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1. Monotonic functions

1.1 Definition MONOTONIC FUNCTION. Let D a non-empty subset ofR, f : D → E, whereE is
a non-empty subset ofR = R∪{−∞, +∞}, and letI be a non-empty subset ofD.

(a) f is nondecreasingon I iff

x1 < x2 ⇒ f (x1) ≤ f (x2) , ∀x1,x2 ∈ I .

(b) f is nonincreasingon I iff

x1 < x2 ⇒ f (x1) ≥ f (x2) , ∀x1,x2 ∈ I .

(c) f is strictly increasingon I iff

x1 < x2 ⇒ f (x1) < f (x2) , ∀x1, x2 ∈ I .

(d) f is strictly decreasingon I iff

x1 < x2 ⇒ f (x1) > f (x2) , ∀x1, x2 ∈ I .

(e) f is monotonic onI iff f is nondecreasing, nonincreasing, increasing or decreasing.

(f) f is strictly monotonic onI iff f is strictly increasing or decreasing.

1.2 Definition MONOTONICITY AT A POINT. Let D a non-empty subset ofR, f : D → E, where
E is a non-empty subset ofR = R∪{−∞, +∞}, and letx∈ D.

(a) f is nondecreasingatx iff there is an open neighborhoodI of x such that

x1 < x⇒ f (x1) ≤ f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) ≤ f (x2) , ∀x2 ∈ I ∩D ;

(b) f is nonincreasingatx iff there is an open neighborhoodI of x such that

x1 < x⇒ f (x1) ≥ f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) ≥ f (x2) , ∀x2 ∈ I ∩D ;

(c) f is strictly increasing at xiff there is an open neighborhoodI of x such that

x1 < x⇒ f (x1) < f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) < f (x2) , ∀x2 ∈ I ∩D ;
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(d) f is strictly decreasingon I iff there is an open neighborhoodI of x such that

x1 < x⇒ f (x1) > f (x) , ∀x1 ∈ I ∩D ,

and x < x2 ⇒ f (x) > f (x2) , ∀x2 ∈ I ∩D .

(e) f is monotonic atx iff f is nondecreasing, nonincreasing, increasing or decreasing atx.

(f) f is strictly monotonic atx iff f is strictly increasing or decreasing atx.

1.3 Remark It is clear that:

(a) an increasing function is also nondecreasing;

(b) a decreasing function is also nonincreasing;

(c) if f is nondecreasing (alt., strictly increasing), the function

g(x) = − f (x)

is nonincreasing (alt., strictly decreasing) onI , and the function

h(x) = − f (−x)

is nondecreasing onI1 = {x : −x∈ I}..

1.4 Proposition L IMITS OF MONOTONIC FUNCTIONS. Let I = (a, b) ⊆ R, where−∞ ≤ a < b≤
∞, and f : I →R be a nondecreasing function onI . Then the functionf has the following properties.

(a) For eachx∈ (a, b) , set

f (x+) = lim
δ↓0

{

inf
x<y<x+δ

f (y)

}

, f
(

x+
)

= lim
δ↓0

{

sup
x<y<x+δ

f (y)

}

,

f (x−) = lim
δ↓0

{

inf
x−δ<y<x

f (y)

}

, f
(

x−
)

= lim
δ↓0

{

sup
x−δ<y<x

f (y)

}

.

Then, the four limitsf (x+) , f (x+) , f (x−) and f (x−) are finite and, for anyδ > 0 such that
[x−δ , x+δ ] ⊆ (a, b) ,

f (x−δ ) ≤ f (x−) ≤ f
(

x−
)

≤ f (x) ≤ f (x+) ≤ f
(

x+
)

≤ f (x+δ ) .

(b) For eachx∈ (a, b) , we have

f (x+) = f
(

x+
)

, f (x−) = f
(

x−
)

,
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and the functionf (x) has finite unilateral limits:

f (x+) ≡ lim
y↓x

f (y) = f (x+) = f
(

x+
)

, f (x−) ≡ lim
y↑x

f (y) = f (x−) = f
(

x−
)

.

(c) For eachx∈ (a, b) ,

sup
a<y<x

f (y) = f (x−) ≤ f (x) ≤ f (x+) = inf
x<y<b

f (y) .

(d) If a < x < y < b, then
f (x+) ≤ f (y−) .

(e) If a = −∞, the function f (x) has a limit in the extended real numbersR = R∪{−∞, +∞} as
x→−∞,

−∞ ≤ f (−∞) ≡ lim
x→−∞

f (x) < ∞

and, ifb = ∞, the functionf (x) has a limit inR asx→ ∞ :

−∞ < f (+∞) ≡ lim
x→∞

f (x) ≤ ∞ .

