Solution to Econ 763 Assignment 1 (Winter 2017) Instructor: Jean-Marie Dufour*

Vinh Nguyen[†]

First version: February 19, 2015 This version: April 14, 2017

Grading scheme: 5+5 for Problem 1; 4×5 for Problem 2; 5+5+10 for Problem 3; and 30+20 for Problem 4

Problem 1

- (a) Define the notion of **probability space**.
- (b) Define the notion of real-valued **stochastic process** on a probability space.

Answer.

(a). A probability space is a triplet (Ω, \mathcal{A}, P) satisfying:

- (1) Ω is a set of possible outcomes;
- (2) \mathcal{A} is a σ -algebra on Ω , meaning
 - (i) \emptyset and Ω are in \mathcal{A} ,
 - (ii) if $A \in \mathcal{A}$ and $\Omega \setminus A$ is in \mathcal{A} ,
 - (iii) if $\{A_n\}_{n=1}^{\infty}$ is a sequence of subsets of Ω such that each $A_n \in \mathcal{A}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$;
- (3) $P: \mathcal{A} \to \mathbb{R}$ is a **probability measure**, meaning
 - (i) $P(A) \ge 0$ for any $A \in \mathcal{A}$,
 - (ii) $P(\emptyset) = 0$ and $P(\Omega) = 1$,
 - (iii) if $\{A_n\}_{n=1}^{\infty}$ is a sequence of *disjoint* subsets of Ω such that each $A_n \in \mathcal{A}$, then $P(\bigcup_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty} P(A_n).$

*Department of Economics, McGill University. Email: jean-marie.dufour@mcgill.ca

[†]Department of Economics, McGill University. Email: vinh.nguyen3@mail.mcgill.ca

A subset A of Ω is called an **event**. If $A \in \mathcal{A}$, then A is **measurable** (by \mathcal{A} and P) else A is not measurable.

(b). Let T be a non-empty set. A stochastic process on T is a collection of random variables $X_t : \Omega \to \mathbb{R}$ such that to each element $t \in T$, we associate a random variable X_t . The process can then be written as $\{X_t : t \in T\}$. If $T = \mathbb{R}$ (real numbers), we have a process in continuous time. If $T = \mathbb{Z}$ or $T \subset \mathbb{Z}$, we have a discrete time process.

Problem 2

Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify briefly your answer.

(1) Any strictly stationary process is in L_2 .

FALSE. Suppose $\{y_t\}_{t=1}^{\infty}$ is a sequence of i.i.d. random variables each of which follows a *t*-distribution with 2 degrees of freedom. The i.i.d. assumption implies strict stationarity. Yet, because a *t*-distribution with *v* degrees of freedom does not have moments of order *v* or above, we infer that each y_t does not possess a finite variance. In particular, because $E(y_t) = 0$, we have $\operatorname{Var}(y_t) = E(y_t^2) = +\infty$.

(2) Any strictly stationary process is also second-order stationary.

FALSE. The process $\{y_t\}_{t=1}^{\infty}$ described in (1) is strictly stationary because the variance of each y_t is infinite.

(3) Any stationary process of order 3 is also stationary of order 2.

TRUE. Suppose that $\{X_t\}_{t\in T}$ satisfies stationarity of order 3. That is,

- (i) $E(|X_t|^3) < \infty$, for all $t \in T$,
- (ii) $E[X_{t_1}^{m_1} \dots X_{t_n}^{m_n}] = E[X_{t_1+k}^{m_1} \dots X_{t_n+k}^{m_n}]$ for any $k \ge 0$, any subset $\{t_1, \dots, t_n\} \in T^n$ and all the non-negative integers m_1, \dots, m_n s.t. $m_1 + m_2 + \dots + m_n \le 3$.

By the Jensen's inequality with $Z = |X_t|^2 \ge 0$ and $g : \mathbb{R}_+ \to \mathbb{R}_+$ defined as $g(z) = z^{3/2}$, we have

$$g[E(Z)] \le E(g(Z)) \iff [E(|X_t|^2)]^{3/2} \le E(|X_t|^3) < \infty.$$

The last inequality above is due to (i). We may infer that $E(|X_t|^2) < \infty$. Next, we use condition (ii) above with $t_1 = t$ and k = s - t (s and t are some integers in T), n = 1, and $m_1 = 1$ to obtain:

$$E(X_t^1) = E(X_{t+k}^1) \iff E(X_t) = E(X_s).$$

Similarly, we can use condition (ii) with n = 2, $t_1 = s$, $t_2 = t$ (again, s and t are some integers in T), $k \ge 0$, and $m_1 = m_2 = 2$ (which satisfies $m_1 + m_2 \le 3$) to obtain $E(X_s X_t) = E(X_{s+k} X_{t+k})$, which in turn implies

$$Cov(X_s, X_t) = E(X_s X_t) - E(X_s)E(X_t)$$

= $E(X_{s+k}E_{t+k}) - E(X_{s+k})E(X_{t+k})$
= $Cov(X_{s+k}, X_{t+k}).$

We have thus verify stationarity of second order.

