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1. Hypothesis testing and nuisance parameters

Testing an hypothesisH0 usually involves finding a
test statisticT (H0) with 2 characteristics:

1. the stochastic behavior (distribution) ofT (H0)
underH0 must be known;

2. the way the distribution ofT (H0) is affected
under the alternative must also be known [e.g.
T (H0) may tend to takelarge or small values
with greater possibilities under the alternative].

−→ Fundamental that the quantiles of the distribu-
tion function ofT (H0) be eitheruniquely defined
or (at least)bounded.
Otherwise, the behavior ofT (H0) underH0 is not
interpretable andT (H0) cannot be the basis of a
valid test ofH0.

Common difficulty: nuisance parameters

θ =

(

θ1

θ2

)

(1.1)

H0 : θ1 = θ0
1 (1.2)

Test:T
(

θ0
1

)

> c(α) (1.3)
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2 basic cases:

1. the distribution ofT (θ0
1) does not depend onθ2:

it is uniquely determined;

2. the distribution ofT (θ0
1) depends onθ2 : it is not

uniquely determined:
θ2 is anuisance parameter.

In many econometric and statistical problems, it is
difficult to find the exact distribution of test statistics
and confidence sets.
Two basic reasons:

1. deriving the relevant distributions may require
complex calculations
(even when there is no nuisance parameter);

and / or

2. distribution may involve nuisance parameters.
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Most common approach to such distributional
problems: use alarge-sample approximation.

Important characteristic of such approximations
in many situations, the asymptotic distribution does
not involve nuisance parameters [e.g., N(0,1), chi-
square]
−→ great flexibility.

Main interest of asymptotic approximations: gen-
erate approximations useful in finite-samples

Shortcomings:

1. Finite-sample distribution may involve nuisance
parameters

2. Accuracy of the approximation is typically un-
known and may bearbitrarily bad especially
with nuisance parameters (non-uniform conver-
gence)

Approximation arbitrarily bad=⇒ Tests statistic
not interpretable
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2. Distributions without nuisance parameters

Deriving analytically the distribution of a test statis-
tic typically involves complex calculations and re-
main feasible only in special cases.
t andFdistributions in the classical linear model.

Nowadays, it is often possible to simulate the rele-
vant test statistic under the null hypothesis.

1. The distribution of the test statistic – and thus
the relevant critical values – can be evaluated to
any degree of precision (with a sufficientlylarge
number of replications).

2. A Monte Carlo (MC) test can performed:
the size of the test can be perfectly controlled,
even with asmall number replications [Dwass
(1957), Barnard (1963)].
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Work exploiting the technique of MC tests in
econometrics:

- Dufour and Kiviet (1996, Journal of Econometrics)

- Kiviet and Dufour (1997, Journal of Econometrics)

- Dufour and Kiviet (1998, Econometrica)

- Dufour, Farhat, Gardiol, and Khalaf (1998, Econo-
metrics Journal)

- Dufour and Khalaf (2001, Baltagi, eds, Blackwell)

Dufour and Khalaf (2002, Journal of Econometrics)

- Dufour, Khalaf, and Beaulieu (2003, Oxford Bul-
letin of Economics and Statistics)

- Dufour, Khalaf, Bernard, and Genest (2004, Jour-
nal of Econometrics)

- Dufour (2006, Journal of Econometrics): general-
ized theory of MC tests

- Beaulieu, Dufour, and Khalaf (2006, Journal of
Business and Economic Statistics, forth.)
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3. Basic techniques to deal with nuisance parameters

1. Transforming :
Find a transformation that reduces the data for
a statisticT (θ0

1) whose distribution does not de-
pend onθ2 [e.g. reduction to a maximal invariant
statistic]

- t andF -statistics in classical linear regression
- reduction of observations in cash or signs

2. Conditioning
on a statisticS such that the conditional distribu-
tion of T (θ0

1) givenS does not depend onθ2:

- conditioning on explanatory variables.
- tests with Neyman structure;
- permutation tests;

3. Bounding:
find a bound on the distribution ofT (θ0

1) which is
valid irrespective of the unknown value ofθ2:

sup
θ2

P(θ0
1,θ2)

[

T (θ0
1) > x

]

≤ Bθ0
1
(x)

inf
θ2

P(θ0
1,θ2)

[

T (θ0
1) > x

]

≥ Cθ0
1
(x)
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4. Approaches for building bounds procedures

Four approaches:

1. Bounding the statistics of interest by other ran-
dom variables with more tractable distributions
−→ Bounds on distribution functions

2. Bounding directly the distribution function of in-
terest (or its tail areas) by some function (not nec-
essarily obtained as the distribution function of
random variable)

3. Sequential confidence procedures

4. Projection techniques
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4.1. Bounding the statistic of interest by other statistics

Given a statisticT used in building a test on con-
fidence set with a complicated distribution (possi-
bly involving nuisance parameters), one tries to find
other statisticsT1 andT2 with more tractable distrib-
utions and such that

T1 ≤ T ≤ T2 ,

P [T1 ≥ x] ≤ P [T ≥ x] ≤ P [T2 ≥ x] .

