 12 12 12
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Theorem : Aggregation of terms in a series	12 12 12 12 12 12 13
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2	Theorem : Aggregation of terms in a series	12 12 12 12 12 13 13
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2	Theorem : Aggregation of terms in a series	12 12 12 12 12 13 13 13
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2 5.4	Theorem : Aggregation of terms in a series	12 12 12 12 12 13 13 13 13 13 14
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2 5.4 5.5	Theorem : Aggregation of terms in a series	12 12 12 12 13 13 13 13 13 13 14 14
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2 5.4 5.5 5.6	Theorem : Aggregation of terms in a series	12 12 12 12 12 13 13 13 13 13 14
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2 5.4 5.5 5.6 5.7 5.9	Theorem : Aggregation of terms in a series	12 12 12 12 13 13 13 13 13 13 14 14
4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 5.2 5.4 5.5 5.6 5.7 5.9 5.10	Theorem : Aggregation of terms in a series	12 12 12 12 13 13 13 13 13 13 14 14

1. DEFINITIONS AND NOTATION

1. Definitions and notation

1.1 Notation We shall use the following notation:

(2)
$$\Leftrightarrow$$
 : if and only if;

(3)
$$\infty$$
 : infinity ;

(4) A^c : complement of the set A;

(5)
$$\Rightarrow$$
 : implies ;

- (6) \sim : is distributed like;
- (7) \equiv : equal by definition;
- (8) \mathbb{C} : set of complex numbers;
- (9) \mathbb{R} : real numbers;
- (10) \mathbb{Z} : integers;
- (11) $\mathbb{N}_0 = \{0, 1, 2, ...\}$: nonnegative integers;
- (12) $\mathbb{N} = \{1, 2, 3, ...\}$: positive integers;
- (13) $\overline{\mathbb{R}}$: extended real numbers :

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \ .$$

1.2 Notation 1.3 Definition BOUNDED SET IN \mathbb{R} . Let $E \subseteq \mathbb{R}$. If there is an element $y \in \mathbb{R}$ such that $x \leq y, \forall x \in \mathbb{R}$, we say that *E* has an upper bound (or is bounded from above). If there is an element $z \in \mathbb{R}$ such that $x \geq z, \forall x \in E$, we say that *E* has a lower bound (or is bounded from below). If *E* has both upper and lower bounds, we say that *E* is bounded.

1.4 Definition SUPREMUM AND INFIMUM. Let $E \subseteq \overline{\mathbb{R}}$. $\sup(E)$ is the smallest element of $\overline{\mathbb{R}}$ such that $x \leq \sup(E)$, $\forall x \in E$; $\inf(E)$ is the largest element of $\overline{\mathbb{R}}$ such that $\inf(E) \leq x$, $\forall x \in E$.

1.5 Definition BOUNDED SET IN \mathbb{C} . Let $E \subseteq \mathbb{C}$. If there is a real number M and a complex number z_0 such that $|z - z_0| < M$ for all $z \in E$, we say the set E is bounded.

1.6 Definition SEQUENCE. Let *E* be a set. A sequence in *E* is function $f(n) = a_n$ which associates to each element $n \in \mathbb{N}$ an element $a_n \in E$. The sequence is usually denoted by the ordered set of the values of f(n):

$${a_1, a_2, \dots} \equiv {a_n}_{n=1}^{\infty} \equiv {a_n}$$

1. DEFINITIONS AND NOTATION

or

$$(a_1,a_2,\ldots)\equiv (a_n)_{n=1}^\infty\equiv (a_n)$$
.

If $E = \mathbb{C}$, the sequence is complex. If $E = \mathbb{R}$, the sequence is real. To indicate that all the elements of the sequence $\{a_n\}$ are in E, we write $\{a_n\} \subseteq E$.

1.7 Remark Let $m \in \mathbb{Z}$ and $I_m = \{n \in \mathbb{Z} : n \ge m\}$. A function $f(n) = b_n$ which maps every element $n \in I_m$ to an element $a_n \in E$ can be viewed as a sequence in E on defining $a_n = b_{m+n-1}$, n = 1, 2, ... Such a sequence is usually denoted

$$\{b_m, b_{m+1}, \dots\} \equiv \{b_n\}_{n=m}^\infty$$
.

Similarly, if $I_m = \{n \in \mathbb{Z} : n \le m\}$, we can define $a_n = b_{m-n+1}$, n = 1, 2, ... In this case, the sequence can be denoted as

$$\{..., b_{m-1}, b_m\} \equiv \{b_n\}_{n=-\infty}^m$$

1.8 Definition SUBSEQUENCE. Let *E* be a set, $\{a_n\}_{n=1}^{\infty} \subseteq E$, and $\{n_k\}_{k=1}^{\infty}$ a sequence of positive integers such that $n_1 < n_2 < \cdots$. The sequence $\{a_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$.

1.9 Definition LIMIT OF A COMPLEX SEQUENCE. Let $a \in \mathbb{C}$ and $\{a_n\} \subseteq \mathbb{C}$. The sequence $\{a_n\}$ converges to a iff for any real number $\varepsilon > 0$, there is an integer N such that $n \ge N$ implies $|a_n - a| < \varepsilon$. In this case, we write $a_n \rightarrow a$, or

$$\lim_{n\to\infty}a_n=a$$

and *a* is called the limit of $\{a_n\}$. If there is a number $a \in \mathbb{C}$ such that $a_n \to a$, we say that the sequence $\{a_n\}$ converges (or converges in \mathbb{C}). If the sequence does not converge, we say it diverges.

1.10 Remark When there is no ambiguity, we can also write $\lim_{n \to \infty} a_n$.

1.11 Definition CONVERGENCE IN A SET. Let $E \subseteq \mathbb{C}$ and $\{a_n\} \subseteq E$. If there exists an element $a \in E$ such that $a_n \to a$, we say that $\{a_n\}$ converges in E.

