SPECIFICATION OF ARIMA MODELS BY THE BOX-JENKINS METHOD

Jean-Marie Dufour

May 2005

1 Basic steps

$$\varphi_p(B) (1-B)^d X_t = \mu_0 + \theta_q(B) u_t$$

$$\varphi_p(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$$

$$\theta_q(B) = 1 - \theta_1 B - \dots - \varphi_q B^q$$

- (1) Specification (identification)
 - (a) Transformation of X_t
 - Logarithm or power transformation
 - Differencing (d)
 - (b) Values of p and q
- (2) Estimation
- (3) Validation (diagnostic checking)

$$(3) \to (1) \to (2) \to (3) \to (1) \dots$$

up to a satisfactory model

2 Transformations

Objective : Obtain a series which looks stationary in mean and variance

(a) Variance stabilizing transformations

- Log or not $X_t^* = X_t$ $= \log (X_t)$ - Box-Cox transformations $X_t^* = (X_t + m)^{\lambda} , \quad \text{if } \lambda \neq 0$ $= \log (X_t + m) , \quad \text{if } \lambda = 0$ $(X_t + m)^{\lambda} - 1$

or

$$X_t^* = \frac{\left(X_t + m\right)^\lambda - 1}{\lambda}$$

(b) Mean stabilizing transformations $\widetilde{X}_t = (1 - B)^d X_t^*$

- 3 Identification of p and q
- 2 basic instruments
 - (1) Sample autocorrelations determine q for MA(q) model
 - (2) Sample partial autocorrelations determine \boldsymbol{p}

for AR(p) model

3.1 Identification of q for a MA(q)

For a $MA\left(q\right),$ $\rho_{k}=0, \ \text{for} \ k>q \ . \label{eq:rho_k}$

If k > q, the asymptotic variance of r_{ρ} is $V(r_k) = \frac{1}{T} \left\{ 1 + 2\sum_{j=1}^q \rho_j^2 \right\}.$

If
$$X_t$$
 follows a $MA(q)$,
 $\sqrt{T} r_k \xrightarrow[T \to \infty]{} N\left[0, \bar{\sigma}_k^2\right]$
 $\bar{\sigma}_k^2 = 1 + 2\sum_{j=1}^q \rho_j^2$
 σ_k can be consistently estimated by

 σ_k can be consistently estimated by

$$\hat{\sigma}_k^2 = 1 + 2\sum_{j=1}^q r_j^2$$
,

hence

$$\sqrt{T}\frac{r_k}{\hat{\sigma}_k} = \frac{r_k}{\hat{\sigma}(r_k)} \xrightarrow[T \to \infty]{} N(0, 1) \quad .$$

For k > q,

$$\hat{\sigma}\left(r_k\right) = \frac{1}{\sqrt{T}}\hat{\sigma}_k \; .$$

r any
$$k > q$$
,

$$\left| \frac{r_k}{\hat{\sigma}(r_k)} \right| > c(\alpha/2)$$

$$P[N(0,1) > c(\alpha/2)] = \frac{\alpha}{2}$$

is an indication that we do not have a MA(q) process. For j > q and k > q, r_j and r_k are asymptotically uncorrelated (independent since Gaussian).

To determine the order of a MA(q), we look for a cut-off point in the autocorrelations :

r_k	\neq	0	for	$k \leq q$,
r_k	\simeq	0	for	k > q .

For AR(p) process

$$\rho_k = \sum_{j=1}^p \varphi_j \rho_{k-j}$$

i.e. an exponential decay of ρ_k with possibly oscillations.

3.2 Identification of p for an AR(p)

Consider the *k* equations system: $\rho_j = a_{k1}\rho_{j-1} + a_{k2}\rho_{j-2} + \dots + a_{kk}\rho_{j-k}, \quad j = 1, \dots, k.$ a_{kk} is the partial autocorrelation at lag *k*.

For an AR(p) process,

 $a_{kk} = 0$, for k > p.

 a_{kk} can be consistently estimated on replacing ρ_j by r_j :

 $r_j = \hat{a}_{k1}r_{j-1} + \hat{a}_{k2}r_{j-2} + \ldots + \hat{a}_{kk}r_{j-k}, \quad j = 1, \ldots, k.$

For an
$$AR(p)$$
 process
 $\sqrt{T}\hat{a}_{kk} \stackrel{a}{\sim} N[0,1]$, $k > p$.
we can test whether we have an $AR(p)$ by checking
 $\left|\sqrt{T}\hat{a}_{kk}\right| > c(\alpha/2)$
 $\frac{\hat{a}_{kk}}{1/\sqrt{T}} \stackrel{a}{\sim} N[0,1]$.

For a MA(q) process, a_{kk} declines at an exponential rate.

For an ARMA(p,q) with $p \ge 1$, $q \ge 0$, both ρ_k and a_{kk} decline at exponential rates

Process type	Autocorrelations	Partial autocorrelations
$MA\left(q ight)$	$\begin{array}{l} \rho_q \neq 0 \\ \rho_k = 0, \ k > q \end{array}$	Exponential decay oscillations possible $a_{kk} 0$ $k \rightarrow \infty$
$AR\left(p ight)$	$\rho_k = \varphi_1 \rho_{k-1} + \dots + \varphi_p \rho_{k-p}$ Exponential decay $\rho_k \xrightarrow[k \to \infty]{} 0$	$a_{pp} \neq 0$ $a_{kk} = 0, \ k > p$
$ARMA\left(p,q ight)$	Irregular for $k = 1,, p$ $\rho_k = \varphi_1 \rho_{k-1} + + \varphi_p \rho_{k-p}$ k > p $\rho_k \xrightarrow{\longrightarrow} 0$	$a_{kk} \xrightarrow[k \to \infty]{} 0$