(4) Any asymptotically stationary process of order 3 is also asymptotically stationary process of order 2.

TRUE. Suppose that $\{X_t\}_{t\in T}$ is asymptotically stationary of order 3. This means that

- (i) there exists an integer N s.t. $E(|X_t|^3) < \infty$, for $t \ge N$, and
- (ii)

$$\lim_{t_1 \to \infty} E(X_{t_1}^{m_1} X_{t_1 + \Delta_2}^{m_2} \dots X_{t_1 + \Delta_n}^{m_n}) = \lim_{t_1 \to \infty} E(X_{t_1 + k}^{m_1} X_{t_1 + \Delta_2 + k}^{m_2} \dots X_{t_1 + \Delta_n + k}^{m_n})$$

for any $k \ge 0$, $t_1 \in T$, all the positive integers Δ_2 , Δ_3 , ..., Δ_n s.t. $\Delta_2 < \Delta_3 < \ldots < \Delta_n$, and the non-negative integers m_1, \ldots, m_n s.t. $m_1 + m_2 + \cdots + m_n \le 3$.

By the Jensen's inequality, condition (i) above implies that for the same N above, $E(|X_t|^2)$ is finite for all $t \ge N$. Moreover, if $m_1 + m_2 + \cdots + m_n \le 2$, then it's trivial that $m_1 + m_2 + \cdots + m_n \le 3$. Thus, (ii) implies the analogous condition for asymptotic stationarity of order 2.

(5) A white noise is a stationary process of order 4.

FALSE. Suppose that $\{X_t\}_{t\geq 1}$ is a sequence of i.i.d. random variables, each of which follows a t distribution with 4 degrees of freedom. Such a t distribution has finite moments of order 3 and below, and does not have moments of order 4 and above. Together with the i.i.d. assumption, this implies that $\{X_t\}_{t\geq 1}$ is a white noise process. But because $E(|X_t|^4) = \infty$, the process is **not** stationary of order 4.

Problem 3

Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:

- (a) $\gamma(0) = \operatorname{Var}(X_t)$ and $\gamma(k) = \gamma(-k)$, for all $k \in \mathbb{Z}$;
- (b) $|\gamma(k)| \leq \gamma(0), \forall k \in \mathbb{Z};$

(c) the function $\gamma(k)$ is positive semi-definite.

Proof.

(a). By definition, we have $Cov(X_s, X_t) = \gamma(t - s)$ for all $s, t \in T$. By the second-order stationarity, the autocovariance function γ is well-defined. In particular,

$$\gamma(0) = \operatorname{Cov}(X_t, X_t) = \operatorname{Var}(X_t)$$

and (s below is any integer)

$$\gamma(k) = \operatorname{Cov}(X_s, X_{s+k}) = \operatorname{Cov}(X_{s+k}, X_s) = \gamma(s - (s+k)) = \gamma(-k).$$

(b). That $|\gamma(k)| \leq \gamma(0)$ is a consequence of the Cauchy-Schwarz inequality. We provide here a direct proof for completeness. With a fixed $k \in \mathbb{Z}$ and any $z \in \mathbb{R}$, we have

$$0 \le \operatorname{Var}(X_s - zX_{s+k}) = \operatorname{Var}(X_s) - 2z \operatorname{Cov}(X_s, X_{s+k}) + z^2 \operatorname{Var}(X_{s+k}).$$

The rightmost expression above is a quadratic polynomial in z so it is nonnegative for all real z iff the discriminant is nonpositive:

$$0 \le [-2\operatorname{Cov}(X_s, X_{s+k})]^2 - 4\operatorname{Var}(X_s)\operatorname{Var}(X_{s+k}) \iff \gamma(k)^2 \le \gamma(0)^2$$

from which $|\gamma(k)| \leq |\gamma(0)| = \gamma(0)$ follows immediately.

(c). We have to show that: for any positive integer N and for all vectors $a = (a_1, \ldots, a_N)' \in \mathbb{R}^N$ and $\tau = (t_1, \ldots, t_N)' \in T^N$, it holds that $\sum_{i=1}^N \sum_{j=1}^N a_i a_j \gamma(t_i - t_j) \ge 0$. This follows by considering $Z \equiv a_1 X_{t_1} + \cdots + a_N X_{t_N}$. We have

$$0 \leq \operatorname{Var}(Z) = \operatorname{Cov}(Z, Z) = \operatorname{Cov}\left(\sum_{i=1}^{N} a_i X_{t_i}, \sum_{j=1}^{N} a_j X_{t_j}\right)$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{Cov}(a_i X_{t_i}, a_j X_{t_j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \operatorname{Cov}(X_{t_i}, X_{t_j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \gamma(t_i - t_j).$$

Problem 4

Consider a process that follows the following model:

$$X_t = \sum_{j=1}^m [A_j \cos(v_j t) + B_j \sin(v_j t)], \quad t \in \mathbb{Z},$$

where v_1, \ldots, v_m are distinct constants on the interval $[0, 2\pi)$ and A_j, B_j $(j = 1, \ldots, m)$ are random variables in L_2 such that

$$E(A_{j}) = E(B_{j}) = 0, \quad E(A_{j}^{2}) = E(B_{j}^{2}) = \sigma_{j}^{2}, \quad j = 1, \dots, m,$$
$$E(A_{j}A_{k}) = E(B_{j}B_{k}) = 0 \quad j \neq k,$$
$$E(A_{j}B_{k}) = 0 \quad \forall j, k.$$

(a) Show that this process is second-order stationary.