1.12 Definition CONVERGENCE IN THE SENSE OF CAUCHY. Let $\{a_n\} \subseteq \mathbb{C}$. The sequence $\{a_n\}$ converges in the Cauchy sense iff for any $\varepsilon > 0$, there exists an integer N such that $m \ge N$ and $n \ge N$ imply $|a_m - a_n| < \varepsilon$. A sequence which converges in the Cauchy sense is called a Cauchy sequence.

1.13 Definition INFINITE LIMITS. Let $\{a_n\} \subseteq \mathbb{R}$. We say that the sequence $\{a_n\}$ diverges to ∞ iff for any real number M there exists an integer N such that $n \ge N$ implies $a_n \ge M$. In this case, we write $a_n \to \infty$ or

$$\lim_{n\to\infty}a_n=\infty.$$

Similarly, we say the sequence $\{a_n\}$ diverges to $-\infty$ iff for any real number M there is an integer N such that $n \ge N$ implies $a_n \le M$. In this case, we write $a_n \to -\infty$ or

$$\lim_{n\to\infty}a_n=-\infty.$$

1. DEFINITIONS AND NOTATION

We also wrote $+\infty$ instead of ∞ .

1.14 Definition MONOTONIC SEQUENCE. Let $\{a_n\} \subseteq \mathbb{R}$. If $a_n \leq a_{n+1}$, for all $n \in \mathbb{N}$, we say that the sequence $\{a_n\}$ is monotonically increasing (or monotonic increasing). If $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$, we say the sequence $\{a_n\}$ is monotonically decreasing (monotonic decreasing). If $\{a_n\}$ is monotonically increasing and $a_n \rightarrow a$, we write $a_n \uparrow a$. If $\{a_n\}$ is monotonically decreasing and $a_n \rightarrow a$, we write $a_n \uparrow a$. If $\{a_n\}$ is monotonically decreasing and $a_n \rightarrow a$, we write $a_n \downarrow a$.

1.15 Definition UPPER AND LOWER LIMITS. Let $\{a_n\} \subseteq \mathbb{R}$. The upper limit of the sequence $\{a_n\}$ is defined by

$$\limsup_{n \to \infty} a_n = \inf_{N \ge 1} \left\{ \sup_{n \ge N} a_n \right\} \equiv \inf \left\{ \sup \left\{ a_n : n \ge N \right\} : N \ge 1 \right\}.$$

The lower limit of the sequence $\{a_n\}$ is defined by

$$\liminf_{n\to\infty} a_n = \sup_{N\geq 1} \left\{ \inf_{n\geq N} a_n \right\} \equiv \sup \left\{ \inf \left\{ a_n : n\geq N \right\} : N\geq 1 \right\} \ .$$

We also write lim instead of lim sup, and lim instead of lim inf.

1.16 Remark The upper and lower limits of the sequence $\{a_n\} \subseteq \mathbb{R}$ always exist in $\overline{\mathbb{R}}$.

1.17 Definition ACCUMULATION POINT. Let $\{a_n\} \subseteq \mathbb{C}$ and $a \in \mathbb{C}$. *a* is an accumulation point of $\{a_n\}$ iff for any real number $\varepsilon > 0$, the inequality $|a_n - a| < \varepsilon$ is satisfied for an infinity of elements of the sequence $\{a_n\}$.

1.18 Definition PARTIAL SUM AND SERIES. Let $\{a_n\} \subseteq \mathbb{C}$ and $S_N = \sum_{n=1}^N a_n$. We call $\{S_N\}_{N=1}^{\infty}$ the sequence of partial sums associated with $\{a_n\}$. The symbol $\sum_{n=1}^{\infty} a_n$ represents the series associated with $\{a_n\}$. If $\lim_{N\to\infty} S_N = S$ where $S \in \mathbb{C}$, we say the series $\sum_{n=1}^{\infty} a_n$ converges (or converges to *S*) and we write

$$\sum_{n=1}^{\infty} a_n = S$$

If the series $\sum_{n=1}^{\infty} a_n$ does not converge, we say it diverges.

1.19 Remark If we consider a sequence of the form $\{a_n\}_{n=m}^{\infty}$ where $m \in \mathbb{Z}$, we say that the series $\sum_{n=m}^{\infty} a_n$ converges to *S* if $\lim_{N\to\infty} S_N = S$, where $S_N = \sum_{n=m}^{N+(m-1)} a_n$. Similarly, for a sequence of the form $\{a_n\}_{n=-\infty}^{m}$, where $m \in \mathbb{Z}$, we say that the series $\sum_{n=-\infty}^{m} a_n$ converges to *S* if $\lim_{N\to\infty} S_N = S$, where $S_N = \sum_{n=m}^{m+1-N} a_n$.

1.20 Definition ABSOLUTE AND CONDITIONAL CONVERGENCE. Let $\{a_n\} \subseteq \mathbb{C}$. If the series $\sum_{n=1}^{\infty} |a_n|$ converges, we say that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely. If $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} |a_n|$ does not converge, we say that $\sum_{n=1}^{\infty} a_n$ converges conditionally.

2. CONVERGENCE OF SEQUENCES

1.21 Definition TWO-SIDED SEQUENCE. Let $\{a_n\}_{n=0}^{\infty}$ and $\{a_n\}_{n=-\infty}^{-1}$ be two sequences of complex numbers. If the series $\sum_{n=0}^{\infty} a_n$ converges to $S_1 \in \mathbb{C}$ and if the series $\sum_{n=-\infty}^{-1} a_n$ converges to $S_2 \in \mathbb{C}$, we say that the two-sided series $\sum_{n=-\infty}^{\infty} a_n$ converges to $S_1 + S_2$.

1.22 Definition DOUBLE SEQUENCE. A double sequence in *E* is a function $f(m, n) = a_{mn}$ which maps each pair $(m, n) \in \mathbb{N}^2$ to an element $a_{mn} \in E$. We usually denote the double sequence by

$$\{a_{mn}\}_{m,n=1}^{\infty} \equiv \{a_{mn}\}.$$

To indicate that all the elements of the double sequence $\{a_{mn}\}$ are in *E*, we write $\{a_{mn}\} \subseteq E$.

