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Problem 1

(a) Define the notion of probability space.

(b) Define the notion of real-valued stochastic process on a probability space.

Answer.
(a). A probability space is a triplet (Ω,A, P ) satisfying:

(1) Ω is a set of possible outcomes;

(2) A is a σ-algebra on Ω, meaning

(i) ∅ and Ω are in A,

(ii) if A ∈ A and Ω\A is in A,

(iii) if {An}∞n=1 is a sequence of subsets of Ω such that each An ∈ A, then ∪∞n=1An ∈ A;

(3) P : A → R is a probability measure, meaning

(i) P (A) ≥ 0 for any A ∈ A,

(ii) P (∅) = 0 and P (Ω) = 1,

(iii) if {An}∞n=1 is a sequence of disjoint subsets of Ω such that each An ∈ A, then
P (∪∞n=1An) =

∑∞
n=1 P (An).
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A subset A of Ω is called an event. If A ∈ A, then A is measurable (by A and P ) else A
is not measurable.
(b). Let T be a non-empty set. A stochastic process on T is a collection of random
variables Xt : Ω → R such that to each element t ∈ T , we associate a random variable Xt.
The process can then be written as {Xt : t ∈ T}. If T = R (real numbers), we have a process
in continuous time. If T = Z or T ⊂ Z, we have a discrete time process.

Problem 2

Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify
briefly your answer.

(1) Any strictly stationary process is in L2.

FALSE. Suppose {yt}∞t=1 is a sequence of i.i.d. random variables each of which fol-
lows a t-distribution with 2 degrees of freedom. The i.i.d. assumption implies strict
stationarity. Yet, because a t-distribution with v degrees of freedom does not have
moments of order v or above, we infer that each yt does not possess a finite variance.
In particular, because E(yt) = 0, we have Var(yt) = E(y2

t ) = +∞.

(2) Any strictly stationary process is also second-order stationary.

FALSE. The process {yt}∞t=1 described in (1) is strictly stationary because the vari-
ance of each yt is infinite.

(3) Any stationary process of order 3 is also stationary of order 2.

TRUE. Suppose that {Xt}t∈T satisfies stationarity of order 3. That is,

(i) E(|Xt|3) <∞, for all t ∈ T ,

(ii) E[Xm1
t1 . . . Xmn

tn ] = E[Xm1
t1+k . . . X

mn
tn+k] for any k ≥ 0, any subset {t1, . . . , tn} ∈ T n

and all the non-negative integers m1, . . . ,mn s.t. m1 +m2 + · · ·+mn ≤ 3.

By the Jensen’s inequality with Z = |Xt|2 ≥ 0 and g : R+ → R+ defined as g(z) = z3/2,
we have

g[E(Z)] ≤ E(g(Z)) ⇐⇒ [E(|Xt|2)]3/2 ≤ E(|Xt|3) <∞.

The last inequality above is due to (i). We may infer that E(|Xt|2) <∞. Next, we use
condition (ii) above with t1 = t and k = s− t (s and t are some integers in T ), n = 1,
and m1 = 1 to obtain:

E(X1
t ) = E(X1

t+k) ⇐⇒ E(Xt) = E(Xs).
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Similarly, we can use condition (ii) with n = 2, t1 = s, t2 = t (again, s and t are
some integers in T ), k ≥ 0, and m1 = m2 = 2 (which satisfies m1 +m2 ≤ 3) to obtain
E(XsXt) = E(Xs+kXt+k), which in turn implies

Cov(Xs, Xt) = E(XsXt)− E(Xs)E(Xt)

= E(Xs+kEt+k)− E(Xs+k)E(Xt+k)

= Cov(Xs+k, Xt+k).

We have thus verify stationarity of second order.

(4) Any asymptotically stationary process of order 3 is also asymptotically stationary
process of order 2.

TRUE. Suppose that {Xt}t∈T is asymptotically stationary of order 3. This means
that

(i) there exists an integer N s.t. E(|Xt|3) <∞, for t ≥ N , and

(ii)
lim
t1→∞

E(Xm1
t1 X

m2
t1+∆2

. . . Xmn
t1+∆n

) = lim
t1→∞

E(Xm1
t1+kX

m2
t1+∆2+k . . . X

mn
t1+∆n+k)

for any k ≥ 0, t1 ∈ T , all the positive integers ∆2, ∆3, . . . , ∆n s.t. ∆2 < ∆3 <
. . . < ∆n, and the non-negative integers m1, . . . ,mn s.t. m1 +m2 + · · ·+mn ≤ 3.

By the Jensen’s inequality, condition (i) above implies that for the same N above,
E(|Xt|2) is finite for all t ≥ N . Moreover, if m1 + m2 + · · ·+ mn ≤ 2, then it’s trivial
that m1 +m2 + · · ·+mn ≤ 3. Thus, (ii) implies the analogous condition for asymptotic
stationarity of order 2.

(5) A white noise is a stationary process of order 4.

FALSE. Suppose that {Xt}t≥1 is a sequence of i.i.d. random variables, each of which
follows a t distribution with 4 degrees of freedom. Such a t distribution has finite
moments of order 3 and below, and does not have moments of order 4 and above.
Together with the i.i.d. assumption, this implies that {Xt}t≥1 is a white noise process.
But because E(|Xt|4) =∞, the process is not stationary of order 4.

Problem 3

Let γ(k) the autocovariance function of second-order stationary process on the integers.
Prove that:

(a) γ(0) = Var(Xt) and γ(k) = γ(−k), for all k ∈ Z;

(b) |γ(k)| ≤ γ(0), ∀k ∈ Z;
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(c) the function γ(k) is positive semi-definite.

