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Problem 1 (20 points)

Grading remarks: 5 points each for (a)–(d)
Suppose we have the formal series

∞∑
j=−∞

ψjut−j

where {ut : t ∈ Z} ∼ WN(0, σ2). For a fixed t, we can in general write

∞∑
j=−∞

ψjut−j =
∞∑

j=−∞

Yj =
0∑

j=−∞

Yj +
∞∑
j=1

Yj

where Yj ≡ ψjut−j. In particular, the dependence of Yj on t has been suppressed in the
notation. Note that E(Yj) = 0, E(Y 2

j ) = ψ2
jσ

2 < ∞ so that Yj ∈ L2, and E(YiYj) = 0 for
i 6= j.

(a) Convergence in mean of order 2

Proposition 4.2.6 in Dufour (2008b) implies that if

∞ >
∞∑

j=−∞

(E[Y 2
j ])1/2 =

∞∑
j=−∞

(ψ2
jE(u2

t−j))
1/2 = σ

∞∑
j=−∞

|ψj| (1)

then there exists random variables Y − and Y + such that

0∑
j=−m

Yj
2→

m→∞
Y −,

n∑
j=0

Yj
2→

n→∞
Y +
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We can thus write Y − =
∑0

j=−∞ Yj and Y + =
∑∞

j=1 Yj. Moreover, we have

0∑
j=−m

Yj +
n∑
j=0

Yj
2→

m,n→∞
Y − + Y + ≡ Y.

Having shown convergence, we are now justified in writing

Y =
∞∑

j=−∞

Yj =
∞∑

j=−∞

ψjut−j.

Remark: what the above has shown is that
∑∞

j=−∞ |ψj| <∞ is sufficient for the convergence
in mean of order 2 of

∑∞
j=−∞ ψjut−j. A different result from Dufour (2008b) (Proposition

4.3.1) gives another sufficient condition

∞ >
∞∑

j=−∞

E[Y 2
t ] = σ2

∞∑
j=−∞

ψ2
j ⇐⇒

∞∑
j=−∞

ψ2
j <∞. (2)

We note that (1) is a strictly stronger condition than (2): the former implies the latter but
the reverse implication fails. To see that, the convergence of

∑∞
j=−∞ |ψj| implies that there

is N sufficiently large that for |n| ≥ N , we have |ψj| < 1. Then, for n,m > N , we have

n∑
j=−m

ψ2
j =

N∑
j=−N

ψ2
j +

n∑
j=N+1

ψ2
j +

−N−1∑
j=−m

ψ2
j

≤
N∑

j=−N

ψ2
j +

n∑
j=N+1

|ψj|+
−N−1∑
j=−m

|ψj|.

When we let m,n → ∞, absolute summability (i.e. (1)) implies that the second line above
converges, which in turn gives the convergence of

∑∞
j=−∞ ψ

2
j . To see that square-summability

doesn’t imply absolute summability, consider

ψj = 0 ∀j ≤ 0, ψj =
1

j
∀j ≥ 1.

Then
∞∑

j=−∞

ψ2
j =

∞∑
j=1

1

j2
=
π2

6
whereas

∞∑
j=−∞

|ψj| =
∞∑
j=1

1

j
= +∞.

(b) Convergence in mean of order r

Following the same approach above and Proposition 4.2.6 (Dufour (2008b)), we may infer
that for r ≥ 1, the condition

∞ >
∞∑

j=−∞

(E[|ψjut−j|r])1/r = E(|ut|r)1/r

∞∑
j=−∞

|ψj| ⇐⇒
∞∑

j=−∞

|ψj| <∞ (3)
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is sufficient for
∑∞

j=−∞ ψjut−j to converge in mean of order r. Of course, here we also need
each ut to be in Lr.

For r < 1, we also appeal to Proposition 4.2.6. To be specific, that proposition tells us that
for
∑∞

j=−∞ ψjut−j to converge in mean (i.e. in L1), it also suffices to have
∑∞

j=−∞ |ψj| <∞
(and that for each t, E(|ut|) is finite but this follows because E(u2

t ) is finite.) But convergence
in L1 implies convergence in Lr for r < 1, so the same sufficient condition is enough for∑∞

j=−∞ ψjut−j to converge in mean of order r < 1.