1.23 Definition LIMIT OF A COMPLEX DOUBLE SEQUENCE. Let $a \in \mathbb{C}$ and $\{a_{mn}\} \subseteq \mathbb{C}$. The double sequence $\{a_{mn}\}$ converges to a when $m, n \to \infty$ iff for any real number $\varepsilon > 0$, there is an integer N such that $m, n \ge N$ implies $|a_{mn} - a| < \varepsilon$. In this case, we write $a_{mn} \xrightarrow{\longrightarrow} a$, or

$$\lim_{m,n\to\infty}a_{mn}=a$$

and *a* is called the limit of $\{a_{mn}\}$ when $m, n \rightarrow \infty$.

1.24 Remark For double sequences, we can consider several different limits: $\lim_{m\to\infty} a_{mn}$, $\lim_{n\to\infty} a_{mn}$, $\lim_{m\to\infty} a_{mn}$, $\lim_{m\to\infty} a_{mn}$]. In general, these limits are not equal. Even if

$$\lim_{m\to\infty}a_{mn}\equiv b_n \quad , \quad \lim_{n\to\infty}a_{mn}=c_m$$

exist, we *can* have

$$\lim_{n\to\infty} \left[\lim_{m\to\infty} a_{mn}\right] \equiv \lim_{n\to\infty} b_n \neq \lim_{m\to\infty} c_m \equiv \lim_{m\to\infty} \left[\lim_{n\to\infty} a_{mn}\right] \,.$$

2. Convergence of sequences

2.1 Theorem CONVERGENCE CRITERION FOR COMPLEX SEQUENCES. Let $\{c_n\} \subseteq \mathbb{C}$, where $c_n = a_n + i \ b_n$, $a_n \in \mathbb{R}$, $b_n \in \mathbb{R}$, for all n, and $i = \sqrt{-1}$. Then the sequence $\{c_n\}$ converges iff each one of the sequences $\{a_n\}$ and $\{b_n\}$ converges. Furthermore, if $\{c_n\}$ converges, we have:

$$\lim_{n\to\infty}c_n=\left(\lim_{n\to\infty}a_n\right)+i\left(\lim_{n\to\infty}b_n\right)\ .$$

2.2 Theorem PROPERTIES OF CONVERGENT SEQUENCES. Let $\{a_n\} \subseteq \mathbb{C}$, $a \in \mathbb{C}$ and $a' \in \mathbb{C}$.

- (*a*) *Limit unicity*. If $a_n \rightarrow a$ and $a_n \rightarrow a'$, then a = a'.
- (b) **Boundedness of convergent sequences**. If the sequence $\{a_n\}$ converges, then the set $\{a_1, a_2, \dots\}$ is bounded.

2. CONVERGENCE OF SEQUENCES

- (c) Convergence of bounded sequences (Bolzano-Weierstrass). If the sequence $\{a_n\}$ is bounded, then $\{a_n\}$ contains a convergent subsequence $\{a_{n_k}\}$. In other words, a bounded sequence $\{a_n\}$ has at least one accumulation point.
- (d) **Convergence of subsequences**. $\{a_n\}$ converges to $a \Leftrightarrow$ each subsequence $\{a_{n_k}\}$ of $\{a_n\}$ converges to $a \Leftrightarrow$ each subsequence $\{a_{n_k}\}$ of $\{a_n\}$ contains another subsequence $\{a_{m_k}\}$ which converges to a.
- (e) Accumulation and convergence. If the sequence $\{a_n\}$ is bounded and has exactly one accumulation point *a*, then $a_n \rightarrow a$. If the sequence $\{a_n\}$ has no finite accumulation point or has several, then it diverges.

2.3 Theorem CONVERGENCE OF TRANSFORMED SEQUENCES. Let $\{a_n\} \subseteq \mathbb{C}$ and $\{b_n\} \subseteq \mathbb{C}$ two sequences such that

$$\lim_{n\to\infty}a_n=a,\quad \lim_{n\to\infty}b_n=b$$

where $a, b \in \mathbb{C}$. Then

- (a) $\lim_{n\to\infty} (a_n+b_n) = a+b$;
- (b) $\lim_{n\to\infty} (c a_n) = c a$, $\lim_{n\to\infty} (a_n + c) = a + c$, $\forall c \in \mathbb{C}$;
- (c) $\lim_{n\to\infty} (a_n b_n) = a b$;
- (d) $\lim (a_n/b_n) = a/b$, provided $b \neq 0$;
- (e) $\lim_{n\to\infty} g(a_n) = g(a)$ for any function $g : \mathbb{C} \to \mathbb{C}$ continuous at x = a.

2.4 Theorem CONVERGENCE OF CAUCHY SEQUENCES. Let $\{a_n\} \subseteq \mathbb{C}$.

- (a) If the sequence $\{a_n\}$ converges, then $\{a_n\}$ converges in the Cauchy sense.
- (b) **Completeness**. If the sequence $\{a_n\}$ converges in the Cauchy sense, then the sequence $\{a_n\}$ converges.

2.5 Theorem CONVERGENCE OF REAL SEQUENCES. Let $\{a_n\} \subseteq \mathbb{R}, \{b_n\} \subseteq \mathbb{R}, a \in \mathbb{R} \text{ and } b \in \mathbb{R}$.

- (a) $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$.
- (b) $\lim_{n\to\infty} a_n = a \Leftrightarrow \liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = a.$
- (c) If $a_n \leq b_n$ for $n \geq N$, then

$$\begin{array}{rcl} \liminf_{n \to \infty} a_n & \leq & \liminf_{n \to \infty} b_n \, , \\ \limsup_{n \to \infty} a_n & \leq & \limsup_{n \to \infty} b_n \, . \end{array}$$

(d) If $a_n \leq b_n$ for $n \geq N$ and if $\{a_n\}$ and $\{b_n\}$ are convergent sequences, then

$$\lim_{n\to\infty}a_n\leq \lim_{n\to\infty}b_n.$$

(e) If the sequence $\{a_n\}$ is monotonically increasing, then

$$\{a_n\}$$
 converges in \mathbb{R} or $\lim_{n\to\infty} a_n = \infty$.