1.5 Theorem CONTINUITY OF MONOTONIC FUNCTIONS. Let I = (a, b) ⊆ R, where−∞ ≤ a <
b ≤ ∞, and f : I → R be a nondecreasing function onI . Then the functionf has the following
properties.

(a) For eachx∈ (a, b) , f is continuous atx iff

f (x−) = f (x+) .

(b) The only possible kind of discontinuity off on (a, b) is a jump.

(c) The set of points of(a, b) at which f is discontinuous is countable (possibly empty).

(d) The function
fR(x) = f (x+) , x∈ (a, b)

is right continuous at every point of(a, b) , i.e.,

lim
y↓x

fR(y) = fR(x) , ∀x∈ (a, b) .

(e) The function
fL (x) = f (x−)

is left continuous at every point of(a, b) , i.e.,

lim
y↑x

fL (y) = fL (x) , ∀x∈ (a, b) .
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1.6 Theorem CHARACTERIZATION OF THE CONTINUITY OF MONOTONIC FUNCTIONS. Let
f : D → R a monotonic function, whereD is a non-empty subset ofR andI a non-empty subset of
D. Then

f is continuous onI iff f (I) is an interval.

1.7 Theorem MONOTONE INVERSE FUNCTION THEOREM. Let I be an interval inR, and f : I →
R. If f is continuous and strictly monotonic, thenJ = f (I) is an interval and the functionf : I → J
is an homeomorphism(i.e., f : I → J is a bijection such thatf and f−1 are continuous).

1.8 Theorem STRICT MONOTONICITY AND HOMEOMORPHISMS BETWEEN INTERVALS. Let I
andJ be intervals inR and f : I → J.

(a) If f is an homeomorphism, thenf is strictly monotonic.

(b) f is an homeomorphism⇔ f is continuous and strictly monotonic
⇔ f−1 : J → I exists and is an homeomorphism
⇔ f−1 : J → I exists, is continuous and strictly monotonic.

1.9 Lemma CHARACTERIZATION OF RIGHT (LEFT) CONTINUOUS FUNCTIONS BY DENSE SETS.
Let f1 and f2 be two real-valued functions defined on the interval(a, b) such that the functionsf1

and f2 are either both right continuous or both left continuous at each pointx∈ (a, b) , and letD be
a dense subset of(a, b) . If

f1(x) = f2(x) , ∀x∈ D ,

then
f1(x) = f2(x) , ∀x∈ (a, b) .

1.10 Theorem CHARACTERIZATION OF MONOTONIC FUNCTIONS BY DENSE SETS. Let f1 and
f2 be two monotonic nondecreasing functions on(a, b) , let D be a dense subset of(a, b) , and
suppose

f1(x) = f2(x) , ∀x∈ D .

(a) Then f1 and f2 have the same points of discontinuity, they coincide everywhere in(a, b) , except
possibly at points of discontinuity, and

f1(x+)− f1(x−) = f2(x+)− f2(x−) , ∀x∈ (a, b) .

(b) If furthermore f1 and f2 are both left continuous (or right continuous) at every pointx∈ (a, b),
they coincide everywhere on(a, b) , i.e.,

f1(x) = f2(x) , ∀x∈ (a, b) .

1.11 Theorem DIFFERENTIABILITY OF MONOTONIC FUNCTIONS. Let I = (a, b) ⊆ R, where
−∞ ≤ a < b≤ ∞, and f : I → R be a nondecreasing function onI . Then f is differentiable almost
everywhere onI .
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2. Generalized inverse of a monotonic function

2.1 Definition GENERALIZED INVERSE OF A NONDECREASING RIGHT-CONTINUOUS FUNC-
TION. Let f be a real-valued, nondecreasing, right continuous function defined on the open interval
(a, b) where−∞ ≤ a < b≤ ∞. Then the generalized inverse off is defined by

f ∗(y) = inf{x∈ (a, b) : f (x) ≥ y} (2.1)

for −∞ < y < ∞ (with the conventioninf( /0) = b). Further, we definef−1 as the restriction off ∗ to
the interval(inf( f ) , sup( f )) ≡ (inf{ f (x) : x∈ (a, b)}, sup{ f (x) : x∈ (a, b)}) :

f−1(y) = f ∗(y) for inf( f ) < y < sup( f ) . (2.2)

2.2 Definition GENERALIZED INVERSE OF A NONDECREASING LEFT-CONTINUOUS FUNCTION.
Let f be a real-valued, nondecreasing, left continuous function defined onthe open interval(a, b)

where−∞ ≤ a < b≤ ∞. Then the generalized inverse off is defined by

f ∗∗(y) = sup{x∈ (a, b) : f (x) ≤ y} (2.3)

for −∞ < y < ∞ (with the conventionsup( /0) = a).