(c) Almost sure convergence

Proposition 4.2.6 again gives us a sufficient condition

∞∑
j=−∞

|ψj| <∞. (4)

Proposition 4.3.1 competes to give another sufficient condition

∞∑
j=1

(log j)2ψ2
j <∞,

−1∑
j=−∞

(log(−j))2ψ2
j <∞ (5)

We see that (5) does not imply (4). For example, when ψj = 0 for j ≤ 0 and ψj = 1
j

for
j ≥ 1, we have

∞∑
j=1

(log j)2ψ2
j =

∞∑
j=1

(log j)2

j2
<∞ and

∞∑
j=1

|ψj| =
∞∑
j=1

1

j
→∞.

(d) Convergence in probability

Since convergence in probability is implied by convergence in mean of order r (r > 0) and
almost sure convergence, each of the conditions (2), (4), and (5) will be sufficient here.

Problem 2 (10 points)

Grading remarks: 5 points each for (a) and (b)
Consider an MA(1) model

Xt = µ̄+ ut − θut−1, t ∈ Z

where ut ∼ WN(0, σ2) and σ2 > 0.

(a) The first autocorrelation of this model cannot be greater than 0.5 in absolute value.
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Proof. We have

Cov(Xt, Xt+1) = E[(ut − θut−1)(ut+1 − θut)] = −θE(u2
t ) = −θσ2,

Var(Xt) = Var(ut) + θ2 Var(ut−1) = (1 + θ2)σ2.

This implies

|ρ(1)| =
∣∣∣∣Cov(Xt, Xt+1)

Var(Xt)

∣∣∣∣ =
|θ|

1 + θ2

which is less than or equal to 1
2

because

|θ|
1 + θ2

≤ 1

2
⇐⇒ 2|θ| ≤ 1 + θ2 ⇐⇒ (|θ| − 1)2 ≥ 0.

(b) Values of the model parameters for which this upper bound is attained.

Answer. As shown in (a), we have

2(1 + θ2)

(
1

2
− |ρ(1)|

)
= (1 + θ2)(|θ| − 1)2 ≥ 0

which equals 0 iff |θ| = 1. That is, when θ = ±1, the absolute value of the first
autocorrelation equals 1

2
.

Problem 3 (72 points)

Grading remarks: for each process, 3 points each for (a)–(f) and 4× 18 = 72 points total
Let {Xt : t ∈ Z} be an MA(q) process. For q = 3, 4, 5, 6, check whether the following

inequalities are correct:

(a) |ρ(1)| ≤ 0.75;

(b) |ρ(2)| ≤ 0.90;

(c) |ρ(3)| ≤ 0.90;

(d) |ρ(4)| ≤ 0.90;

(e) |ρ(5)| ≤ 0.90;

(f) |ρ(6)| ≤ 0.90.
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A general MA(q) process can be written as

Xt = µ+ ut +

q∑
t=1

θjut−j = µ+ θ(L)ut with θ(L) = 1 + θ1L− . . .+ θqL
q.

From the lecture notes (Dufour (2008a)), the autocorrelation coefficients can be computed
as follows

ρ(k) =
(
θk +

∑q−k
j=1 θjθj+k

)
/
(

1 +
∑q

j=1 θ
2
j

)
, 1 ≤ k ≤ q

= 0, k ≥ q + 1.

In particular, the autocorrelations vanish for k ≥ q + 1. Moreover, formula (6.12) from the
lecture notes gives us

|ρ(k)| ≤ B(q, k) ≡ cos

(
π

bq/kc+ 2

)
.

Plotting B(q, k) for various q and k gives

(a) MA(3) (b) MA(4)

(c) MA(5) (d) MA(6)

Figure 1: Upperbounds for autocorrelations of some MA processes
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MA(3)

From the Figure 1, we know that (b)–(f) must hold, but let’s verify this algebraically. Because
ρ(k) = 0 for k ≥ 4, the inequalities in (d)–(f) hold automatically. For (a)–(c), we write

ρ(1) =
θ1 + θ1θ2 + θ2θ3

1 + θ2
1 + θ2

2 + θ2
3

,

ρ(2) =
θ2 + θ1θ3

1 + θ2
1 + θ2

2 + θ2
3

,

ρ(3) =
θ3

1 + θ2
1 + θ2

2 + θ2
3

·

From these, (c) holds because

2|θ3| ≤ 1 + θ2
3 ≤ 1 + θ2

1 + θ2
2 + θ3

2 =⇒ |ρ(3)| ≤ 1

2
< 0.90.