(f) If the sequence $\{a_n\}$ is monotonically decreasing, then

$$\{a_n\}$$
 converges in \mathbb{R} or $\lim_{n\to\infty}a_n=-\infty$.

(g) If the sequence $\{a_n\}$ is monotonic (increasing or decreasing) and bounded, then $\{a_n\}$ converges in \mathbb{R} .

2.6 Theorem LIMITS OF IMPORTANT SPECIAL SEQUENCES. Let p and α be real numbers and x a complex number.

- (a) If p > 0, $\lim_{n \to \infty} \frac{1}{n^p} = 0$. (b) If p > 0, $\lim_{n \to \infty} p^{1/n} = 1$. (c) $\lim_{n \to \infty} n^{1/n} = 1$. (d) If p > 0, $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.
- (e) If |x| < 1, $\lim_{n \to \infty} x^n = 0$.
- $(f) \ \ \text{If} \ b>0 \ \text{and} \ b\neq 1, \ \lim_{n\to\infty} [\log_b(n)/n]=0 \,.$

3. Convergence of series

3.1 Theorem CAUCHY CRITERION FOR CONVERGENCE OF A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$. The series $\sum_{n=1}^{\infty} a_n$ converges iff, for any $\varepsilon > 0$, there is an integer *N* such that $n \ge m \ge N$ implies $|\sum_{k=m}^{n} a_k| < \varepsilon$.

3.2 Proposition ALTERNATIVE FORMS OF THE CAUCHY CRITERION FOR SERIES. Let $\{a_n\} \subseteq \mathbb{C}$. The series $\sum_{n=1}^{\infty} a_n$ converges

- $\Leftrightarrow \quad \text{for any } \varepsilon > 0, \text{ there is an integer } N \text{ such that } n \ge N \text{ implies } \left| \sum_{k=n+1}^{n+p} a_n \right| < \varepsilon \text{ for any } p \ge 1$
- $\Leftrightarrow \quad \text{for any } \varepsilon > 0, \text{ there is an integer } N \text{ such that } n \ge N \text{ implies } \sup_{p \ge 1} \left| \sum_{k=n+1}^{n+p} a_n \right| < \varepsilon$

$$\Leftrightarrow \quad \lim_{n \to \infty} \left[\sup_{p \ge 1} \left| \sum_{k=n+1}^{n+p} a_n \right| \right] = 0 \; .$$

3.3 Theorem NECESSARY CONDITIONS FOR CONVERGENCE OF A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$.

(a) If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

(b) If the series $\sum_{n=1}^{\infty} |a_n|$ converges and if $|a_{n+1}| \le |a_n|$ for $n \ge N$, then $\lim_{n \to \infty} (na_n) = 0$.

3.4 Corollary DIVERGENCE CRITERION FOR A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$ and c > 0. If $|a_n| \ge c$ for an infinite number values of *n*, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

3.5 Theorem CHARACTERIZATION OF ABSOLUTE CONVERGENCE. Let $\{a_n\} \subseteq \mathbb{C}$. The series $\sum_{n=1}^{\infty} a_n$ does not converge absolutely $\Leftrightarrow \sum_{n=1}^{\infty} |a_n|$ diverges $\Leftrightarrow \sum_{n=1}^{\infty} |a_n| = \infty$.

3.6 Remark To indicate that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, we *can* write $\sum_{n=1}^{\infty} |a_n| < \infty$.

3.7 Theorem CRITERION FOR ABSOLUTE CONVERGENCE OF A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$. If the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.

3.8 Corollary DIVERGENCE CRITERION FOR A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$. If the series $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} |a_n| = \infty$.

3.9 Theorem COMPARISON CRITERION FOR CONVERGENCE OF A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$, $\{c_n\} \subseteq \mathbb{R}$ and $\{d_n\} \subseteq \mathbb{R}$.

- (a) If $|a_n| \le c_n$ for $n \ge n_0$, where n_0 is a given integer, and if the series $\sum_{n=1}^{\infty} c_n$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (b) If $|a_n| \ge d_n \ge 0$ for $n \ge n_0$, where n_0 is a given integer, and if $\sum_{n=1}^{\infty} d_n$ diverges, then $\sum_{n=1}^{\infty} |a_n| = \infty$ but $\sum_{n=1}^{\infty} a_n$ can converge or diverge.

3.10 Theorem CONVERGENCE OF A SERIES OF NONNEGATIVE NUMBERS. Let $\{a_n\} \subseteq \mathbb{R}$ where $a_n \ge 0$ for all *n*.

- (a) The series $\sum_{n=1}^{\infty} a_n$ converges iff the sequence of partial sums $\{\sum_{n=1}^{N} a_n\}_{N=1}^{\infty}$ is bounded.
- (b) **Cauchy's condensation criterion**. If the sequence $\{a_n\}$ is monotonically decreasing $(a_1 \ge a_2 \ge a_3 \ge ...)$, the series $\sum_{n=1}^{\infty} a_n$ converges iff the series

$$\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots$$
(3.1)

converges.

3.11 Proposition CONVERGENCE OF SPECIAL SERIES. Let *x* a complex number and *p* a real number.

(a) Geometric series. If |x| < 1,

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

where $0^0 \equiv 1$. If $|x| \ge 1$, the series $\sum_{n=0}^{\infty} x^n$ diverges.

- (b) The series $\sum_{n=1}^{\infty} 1/n^p$ converges if p > 1 and diverges if $p \le 1$.
- (c) The series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if p > 1 and diverges if $p \le 1$.

(d)
$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
.

3.12 Theorem ROOT CONVERGENCE CRITERION (CAUCHY). Let $\{a_n\} \subseteq \mathbb{C}$ and $\alpha = \limsup_{n \to \infty} |a_n|^{1/n}$.

- (a) If $\alpha < 1$, the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (b) If $\alpha > 1$, $\sum_{n=1}^{\infty} a_n$ diverges.
- (c) If $|a_n|^{1/n} \le \delta < 1$ for $n \ge n_0$, where n_0 is a given integer, the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (d) If $|a_n|^{1/n} \ge 1$ for an infinite number of values of n, $\sum_{n=1}^{\infty} a_n$ diverges.
- (e) If none of the preceding conditions holds, we can find cases where $\sum_{n=1}^{\infty} a_n$ converges and cases where $\sum_{n=1}^{\infty} a_n$ diverges.