2.3 Proposition GENERALIZED INVERSE BASIC EQUIVALENCE (RIGHT-CONTINUOUS FUNC-
TION). Let f be a real-valued, nondecreasing, right continuous function defined on the open
interval(a, b) where−∞ ≤ a < b≤ ∞. Then, forx∈ (a, b) and for every realy,

y≤ f (x) ⇔ f ∗(y) ≤ x, (2.4)

y > f (x) ⇔ f ∗(y) > x, (2.5)

f [ f ∗(y)] ≥ y. (2.6)

2.4 Proposition GENERALIZED INVERSE BASIC EQUIVALENCE (LEFT-CONTINUOUS FUNC-
TION). Let f be a real-valued, nondecreasing, left continuous function defined onthe open interval
(a, b) where−∞ ≤ a < b≤ ∞. Then, forx∈ (a, b) and for every realy,

y≤ f (x) ⇔ f ∗∗(y) ≥ x. (2.7)

2.5 Proposition CONTINUITY OF THE INVERSE OF A NONDECREASING RIGHT-CONTINUOUS

FUNCTION. Let f be a real-valued, nondecreasing, right continuous function defined on the open
interval(a, b) where−∞ ≤ a < b≤ ∞, and set

a( f ) = inf{x∈ (a, b) : f (x) > inf( f )} , b( f ) = sup{x∈ (a, b) : f (x) < sup( f )} . (2.8)

Then, f ∗ is nondecreasing and left continuous. Moreover

lim
y→−∞

f ∗(y) = a , lim
y→∞

f ∗(y) = b (2.9)
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and
lim

y→inf( f )
f−1(y) = a( f ) , lim

y→sup( f )
f−1(y) = b( f ) . (2.10)

3. Distribution functions

3.1 Definition DISTRIBUTION AND SURVIVAL FUNCTIONS OF A RANDOM VARIABLE. Let X
be a real-valued random variable. The distribution function ofX is the functionF(x) defined by

F(x) = P[X ≤ x] , x∈ R , (3.1)

and its survival function is the functionG(x) defined by

G(x) = P[X ≥ x] , x∈ R . (3.2)

3.2 Proposition PROPERTIES OF DISTRIBUTION FUNCTIONS. Let X be a real-valued random
variable with distribution functionF(x) = P[X ≤ x]. Then

(a) F(x) is nondecreasing;

(b) F(x) is right-continuous;

(c) F(x) → 0 asx→−∞ ;

(d) F(x) → 1 asx→ ∞ ;

(e) P[X = x] = F(x)−F(x−) ;

(f) for anyx∈ R andq∈ (0, 1),

{P[X ≤ x] ≥ q andP[X ≥ x] ≥ 1−q}⇐⇒ {P[X < x] ≤ q andP[X > x] ≤ 1−q} .

3.3 Remark In view of Proposition3.2, the domain of a distribution functionF(x) can be extended
to R R̄ = R∪{−∞}∪{∞}, the extended real numbers, by setting

F(−∞) = 0 andF(∞) = 1. (3.3)

3.4 Proposition PROPERTIES OF SURVIVAL FUNCTIONS. Let X be a real-valued random variable
with distribution functionG(x) = P[X ≤ x]. Then

(a) G(x) is nonincreasing;

(b) G(x) is left-continuous;

(c) G(x) → 1 asx→−∞ ;

(d) G(x) → 0 asx→ ∞ ;

6



(e) P[X = x] = G(x)−G(x+) ;

(f) G(x) = 1−F (x)+P [S= x] .

4. Quantile functions

4.1 Definition QUANTILE FUNCTION. Let F(x) be a distribution function. The quantile function
associated withF is the generalized inverse ofF , i.e.