In a similar manner, we can use the inequality 2ab ≤ a2 + b2 to infer

2|θ2 + θ1θ3| ≤ 2|θ2|+ |θ1||θ3| ≤ 1 + θ2
2 + θ2

1 + θ2
3 =⇒ |ρ(2)| ≤ 1

2
< 0.90.

So (b) indeed holds. As the figure suggest however, (a) can fail. And it does when we set
θ1 = θ2 = θ3 = θ = 3

2
so that

|ρ(1)| = θ(1 + 2θ)

1 + 3θ2
=

24

31
>

24

32
= 0.75.

MA(4)

Again, Figure 1 says that (b)–(f) are true whereas (a) may fail. For (e)–(f), the implications
are immediate because ρ(5) = ρ(6) = 0. For the rest, we write

ρ(1) =
θ1 + θ1θ2 + θ2θ3 + θ3θ4

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4

,

ρ(2) =
θ2 + θ1θ3 + θ2θ4

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4

,

ρ(3) =
θ3 + θ1θ4

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4

,

ρ(4) =
θ4

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4

·

Because |θ4| ≤ 1
2
(1 + θ2

4), it’s obvious that |ρ(4)| ≤ 1
2
< 0.90. Similarly, |θ3| ≤ 1

2
(1 + θ2

3) and
|θ1||θ4| ≤ 1

2
(θ2

1 + θ2
4) imply that |ρ(3)| ≤ 1

2
< 0.90. To prove |ρ(2)| ≤ 0.90 we can assume

WLOG that θi ≥ 0 so that |ρ(2)| ≤ 0.90 is equivalent to

9 + 9θ2
1 + 9θ2

2 + 9θ2
3 + 9θ2

4 ≥ 10θ2 + 10θ1θ3 + 10θ2θ4.
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Noting that 9θ2
1 + 9θ2

3 − 10θ1θ3 = (2θ1)2 + (2θ2)2 + 5(θ1 − θ3)2, we only need to prove

9 + 9θ2
2 + 9θ2

4 ≥ 10θ2 + 10θ2θ4. (∗)

We can treat (∗) as an inequality for θ4 equals some fixed y ≥ 0 and while θ2 = x ≥ 0 is
allowed to vary. That is, (∗) follows if we can show that

9 + 9x2 + 9y2 ≥ 10x+ 10xy = (10 + 10y)x (∗∗)

for all x, y ≥ 0. With y ≥ 0 fixed, the LHS above is convex in x whereas the RHS is linear.
The derivative (w.r.t. to x) of the RHS is 10 + 10y whereas the derivative of the LHS is 18x
which equals 9 + 10y when x = 5

9
(1 + y). At this value of x, (∗∗) is equivalent to

81 + 81y2 + 25(y + 1)2 ≥ 50(y + 1)2 ⇐⇒ 0 ≤ 56y2 − 50y + 56

which is true because 56y2 − 50y + 56 = 31y2 + 31 + 25(y − 1)2. Due to the convexity
observation from the previous paragraph, that the inequality holds for x = 5

9
(1 + y) is

enough for (∗∗) to hold for all x ≥ 0 given y is fixed. As y is arbitrary, (∗∗) and, thus, (∗)
must hold generally. In other words, |ρ(2)| ≤ 9

10
is true.

Finally, (a) fails when we set θ1 = θ2 = θ3 = θ4 = θ so that

|ρ(1)| = θ + 3θ2

1 + 4θ2
=

232

281
>

210

280
= 0.75.

