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1. Monotonic functions

1.1 Definition MONOTONIC FUNCTION LetD a non-empty subset &, f : D — E, whereE is
a non-empty subset & = RU {—o, +0}, and leti be a non-empty subset bf

(a) f isnondecreasingnl iff

X1 <Xp=f(x) <f(x2), Wxp,x€l.

(b) f isnonincreasingnl iff

X1 <Xp=f(x1)>f(x2), Wxp,xel.

(c) f isstrictly increasingonl iff

X1 <X=f(x1) <f(X), Vxi,xel.

(d) f isstrictly decreasingnl iff

X1 <%= f(x1)>f(x2), Vxi,x€l.
(e) f is monotonic on iff f is nondecreasing, nonincreasing, increasing or decreasing.
(f) f is strictly monotonic on iff f is strictly increasing or decreasing.

1.2 Definition MONOTONICITY AT A POINT. LetD a non-empty subset &, f : D — E, where
E is a non-empty subset & =R U {—o, +o}, and letx € D.

(a) f isnondecreasingtx iff there is an open neighborhodaf x such that
x1<x=f(x1)<f(x), VxielnbD,
andx<x=f(x)<f(x), VxelnD;
(b) f isnonincreasingatx iff there is an open neighborhodaf x such that
x1<x=f(x1)>f(x), YxielnD,
andx<x = f(x)>f(x2), VxelnD;
(c) f isstrictly increasing at ff there is an open neighborhoddf x such that
x1<x=f(x1)<f(x), ¥xielnD,

andx<x=f(X)<f(x2), VxeelnD;



(d) f isstrictly decreasingnl iff there is an open neighborhodadf x such that
x1<x=f(x1)>f(x), VxielnD,
andx<x= f(x)>f(x2), VxelnD.
(e) f is monotonic ax iff f is nondecreasing, nonincreasing, increasing or decreasig at
(f) f is strictly monotonic ax iff f is strictly increasing or decreasingxat

1.3 Remark It is clear that:
(a) an increasing function is also nondecreasing;
(b) adecreasing function is also nonincreasing;

(c) if fis nondecreasing (alt., strictly increasing), the function

is nondecreasing o = {x: —x €| }..

1.4 Proposition LIMITS OF MONOTONIC FUNCTIONS Letl = (a,b) CR, where—o <a<b<
oo, andf :1 — R be a nondecreasing function briThen the functiorf has the following properties.

(a) Foreachx e (a,b), set

f(x,) = Iim{ inf f(y)},f(x*):lim{ sup f(y)},

810 [ x<y<x+6 010 | x<y<x+5

f(x) = Iim{ inf f(y)},f(x‘):lim{ sup f(y)}.

3]0 [ x—d<y<x 4]0 X—8<y<X

Then, the four limitsf (x..), f(x"), f (x_) andf (x) are finite and, for any > 0 such that
[X_ 57 X+5] < (aa b)a

f(x—0) < f(x)<f(x)<f(x)<f(x)<f(xh)<f(x+9).

(b) Foreach e (a, b), we have

F) =F(x), foo)=f(x),



and the functiorf (x) has finite unilateral limits:

f(x+)= U[Qf (V)=fx)=F(x"), f(x=)= I}il?;f =fx)=F(x).

For each € (a, b),

sup f(y)=f(x-) < F)<f(xt)=inf f(y).

a<y<x x<y<b

Ifa<x<y<b,then
f(x+) < fly-).

If a= —oo, the functionf (x) has a limit in the extended real numb@&s= RU {—o, 4o} as
X— —00,
—o0 < f (—oo)

lim f(x) <o

X——00

and, ifb = oo, the functionf (x) has a limit inR asx — o :

—oo < f (40) = lim f (X) < oo.

X—00

1.5 Theorem CONTINUITY OF MONOTONIC FUNCTIONS Letl = (a,b) C R, where—co < a <
b<o, andf .l — R be a nondecreasing function dnThen the functionf has the following
properties.

(@)

(b)
(©
(d)

C

For eachx € (a, b), f is continuous at iff
f(x—=)="f(x+).

The only possible kind of discontinuity dfon (a, b) is a jump.
The set of points ofa, b) at whichf is discontinuous is countable (possibly empty).

The function
fr(x)=f(x+), xe€(ab)

is right continuous at every point 6, b), i.e.,
limfr(y) = fr(X), Vxe(ab).
ylx

The function

fL(x)=f(x—)

is left continuous at every point ¢4, b), i.e.,

leerTQ fLlyy=fL(x), Vxe(ab).



1.6 Theorem CHARACTERIZATION OF THE CONTINUITY OF MONOTONIC FUNCTIONS Let
f : D — R a monotonic function, whefe is a non-empty subset & andl a non-empty subset of
D. Then

f is continuous o iff (1) is an interval.