3.13 Theorem RATIO CONVERGENCE CRITERION (D'ALEMBERT). Let $\{a_n\} \subseteq \mathbb{C}$ and $0/0 \equiv 0$.

- (a) If $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$, the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (b) If $\left|\frac{a_{n+1}}{a_n}\right| \le \varepsilon < 1$ for $n \ge n_0$, where n_0 is a given integer, the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (c) If $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for $n \ge n_0$, where n_0 is a given integer, the series $\sum_{n=1}^{\infty} a_n$ diverges.
- (d) If $\liminf_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$, the series $\sum_{n=1}^{\infty} a_n$ diverges.
- (e) If $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \le 1 \le \limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, the series $\sum_{n=1}^{\infty} a_n$ can converge or diverge.

3. CONVERGENCE OF SERIES

3.14 Theorem RELATION BETWEEN THE ROOT AND RATIO CONVERGENCE TESTS. Let $\{a_n\} \subseteq \mathbb{C}$ a sequence such that $a_n \neq 0$ for $n \ge n_0$, where n_0 is a given integer. Then

$$\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \le \liminf_{n \to \infty} |a_n|^{1/n} \le \limsup_{n \to \infty} |a_n|^{1/n} \le \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

If we define $0/0 \equiv 0$ and $|x/0| = \infty$ for $x \neq 0$, the above inequalities hold for any sequence $\{a_n\} \subseteq \mathbb{C}$.

3.15 Theorem CAUCHY CRITERION FOR CONVERGENCE OF A SERIES. Let $\{a_n\} \subseteq \mathbb{C}$ and

$$L = \liminf_{n \to \infty} n\left(1 - \left|\frac{a_{n+1}}{a_n}\right|\right), \ U = \limsup_{n \to \infty} n\left(1 - \left|\frac{a_{n+1}}{a_n}\right|\right)$$

where $L, U \in \overline{\mathbb{R}}$.

(a) If L > 1, the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(b) If U < 1, $\sum_{n=1}^{\infty} |a_n| = \infty$ but the series $\sum_{n=1}^{\infty} a_n$ can converge or diverge.

(c) If L = U = 1, the series $\sum_{n=1}^{\infty} |a_n|$ can converge or diverge, and similarly for $\sum_{n=1}^{\infty} a_n$.

3.16 Theorem GAUSS CRITERION FOR CONVERGENCE OF A SERIES. Let $\{a_n\} \subseteq \mathbb{C}, \{c_n\} \subseteq \mathbb{R}$ and suppose that

$$\left|\frac{a_{n+1}}{a_n}\right| = 1 - \frac{L}{n} + \frac{c_n}{n^p}$$

where p > 1 and $|c_n| \le M < \infty$, $\forall n$.

(a) If L > 1, the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.

(b) If $L \leq 1$, $\sum_{n=1}^{\infty} |a_n| = \infty$ but $\sum_{n=1}^{\infty} a_n$ can converge or diverge.

3.17 Theorem INTEGRAL CRITERION FOR CONVERGENCE OF A SERIES. Let f(x), $x \in \mathbb{R}$, a real-valued continuous function, non-negative and non decreasing for $x \ge A$, and let $\{a_n\} \subseteq \mathbb{C}$ a sequence such that $|a_n| = f(n)$ for $n \ge A$. Then

- (a) $\int_{A}^{\infty} f(x) dx < \infty \Rightarrow \sum_{n=1}^{\infty} a_n$ converges absolutely;
- (b) $\int_A^{\infty} f(x) dx = \infty \Rightarrow \sum_{n=1}^{\infty} |a_n| = \infty$.

3.18 Theorem DIRICHLET CRITERION FOR CONVERGENCE OF A SERIES OF PRODUCTS. Let $\{a_n\} \subseteq \mathbb{C}$ and $\{b_n\} \subseteq \mathbb{R}$ two sequences such that

- (a) $\left|\sum_{n=1}^{N} a_n\right| \leq M$, for all $N \geq 1$, where $M \geq 0$,
- $(b) \quad b_{n+1} \leq b_n, \forall n$,
- (c) $\lim_{n\to\infty} b_n = 0$.

3. CONVERGENCE OF SERIES

Then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.

3.19 Corollary ALTERNATING SERIES CONVERGENCE CRITERION (LEIBNIZ). Let $\{a_n\} \subseteq \mathbb{R}$ a sequence such that

- $(a) |a_{n+1}| \leq |a_n|, \forall n,$
- (b) $a_n = (-1)^{n+1} |a_n|, \forall n$,
- (c) $\lim_{n\to\infty}a_n=0$.

Then the series $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} a_n \leq a_1$.

3.20 Theorem ABEL CRITERION FOR CONVERGENCE OF A SERIES OF PRODUCTS. Let $\{a_n\} \subseteq \mathbb{C}$ and $\{b_n\} \subseteq \mathbb{R}$ be two sequences such that

- (a) $\sum_{n=1}^{\infty} a_n$ converges,
- (b) b_n is a monotonic bounded sequence.

Then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.

3.21 Remark In contrast with most criteria described above, the Abel and Dirichlet criteria do not entail absolute convergence.

3.22 Theorem ABEL-DINI CRITERION FOR CONVERGENCE OF A SERIES OF RATIOS. If the series $\sum_{n=1}^{\infty} a_n$ diverges such that $S_N = \sum_{n=1}^{N} a_n > 0$, $\forall N$, and $S_N \xrightarrow[N \to \infty]{} \infty$, then

- (a) the series $\sum_{n=1}^{\infty} a_n / S_n^{\delta}$ diverges for any $\delta \leq 1$,
- (b) the series $\sum_{n=1}^{\infty} a_n / S_n^{\delta}$ converges for any $\delta > 1$.