MA(5)

Figure 1 says that (b)–(f) are true while (a) may fail. ρ(6) = 0 so (f) is immediate. For
(a)–(e), we write

ρ(1) =
θ1 + θ1θ2 + θ2θ3 + θ3θ4 + θ4θ5

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5

,

ρ(2) =
θ2 + θ1θ3 + θ2θ4 + θ3θ5

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5

,

ρ(3) =
θ3 + θ1θ4 + θ2θ5

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5

,

ρ(4) =
θ4 + θ1θ5

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5

,

ρ(5) =
θ5

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5

·

Using the same techniques as above, we can again show that |ρ(3)|, |ρ(4)|, and |ρ(5)| are less
than or equal to 1

2
< 0.90. The autocorrelation of order 1 ρ(1) can exceed 0.75 in absolute

value: when θ1 = θ2 = θ3 = θ4 = θ5 = θ = 3
2
, we have

|ρ(1)| = θ + 4θ2

1 + 5θ2
=

6

7
> 0.75.
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As with the MA(4) case, ρ(2) poses a more challenging problem. The algebra seems intimi-
dating so we settle with formula (6.12) from Dufour (2008a):

|ρ(2)| ≤ cos

(
π

bq/kc+ 2

) ∣∣∣∣∣
q=5,k=2

=
1√
2
< 0.9.

MA(6)

We get no free lunch with this one as none of the correlation is 0. The standard formulas
give

ρ(1) =
θ1 + θ1θ2 + θ2θ3 + θ3θ4 + θ4θ5 + θ5θ6

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5 + θ2

6

,

ρ(2) =
θ2 + θ1θ3 + θ2θ4 + θ3θ5 + θ4θ6

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5 + θ2

6

,

ρ(3) =
θ3 + θ1θ4 + θ2θ5 + θ3θ6

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5 + θ2

6

,

ρ(4) =
θ4 + θ1θ5 + θ2θ6

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5 + θ2

6

,

ρ(5) =
θ5 + θ1θ6

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5 + θ2

6

,

ρ(6) =
θ6

1 + θ2
1 + θ2

2 + θ2
3 + θ2

4 + θ2
5 + θ2

6

·

A quick glance gives |ρ(4)|, |ρ(5)| and |ρ(6)| are no more than 1
2
< 0.9. To find the counter

example for ρ(1), we set θ1 = . . . = θ6 = θ = 8
5

to obtain

|ρ(1)| = θ + 5θ2

1 + 6θ2
=

360

409
>

360

480
= 0.75.

The algebra for ρ(2) and ρ(3) looks scary so we again use (6.12) from Dufour (2008a):

|ρ(2)| ≤ cos

(
π

bq/kc+ 2

) ∣∣∣∣∣
q=6,k=2

=
1

4
(1 +

√
5) < 0.9.

|ρ(3)| ≤ cos

(
π

bq/kc+ 2

) ∣∣∣∣∣
q=6,k=3

=
1√
2
< 0.9.

Problem 4 (300 points)

Grading remarks: for each process, 2 points for (a), 2 points for (b), 7 (1 + 4 + 2) points for
(c), 3 points for (d), 5 points for (e), 2 points for (f), 5 (2 + 3) points for (g), 4 points for
(h), and so 6× 30 = 180 points total
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Some general results for ARMA(p, q) (p, q finite)

For some finite and positive integers p and q, we consider a process {Xt : t ∈ Z} which
satisfies the equation

Xt = µ̄+

p∑
j=1

ϕjXt−j + ut −
q∑
j=1

θjut−j (6)

where {ut : t ∈ Z} is a homoskedastic white noise with common variance σ2. Using op-
erational notation, we can define ϕ(B) = 1 −

∑p
j=1 ϕjB

j and θ(B) = 1 −
∑q

j=1 θjB
j and

write
ϕ(B)Xt = ū+ θ(B)ut. (7)

(1) Stationarity condition: if the polynomial ϕ(z) = 1 − ϕ1z − . . . − ϕpzp has all its
roots outside the unit circle, the equation (6) has one and only one weakly stationary
solution, which can be written

Xt = µ+ [ϕ(B)]−1θ(B)ut = µ+
∞∑
j=0

ψjut−j (8)

where

µ =
µ̄

ϕ(B)
=

µ̄

1−
∑p

j=1 ϕj
,

θ(B)

ϕ(B)
≡ ψ(B) =

∞∑
j=0

ψjB
j.

(2) The ψj coefficients are obtained by solving the equation ϕ(B)ψ(b) = θ(B):(
1−

p∑
k=1

ϕkB
k

)(
∞∑
j=0

ψjB
j

)
= 1−

q∑
j=1

θjB
j (9)

and comparing powers of B’s on both sides. For examples, (below we define θ0 = −1)

ψ0 = −θ0 = 1,

ψ1 − ϕ1 = −θ1,

ψ2 − ϕ1ψ1 − ϕ2 = −θ2,

...
...

