# Solution to Econ 763 Assignment 2 (Winter 2017) Instructor: Jean-Marie Dufour* 

Vinh Nguyen ${ }^{\dagger}$

First version: February 19, 2015
This version: April 13, 2017

## Problem 1 (20 points)

Grading remarks: 5 points each for (a)-(d)
Suppose we have the formal series

$$
\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}
$$

where $\left\{u_{t}: t \in \mathbb{Z}\right\} \sim W N\left(0, \sigma^{2}\right)$. For a fixed $t$, we can in general write

$$
\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}=\sum_{j=-\infty}^{\infty} Y_{j}=\sum_{j=-\infty}^{0} Y_{j}+\sum_{j=1}^{\infty} Y_{j}
$$

where $Y_{j} \equiv \psi_{j} u_{t-j}$. In particular, the dependence of $Y_{j}$ on $t$ has been suppressed in the notation. Note that $E\left(Y_{j}\right)=0, E\left(Y_{j}^{2}\right)=\psi_{j}^{2} \sigma^{2}<\infty$ so that $Y_{j} \in L_{2}$, and $E\left(Y_{i} Y_{j}\right)=0$ for $i \neq j$.
(a) Convergence in mean of order 2

Proposition 4.2.6 in Dufour (2008b) implies that if

$$
\begin{equation*}
\infty>\sum_{j=-\infty}^{\infty}\left(E\left[Y_{j}^{2}\right]\right)^{1 / 2}=\sum_{j=-\infty}^{\infty}\left(\psi_{j}^{2} E\left(u_{t-j}^{2}\right)\right)^{1 / 2}=\sigma \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right| \tag{1}
\end{equation*}
$$

then there exists random variables $Y^{-}$and $Y^{+}$such that

$$
\sum_{j=-m}^{0} Y_{j} \underset{m \rightarrow \infty}{\xrightarrow{2}} Y^{-}, \quad \sum_{j=0}^{n} Y_{j} \underset{n \rightarrow \infty}{\xrightarrow{2}} Y^{+}
$$

[^0]We can thus write $Y^{-}=\sum_{j=-\infty}^{0} Y_{j}$ and $Y^{+}=\sum_{j=1}^{\infty} Y_{j}$. Moreover, we have

$$
\sum_{j=-m}^{0} Y_{j}+\sum_{j=0}^{n} Y_{j} \underset{m, n \rightarrow \infty}{\stackrel{2}{\rightarrow}} Y^{-}+Y^{+} \equiv Y
$$

Having shown convergence, we are now justified in writing

$$
Y=\sum_{j=-\infty}^{\infty} Y_{j}=\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}
$$

Remark: what the above has shown is that $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty$ is sufficient for the convergence in mean of order 2 of $\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}$. A different result from Dufour (2008b) (Proposition 4.3.1) gives another sufficient condition

$$
\begin{equation*}
\infty>\sum_{j=-\infty}^{\infty} E\left[Y_{t}^{2}\right]=\sigma^{2} \sum_{j=-\infty}^{\infty} \psi_{j}^{2} \Longleftrightarrow \sum_{j=-\infty}^{\infty} \psi_{j}^{2}<\infty . \tag{2}
\end{equation*}
$$

We note that (1) is a strictly stronger condition than (2): the former implies the latter but the reverse implication fails. To see that, the convergence of $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|$ implies that there is $N$ sufficiently large that for $|n| \geq N$, we have $\left|\psi_{j}\right|<1$. Then, for $n, m>N$, we have

$$
\begin{aligned}
\sum_{j=-m}^{n} \psi_{j}^{2} & =\sum_{j=-N}^{N} \psi_{j}^{2}+\sum_{j=N+1}^{n} \psi_{j}^{2}+\sum_{j=-m}^{-N-1} \psi_{j}^{2} \\
& \leq \sum_{j=-N}^{N} \psi_{j}^{2}+\sum_{j=N+1}^{n}\left|\psi_{j}\right|+\sum_{j=-m}^{-N-1}\left|\psi_{j}\right| .
\end{aligned}
$$

When we let $m, n \rightarrow \infty$, absolute summability (i.e. (1)) implies that the second line above converges, which in turn gives the convergence of $\sum_{j=-\infty}^{\infty} \psi_{j}^{2}$. To see that square-summability doesn't imply absolute summability, consider

$$
\psi_{j}=0 \quad \forall j \leq 0, \quad \psi_{j}=\frac{1}{j} \quad \forall j \geq 1
$$