1.7 Theorem MONOTONE INVERSE FUNCTION THEOREM Let| be an interval iR, andf : 1 —
R. If f is continuous and strictly monotonic, thée- f (1) is an interval and the functioh: | — J
is an homeomorphisifi.e., f : | — J is a bijection such that andf— are continuous

1.8 Theorem STRICT MONOTONICITY AND HOMEOMORPHISMS BETWEEN INTERVALS Letl
andJ be intervals iR andf : 1 — J.

(a) If f is an homeomorphism, thenis strictly monotonic.

(b) f is an homeomorphism< f is continuous and strictly monotonic
< f71:J — | exists and is an homeomorphism
o f71:J — | exists, is continuous and strictly monotonic.

1.9 Lemma CHARACTERIZATION OF RIGHT(LEFT) CONTINUOUS FUNCTIONS BY DENSE SETS
Let f; andf, be two real-valued functions defined on the intefeab) such that the functiong
andf;, are either both right continuous or both left continuous at each pairtg, b) , and letD be
a dense subset ¢4, b) . If
fi(x) = f2(x), V¥xeD,

then
fi(x)=f2(x), Vxe(ab).

1.10 Theorem CHARACTERIZATION OF MONOTONIC FUNCTIONS BY DENSE SETSLet f; and
f, be two monotonic nondecreasing functions (enb), let D be a dense subset ¢, b), and
suppose

fl(X) = fz(X) , vxeD.

(a) Thenfy andf, have the same points of discontinuity, they coincide everywhéie by , except
possibly at points of discontinuity, and

f1 (X—‘r> —f; (X—) =f, (X—l—) —f (X—) , VXe (a, b) .

(b) If furthermorefy, andf, are both left continuous (or right continuous) at every priat(a, b),
they coincide everywhere da, b), i.e.,

f1(x) = fa(x), Vxe(ab).

1.11 Theorem DIFFERENTIABILITY OF MONOTONIC FUNCTIONS Letl = (a, b) C R, where
—w<a<b<oo, andf .| — R be a nondecreasing function bnThenf is differentiable almost
everywhere oh.



2. Generalized inverse of a monotonic function

2.1 Definition GENERALIZED INVERSE OF A NONDECREASING RIGHICONTINUOUS FUNG
TION. Letf be areal-valued, nondecreasing, right continuous function defiméteapen interval
(a, b) where—o < a < b <. Then the generalized inverse bfs defined by

f*(y) =inf{xe (a,b): f(x) >y} (2.1)

for —oo <y < oo (with the conventionnf(0) = b). Further, we definé ! as the restriction of* to
the interval(inf(f), sup(f)) = (inf{f(x): xe (a,b)}, sup{f(x): xe (a,b)}):

f=Xy)=f*(y) forinf(f) <y<supf). (2.2)

2.2 Definition GENERALIZED INVERSE OF A NONDECREASING LEFACONTINUOUS FUNCTION
Let f be a real-valued, nondecreasing, left continuous function definéagkeoopen intervala, b)
where—o < a < b < w. Then the generalized inverse bfs defined by

£ (y) = sup{x € (a b) : F(x) <y} (2.3)
for —eo <y < oo (with the conventiorsup0) = a).

2.3 Proposition GENERALIZED INVERSE BASIC EQUIVALENCE (RIGHT-CONTINUOUS FUNG
TION). Let f be a real-valued, nondecreasing, right continuous function defingtieoopen
interval(a, b) where—o < a < b <. Then, forx € (a, b) and for every reay,

y< f(x) & f*(y) <x, (2.4)
y> f(x) < f*(y) >x (2.5)
flf (y)] >y. (2.6)

2.4 Proposition GENERALIZED INVERSE BASIC EQUIVALENCE (LEFT-CONTINUOUS FUNG
TION). Letf be a real-valued, nondecreasing, left continuous function defindteaspen interval
(a, b) where—o <a < b <. Then, forx € (a, b) and for every rea,

y<f(0 e (y) = x. (2.7)

2.5 Proposition CONTINUITY OF THE INVERSE OF A NONDECREASING RIGHICONTINUOUS
FUNCTION. Letf be a real-valued, nondecreasing, right continuous function defiméfasecopen
interval (a, b) where—o < a < b <, and set

a(f)=inf{xe (a,b): f(x) >inf(f)}, b(f)=sup{xe (a,b): f(x) <supf)}. (2.8)
Then, f* is nondecreasing and left continuous. Moreover

lim f*(y)=a, Ilmf*(y)=Db (2.9)

y—>700 y4>00



and

lim fl(y)=a(f lim f1(y)=Db(f). 2.1
N ) =alf),lim T ) = b(f) (2.10)