3.23 Theorem LANDAU CRITERION FOR CONVERGENCE OF A SERIES OF PRODUCTS. Let $\{a_n\} \subseteq \mathbb{R}$. The series $\sum_{n=1}^{\infty} |a_n|^p$, where p > 1, converges \Leftrightarrow the series $\sum_{n=1}^{\infty} a_n b_n$ converges for all sequences $\{b_n\} \subseteq \mathbb{C}$ such that $\sum_{n=1}^{\infty} |b_n|^q$ converges, where q = p/(p-1).

3.24 Remark The Landau theorem implies: if $\sum_{n=1}^{\infty} |a_n|^p < \infty$ and $\sum_{n=1}^{\infty} |b_n|^q < \infty$, where p > 1 and q = p/(p-1), then the series $\sum_{n=1}^{\infty} a_n b_n$ and $\sum_{n=1}^{\infty} |a_n b_n|$ convergent. Further, it gives a necessary condition for the convergence of $\sum_{n=1}^{\infty} |a_n|^p$ when p > 1.

3.25 Theorem CONVERGENCE OF AN ARITHMETICALLY WEIGHTED MEAN. Let $\{a_n\} \subseteq \mathbb{C}$. If the series $\sum_{n=1}^{\infty} a_n$ converges, then

$$\lim_{N \to \infty} \sum_{n=1}^{N} (1 - \frac{n}{N}) a_n = \sum_{n=1}^{\infty} a_n$$

and

$$\lim_{N\to\infty}\sum_{n=1}^N\frac{n}{N}a_n=\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N n\ a_n=0\ .$$

3.26 Theorem CESARO CONVERGENCE. Let $\{a_n\} \subseteq \mathbb{C}$ a sequence such that $a_n \to a \in \mathbb{C}$. Then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N a_n = a \, .$$

4. Convergence of transformed series

4.1 Theorem CONVERGENCE OF LINEARLY TRANSFORMED SERIES. Let $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ and $\{b_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ be two sequences such that

$$\sum_{n=0}^{\infty} a_n = A \text{ and } \sum_{n=0}^{\infty} b_n = B$$

where $A, B \in \mathbb{C}$. Then the sequences $\sum_{n=0}^{\infty} (a_n + b_n)$ and $\sum_{n=0}^{\infty} c a_n$ converge for any $c \in \mathbb{C}$, and

$$\sum_{n=0}^{\infty} (a_n + b_n) = A + B, \quad \sum_{n=0}^{\infty} c a_n = c \; .$$

4.2 Definition CONVOLUTION. Let $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ and $\{b_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$. We call the sequence

$$c_n = \sum_{k=0}^n a_k b_{n-k}, n = 0, 1, 2, \dots$$

the convolution of the sequences $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$. Further, the series $\sum_{n=0}^{\infty} c_n$ is called the product of the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$.

4.3 Remark We denote the convolution of the sequences a_n and b_n by $a_n * b_n$:

$$a_n * b_n = \sum_{k=0}^n a_k b_{n-k} \, .$$

4.4 Theorem SUFFICIENT CONDITION FOR CONVERGENCE OF THE PRODUCT OF TWO SERIES (CAUCHY-MERTENS). Let $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ and $\{b_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ be two sequences such that

- (a) $\sum_{n=0}^{\infty} a_n = A$ and $\sum_{n=0}^{\infty} b_n = B$, where $A, B \in \mathbb{C}$, and
- (b) $\sum_{n=0}^{\infty} a_n$ converges absolutely.

Then the series $\sum_{n=0}^{\infty} c_n$, where $c_n = \sum_{k=0}^{n} a_k b_{n-k}$, converges and

$$\sum_{n=0}^{\infty} c_n = AB .$$
 (Mertens)

If, furthermore, $\sum_{n=0}^{\infty} b_n$ converges absolutely, the series $\sum_{n=0}^{\infty} c_n$ converges absolutely.

4. CONVERGENCE OF TRANSFORMED SERIES

4.5 Theorem LIMIT OF THE PRODUCT OF TWO SERIES (ABEL). If $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$, $\{b_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ and $\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ are three sequences such that the series $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ and $\sum_{n=0}^{\infty} c_n$ converge to *A*, *B* and *C* respectively, and if

$$c_n = \sum_{k=0}^n a_k b_{n-k} \; ,$$

then

$$C = AB$$
.

4.6 Theorem NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE OF THE PRODUCT OF TWO SERIES. Let $\{a_n\} \subseteq \mathbb{R}$. The series $\sum_{n=0}^{\infty} c_n$, where $c_n = \sum_{k=0}^{\infty} a_k b_{n-k}$, converges for all sequences $\{b_n\} \subseteq \mathbb{R}$ such that $\sum_{n=0}^{\infty} b_n$ converges $\Leftrightarrow \sum_{n=0}^{\infty} |a_n| < \infty$.

4.7 Theorem AGGREGATION OF TERMS IN A SERIES. Let $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ be a sequence such that $\sum_{n=0}^{\infty} a_n = A \in \mathbb{C}, \{r_n\}_{n=0}^{\infty} \subseteq \mathbb{N}_0$ a monotonically increasing sequence of nonnegative integers such that $r_0 = 0$ and $r_n \to \infty$, and $\{b_n\}_{n=1}^{\infty}$ the sequence defined by

$$b_n = \sum_{k=r_{n-1}}^{r_n-1} a_k, n = 1, 2, \dots$$

Then the series $\sum_{n=1}^{\infty} b_n$ converges and

$$\sum_{n=1}^{\infty} b_n = A$$

4.8 Definition REARRANGEMENT. Let $\{k_n\}_{n=0}^{\infty}$ be a sequence of nonnegative integers such that each nonnegative integer appears once and only once in the sequence. If

$$a'_n = a_{k_n}, n = 0, 1, 2, \dots$$

we call the series $\sum_{n=0}^{\infty} a'_n$ a rearrangement of the series $\sum_{n=0}^{\infty} a_n$.