Then

$$
\sum_{j=-\infty}^{\infty} \psi_{j}^{2}=\sum_{j=1}^{\infty} \frac{1}{j^{2}}=\frac{\pi^{2}}{6} \quad \text { whereas } \quad \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|=\sum_{j=1}^{\infty} \frac{1}{j}=+\infty
$$

(b) Convergence in mean of order $r$

Following the same approach above and Proposition 4.2.6 (Dufour (2008b)), we may infer that for $r \geq 1$, the condition

$$
\begin{equation*}
\infty>\sum_{j=-\infty}^{\infty}\left(E\left[\left|\psi_{j} u_{t-j}\right|^{r}\right]\right)^{1 / r}=E\left(\left|u_{t}\right|^{r}\right)^{1 / r} \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right| \Longleftrightarrow \sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty \tag{3}
\end{equation*}
$$

is sufficient for $\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}$ to converge in mean of order $r$. Of course, here we also need each $u_{t}$ to be in $L_{r}$.

For $r<1$, we also appeal to Proposition 4.2.6. To be specific, that proposition tells us that for $\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}$ to converge in mean (i.e. in $L_{1}$ ), it also suffices to have $\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty$ (and that for each $t, E\left(\left|u_{t}\right|\right)$ is finite but this follows because $E\left(u_{t}^{2}\right)$ is finite.) But convergence in $L_{1}$ implies convergence in $L_{r}$ for $r<1$, so the same sufficient condition is enough for $\sum_{j=-\infty}^{\infty} \psi_{j} u_{t-j}$ to converge in mean of order $r<1$.

## (c) Almost sure convergence

Proposition 4.2.6 again gives us a sufficient condition

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty}\left|\psi_{j}\right|<\infty \tag{4}
\end{equation*}
$$

Proposition 4.3.1 competes to give another sufficient condition

$$
\begin{equation*}
\sum_{j=1}^{\infty}(\log j)^{2} \psi_{j}^{2}<\infty, \quad \sum_{j=-\infty}^{-1}(\log (-j))^{2} \psi_{j}^{2}<\infty \tag{5}
\end{equation*}
$$

We see that (5) does not imply (4). For example, when $\psi_{j}=0$ for $j \leq 0$ and $\psi_{j}=\frac{1}{j}$ for $j \geq 1$, we have

$$
\sum_{j=1}^{\infty}(\log j)^{2} \psi_{j}^{2}=\sum_{j=1}^{\infty} \frac{(\log j)^{2}}{j^{2}}<\infty \quad \text { and } \quad \sum_{j=1}^{\infty}\left|\psi_{j}\right|=\sum_{j=1}^{\infty} \frac{1}{j} \rightarrow \infty
$$

## (d) Convergence in probability

Since convergence in probability is implied by convergence in mean of order $r(r>0)$ and almost sure convergence, each of the conditions (2), (4), and (5) will be sufficient here.

## Problem 2 (10 points)

Grading remarks: 5 points each for (a) and (b)
Consider an $M A(1)$ model

$$
X_{t}=\bar{\mu}+u_{t}-\theta u_{t-1}, \quad t \in \mathbb{Z}
$$

where $u_{t} \sim W N\left(0, \sigma^{2}\right)$ and $\sigma^{2}>0$.
(a) The first autocorrelation of this model cannot be greater than 0.5 in absolute value.

Proof. We have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{t+1}\right) & =E\left[\left(u_{t}-\theta u_{t-1}\right)\left(u_{t+1}-\theta u_{t}\right)\right]=-\theta E\left(u_{t}^{2}\right)=-\theta \sigma^{2}, \\
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(u_{t}\right)+\theta^{2} \operatorname{Var}\left(u_{t-1}\right)=\left(1+\theta^{2}\right) \sigma^{2} .
\end{aligned}
$$

This implies

$$
|\rho(1)|=\left|\frac{\operatorname{Cov}\left(X_{t}, X_{t+1}\right)}{\operatorname{Var}\left(X_{t}\right)}\right|=\frac{|\theta|}{1+\theta^{2}}
$$

which is less than or equal to $\frac{1}{2}$ because

$$
\frac{|\theta|}{1+\theta^{2}} \leq \frac{1}{2} \Longleftrightarrow 2|\theta| \leq 1+\theta^{2} \Longleftrightarrow(|\theta|-1)^{2} \geq 0
$$

(b) Values of the model parameters for which this upper bound is attained.