...
...

...

ψj −
j∑

k=1

ϕkψj−k = −θj, (j = 0, 1, . . . , q)

If we define ψj = 0 for j < 0 then the last line above can be rewritten as ψj −∑p
k=1 ϕkψj−k = −θj for j = 0, . . . , q. For j > q, things get slightly trickier. The
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advantage of this re-expression is that for j > q, we can also write ψj−
∑p

k=1 ϕkψj−k =
0.

Thus, a convenient algorithm for solving for ψj is that:

(i) define ψ−p = ψ−(p−1) = . . . = ψ−1 = 0,

(ii) for j = 0, 1, . . . , q, recursively compute ψj = −θj +
∑p

k=1 ϕkψj−k,

(iii) for j > q, continue the recursion ψj =
∑p

k=1 ϕkψj−k.

(c) Invertibility: If the ARMA process (7) is second-order stationary, then the process
{Xt} satisfies an equation of the form

∞∑
j=0

φ̃jXt−j = µ̃+ ut

iff the roots of the polynomial θ(B) are outside the unit circle. Further, when the
representation above exists, we have

φ̃(B) = θ(B)−1ϕ(B), µ̃ = θ(B)−1µ̄ =
µ̄

1−
∑q

j=1 θj
·

In particular, any stationary AR(p) process is invertible. Note that invertibility is
actually a separate concept from stationarity. In Box et al. (2008), a linear processXt =
µ+
∑∞

j=1 ψjat−j is invertible if
∑∞

j=0 |πj| <∞, where π(B) = ψ−1(B) = 1−
∑∞

j=1 πjB
j.

(d) Autocovariances and autocorrelations: Suppose that

(i) the polynomial ϕ(z) has is roots outside the unit circle and the process Xt the
unique stationary solution to ϕ(B)Xt = ū+ θ(B)ut,

(ii) E(Xt−jut) = 0 for all j ≥ 1.

By the stationarity assumption, E(Xt) = µ for some µ and for all t. This µ satisfies

µ = E(Xt),∀t =⇒ ϕ(B)µ = E[ϕ(B)Xt] = ū =⇒ µ =
µ̄

1−
∑p

j=1 ϕj
·

Now, let us define Yt = Xt−µ so that E(Yt) = 0 and ϕ(B)Yt = θ(B)ut. It follows that
for k > 0

Yt+k =

p∑
j=1

ϕjYt+k−j + ut+k −
q∑
j=1

θjut+k−j,

=⇒ E[YtYt+k] =

p∑
j=1

ϕjE[YtYt+k−j] + E[Ytut+k]−
q∑
j=1

θjE[Ytut+k−j],
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which implies

γ(k) =

p∑
j=1

ϕjγ(k − j)−
q∑
j=1

θjγxu(k − j) (10)

where

γxu(k) = E(Ytut+k) =

{
0 if k ≥ 1
σ2 if k = 0

and γxu(k) 6= 0 in general for k ≤ 0. That is, for 1 ≤ k ≤ q,

γxu(−k) = E(Ytut−k)

= E

[(
p∑
j=1

Yt−j + ut −
q∑
j=1

θjut−j

)
ut−k

]

=

p∑
j=1

γxu(−k + j)− θkσ2.

As j in the last line above is strictly positive, −k+j > −k so that γxu can be computed
backwards recursively. Once we have found γxu, we can solve (10) and

γ(0) =

p∑
j=1

ϕjγ(j) + σ2 −
q∑
j=1

θjγxu(−j)

for γ(0), γ(1), . . . , γ(p) in terms of the ARMA coefficients. Then for k > p, γ(k) can

be computed using (10). Finally, the autocorrelation ρ(0) is simply γ(k)
γ(0)

.

(e) Partial autocorrelations: the partial autocorrelation of order k, denoted by φ(k), is
computed as follows: first, we define

Φ(k) ≡


1 ρ(1) . . . ρ(k − 2) ρ(k − 1)
ρ(1) 1 . . . ρ(k − 3) ρ(k − 2)

...
...

. . .
...

...
ρ(k − 2) ρ(k − 3) . . . 1 ρ(1)
ρ(k − 1) ρ(k − 2) . . . ρ(1) 1


−1

ρ(1)
ρ(2)

...
ρ(k − 1)
ρ(k)

 · (11)

Then, φ(k) is just the k-th entry of Φ(k).

