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Problem 1

(a) Define the notion of probability space.

(b) Define the notion of real-valued stochastic process on a probability space.
Answer.
(a). A probability space is a triplet (€2, .4, P) satisfying:
(1) Qis a set of possible outcomes;
(2) Ais a o-algebra on (), meaning
(i) 0 and Q are in A,
(ii) if A€ Aand Q\A isin A,
(iii) if {A,}52, is a sequence of subsets of 2 such that each A, € A, then U | A, € A,
(3) P: A — Ris a probability measure, meaning
(i) P(A) >0 for any A € A,
(i) P(@) =0 and P(Q) =1,
(iii) if {A,}52, is a sequence of disjoint subsets of € such that each A, € A, then
P (U, 4,) = 220:1 P(Ay).
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A subset A of Q is called an event. If A € A, then A is measurable (by A and P) else A
is not measurable.

(b).

Let T be a non-empty set. A stochastic process on T is a collection of random

variables X; : 2 — R such that to each element ¢ € T, we associate a random variable X;.
The process can then be written as {X; : ¢t € T'}. If T'= R (real numbers), we have a process
in continuous time. If T'=7 or T' C 7Z, we have a discrete time process. O

Problem 2

Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify
briefly your answer.

(1)

Any strictly stationary process is in Ls.

FALSE. Suppose {y:}:°, is a sequence of i.i.d. random variables each of which fol-
lows a t-distribution with 2 degrees of freedom. The i.i.d. assumption implies strict
stationarity. Yet, because a t-distribution with v degrees of freedom does not have
moments of order v or above, we infer that each y; does not possess a finite variance.
In particular, because F(y;) = 0, we have Var(y;) = E(y?) = +oo. O

Any strictly stationary process is also second-order stationary.

FALSE. The process {y;}:°, described in (1) is strictly stationary because the vari-
ance of each g, is infinite. m

Any stationary process of order 3 is also stationary of order 2.

TRUE. Suppose that {X,;},cr satisfies stationarity of order 3. That is,

(i) E(JX¢®) < oo, for all t € T,

(i) B[X;" ... X ] = EX] .. X[ for any & > 0, any subset {t1,...,t,} € T"

and all the non-negative integers mq,...,m, s.t. m; +mo+---+m, < 3.

By the Jensen’s inequality with Z = |X;|?> > 0 and g : R, — R, defined as g(z) = 2%/2,
we have
9lE(Z) < E(9(2)) <= [E(IX.]))]? < B(IX) < oo

The last inequality above is due to (i). We may infer that F(|X;|?) < oo. Next, we use
condition (ii) above with t; =t and k = s — t (s and ¢ are some integers in T'), n = 1,
and m; = 1 to obtain:

E(X)) = E(Xyyy) <= E(X,) = B(X,).



Similarly, we can use condition (ii) with n = 2, t; = s, t; = t (again, s and t are
some integers in T'), k > 0, and m; = my = 2 (which satisfies my + my < 3) to obtain
E(X:X;) = E(Xs4xXi4x), which in turn implies

Cov(Xs, X;) = E(X,X;) — E(X,)E(X))
= BE(Xs1xErx) — B(Xori) E(Xeq)
= COV(XS+k, Xt—i—k)‘

We have thus verify stationarity of second order. O]

(4) Any asymptotically stationary process of order 3 is also asymptotically stationary
process of order 2.

TRUE. Suppose that {X;}ier is asymptotically stationary of order 3. This means
that

(i) there exists an integer N s.t. E(|X;|®) < oo, for ¢ > N, and

(i)
lim B(XMX", ... XM, )= lim B(X™ X" X )

£ 00 t1+Ag - t1+An t1—00 ti1+k“ 1+ As+k t1+An+k
for any k > 0, t; € T, all the positive integers As, Az, ..., A, s.t. Ay < Az <
... < A,, and the non-negative integers my,...,m, s.t. my +mo+---+m, < 3.

By the Jensen’s inequality, condition (i) above implies that for the same N above,
E(]X;|?) is finite for all ¢ > N. Moreover, if my +mg + - -+ +m,, < 2, then it’s trivial
that my; +mq+---4+m, < 3. Thus, (ii) implies the analogous condition for asymptotic
stationarity of order 2. O

(5) A white noise is a stationary process of order 4.

FALSE. Suppose that {X;}+>1 is a sequence of i.i.d. random variables, each of which
follows a t distribution with 4 degrees of freedom. Such a t distribution has finite
moments of order 3 and below, and does not have moments of order 4 and above.
Together with the i.i.d. assumption, this implies that {X;};>; is a white noise process.
But because E(|X;|*) = oo, the process is not stationary of order 4. O

Problem 3

Let (k) the autocovariance function of second-order stationary process on the integers.
Prove that:

(a) v(0) = Var(X;) and v(k) = v(—k), for all k € Z;
(b) [v(k)] <~(0), V& € Z;



(c) the function (k) is positive semi-definite.