Answer. As shown in (a), we have

$$
2\left(1+\theta^{2}\right)\left(\frac{1}{2}-|\rho(1)|\right)=\left(1+\theta^{2}\right)(|\theta|-1)^{2} \geq 0
$$

which equals 0 iff $|\theta|=1$. That is, when $\theta= \pm 1$, the absolute value of the first autocorrelation equals $\frac{1}{2}$.

## Problem 3 ( 72 points)

Grading remarks: for each process, 3 points each for (a)-(f) and $4 \times 18=72$ points total
Let $\left\{X_{t}: t \in \mathbb{Z}\right\}$ be an $M A(q)$ process. For $q=3,4,5,6$, check whether the following inequalities are correct:
(a) $|\rho(1)| \leq 0.75$;
(b) $|\rho(2)| \leq 0.90$;
(c) $|\rho(3)| \leq 0.90$;
(d) $|\rho(4)| \leq 0.90$;
(e) $|\rho(5)| \leq 0.90$;
(f) $|\rho(6)| \leq 0.90$.

A general $M A(q)$ process can be written as

$$
X_{t}=\mu+u_{t}+\sum_{t=1}^{q} \theta_{j} u_{t-j}=\mu+\theta(L) u_{t} \quad \text { with } \quad \theta(L)=1+\theta_{1} L-\ldots+\theta_{q} L^{q}
$$

From the lecture notes (Dufour (2008a)), the autocorrelation coefficients can be computed as follows

$$
\begin{aligned}
\rho(k) & =\left(\theta_{k}+\sum_{j=1}^{q-k} \theta_{j} \theta_{j+k}\right) /\left(1+\sum_{j=1}^{q} \theta_{j}^{2}\right), & & 1 \leq k \leq q \\
& =0, & & k \geq q+1 .
\end{aligned}
$$

In particular, the autocorrelations vanish for $k \geq q+1$. Moreover, formula (6.12) from the lecture notes gives us

$$
|\rho(k)| \leq B(q, k) \equiv \cos \left(\frac{\pi}{\lfloor q / k\rfloor+2}\right)
$$

Plotting $B(q, k)$ for various $q$ and $k$ gives


Figure 1: Upperbounds for autocorrelations of some MA processes

From the Figure 1, we know that (b)-(f) must hold, but let's verify this algebraically. Because $\rho(k)=0$ for $k \geq 4$, the inequalities in (d)-(f) hold automatically. For (a)-(c), we write

$$
\begin{aligned}
& \rho(1)=\frac{\theta_{1}+\theta_{1} \theta_{2}+\theta_{2} \theta_{3}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}}, \\
& \rho(2)=\frac{\theta_{2}+\theta_{1} \theta_{3}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}}, \\
& \rho(3)=\frac{\theta_{3}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}} .
\end{aligned}
$$

From these, (c) holds because

$$
2\left|\theta_{3}\right| \leq 1+\theta_{3}^{2} \leq 1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{2}^{3} \Longrightarrow|\rho(3)| \leq \frac{1}{2}<0.90 .
$$

In a similar manner, we can use the inequality $2 a b \leq a^{2}+b^{2}$ to infer

$$
2\left|\theta_{2}+\theta_{1} \theta_{3}\right| \leq 2\left|\theta_{2}\right|+\left|\theta_{1}\right|\left|\theta_{3}\right| \leq 1+\theta_{2}^{2}+\theta_{1}^{2}+\theta_{3}^{2} \Longrightarrow|\rho(2)| \leq \frac{1}{2}<0.90
$$

So (b) indeed holds. As the figure suggest however, (a) can fail. And it does when we set $\theta_{1}=\theta_{2}=\theta_{3}=\theta=\frac{3}{2}$ so that

$$
|\rho(1)|=\frac{\theta(1+2 \theta)}{1+3 \theta^{2}}=\frac{24}{31}>\frac{24}{32}=0.75 .
$$

MA(4)
Again, Figure 1 says that (b)-(f) are true whereas (a) may fail. For (e)-(f), the implications are immediate because $\rho(5)=\rho(6)=0$. For the rest, we write

$$
\begin{aligned}
& \rho(1)=\frac{\theta_{1}+\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{4}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}}, \\
& \rho(2)=\frac{\theta_{2}+\theta_{1} \theta_{3}+\theta_{2} \theta_{4}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}}, \\
& \rho(3)=\frac{\theta_{3}+\theta_{1} \theta_{4}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}}, \\
& \rho(4)=\frac{\theta_{4}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}} .
\end{aligned}
$$

