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1. Generalized least squares

1.1. Best linear unbiased estimator

y = Xβ + u (1.1)

wherey is aT×1 vector of observations on a dependent variable,X is aT×k nonstochastic
matrix of rankk, andu is aT × 1 vector of disturbances (errors) such that

E(u) = 0

V(u) = σ2V (1.2)

andV is a knownT × T positive definite matrix. Then the least-squares estimator

β̂ = (X ′X)−1X ′y (1.3)

is unbiased but does not have minimal variance. The covariance matrix ofβ̂ is

V(β̂) = σ2(X ′X)−1X ′V X(X ′X)−1 (1.4)

so that the usual formula
V(β̂) = σ2(X ′X)−1 (1.5)

is not valid.
The factV is positive definite entails that|V | 6= 0, so there is no perfect correlation

between the disturbances. Further, there exists a nonsingular T × T matrixP such that

PV P ′ = IT , (1.6)

(P ′)−1V −1P−1 = (PV P ′)−1 = IT . (1.7)

Multiply both sides of (1.1) byP :

Py = PXβ + Pu . (1.8)

We get in this way the transformed model

y∗ = X∗β + u∗ (1.9)

where
y∗ = Py , X∗ = PX, u∗ = Pu (1.10)
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E(u∗) = 0 , (1.11)

V(u∗) = E [Puu′P ′] = σ2PV P ′ = σ2IT . (1.12)

Then

β̂G =
(

X
′

∗
X∗

)

−1

X
′

∗
y∗ (1.13)

is the best linear unbiased estimator ofβ :

E(β̂G) = β

V(β̂G) = σ2(X
′

∗
X∗)

−1. (1.14)

We can also write:

β̂G = (X ′P ′PX)
−1

X ′P ′Py =
(

X ′V −1X
)

−1

X ′V −1y (1.15)

for
PV P ′ = IT ⇒ V = P−1(P ′)−1 = (P ′P )−1

⇒ V −1 = P ′P .
(1.16)

β̂G is called the generalized least squares estimator ofβ :

E

(

β̂G

)

= β ,

V

(

β̂G

)

= σ2

(

X
′

∗
X∗

)

= σ2
(

X ′V −1X
)

−1

. (1.17)

We know that̂β minimizes

(y − Xβ)′ (y − Xβ) . (1.18)

Similarly, β̂G minimizes

(y∗ − X∗β)′ (y∗ − X∗β) = (Py − PXβ)′ (Py − PXβ)

= (y − Xβ)′ P ′P (y − Xβ)

= (y − Xβ)′ V −1 (y − Xβ)

This is whyβ̂G is also called aweighted least squares estimator ofβ.
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1.2. Gaussian case

Suppose
u ∼ N

[

0, σ2V
]

(1.19)

Then
β̂G ∼ N

[

β, σ2
(

X ′V −1X
)

−1
]

(1.20)

is the best mean squares unbiased estimator ofβ.
We can build tests and confidence intervals in the usual manner by using the trans-

formed model
(Py) = (PX)β + (Pu) (1.21)

instead of
y = Xβ + u . (1.22)
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2. Estimation with heteroskedasticity

2.1. Known variance structure

Suppose

E [uu′] = σ2











d2

1
0 · · · 0

0 d2

2
· · · 0

...
...

. . .
...

0 0 · · · d2

T











= σ2V . (2.1)

The variance of each element ofu is then

V(ut) = σ2

t
= d2

t
σ2 (2.2)

and we have:
yt = x′

tβ + ut , t = 1, . . . , T

yt

dt

=
1

dt

x′

t
β +

ut

dt

, t = 1, . . . , T (2.3)

y∗t = x′

∗tβ + u∗t , t = 1, . . . , T (2.4)

V(u2

∗t
) = V

(

ut

dt

)

= σ2
d2

t

d2

t

= σ2 (2.5)

P =











1/d1 0 · · · 0
0 1/d2 · · · 0
...

...
. . .

...
0 0 · · · 1/dT











(2.6)

2.2. Unknown variance structure

It is rare thatd1, . . . , dT are known.
It is impossible to estimateT + k parameters withT observations (incidental parameter
problem)..
One must make hypotheses on the form of the variance structure.

1. d2

t = c (xtk)
2

wherexk is one of the explanatory variables or another variable. Then

yt

xtk

=
1

xtk

x′

t
β +

ut

xtk

, t = 1, . . . , T

V

(

ut

xtk

)

= σ2c = cσ2 (2.7)
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2. σ2

t = c (Eyt)
2 = c (x′

tβ)2

Then
yt

E(yt)
=

1

E(yt)
x′

t
β +

ut

E(yt)
, t = 1, . . . , T (2.8)

A difficulty here is thatE(yt) = x′

t
β is unknown. This suggests a two-step procedure.

1. Estimateβ par OLS. This is reasonable becauseβ̂ is unbiased.

2. The model is then transformed according to:

yt

x′

tβ̂
=

(

1

x′

tβ̂
x′

t

)

β +
ut

x′

tβ̂
. (2.9)

In this way, the model becomes “approximately homoskedastic”. For T large this
leads to efficient estimators and valid tests and confidence intervals.
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