The AR(1) process Xt = 0.5Xt−1 + ut

Write this as (1 − ϕ1)Xt = ū + ut where ϕ1 = 0.5 and ū = 0. Here, ut ∼ N(0, σ2) where
σ = 1.
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(a) The process is stationary because ϕ(z) = 1− 0.5z has root z = 2 which is outside the
unit circle.

(b) The process is invertible, as is any other AR(p) process for some finite p.

(c) (i) E(Xt) = ū
1−ϕ1

= 0
1−0.5

= 0,

(ii) Using formulae (7.47) and (7.46) from Dufour (2008a), we have

γ(0) = Var(Xt) =
σ2

1− ϕ2
1

=
1

0.75
=

4

3
;

γ(k) = ϕk1γ(0) =
4

2k3
·

(iii) The autocorrelations are

ρ(0) = 1, ρ(k) = ϕk1 =
1

2k
·

(d) We can plot ρ(k) for k = 0, . . . , 8:

(e) Write MA(∞) representation as Xt = ψ(B)ut where ψ(B) = ϕ(B)−1 =
∑∞

j=0 ψjB
j.

Because
1

1− ϕ1B
= 1 + ϕ1B + ϕ2

1B
2 + ϕ2

3B
3 + ϕ2

4B
4 + · · · ,

we have

ψ0 = 1,

ψ1 = ϕ1 = 0.5;

ψ2 = ϕ2
1 = 0.25;

ψ3 = ϕ3
1 = 0.125;

ψ4 = ϕ4
1 = 0.0625.
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(f) With ψ(z) = 1
1−ϕ1z

as defined above, then

γx(z) = σ2ψ(z)ψ(z−1)

=
σ2

(1− ϕ1z)(1− ϕ1z−1)

=
1

(1− 0.5z)(1− 0.5/z)

=
4z

(2− z)(2z − 1)
·

(g) By Proposition 11.14 from Dufour (2008a), we have

fx(ω) =
σ2

2π
ψ(exp(iω))ψ(exp(−iω))

=
σ2

2π

1

(1− ϕ1 exp(iω))(1− ϕ1 exp(−iω))

=
1

2π[1− 0.5 exp(iω)][1− 0.5 exp(−iω)]

=
2

π(5− 4 cos(ω))
·

Plotting it yields:

(h) Using the formula (11) four times, we get

φ(1) =
1

2
, φ(2) = φ(3) = φ(4) = 0.
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The AR(1) process Xt = 10− 0.75Xt−1 + ut

Write this as (1− ϕ1)Xt = ū+ ut where ϕ1 = −0.75 and ū = 10. Here, ut ∼ N(0, σ2) where
σ = 1.

(a) The process is stationary because ϕ(z) = 1 + 0.75z has root z = −4
3

which is outside
the unit circle.

(b) The process is invertible, as is any other AR(p) process for some finite p.

(c) (i) E(Xt) = ū
1−ϕ1

= 10
1+0.75

= 40
7

,

(ii) Using formulae (7.47) and (7.46) from Dufour (2008a), we have

γ(0) = Var(Xt) =
σ2

1− ϕ2
1

=
16

7
;

γ(k) = ϕk1γ(0) =
(−3)k16

4k7
·

(iii) The autocorrelations are

ρ(0) = 1, ρ(k) = ϕk1 =
(−3)k

4k
·

(d) We can plot ρ(k) for k = 0, . . . , 8:

(e) Write MA(∞) representation as Xt = ψ(B)ut where ψ(B) = ϕ(B)−1 =
∑∞

j=0 ψjB
j.

Because
1

1− ϕ1B
= 1 + ϕ1B + ϕ2

1B
2 + ϕ2

3B
3 + ϕ2

4B
4 + · · · ,

14



we have

ψ0 = 1,

ψ1 = ϕ1 =
−3

4
;

ψ2 = ϕ2
1 =

9

16
;

ψ3 = ϕ3
1 =
−27

64
;

ψ4 = ϕ4
1 =

81

256
.