Because $\left|\theta_{4}\right| \leq \frac{1}{2}\left(1+\theta_{4}^{2}\right)$, it's obvious that $|\rho(4)| \leq \frac{1}{2}<0.90$. Similarly, $\left|\theta_{3}\right| \leq \frac{1}{2}\left(1+\theta_{3}^{2}\right)$ and $\left|\theta_{1}\right|\left|\theta_{4}\right| \leq \frac{1}{2}\left(\theta_{1}^{2}+\theta_{4}^{2}\right)$ imply that $|\rho(3)| \leq \frac{1}{2}<0.90$. To prove $|\rho(2)| \leq 0.90$ we can assume WLOG that $\theta_{i} \geq 0$ so that $|\rho(2)| \leq 0.90$ is equivalent to

$$
9+9 \theta_{1}^{2}+9 \theta_{2}^{2}+9 \theta_{3}^{2}+9 \theta_{4}^{2} \geq 10 \theta_{2}+10 \theta_{1} \theta_{3}+10 \theta_{2} \theta_{4} .
$$

Noting that $9 \theta_{1}^{2}+9 \theta_{3}^{2}-10 \theta_{1} \theta_{3}=\left(2 \theta_{1}\right)^{2}+\left(2 \theta_{2}\right)^{2}+5\left(\theta_{1}-\theta_{3}\right)^{2}$, we only need to prove

$$
\begin{equation*}
9+9 \theta_{2}^{2}+9 \theta_{4}^{2} \geq 10 \theta_{2}+10 \theta_{2} \theta_{4} . \tag{*}
\end{equation*}
$$

We can treat $(*)$ as an inequality for $\theta_{4}$ equals some fixed $y \geq 0$ and while $\theta_{2}=x \geq 0$ is allowed to vary. That is, $(*)$ follows if we can show that

$$
\begin{equation*}
9+9 x^{2}+9 y^{2} \geq 10 x+10 x y=(10+10 y) x \tag{**}
\end{equation*}
$$

for all $x, y \geq 0$. With $y \geq 0$ fixed, the LHS above is convex in $x$ whereas the RHS is linear. The derivative (w.r.t. to $x$ ) of the RHS is $10+10 y$ whereas the derivative of the LHS is $18 x$ which equals $9+10 y$ when $x=\frac{5}{9}(1+y)$. At this value of $x,(* *)$ is equivalent to

$$
81+81 y^{2}+25(y+1)^{2} \geq 50(y+1)^{2} \Longleftrightarrow 0 \leq 56 y^{2}-50 y+56
$$

which is true because $56 y^{2}-50 y+56=31 y^{2}+31+25(y-1)^{2}$. Due to the convexity observation from the previous paragraph, that the inequality holds for $x=\frac{5}{9}(1+y)$ is enough for $(* *)$ to hold for all $x \geq 0$ given $y$ is fixed. As $y$ is arbitrary, ( $* *$ ) and, thus, $(*)$ must hold generally. In other words, $|\rho(2)| \leq \frac{9}{10}$ is true.

Finally, (a) fails when we set $\theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta$ so that

$$
|\rho(1)|=\frac{\theta+3 \theta^{2}}{1+4 \theta^{2}}=\frac{232}{281}>\frac{210}{280}=0.75 .
$$

## $M A(5)$

Figure 1 says that (b)-(f) are true while (a) may fail. $\rho(6)=0$ so (f) is immediate. For (a)-(e), we write

$$
\begin{aligned}
\rho(1) & =\frac{\theta_{1}+\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{4}+\theta_{4} \theta_{5}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}}, \\
\rho(2) & =\frac{\theta_{2}+\theta_{1} \theta_{3}+\theta_{2} \theta_{4}+\theta_{3} \theta_{5}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}}, \\
\rho(3) & =\frac{\theta_{3}+\theta_{1} \theta_{4}+\theta_{2} \theta_{5}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}}, \\
\rho(4) & =\frac{\theta_{4}+\theta_{1} \theta_{5}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}}, \\
\rho(5) & =\frac{\theta_{5}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}} .
\end{aligned}
$$

Using the same techniques as above, we can again show that $|\rho(3)|,|\rho(4)|$, and $|\rho(5)|$ are less than or equal to $\frac{1}{2}<0.90$. The autocorrelation of order $1 \rho(1)$ can exceed 0.75 in absolute value: when $\theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=\theta=\frac{3}{2}$, we have

$$
|\rho(1)|=\frac{\theta+4 \theta^{2}}{1+5 \theta^{2}}=\frac{6}{7}>0.75 .
$$

As with the $M A(4)$ case, $\rho(2)$ poses a more challenging problem. The algebra seems intimidating so we settle with formula (6.12) from Dufour (2008a):

$$
|\rho(2)| \leq\left.\cos \left(\frac{\pi}{\lfloor q / k\rfloor+2}\right)\right|_{q=5, k=2}=\frac{1}{\sqrt{2}}<0.9
$$