3. Distribution functions

3.1 Definition DISTRIBUTION AND SURVIVAL FUNCTIONS OF A RANDOM VARIABLE. LetX
be a real-valued random variable. The distribution functioX & the functiori (x) defined by

F(X) =PX<x],xeR, (3.1)
and its survival function is the functidB(x) defined by
G(x) =P[X>x], xeR. (3.2)

3.2 Proposition PROPERTIES OF DISTRIBUTION FUNCTIONS LetX be a real-valued random
variable with distribution functioff (x) = P[X < x|. Then

(a) F(x) is nondecreasing;
(b) F(x) is right-continuous;
() F(x) = 0asx — —oo;
(d) F(X) — 1 asx — oo;

e) PX=x=F(X)—F(x—);

f) foranyx e R andq € (0, 1),

{PIX<x>qgandP[X>x>1-q} <= {PX<x <qandP[X>x <1-q}.

3.3 Remark In view of Propositior8.2, the domain of a distribution functida(x) can be extended
toR R =RU{—w}U{w}, the extended real numbers, by setting

F(—o)=0andF(c)=1. (3.3)

3.4 Proposition PROPERTIES OF SURVIVAL FUNCTIONSLetX be a real-valued random variable
with distribution functionG(x) = P[X < x]|. Then



(e) PIX=x =G(X)—G(x+);
(f) G(X)=1—F(X)+P[S=X].

4. Quantile functions

4.1 Definition QUANTILE FUNCTION. LetF(x) be a distribution function. The quantile function
associated witk is the generalized inverse Bf i.e.

F g =F (g =inf{x:F(x) >q},0<qg<1. (4.1)

4.2 Theorem PROPERTIES OF QUANTILE FUNCTIONSLetF(X) be a distribution function. Then
the following properties hold:

“1(g)=sup{x:F(x)<q},0<q<1;

~1(q) is nondecreasing and left continuous;

=
=

(¢) F(x) >q&x>F(q), forallxc R andg< (0,1) ;

(d) F(x) <qex<FYq), forallxeR andq e (0,1);

() FIFHa)-]<a<F[FY(q)],forallqge (0,1);

(fh FUF(X)] < x<FYF(X)+],forallxe R;

(g) if F is continuous at = F~1(q), thenF[F~1(q)] = q;
(h) if F~1is continuous af) = F (x), thenF ~[F (x)] = x;
(i) forqe (0,1), F[F*(a)] =q« qeF[R];

FIFY(q) =qforallqe (0,1) < (0,1) CF[R]
< F is continuous
& F~1is strictly increasing

(J

(k) foranyxe R, F1[F(x)] =x< F(x—¢) < F(x) forall e > 0;

() FYF(x)]=xforallxc R <« F is strictly increasing
< F~1s continuous

(m) F is continuous and strictly increasirg F 1 is continuous and strictly increasing ;
(n) FtoFoF~t=F~1or, equivalently,

Fr(F[F*a)])=F*a), forallge (0,1);



(0) FoF~1oF =F or, equivalently,

F(F1F(x))=F(x), forallxeR.

4.3 Theorem CHARACTERIZATION OF DISTRIBUTIONS BY QUANTILE FUNCTIONS IfG(X) isa
real-valued nondecreasing left continuous function with dortfait), there is a unique distribution
functionF such thatcG =F 1.

4.4 Theorem DIFFERENTIATION OF QUANTILE FUNCTIONS LetF(x) be a distribution function.
If F has a positive continuou$x) densityf in a neighborhood df ~(qp), where0 < go < 1, then
the derivativedF~1(q)/dq exists at| = qo and

dF(q) B 1
dq |~ F(F i) (4-2)

4.5 Proposition LetX be a real-valued random variable with distribution funciqn) = P[X < x|
and survival functiors(x) = P[X > x]. Then, for anyq € (0, 1),

(@ PX<F~q)]>qgandP[X >F}(q)]>1-q;
(b) PIX <FY(g)] <qgandP[X>F(q)]<1-q.

5. Quantile sets and generalized quantile functions

5.1 Notation X is a random variable with distribution functiég (x) = P[X < X]. R=RU {—o}U
{0} is the set of the extended real numbers.

5.2 Definition QUANTILE OF RANDOM VARIABLE . A quantileof orderq (or ag-quantilg of the
random variable is any numbemy € R such thaP[X < my] > q andP[X > mg| > 1—q, where
0 < g< 1 Inparticularmg s is amedianof X, mg o5 is afirst (or lower) quartileof X, andmg 75 is
athird (or uppey quartileof X.