Proof.
(a). By definition, we have Cov(Xs, X;) = v(t — s) for all s,t € T. By the second-order
stationarity, the autocovariance function v is well-defined. In particular,

7(0) = Cov (X, Xy) = Var(X;)
and (s below is any integer)
7(k) = COV<XS>X5+I<:) = COV(X8+’C7XS) = 7(8 - (8 + k)) = P)/(_k.)

(b). That |y(k)| < ~(0) is a consequence of the Cauchy-Schwarz inequality. We provide
here a direct proof for completeness. With a fixed k € Z and any z € R, we have

0 < Var(X, — 2X,11) = Var(X,) — 22 Cov(Xy, Xeix) + 2% Var(X, ).

The rightmost expression above is a quadratic polynomial in z so it is nonnegative for all
real z iff the discriminant is nonpositive:

0 < [-2Cov (X, Xgir)]? — 4 Var(X,) Var(X,yr) <= 7(k)? < ~(0)?

from which |y(k)| < |y(0)] = ~(0) follows immediately.

(c). We have to show that: for any positive integer N and for all vectors a = (ay,...,an) €
RY and 7 = (t1,...,ty) € TV, it holds that SN, Zjvzl a;a;y(t; —t;) > 0. This follows by
considering Z = a1 Xy, + - - -anX;,. We have

N N
0 < Var(Z) = Cov(Z, Z) = Cov (Z a; X, Zantj>
N N N N - FIN N
= Z Z Cov(a; Xy, a; Xy,) Z Z a;a; Cov(Xy, Xi,) = Z Z a;a;y(t

i=1 j=1 i=1 j=1 i=1 j=1
O
Problem 4
Consider a process that follows the following model:
X, = Z[Aj cos(v;t) + Bjsin(v;t)], te€Z,
j=1
where vy, ..., v,, are distinct constants on the interval [0,27) and A;, B; (j =1,...,m) are

random variables in L, such that
E(A;jAy) = E(B;By) =0 j #k,
E(A;By) =0 Vj,k.

4



(a) Show that this process is second-order stationary.
(b) For the case where m = 1, show that this process is deterministic.

Proof.
(a). We have to check

(1) E(X?) < oo, Vt€Z,
(2) E(X;) = E(X;) forall s,t €T,
(3) Cov(Xs, X;) = Cov(Xgig, Xirg) for all s,t € T, Vk > 0.

Showing (2) is the easiest:
E(X)) = Z cos(v;t) ) +sin(v;t)E(B;)) =0
7j=1

because E(A;) = E(B;) =0 for all j. For (1), we write

E(X}?) = Var(X;) = Cov(X;, X;)

= Cov (Z[Aj cos(v;t) + Bjsin(v;t)], Z[Al cos(v;t) + B; sin(vﬁ)]) :

j i
Note that for j # 1
Therefore, it must be that
E(X?) = Z Cov(A; cos(v;t) + Bjsin(v;t), Aj cos(v;t) + B sin(v;t))
= Z (cos?(v;t) Var(A;) + sin®*(v;t) Var(B;))

= Z (cos?(v;t) + sin®(v;t)) 0]2
-y



We can proceed in a similar manner for (3):

Cov(Xs, Xy) = Cov (Z[Aj cos(v;t) + Bjsin(v;t)], Z[AZ cos(v;s) + B; sin(vg;)])
= Z Cov(A; cos(v;t) + Bjsin(v;t), A; cos(v;s) + Bjsin(v;s))
= Z (cos(v,t) cos(v;s) Var(A;) + sin(v;t) sin(v;s) Var(B;))

— Z (cos(v;t) cos(v;s) + sin(v;t) sin(v;s)) 032'

= Z cos[(t — s)v;lo;

which only depends on |t — s|. (Recall that cos is an even function.)
(b). Now suppose that m = 1 that we may write

X = Acos(vt) + Bsin(vt)

with
E(A)=E(B)=0, E(AB)=0, E(A* = E(B*) =o*

Let I; = {X; : s < t}. We show that the process {X; : t € Z} is deterministic on
Ty = {3,4,5,...}. To this end, we first note that for any ¢ € T}, the information set I, ;
includes X; and X. These two observations satisfy

@;) B (Acos(v) IBsin(v)) _ (cosl(v) sino(v)) (g) |

For simplicity, we treat v as known and assume that sin(v) # 0. Then,

B ) ()= (4 )

It follows that for t € T,

X, = (cos(vt) sin(vt)) (g) = (cos(vt) sin(vt)) (CSCO(U) —c§t(v)> (;1))

which can be written as g;([;_1). O