(f) With ψ(z) = 1
1−ϕ1z

as defined above, then

γx(z) = σ2ψ(z)ψ(z−1)

=
σ2

(1− ϕ1z)(1− ϕ1z−1)

=
16z

12 + 25z + 12z2
·

(g) By Proposition 11.14 from Dufour (2008a), we have

fx(ω) =
σ2

2π
ψ(exp(iω))ψ(exp(−iω))

=
σ2

2π

1

(1− ϕ1 exp(iω))(1− ϕ1 exp(−iω))

=
1

2π[1 + 0.75 exp(iω)][1 + 0.75 exp(−iω)]

=
1

π(3.125 + 3 cos(ω))
·

Plotting it yields:

15



(h) Using the formula (11) four times, we get

φ(1) = −3

4
, φ(2) = φ(3) = φ(4) = 0.

The AR(2) process Xt = 10 + 7
10
Xt−1 − 1

5
Xt−2 + ut

Write this as

(1− ϕ1B − ϕ2B
2)Xt = µ̄+ ut, ϕ1 =

7

10
, ϕ2 =

−1

5
· .

As before, ut ∼ N(0, σ2) with σ = 1.

(a) Stationarity holds because 1− ϕ1z − ϕ2z
2 have 2 complex roots that both are outside

the unit circle.

(b) Invertibility is immediate because this is an AR(2) process.

(c) Using the formulas (7.49–51) from Dufour (2008a), we have:

(i) µ̄
1−ϕ1−ϕ2

= 20;

(iii)

ρ(0) = 1;

ρ(1) =
ϕ1

1− ϕ2

=
7

12
,

ρ(2) =
ϕ2

1 + ϕ2(1− ϕ2)

1− ϕ2

=
5

24
,

ρ(3) = ϕ1ρ(2) + ϕ2ρ(1) =
7

240
,

ρ(4) = ϕ1ρ(3) + ϕ2ρ(2) =
−17

800
,

ρ(5) = ϕ1ρ(4) + ϕ2ρ(3) =
−497

24000
,

ρ(6) = ϕ1ρ(5) + ϕ2ρ(4) =
−2459

240000
,

ρ(7) = ϕ1ρ(6) + ϕ2ρ(5) =
−7273

2400000
,

ρ(8) = ϕ1ρ(7) + ϕ2ρ(6) =
−577

8000000
·

In general, for k ≥ 3, we have ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2) and for k < 0,
ρ(k) = ρ(−k).
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(ii) Using formula (7.42) from Dufour (2008a), we have

γ(0) =
σ2

1− ϕ1ρ(1)− ϕ2ρ(2)
=

30

19
·

For general k, we can easily compute γ(k) = ρ(k)γ(0) where ρ(k) is given above.

(d) Plotting ρ(k) for k = 0, . . . , 8 yields

(e) We have

ψ0 = 1;

ψ1 = ϕ1 =
7

10
;

ψ2 = ϕ2
1 + ϕ2 =

29

100
;

ψ3 = ϕ1ψ2 + ϕ2ψ1 =
63

1000
;

ψ4 = ϕ1ψ3 + ϕ2ψ2 =
−139

10000
·

(f) The autocovariance function is

γx(z) = σ2ψ(z)ψ(z−1)

where ψ(z) = ϕ(z)−1. In our particular case, the algebra simplifies to

γx(z) =
100z2

(10− 7z + 2z2)(2− 7z + 10z2)
·

(g)

fx(ω) =
σ2

2π[1− ϕ1 exp(iw)− ϕ2 exp(2iw)][1− ϕ1 exp(−iw)− ϕ2 exp(−2iw)]
·
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(h)

φ(1) =
7

12
, φ(2) =

7

10
, φ(3) = φ(4) = 0.

The MA(2) process Xt = 10 + ut − 0.75ut−1 + 0.125ut−2

Write this as

Xt = µ+ ut − θ1ut−1 − θ2ut−2, µ = 10, θ1 =
3

4
, θ2 = −1

8
.

(a) Stationarity is automatic for all finite-order MA processes.

(b) This MA(2) process is invertible because θ(z) = 1 − θ1z − θ2z
2 has 2 roots 2 and 4

that both are outside the unit circle.