(b) For the case where m = 1, show that this process is deterministic.

Proof.

(a). We have to check

- (1) $E(X_t^2) < \infty, \forall t \in \mathbb{Z},$
- (2) $E(X_t) = E(X_s)$ for all $s, t \in T$,
- (3) $\operatorname{Cov}(X_s, X_t) = \operatorname{Cov}(X_{s+k}, X_{t+k})$ for all $s, t \in T, \forall k \ge 0$.

Showing (2) is the easiest:

$$E(X_t) = \sum_{j=1}^{m} (\cos(v_j t) E(A_j) + \sin(v_j t) E(B_j)) = 0$$

because $E(A_j) = E(B_j) = 0$ for all j. For (1), we write

$$E(X_t^2) = \operatorname{Var}(X_t) = \operatorname{Cov}(X_t, X_t)$$
$$= \operatorname{Cov}\left(\sum_j [A_j \cos(v_j t) + B_j \sin(v_j t)], \sum_i [A_i \cos(v_i t) + B_i \sin(v_i t)]\right).$$

Note that for $j\neq i$

$$E(A_jA_i) = 0, \quad E(A_jB_i) = 0, \quad E(B_jA_i) = 0, \quad E(B_jB_i) = 0.$$

Therefore, it must be that

$$E(X_t^2) = \sum_j \operatorname{Cov}(A_j \cos(v_j t) + B_j \sin(v_j t), A_j \cos(v_j t) + B_j \sin(v_j t))$$

=
$$\sum_j \left(\cos^2(v_j t) \operatorname{Var}(A_j) + \sin^2(v_j t) \operatorname{Var}(B_j) \right)$$

=
$$\sum_j \left(\cos^2(v_j t) + \sin^2(v_j t) \right) \sigma_j^2$$

=
$$\sum_j \sigma_j^2.$$

We can proceed in a similar manner for (3):

$$Cov(X_s, X_t) = Cov\left(\sum_j [A_j \cos(v_j t) + B_j \sin(v_j t)], \sum_i [A_i \cos(v_i s) + B_i \sin(v_i s)]\right)$$
$$= \sum_j Cov(A_j \cos(v_j t) + B_j \sin(v_j t), A_j \cos(v_j s) + B_j \sin(v_j s))$$
$$= \sum_j (\cos(v_j t) \cos(v_j s) \operatorname{Var}(A_j) + \sin(v_j t) \sin(v_j s) \operatorname{Var}(B_j))$$
$$= \sum_j (\cos(v_j t) \cos(v_j s) + \sin(v_j t) \sin(v_j s)) \sigma_j^2$$
$$= \sum_j \cos[(t - s)v_j]\sigma_j^2$$

which only depends on |t - s|. (Recall that cos is an even function.) (b). Now suppose that m = 1 that we may write

$$X_t = A\cos(vt) + B\sin(vt)$$

with

$$E(A) = E(B) = 0, \quad E(AB) = 0, \quad E(A^2) = E(B^2) = \sigma^2.$$

Let $I_t \equiv \{X_s : s \leq t\}$. We show that the process $\{X_t : t \in \mathbb{Z}\}$ is deterministic on $T_1 = \{3, 4, 5, \ldots\}$. To this end, we first note that for any $t \in T_1$, the information set I_{t-1} includes X_1 and X_0 . These two observations satisfy

$$\begin{pmatrix} X_1 \\ X_0 \end{pmatrix} = \begin{pmatrix} A\cos(v) + B\sin(v) \\ A \end{pmatrix} = \begin{pmatrix} \cos(v) & \sin(v) \\ 1 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}.$$

For simplicity, we treat v as known and assume that $\sin(v) \neq 0$. Then,

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} \cos(v) & \sin(v) \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} X_1 \\ X_0 \end{pmatrix} = \frac{1}{-\sin(v)} \begin{pmatrix} 0 & -\sin(v) \\ -1 & \cos(v) \end{pmatrix} \begin{pmatrix} X_1 \\ X_0 \end{pmatrix} \cdot$$

It follows that for $t \in T_1$,

$$X_t = \begin{pmatrix} \cos(vt) & \sin(vt) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} \cos(vt) & \sin(vt) \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \csc(v) & -\cot(v) \end{pmatrix} \begin{pmatrix} X_1 \\ X_0 \end{pmatrix}$$

which can be written as $g_t(I_{t-1})$.