SPECIFICATION OF ARIMA MODELS BY THE BOX-JENKINS METHOD

Jean-Marie Dufour

May 2005

1 Basic steps

$$
\begin{aligned}
\varphi_{p}(B)(1-B)^{d} X_{t} & =\mu_{0}+\theta_{q}(B) u_{t} \\
\varphi_{p}(B) & =1-\varphi_{1} B-\ldots-\varphi_{p} B^{p} \\
\theta_{q}(B) & =1-\theta_{1} B-\ldots-\varphi_{q} B^{q}
\end{aligned}
$$

(1) Specification (identification)
(a) Transformation of X_{t}

- Logarithm or power transformation
- Differencing (d)
(b) Values of p and q
(2) Estimation
(3) Validation (diagnostic checking)

$$
(3) \rightarrow(1) \rightarrow(2) \rightarrow(3) \rightarrow(1) \ldots
$$

up to a satisfactory model

2 Transformations

Objective: Obtain a series which looks stationary in mean and variance
(a) Variance stabilizing transformations

- Log or not

$$
\begin{aligned}
X_{t}^{*} & =X_{t} \\
& =\log \left(X_{t}\right)
\end{aligned}
$$

- Box-Cox transformations

$$
\begin{aligned}
X_{t}^{*} & =\left(X_{t}+m\right)^{\lambda}, & & \text { if } \lambda \neq 0 \\
& =\log \left(X_{t}+m\right), & & \text { if } \lambda=0
\end{aligned}
$$

Or

$$
X_{t}^{*}=\frac{\left(X_{t}+m\right)^{\lambda}-1}{\lambda}
$$

(b) Mean stabilizing transformations

$$
\widetilde{X}_{t}=(1-B)^{d} X_{t}^{*}
$$

3 Identification of p and q
2 basic instruments
(1) Sample autocorrelations determine q for MA(q) model
(2) Sample partial autocorrelations determine p for $A R(p)$ model
3.1 Identification of q for a $M A(q)$

For a $M A(q)$,

$$
\rho_{k}=0, \text { for } k>q .
$$

If $k>q$, the asymptotic variance of r_{ρ} is

$$
V\left(r_{k}\right)=\frac{1}{T}\left\{1+2 \sum_{j=1}^{q} \rho_{j}^{2}\right\}
$$

If X_{t} follows a $M A(q)$,

$$
\begin{aligned}
& \sqrt{T} r_{k} \underset{T \rightarrow \infty}{\longrightarrow} N\left[0, \bar{\sigma}_{k}^{2}\right] \\
& \bar{\sigma}_{k}^{2}=1+2 \sum_{j=1}^{q} \rho_{j}^{2}
\end{aligned}
$$

σ_{k} can be consistently estimated by

$$
\hat{\sigma}_{k}^{2}=1+2 \sum_{j=1}^{q} r_{j}^{2}
$$

hence

$$
\sqrt{T} \frac{r_{k}}{\hat{\sigma}_{k}}=\frac{r_{k}}{\hat{\sigma}\left(r_{k}\right)} \underset{T \rightarrow \infty}{\longrightarrow} N(0,1) .
$$

For $k>q$,

$$
\hat{\sigma}\left(r_{k}\right)=\frac{1}{\sqrt{T}} \hat{\sigma}_{k} .
$$

r any $k>q$,

$$
\begin{aligned}
& \left|\frac{r_{k}}{\hat{\sigma}\left(r_{k}\right)}\right|>c(\alpha / 2) \\
& P[N(0,1)>c(\alpha / 2)]=\frac{\alpha}{2}
\end{aligned}
$$

is an indication that we do not have a $M A(q)$ process. For $j>q$ and $k>q, r_{j}$ and r_{k} are asymptotically uncorrelated (independent since Gaussian).

To determine the order of a $M A(q)$, we look for a cut-off point in the autocorrelations:

$$
\begin{aligned}
& r_{k} \neq 0 \quad \text { for } \quad k \leq q \\
& r_{k} \simeq 0 \quad \text { for } \quad k>q
\end{aligned}
$$

For $A R(p)$ process

$$
\rho_{k}=\sum_{j=1}^{p} \varphi_{j} \rho_{k-j}
$$

i.e. an exponential decay of ρ_{k} with possibly oscillations.
3.2 Identification of p for an $A R(p)$

Consider the k equations system:
$\rho_{j}=a_{k 1} \rho_{j-1}+a_{k 2} \rho_{j-2}+\cdots+a_{k k} \rho_{j-k}, \quad j=1, \ldots, k$.
$a_{k k}$ is the partial autocorrelation at lag k.
For an $A R(p)$ process,

$$
a_{k k}=0, \quad \text { for } k>p .
$$

$a_{k k}$ can be consistently estimated on replacing ρ_{j} by r_{j} :
$r_{j}=\hat{a}_{k 1} r_{j-1}+\hat{a}_{k 2} r_{j-2}+\ldots+\hat{a}_{k k} r_{j-k}, \quad j=1, \ldots, k$.

For an $A R(p)$ process

$$
\sqrt{T} \hat{a}_{k k} \stackrel{a}{\sim} N[0,1], \quad k>p .
$$

we can test whether we have an $A R(p)$ by checking

$$
\begin{aligned}
& \left|\sqrt{T} \hat{a}_{k k}\right|>c(\alpha / 2) \\
& \frac{\hat{a}_{k k}}{1 / \sqrt{T}} \stackrel{a}{\sim} N[0,1] .
\end{aligned}
$$

For a $M A(q)$ process, $a_{k k}$ declines at an exponential rate.

For an $\operatorname{ARMA}(p, q)$ with $p \geq 1, \quad q \geq 0$, both ρ_{k} and $a_{k k}$ decline at exponential rates

$0 \stackrel{\infty \leftarrow y}{\longleftarrow} y \neq y$		$\left(b^{`} d\right) V I N Y V$
$\begin{aligned} d<y^{\prime} \cdot 0 & =Y \neq y \\ 0 & \neq{ }^{d d} p \end{aligned}$		（d） \mathscr{U}
	$\begin{aligned} b<y \cdot & ={ }^{y} d \\ 0 & \neq{ }^{b} d \end{aligned}$	（b）V W
	suoụp［əu．．．	ədKı ssəวo．d