5.3 Remark Forq= 0, my = — always satisfies the quantile condition. If there is a finite number
d. such thatP[X < d. ] = 0, then anyx such thatx < d, is a quantile of order OSimilarly, for
gq=1, my = « always satisfies the quantile condition. If there is a finite nuntpesuch that
P[X < dy] =U, then anyx such thak > dy is a quantile of order.1

6. Distribution and quantile transformations

6.1 Notation U (0, 1) a uniform random variable on the interval 1).



6.2 Theorem QUANTILES OF TRANSFORMED RANDOM VARIABLES Let X be a real-valued
random variable with distribution functidf (X) = P[X < X]. If g(x), x € R, is a nondecreasing left
continuous function, then

Fooo = 9(Fx ) (6.1)
whereFyx)(x) = P[g(X) <X anng*&)(q) =inf{x: Fyxy(x) >q},0<qg<1.
6.3 Theorem PROPERTIES OF QUANTILE TRANSFORMATION  Let F(X) be a distribution

function, andJ a random variable with distributiob(x) such thatD(0) = 0 andD(1) = 1. If
X =F~YU), then, for allx € R,

X<xeFHU)<xeU<F(X) (6.2)
or, equivalently,
UX <x}=1F '(U) <x} =1{U <F(x)}, 6.3)
and
PX <x=P[F}(U) <x=P[U <F(X)]=D(F(x)); (6.4)
further,
1{X < x} = 1{F}(U) < x} = 1{U < F(x—)} with probability1 (6.5)
and
PIX <X =P[F1(U)<x =PU<F(x)]. (6.6)

In particular, ifU follows a uniform distribution on the intervé0, 1), i.e. U ~ U (0, 1), the distri-
bution function ofX isF :
PX <x]=PU <F(x)] =F(x). (6.7)

6.4 Theorem PROPERTIES OF DISTRIBUTION TRANSFORMATION LetX be a real-valued ran-
dom variable with distribution functiof (x) = P[X < x]. Then the following properties hold:

(@ P[F(X)<u] <u,forallue[0,1];

(b) P[F(X) <u =u&suec{F(R)},
wherecl{F (R)} is the closure of the range Bf,

(¢) PIF(X) <F(x)] =PX <X =F(x), forallxeR;
(d) F(X) ~U(0,1) & F is continuous;

(e) forallx, 1{F (X) < F(x)} = 1{X < x} with probability1;
(f) F~(F (X)) = X with probability1.

6.5 Theorem QUANTILES AND P-VALUES. LetX be a real-valued random variable with distribu-
tion functionF (x) = P[X < x| and survival functiors(x) = P[X > x| . Then, for any € R,

G(x) = P[G(X)>G(x)]



= PX=F}((F(x) - pe(x)")]
= PX>F(1-G(x)")] (6.8)

wherepg (X) = P[X =X] = F(X) — F (x—).

7. Multivariate generalizations

7.1 Notation CONDITIONAL DISTRIBUTION FUNCTIONS. LetX = (X, ..., X)" akx 1 random
vector inRX. Then we denote as follows the following set of conditional distribution funstio

F]_\.(X]_) = F]_(Xl) = P[Xl < X]_] s (7.1)
F2|.(X2’X1) = P[Xz <Xz ‘ X1 = Xl] ,

R O IXa, - Xe1) = PXeSx Xe=Xg, -0, X1 = Xe1] -
Further, we define the following transformations4af ... , X :

Z; = FR(X), (7.2)
Z; = Fp.(X2|X),

Zx = BRg(&%Xg, . K1)

7.2 Theorem TRANSFORMATION TO i.i.d. U(0,1) VARIABLES (ROSENBLATT). Let X =
(X1, ..., %) be ak x 1 random vector irR¥ with an absolutely continuous distribution function
F(X1,...,X) = P[Xye <X, ..., % < x]. Then the random variablés, ..., Zy are independent
and identically distributed according taJ40, 1) distribution.
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8. Proofs and additional references

1.4-1.5 Rudin (1976), Chapter 4, pp. 95-97, and Chung (1974), Sectior-bri(a)-(b), see
Phillips (1984), Sections 9.1 (p. 243) and 9.3 (p. 253).

1.6- 1.8 Ramis, Deschamps, and Odoux (1982), Section 4.3.2, p.121.

1.9 Chung (1974), Section 1.1, p. 4.

1.11 Haaser and Sullivan (1991), Section 9.3; Riesz and Sz.-Nagy (1%85/1Chapter 1.

2.3 (2.4) is proved by Reiss (1989, Appendix 1, Lemma A.1.1). (2.5) and §2&5also given
by Gleser (1985, Lemma 1, p. 957).

2.4 Reiss (1989), Appendix 1, Lemma A.1.3.

2.5 Reiss (1989), Appendix 1, Lemma A.1.2.

3.2 (f) Lehmann and Casella (1998), Problem 1.7 (for the cpsel/2).

4.2 (a) Williams (1991), Section 3.12 (p. 34).

7.2 See Rosenblatt (1952).
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