F−1(q) ≡ F−(q) = inf{x : F(x) ≥ q} , 0 < q < 1 . (4.1)

4.2 Theorem PROPERTIES OF QUANTILE FUNCTIONS. Let F(x) be a distribution function. Then
the following properties hold:

(a) F−1(q) = sup{x : F(x) < q} , 0 < q < 1 ;

(b) F−1(q) is nondecreasing and left continuous;

(c) F(x) ≥ q⇔ x≥ F−1(q) , for all x∈ R andq∈ (0, 1) ;

(d) F(x) < q⇔ x < F−1(q) , for all x∈ R andq∈ (0, 1) ;

(e) F [F−1(q)−] ≤ q≤ F [F−1(q)] , for all q∈ (0, 1) ;

(f) F−1[F(x)] ≤ x≤ F−1[F(x)+] , for all x∈ R ;

(g) if F is continuous atx = F−1(q), thenF [F−1(q)] = q ;

(h) if F−1 is continuous atq = F(x), thenF−1[F(x)] = x;

(i) for q∈ (0, 1) , F [F−1(q)] = q⇔ q∈ F [R] ;

(j) F [F−1(q)] = q for all q∈ (0, 1) ⇔ (0, 1) ⊆ F [R]
⇔ F is continuous
⇔ F−1 is strictly increasing;

(k) for anyx∈ R, F−1[F(x)] = x⇔ F(x− ε) < F(x) for all ε > 0;

(l) F−1[F(x)] = x for all x∈ R ⇔ F is strictly increasing
⇔ F−1 is continuous;

(m) F is continuous and strictly increasing⇔ F−1 is continuous and strictly increasing ;

(n) F−1◦F ◦F−1 = F−1 or, equivalently,

F−1(

F
[

F−1(q)
])

= F−1(q) , for all q∈ (0, 1) ;
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(o) F ◦F−1◦F = F or, equivalently,

F
(

F−1 [F (x)]
)

= F(x) , for all x∈ R .

4.3 Theorem CHARACTERIZATION OF DISTRIBUTIONS BY QUANTILE FUNCTIONS. If G(x) is a
real-valued nondecreasing left continuous function with domain(0, 1), there is a unique distribution
functionF such thatG = F−1 .

4.4 Theorem DIFFERENTIATION OF QUANTILE FUNCTIONS. LetF(x) be a distribution function.
If F has a positive continuousf (x) density f in a neighborhood ofF−1(q0), where0< q0 < 1, then
the derivativedF−1(q)/dqexists atq = q0 and

dF−1(q)

dq

∣

∣

∣

∣

q0

=
1

f (F−1(q0))
. (4.2)

4.5 Proposition Let X be a real-valued random variable with distribution functionF(x) = P[X ≤ x]
and survival functionG(x) = P[X ≥ x] . Then, for anyq∈ (0, 1),

(a) P[X ≤ F−1(q)] ≥ q andP[X ≥ F−1(q)] ≥ 1−q;

(b) P[X < F−1(q)] ≤ q andP[X > F−1(q)] ≤ 1−q.

5. Quantile sets and generalized quantile functions

5.1 Notation X is a random variable with distribution functionFX(x) = P[X ≤ x]. R̄ = R∪{−∞}∪
{∞} is the set of the extended real numbers.

5.2 Definition QUANTILE OF RANDOM VARIABLE . A quantileof orderq (or aq-quantile) of the
random variableX is any numbermq ∈ R̄ such thatP[X ≤ mq] ≥ q andP[X ≥ mq] ≥ 1−q, where
0≤ q≤ 1. In particular,m0.5 is a medianof X, m0.25 is a first (or lower) quartileof X, andm0.75 is
a third (or upper) quartileof X.

5.3 Remark Forq = 0, mq = −∞ always satisfies the quantile condition. If there is a finite number
dL such thatP[X ≤ dL] = 0, then anyx such thatx ≤ dL is a quantile of order 0. Similarly, for
q = 1, mq = ∞ always satisfies the quantile condition. If there is a finite numberdU such that
P[X ≤ dU ] = U, then anyx such thatx≥ dU is a quantile of order 1.

6. Distribution and quantile transformations

6.1 Notation U(0, 1) a uniform random variable on the interval(0, 1).

8



6.2 Theorem QUANTILES OF TRANSFORMED RANDOM VARIABLES. Let X be a real-valued
random variable with distribution functionFX(x) = P[X ≤ x]. If g(x), x∈ R, is a nondecreasing left
continuous function, then

F−1
g(X) = g

(

F−1
X

)

(6.1)

whereFg(X)(x) = P[g(X) ≤ x] andF−1
g(X)(q) = inf{x : Fg(X)(x) ≥ q} , 0 < q < 1 .