Proof.
(a). By definition, we have Cov(Xs, Xt) = γ(t − s) for all s, t ∈ T . By the second-order
stationarity, the autocovariance function γ is well-defined. In particular,

γ(0) = Cov(Xt, Xt) = Var(Xt)

and (s below is any integer)

γ(k) = Cov(Xs, Xs+k) = Cov(Xs+k, Xs) = γ(s− (s+ k)) = γ(−k).

(b). That |γ(k)| ≤ γ(0) is a consequence of the Cauchy-Schwarz inequality. We provide
here a direct proof for completeness. With a fixed k ∈ Z and any z ∈ R, we have

0 ≤ Var(Xs − zXs+k) = Var(Xs)− 2zCov(Xs, Xs+k) + z2 Var(Xs+k).

The rightmost expression above is a quadratic polynomial in z so it is nonnegative for all
real z iff the discriminant is nonpositive:

0 ≤ [−2 Cov(Xs, Xs+k)]2 − 4 Var(Xs) Var(Xs+k) ⇐⇒ γ(k)2 ≤ γ(0)2

from which |γ(k)| ≤ |γ(0)| = γ(0) follows immediately.
(c). We have to show that: for any positive integer N and for all vectors a = (a1, . . . , aN)′ ∈
RN and τ = (t1, . . . , tN)′ ∈ TN , it holds that

∑N
i=1

∑N
j=1 aiajγ(ti − tj) ≥ 0. This follows by

considering Z ≡ a1Xt1 + · · · aNXtN . We have

0 ≤ Var(Z) = Cov(Z,Z) = Cov

(
N∑
i=1

aiXti ,
N∑
j=1

ajXtj

)

=
N∑
i=1

N∑
j=1

Cov(aiXti , ajXtj) =
N∑
i=1

N∑
j=1

aiaj Cov(Xti , Xtj) =
N∑
i=1

N∑
j=1

aiajγ(ti − tj).

Problem 4

Consider a process that follows the following model:

Xt =
m∑
j=1

[Aj cos(vjt) +Bj sin(vjt)], t ∈ Z,

where v1, . . . , vm are distinct constants on the interval [0, 2π) and Aj, Bj (j = 1, . . . ,m) are
random variables in L2 such that

E(Aj) = E(Bj) = 0, E(A2
j) = E(B2

j ) = σ2
j , j = 1, . . . ,m,

E(AjAk) = E(BjBk) = 0 j 6= k,

E(AjBk) = 0 ∀j, k.
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(a) Show that this process is second-order stationary.

(b) For the case where m = 1, show that this process is deterministic.

Proof.
(a). We have to check

(1) E(X2
t ) <∞, ∀t ∈ Z,

(2) E(Xt) = E(Xs) for all s, t ∈ T ,

(3) Cov(Xs, Xt) = Cov(Xs+k, Xt+k) for all s, t ∈ T , ∀k ≥ 0.

Showing (2) is the easiest:

E(Xt) =
m∑
j=1

(cos(vjt)E(Aj) + sin(vjt)E(Bj)) = 0

because E(Aj) = E(Bj) = 0 for all j. For (1), we write

E(X2
t ) = Var(Xt) = Cov(Xt, Xt)

= Cov

(∑
j

[Aj cos(vjt) +Bj sin(vjt)],
∑
i

[Ai cos(vit) +Bi sin(vit)]

)
.

Note that for j 6= i

E(AjAi) = 0, E(AjBi) = 0, E(BjAi) = 0, E(BjBi) = 0.

Therefore, it must be that

E(X2
t ) =

∑
j

Cov(Aj cos(vjt) +Bj sin(vjt), Aj cos(vjt) +Bj sin(vjt))

=
∑
j

(
cos2(vjt) Var(Aj) + sin2(vjt) Var(Bj)

)
=
∑
j

(
cos2(vjt) + sin2(vjt)

)
σ2
j

=
∑
j

σ2
j .
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We can proceed in a similar manner for (3):

Cov(Xs, Xt) = Cov

(∑
j

[Aj cos(vjt) +Bj sin(vjt)],
∑
i

[Ai cos(vis) +Bi sin(vis)]

)
=
∑
j

Cov(Aj cos(vjt) +Bj sin(vjt), Aj cos(vjs) +Bj sin(vjs))

=
∑
j

(cos(vjt) cos(vjs) Var(Aj) + sin(vjt) sin(vjs) Var(Bj))

=
∑
j

(cos(vjt) cos(vjs) + sin(vjt) sin(vjs))σ
2
j

=
∑
j

cos[(t− s)vj]σ2
j

which only depends on |t− s|. (Recall that cos is an even function.)
(b). Now suppose that m = 1 that we may write

Xt = A cos(vt) +B sin(vt)

with
E(A) = E(B) = 0, E(AB) = 0, E(A2) = E(B2) = σ2.

Let It ≡ {Xs : s ≤ t}. We show that the process {Xt : t ∈ Z} is deterministic on
T1 = {3, 4, 5, . . .}. To this end, we first note that for any t ∈ T1, the information set It−1

includes X1 and X0. These two observations satisfy(
X1

X0

)
=

(
A cos(v) +B sin(v)

A

)
=

(
cos(v) sin(v)

1 0

)(
A
B

)
·

For simplicity, we treat v as known and assume that sin(v) 6= 0. Then,(
A
B

)
=

(
cos(v) sin(v)

1 0

)−1(
X1

X0

)
=

1

− sin(v)

(
0 − sin(v)
−1 cos(v)

)(
X1

X0

)
·

It follows that for t ∈ T1,

Xt =
(
cos(vt) sin(vt)

)(A
B

)
=
(
cos(vt) sin(vt)

)( 0 1
csc(v) − cot(v)

)(
X1

X0

)
which can be written as gt(It−1).
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