4.9 Definition COMMUTATIVELY CONVERGENT SERIES. Let $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{C}$ be a sequence such that $\sum_{n=0}^{\infty} a_n$ converges to $A \in \mathbb{C}$. The series $\sum_{n=0}^{\infty} a_n$ is commutatively convergent if all the rearrangements $\sum_{n=0}^{\infty} a'_n$ of the series $\sum_{n=0}^{\infty} a_n$ converge to A.

4.10 Theorem REARRANGEMENT OF AN ABSOLUTELY CONVERGENT SERIES (DIRICHLET). Let $\{a_n\}_{n=0}^{\infty}$ be a sequence such that $\sum_{n=0}^{\infty} a_n$ converges absolutely to $A \in \mathbb{C}$. Then all the rearrangements of the series $\sum_{n=0}^{\infty} a_n$ converge to A.

4.11 Theorem REARRANGEMENT OF A CONDITIONNALLY CONVERGENT SERIES (RIEMANN). Let $\{a_n\}_{n=0}^{\infty} \subseteq \mathbb{R}$ be a series such that the series $\sum_{n=0}^{\infty} a_n$ converges conditionally and let

$$-\infty \leq lpha \leq eta \leq \infty$$
 .

5. UNIFORM CONVERGENCE

Then there is a rearrangement $\sum_{n=0}^{\infty} a'_n$ such that

$$\liminf_{n\to\infty}\left(\sum_{m=0}^n a'_m\right) = \alpha \ , \limsup_{n\to\infty}\left(\sum_{m=0}^n a'_m\right) = \beta \ .$$

4.12 Theorem EQUIVALENCE BETWEEN ABSOLUTE AND COMMUTATIVE CONVERGENCE. Let $\{a_n\} \subseteq \mathbb{C}$ be a sequence such that the series $\sum_{n=0}^{\infty} a_n$ converges. Then $\sum_{n=0}^{\infty} a_n$ converges absolutely iff $\sum_{n=0}^{\infty} a_n$ converges commutatively.

4.13 Theorem CONDITION FOR DOUBLE SERIES COMMUTATIVITY. Let $\{a_{mn} : m, n = 0, 1, 2, ...\} \subseteq \mathbb{C}$ be a double sequence such that

$$\sum_{n=0}^{\infty} |a_{mn}| = b_m, m = 0, 1, 2, \dots$$

and $\sum_{m=0}^{\infty} b_m$ converges. Then

$$\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}a_{mn}=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{mn}.$$

5. Uniform convergence

5.1 Notation In this section, f_n and f refer to functions on a set E to the complex numbers \mathbb{C} , i.e. $f_n : E \to \mathbb{C}$ and $f : E \to \mathbb{C}$.

5.2 Definition UNIFORM CONVERGENCE. We say that the sequence of functions $\{f_n\}_{n=0}^{\infty}$ converges uniformly on *E* to the function *f* if, for any $\varepsilon > 0$, there is an integer *N* such that

$$n \ge N \Rightarrow |f_n(x) - f(x)| < \varepsilon, \forall x \in E$$
.

In this case, we write $f_n \rightarrow f$ uniformly on *E*.

5.3 Remark We dit that the series $\sum_{i=0}^{\infty} f_i(x)$ converges uniformly on *E* if the sequence of partial sums $s_n(x) = \sum_{i=0}^n f_i(x)$, n = 0, 1, ... converges uniformly on *E*.

5.4 Theorem CAUCHY CRITERION FOR UNIFORM CONVERGENCE. The sequence of functions $\{f_n\}_{n=0}^{\infty}$ converges uniformly on *E* to a function *f* if and only if, for any $\varepsilon > 0$, there is an integer *N* such that

$$m, n \geq N \Rightarrow |f_m(x) - f_n(x)| < \varepsilon, \forall x \in E$$
.

5.5 Theorem SUPREMUM CRITERION FOR UNIFORM CONVERGENCE. Suppose

$$\lim_{n\to\infty}f_n(x)=f(x), \forall x\in E,$$

and let

$$M_n = \sup_{x \in E} |f_n(x) - f(x)| .$$

Then, $f_n \to f$ uniformly on *E* if and only if $\lim_{n \to \infty} M_n = 0$.

5.6 Theorem WEIERSTRASS UNIFORM CONVERGENCE CRITERION. Suppose $|f_n(x)| \le M_n$, $\forall x \in E$, n = 0, 1, 2, ... and $\sum_{n=0}^{\infty} M_n < \infty$. Then the series $\sum_{n=0}^{\infty} f_n(x)$ converges uniformly on E.

5.7 Theorem UNIFORM CONVERGENCE AND CONTINUITY. If $\{f_n\}_{n=0}^{\infty}$ is a sequence of continuous functions on *E* and if $f_n \to f$ uniformly on *E*, then the function *f* is continuous on *E*.

5.8 Remark A sequence of continuous functions $\{f_n\}_{n=0}^{\infty}$ can converge to a continuous function f without uniform convergence.

5.9 Theorem CONDITIONS OF UNIFORM CONVERGENCE (DINI). If

- (a) K is a compact set,
- (b) $\{f_n\}_{n=0}^{\infty}$ is a sequence of continuous functions on K,
- (c) $\lim_{x \to \infty} f_n(x) = f(x), \forall x \in K$, where f is a continuous function on K,
- (d) $f_n(x) \ge f_{n+1}(x), \forall x \in K, n = 0, 1, 2, \dots$,

then $f_n \rightarrow f$ uniformly on *K*.