6.3 Theorem PROPERTIES OF QUANTILE TRANSFORMATION. Let F(x) be a distribution
function, andU a random variable with distributionD(x) such thatD(0) = 0 and D(1) = 1. If
X = F−1(U), then, for allx∈ R,

X ≤ x⇔ F−1(U) ≤ x⇔U ≤ F(x) (6.2)

or, equivalently,
1{X ≤ x} = 1{F−1(U) ≤ x} = 1{U ≤ F(x)} , (6.3)

and
P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F(x)] = D(F(x)) ; (6.4)

further,
1{X < x} = 1{F−1(U) < x} = 1{U ≤ F(x−)} with probability1 (6.5)

and
P[X < x] = P[F−1(U) < x] = P[U ≤ F(x−)] . (6.6)

In particular, ifU follows a uniform distribution on the interval(0, 1), i.e. U ∼U(0, 1), the distri-
bution function ofX is F :

P[X ≤ x] = P[U ≤ F(x)] = F(x) . (6.7)

6.4 Theorem PROPERTIES OF DISTRIBUTION TRANSFORMATION. Let X be a real-valued ran-
dom variable with distribution functionF(x) = P[X ≤ x]. Then the following properties hold:

(a) P[F(X) ≤ u] ≤ u, for all u∈ [0, 1] ;

(b) P[F(X) ≤ u] = u⇔ u∈ cl{F(R)},
wherecl{F(R)} is the closure of the range ofF ;

(c) P[F(X) ≤ F(x)] = P[X ≤ x] = F(x) , for all x∈ R ;

(d) F(X) ∼U(0, 1) ⇔ F is continuous;

(e) for all x, 1{F(X) ≤ F(x)} = 1{X ≤ x} with probability1;

(f) F−1(F (X)) = X with probability1.

6.5 Theorem QUANTILES AND P-VALUES. Let X be a real-valued random variable with distribu-
tion functionF(x) = P[X ≤ x] and survival functionG(x) = P[X ≥ x] . Then, for anyx∈ R,

G(x) = P[G(X) ≥ G(x)]
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= P
[

X ≥ F−1((F (x)− pF(x))+
)]

= P
[

X ≥ F−1((1−G(x))+
)]

(6.8)

wherepF(x) = P[X = x] = F(x)−F(x−).

7. Multivariate generalizations

7.1 Notation CONDITIONAL DISTRIBUTION FUNCTIONS. Let X = (X1, . . . , Xk)
′ ak×1 random

vector inR
k. Then we denote as follows the following set of conditional distribution functions:

F1|·(x1) = F1(x1) = P[X1 ≤ x1] , (7.1)

F2|·(x2|x1) = P[X2 ≤ x2 |X1 = x1] ,

...

Fk|·(xk |x1, . . . , xk−1) = P[Xk ≤ xk |X1 = x1, . . . , Xk−1 = xk−1] .

Further, we define the following transformations ofX1, . . . , Xk :

Z1 = F1(X1) , (7.2)

Z2 = F2|·(X2 |X1) ,

...

Zk = Fk|·(Xk |X1, . . . , Xk−1) .

7.2 Theorem TRANSFORMATION TO i.i.d. U(0,1) VARIABLES (ROSENBLATT). Let X =
(X1, . . . , Xk)

′ be ak× 1 random vector inRk with an absolutely continuous distribution function
F(x1, . . . , xk) = P[X1 ≤ x1, . . . , Xk ≤ xk] . Then the random variablesZ1, . . . , Zk are independent
and identically distributed according to aU(0, 1) distribution.
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8. Proofs and additional references

1.4 - 1.5 Rudin (1976), Chapter 4, pp. 95-97, and Chung (1974), Section 1.1.For (a)-(b), see
Phillips (1984), Sections 9.1 (p. 243) and 9.3 (p. 253).

1.6 - 1.8 Ramis, Deschamps, and Odoux (1982), Section 4.3.2, p.121.
1.9 Chung (1974), Section 1.1, p. 4.
1.11 Haaser and Sullivan (1991), Section 9.3; Riesz and Sz.-Nagy (1955/1990), Chapter 1.
2.3 (2.4) is proved by Reiss (1989, Appendix 1, Lemma A.1.1). (2.5) and (2.6)are also given

by Gleser (1985, Lemma 1, p. 957).
2.4 Reiss (1989), Appendix 1, Lemma A.1.3.
2.5 Reiss (1989), Appendix 1, Lemma A.1.2.
3.2 (f) Lehmann and Casella (1998), Problem 1.7 (for the caseq = 1/2).
4.2 (a) Williams (1991), Section 3.12 (p. 34).
7.2 See Rosenblatt (1952).
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