Approach applied in:

- Dufour (1989, Econometrica)

- Dufour (1990, Econometrica)

- Dufour and Khalaf (2002, Journal of Economet-
rics)

- Dufour (2006, Journal of Econometrics): Maxi-
mized Monte Carlo (MMC) tests

Dufour and Jouini (2006, Journal of Econometrics):
MMC tests applied to VAR models
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4.2. Bounding tail areas by some function

Pθ [T ≥ x] ≤ G(x)

whereG(x) is not necessarily obtained from the dis-
tribution of a random variables.

1. Exponential inequalities;

2. Chebyshev inequalities (based on second and
higher-order moments);

3. Berry-Esséen bounds.

There are cases (e.g. in nonparametric statistics)
where such bounds can be used and combined to get
fairly tight bounds on tail areas.
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Approach used in:

- Dufour (1991, Hackl-Westlund, eds., Springer)

- Dufour and Mahseredjian (1993, Econometric
Theory)

- Dufour and Hallin (1991, Econometric Theory)

- Dufour and Hallin (1992a, Econometric Theory)

- Dufour and Hallin (1992b, Journal of Statistical
Planning and Inference)

- Dufour and Hallin (1993, JASA)
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4.3. Projection techniques

Let

θ =

(

θ1

θ2

)

. (4.1)

Very often, it is easy to relatively easy to find a joint
confidence set forθ :

P[θ ∈ Cθ(α)] ≥ 1 − α , (4.2)

then, for any functiong(θ),

P
[

g(θ) ∈ g [Cθ(α)]
]

≥ 1 − α . (4.3)

g [Cθ(α)] is a confidence set with level1−α for g(θ).
For example, we can take

g(θ) = θ2 . (4.4)

If θ2 is a scalar andCθ(α) is a compact set, then
g [Cθ(α)] must be an interval.
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Approach applied in:

- Dufour (1990, Ecnometrica)

- Dufour (1997, Ecnometrica)

- Abdelkhalek and Dufour (1998, Review of Eco-
nomics and Statistics)

- Dufour, Hallin, and Mizera (1998, Journal of Non-
parametric Statistics)

- Dufour and Kiviet (1998, Econometrica)

- Dufour and Jasiak (2001, International Economic
Review)

- Dufour and Khalaf (2002)

- Dufour and Taamouti (2005, Econometrica)

- Dufour and Taamouti (2006, Journal of Economet-
rics, forth.)
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4.4. Sequential confidence procedure

Useful with nuisance parameters

θ =

(

θ1

θ2

)

(4.5)

where

θ1: vector of nuisance parameter
θ2: vector of parameters of interest

(4.6)

Problem: inference aboutθ2 (confidence set on test)
Suppose 2 conditions are satisfied:

1. it is possible to build exact confidence setC1 for
θ1

P [θ1 ∈ C1] = 1 − α1 ; (4.7)

2. if θ1 is known, it is possible to build a confidence
setC2(θ1) for θ2 such that

P [θ2 ∈ C2(θ1)] = 1 − α2 . (4.8)

Procedure:

1. Build on exact confidence setC1 for θ1:

P [θ1 ∈ C1] =
(≥)

1 − α1
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2. Build a simultaneous confidence setC for θ1 and
θ2:

C = {(θ1, θ2) : θ1 ∈ C1 , θ2 ∈ C2(θ1)}

P [(θ1, θ2) ∈ C] ≥ 1 − (α1 + α2)

3. Use a projection (or an intersection) method to
deduce conservative (or a liberal) confidence set
for θ2:

U = {θ2 : (θ1, θ2) ∈ C for someθ1 ∈ C1}

P [θ2 ∈ U ] ≥ 1 − (α1 + α2)

L = {θ2 : (θ1, θ2) ∈ C for all θ1 ∈ C1} (4.9)
P [θ2 ∈ L] ≤ (1 − α2) + α1 (4.10)

4. Conservative and liberal critical regions can be
deduced from there confidence sets:
θ0

2 /∈ U is a conservative critical region for
H0:θ2 = θ0

2 with levelα ≡ α1 + α2 ;
θ2 /∈ L is a liberal continual region forH0 : θ2 =
θ0

2 with levelα = α1 − α2 .

