Jean-Marie Dufour March 7, 2014

TIME SERIES ANALYSIS EXERCISES STOCHASTIC PROCESSES 1

- 1. (a) Define the notion of **probability space**.
 - (b) Define the notion of real-valued stochastic process on a probability space.
- 2. Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify briefly your answer. (Maximum: one page per question.)
 - (1) Any strictly stationary process is in L_2 .
 - (2) Any strictly stationary process is also second-order stationary.
 - (3) Any stationary process of order 3 is also stationary of order 2.
 - (4) Any asymptotically stationary process of order 3 is also asymptotically stationary process of order 2.
 - (5) A white noise is a stationary process of order 4.
- 3. Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:
 - (a) $\gamma(0) = Var(X_t)$ et $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$;
 - (b) $|\gamma(k)| \leq \gamma(0)$, $\forall k \in \mathbb{Z}$;
 - (c) the function $\gamma(k)$ is positive semi-definite.
- 4. Consider a process that follows the following model:

$$X_t = \sum_{j=1}^m [A_j \cos(v_j t) + B_j \sin(v_j t)], t \in \mathbb{Z},$$

where $v_1, ..., v_m$ are distinct constants on the interval $[0, 2\pi)$ and $A_j, B_j, j = 1, ..., m$, are random variables in L_2 , such that

$$E(A_j) = E(B_j) = 0, E(A_j^2) = E(B_j^2) = \sigma_j^2, \ j = 1, \dots, n,$$

$$E(A_jA_k) = E(B_jB_k) = 0, \text{ for } j \neq k,$$

$$E(A_jB_k) = 0, \ \forall j, k.$$

- (a) Show that this process is second-order stationary.
- (b) For the case where m = 1, show that this process is deterministic
 [Hint: consider the regression of X_t on cos(v₁t) and sin(v₁t) based two observations.]