(c) We have:

(i) E(Xt) = µ = 10,

(ii) We have

γ(0) = Var(Xt) = σ2(1 + θ2
1 + θ2

2) =
101

64

γ(1) = σ2(−θ1 + θ1θ2) =
−27

32
,

γ(2) = σ2(−θ2) =
1

8
,

γ(3) = γ(4) = · · · = γ(8) = 0.
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(iii) It follows that

ρ(0) = 1;

ρ(1) =
γ(1)

γ(0)
= − 54

101
,

ρ(2) =
γ(2)

γ(0)
=

8

101
,

ρ(3) = ρ(4) = · · · = ρ(8) = 0.

(d) Plotting ρ(k) for k = 0, . . . , 8 yields

(e) We have

ψ0 = 1,

ψ1 = −θ1 = −3

4
,

ψ2 = −θ2 =
1

8
,

ψ3 = 0,

ψ4 = 0.

(f) The autocovariance generating function is

γx(z) = σ2ψ(z)ψ(1/z)

= σ2(1− θ1z − θ2z
2)(1− θ1/z − θ2/z

2)

=
(8− 6z + z2)(1− 6z + 8z2)

64z2
·
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(g) The spectral density is

fx(ω) =
σ2

2π
ψ(eiω)ψ(e−iω)

=
101− 108 cos(ω) + 16 cos(2ω)

128π
·

(h) We have

φ(1) = − 54

101
, φ(2) = − 68

235
, φ(3) = − 792

5177
, φ(4) = − 208

2631
·

The ARMA(1, 1) process Xt = 0.5Xt−1 + ut − 0.25ut−1

Write this as
(1− ϕ1B)Xt = ū+ (1− θ1B)ut

where ū = 0, ϕ1 = 0.5, θ1 = 0.25 and ut ∼ N(0, σ2) with σ2 = 1.

(a) Stationary: yes because 1− ϕ1z has a single root outside the unit circle.

(b) Invertible: yes because 1− θ1z has a single root outside the unit circle.

(c) We have:

(i) E(Xt) = µ̄
1−ϕ1

= 0,

(ii) We use formulas (8.39)–(8.41) from Dufour (2008a):

γ(0) = (1− 2ϕ1θ1 + θ2
1)

σ2

1− ϕ2
1

=
13

12
,

γ(1) = (1− θ1ϕ1)(ϕ1 − θ1)
σ2

1− ϕ2
1

=
7

24
,

and γ(k) = ϕ1γ(k − 1) = ϕk−1
1 γ(1) for k ≥ 2.
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(iii) We have

ρ(0) = 1,

ρ(1) =
γ(1)

γ(0)
=

1− 2ϕ1θ1 + θ2
1

(1− θ1ϕ1)(ϕ1 − θ1)
=

7

26

and ρ(k) = ϕ1ρ(k − 1) = ϕk−1
1 ρ(1) for k ≥ 2.

(d) Plotting ρ(0), . . . , ρ(8) yields

(e) We have

ψ0 = 1,

ψ1 = ϕ1 − θ1 =
1

4

ψ2 = ϕ1ψ1 =
1

8

ψ3 = ϕ1ψ2 =
1

16

ψ4 = ϕ1ψ3 =
1

32
.

(f)

γx(z) = σ2 θ(z)θ(z−1)

ϕ(z)ϕ(z−1)
=

4− 17z + 4z2

8− 20z + 8z2
·

(g)

fx(ω) =
σ2

2π

θ[exp(iω)]θ[exp(−iω)]

ϕ[exp(iω)]ϕ[exp(−iω)]
=

17− 8 cos(ω)

2π(20− 16 cos(ω))
.
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(h) Straightforward computation yields:

φ(1) =
7

26
,

φ(2) =
14

209
,

φ(3) =
56

3345
,

φ(4) =
224

53521
·

The ARMA(1, 1) process Xt = 0.5Xt−1 + ut − 0.5ut−1

This is the white noise process in disguise. So it is stationary and invertible. γ(0) = 1 and
γ(k) = 0 for k 6= 0. Similarly, ρ(0) = 1 and ρ(k) = 0 for k 6= 0. Plotting ρ(0), . . . , ρ(8) is
trivial:
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We have ψ0 = 1 and ψk = 0 for k ≥ 1. The autocovariance generating function is just
γx(z) = 1 whereas the spectral density is the constant fx(ω) = 1

2π
. Plotting the latter is

trivial as well:

Finally, φ(1) = · · · = φ(4) = 0 because the white noise can be seen as an AR(0) process.
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