5. By combining a conservative and a liberal confi-
dence region with the same level one gets a gen-
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eralized bounds tests

Approach applied to linear regression with AR(1) er-
rors in:

- Dufour (1990, Ecnometrica)

- Dufour, Hallin, and Mizera (1998, Journal of Non-
parametric Statistics)

- Dufour and Kiviet (1998, Econometrica)

- Beaulieu, Dufour, and Khalaf (2006, Journal of
Business and Economic Statistics, forth.)
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5. Weak identification

Several authors in the pas have noted that usual as-
ymptotic approximations are not valid or lead to very
inaccurate results when parameters of interest are
close to regions where these parameters are not any-
more identifiable:

Sargan (1983, Econometrica)
Phillips (1984, International Economic Review)
Phillips (1985, International Economic Review)
Gleser and Hwang (1987, Annals of Statistics)
Koschat (1987, Annals of Statistics)
Phillips (1989, Econometric Theory)
Hillier (1990, Econometrica)
Nelson and Startz (1990a, Journal of Business)
Nelson and Startz (1990b, Econometrica)
Buse (1992, Econometrica)
Maddala and Jeong (1992, Econometrica)
Choi and Phillips (1992, Journal of Econometrics)
Bound, Jaeger, and Baker (1993, NBER Discus-

sion Paper)
Dufour and Jasiak (1993, CRDE)
Bound, Jaeger, and Baker (1995, Journal of the
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American Statistical Association)
McManus, Nankervis, and Savin (1994, Journal of

Econometrics)
Hall, Rudebusch, and Wilcox (1996, International

Economic Review)
Dufour (1997, Econometrica)
Shea (1997, Review of Economics and Statistics)
Staiger and Stock (1997, Econometrica)
Wang and Zivot (1998, Econometrica)
Zivot, Startz, and Nelson (1998, International Eco-

nomic Review)
Startz, Nelson, and Zivot (1999, International Eco-

nomic Review)
Perron (1999)
Stock and Wright (2000, Econometrica)
Dufour and Jasiak (2001, International Economic

Review)
Dufour and Taamouti (2001)
Kleibergen (2001, 2002)
Moreira (2001, 2002)
Stock and Yogo (2002)
Stock, Wright, and Yogo (2002, Journal of Busi-

ness and Economic Statistics)
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Dufour (2003, Canadian Journal of Economics)
Dufour and Taamouti (2005, Econometrica)
Dufour and Taamouti (2006, Journal of Economet-

rics, forth.)

18



1. Theoretical results show that the distributions of
various estimators depend in a complicated way
upon unknown nuisance parameters. So they are
difficult to interpret.

2. When identification conditions do not hold, stan-
dard asymptotic theory for estimators and test
statistics typically collapses.

3. With weak instruments,

(a) 2SLS becomes heavily biased (in the same di-
rection as OLS),

(b) distribution of 2SLS is quite far the normal
distribution (e.g., bimodal).

4. Problems were strikingly illustrated by the recon-
sideration by Bound, Jaeger, and Baker (1995,
Journal of the American Statistical Association)
of a study on returns to education by Angrist and
Krueger (1991, QJE):

329000 observations;

replacing the instruments used by Angrist and
Krueger (1991, QJE) with randomly gener-
ated instruments (totally irrelevant) produced
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very similar point estimates and standard er-
rors;

indicates that the instruments originally used
were weak.

20



Crucial to use finite-sample approaches to produce
reliable inference.

Finite-sample approaches to inference on models in-
volving weak identification

- Dufour (1997, Econometrica)

- Dufour and Jasiak (2001, International Economic
Review)

- Dufour and Taamouti (2005, Econometrica)

- Dufour and Taamouti (2006, Journal of Economet-
rics, forth.)
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Applications

1. Tobin’sq
[Dufour and Jasiak (2001, International Eco-
nomic Review)]

2. Students’ achievements and self-esteem
[Dufour and Jasiak (2001, International Eco-
nomic Review)]

3. Education and earnings
[Dufour and Taamouti (2006, Journal of Econo-
metrics, forth.)]

4. Trade and growth
[Dufour and Taamouti (2006, Journal of Econo-
metrics, forth.)]

5. New Keynesian Phillips curves
[Dufour, Khalaf, and Kichian (2006a, Journal of
Economic Dynamics and Control), Dufour, Kha-
laf, and Kichian (2006b)]

6. Black’s CAPM
[Beaulieu, Dufour, and Khalaf (2005)]
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