5.10 Theorem UNIFORM CONVERGENCE AND DIFFERENTIATION OF FUNCTIONS OF REAL VARIABLES. Suppose $[a, b] \subseteq E \subseteq \mathbb{R}$ and let $f_n : E \to \mathbb{C}$, a sequence of differentiable functions on the interval [a,b] such that the sequence $\{f_n(x_0)\}_{n=0}^{\infty}$ converges for at least one $x_0 \in [a,b]$. If the sequence $\{f'_n\}_{n=0}^{\infty}$ converges uniformly on [a,b], then $\{f_n\}_{n=0}^{\infty}$ converges uniformly on [a,b] to a differentiable function f on E, and

$$f'(x) = \lim_{n \to \infty} f'_n(x), \forall x \in [a, b] .$$

5.11 Theorem UNIFORM CONVERGENCE AND DIFFERENTIATION OF FUNCTIONS OF COMPLEX VARIABLES. Let $E \subseteq \mathbb{C}$ and $f_n : E \to \mathbb{C}$, n = 0, 1, 2, ..., a sequence of differentiable functions on *E*. If the sequence $\{f_n\}_{n=0}^{\infty}$ converges to a function *f* in *E* and $\{f'_n\}_{n=0}^{\infty}$ converges uniformly in *E*, then the function *f* is differentiable in *E* and

$$f'(z) = \lim_{n \to \infty} f'_n(z), \forall z \in E.$$

6. PROOFS AND REFERENCES

6. Proofs and references

- **1**. Rudin (1976, Chapters 1 and 3).
- **1.15**. Royden (1968, Section 2.4, pp. 35-38).
- **1.22 1.23** Iyanaga and Kawada (1977, article 374, p. 1162).
- **2**. Rudin (1976, Chapter 3).

2.2. Ahlfors (1979, Chapter 1, p. 62), Gillert, Küstner, Kellwich and Kästner (1986, Section 18.1, p. 422), and Rudin (1976, Chapter 3).

- 2.6. Rudin (1976, Theorem 3.20, p. 57), and Gillert et al. (1986, Section 18.1, p. 420).
- **3.1**. Rudin (1976, Chapter 3).
- **3.2.** Gillert et al. (1986, Section 18.2, p. 428).
- **3.3**. Knopp (1956, Section 2.6.2, Theorem 1, p. 49, and Section 3.3, Theorem 1, p. 61).
- **3.15.** Devinatz (1968, section 3.2.4, p. 112) and Taylor (1955, Section 17.4, pp. 567-568).
- **3.16**. Taylor (1955, Section 17.4, pp. 568-569).
- **3.17.** Taylor (1955, Section 17.21, pp. 551-553).
- **3.18**. Anderson (1971, Lemma 8.3.1, p. 460).
- **3.19**. Piskounov (1980, 1980, chapitre XVI(7), pp. 294-296).
- 3.22. Hardy, Littlewood and Polya (1952, Theorem 162, p. 120) and Knopp (1956, Section

2.6.2, Theorem 1, p. 49, and Section 3.3, Theorem 1, p. 61).

- **3.23**. Beckenbach and Bellman (1965, Chapter 3, Theorem 11, pp. 116-117).
- **3.25**. Fuller (1976, Lemma 3.1.5, p. 112).
- **4.** Rudin (1976, Chapter 3).

4.4. Rudin (1976, Section 3.50, pp. 74-75), Taylor (1955, Section 17.6, pp. 575-580) and Iyanaga and Kawada (1977, article 374, p. 1162).

- 4.6. Beckenbach and Bellman (1965, Chapter 3, Theorem 12, p. 117).
- **4.7**. Gillert et al. (1986, Chapter 18, p. 428).
- **4.9**. Gillert et al. (1986, Section 18.2, p. 429).
- 4.10 4.11. Iyanaga and Kawada (1977, article 374, p. 1162).
- **4.12**. Gillert et al. (1986, section 18.2, p. 429).
- 5. Ahlfors (1979, Chapter 2) and Rudin (1976, Chapter 7).
- 5.2. Ahlfors (1979, Section 2.3, p. 36) and Rudin (1976, Definition 7.7, p. 147).
- 5.4. Ahlfors (1979, Section 2.3, p. 36) and Rudin (1976, Theorem 7.8, p. 147).
- **5.5**. Rudin (1976, Theorem 7.9, p. 148).
- **5.6**. Rudin (1976, Theorem 7.10, p. 148).
- 5.7. Ahlfors (1979, Section 2.3, p. 36) and Rudin (1976, Theorem 7.12, p. 150).
- 5.8. Rudin (1976, Sections 7.12 and 7.6, p. 150 and 146).
- 5.9. Rudin (1976, Theorem 7.13, p. 150).
- **5.10**. Rudin (1976, Theorem 7.17, p. 152).

Other useful references include: Devinatz (1968), Gradshteyn and Ryzhik (1980), Rudin (1987), and Spiegel (1964).

REFERENCES

References

- Ahlfors, L. V. (1979), Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, third edn, McGraw-Hill, New York.
- Anderson, T. W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons, New York.
- Beckenbach, E. F. and Bellman, R. (1965), *Inequalities*, second edn, Springer-Verlag, Berlin and New York.
- Devinatz, A. (1968), Advanced Calculus, Holt, Rinehart and Winston, New York.
- Fuller, W. A. (1976), Introduction to Statistical Time Series, John Wiley & Sons, New York.
- Gillert, W., Küstner, Kellwich, H. and Kästner, H. (1986), *Petite encyclopédie des mathématiques*, Éditions K. Pagoulatos, Paris and Athens.
- Gradshteyn, I. S. and Ryzhik, I. M. (1980), *Table of Integrals, Series, and Products. Corrected and Enlarged Edition*, Academic Press, New York.
- Hardy, G., Littlewood, J. E. and Polya, G. (1952), *Inequalities*, second edn, Cambridge University Press, Cambridge, U.K.
- Iyanaga, S. and Kawada, Y., eds (1977), *Encyclopedic Dictionary of Mathematics, Volumes I and II*, 1977, Cambridge, Massachusetts.
- Knopp, K. (1956), Infinite Sequences and Series, Dover Publications, New York.
- Piskounov, N. (1980), Calcul différentiel et intégral, Éditions de Moscou, Moscow.
- Royden, H. L. (1968), Real Analysis, second edn, MacMillan, New York.
- Rudin, W. (1976), Principles of Mathematical Analysis, Third Edition, McGraw-Hill, New York.
- Rudin, W. (1987), Real and Complex Analysis, third edn, McGraw-Hill, New York.
- Spiegel, M. R. (1964), *Theory and Problems of Complex Variables with an Introduction to Conformal Mapping and its Applications*, Schaum Publishing Company, New York.
- Taylor, A. E. (1955), Advanced Calculus, Blaisdell Publishing Company, Waltham, Massachusetts.