$M A(6)$
We get no free lunch with this one as none of the correlation is 0 . The standard formulas give

$$
\begin{aligned}
& \rho(1)=\frac{\theta_{1}+\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{4}+\theta_{4} \theta_{5}+\theta_{5} \theta_{6}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2}}, \\
& \rho(2)=\frac{\theta_{2}+\theta_{1} \theta_{3}+\theta_{2} \theta_{4}+\theta_{3} \theta_{5}+\theta_{4} \theta_{6}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2}}, \\
& \rho(3)=\frac{\theta_{3}+\theta_{1} \theta_{4}+\theta_{2} \theta_{5}+\theta_{3} \theta_{6}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2}}, \\
& \rho(4)=\frac{\theta_{4}+\theta_{1} \theta_{5}+\theta_{2} \theta_{6}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2}}, \\
& \rho(5)=\frac{\theta_{5}+\theta_{1} \theta_{6}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2}}, \\
& \rho(6)=\frac{\theta_{6}}{1+\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}+\theta_{4}^{2}+\theta_{5}^{2}+\theta_{6}^{2}} .
\end{aligned}
$$

A quick glance gives $|\rho(4)|,|\rho(5)|$ and $|\rho(6)|$ are no more than $\frac{1}{2}<0.9$. To find the counter example for $\rho(1)$, we set $\theta_{1}=\ldots=\theta_{6}=\theta=\frac{8}{5}$ to obtain

$$
|\rho(1)|=\frac{\theta+5 \theta^{2}}{1+6 \theta^{2}}=\frac{360}{409}>\frac{360}{480}=0.75 .
$$

The algebra for $\rho(2)$ and $\rho(3)$ looks scary so we again use (6.12) from Dufour (2008a):

$$
\begin{aligned}
& |\rho(2)| \leq\left.\cos \left(\frac{\pi}{\lfloor q / k\rfloor+2}\right)\right|_{q=6, k=2}=\frac{1}{4}(1+\sqrt{5})<0.9 . \\
& |\rho(3)| \leq\left.\cos \left(\frac{\pi}{\lfloor q / k\rfloor+2}\right)\right|_{q=6, k=3}=\frac{1}{\sqrt{2}}<0.9 .
\end{aligned}
$$

## Problem 4 (300 points)

Grading remarks: for each process, 2 points for (a), 2 points for (b), $7(1+4+2)$ points for (c), 3 points for (d), 5 points for (e), 2 points for (f), $5(2+3)$ points for (g), 4 points for (h), and so $6 \times 30=180$ points total

Some general results for $A R M A(p, q)(p, q$ finite)
For some finite and positive integers $p$ and $q$, we consider a process $\left\{X_{t}: t \in \mathbb{Z}\right\}$ which satisfies the equation

$$
\begin{equation*}
X_{t}=\bar{\mu}+\sum_{j=1}^{p} \varphi_{j} X_{t-j}+u_{t}-\sum_{j=1}^{q} \theta_{j} u_{t-j} \tag{6}
\end{equation*}
$$

where $\left\{u_{t}: t \in \mathbb{Z}\right\}$ is a homoskedastic white noise with common variance $\sigma^{2}$. Using operational notation, we can define $\varphi(B)=1-\sum_{j=1}^{p} \varphi_{j} B^{j}$ and $\theta(B)=1-\sum_{j=1}^{q} \theta_{j} B^{j}$ and write

$$
\begin{equation*}
\varphi(B) X_{t}=\bar{u}+\theta(B) u_{t} . \tag{7}
\end{equation*}
$$

(1) Stationarity condition: if the polynomial $\varphi(z)=1-\varphi_{1} z-\ldots-\varphi_{p} z^{p}$ has all its roots outside the unit circle, the equation (6) has one and only one weakly stationary solution, which can be written

$$
\begin{equation*}
X_{t}=\mu+[\varphi(B)]^{-1} \theta(B) u_{t}=\mu+\sum_{j=0}^{\infty} \psi_{j} u_{t-j} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mu & =\frac{\bar{\mu}}{\varphi(B)}
\end{aligned}=\frac{\bar{\mu}}{1-\sum_{j=1}^{p} \varphi_{j}}, ~ 子 \frac{\theta(B)}{\varphi(B)} \equiv \psi(B)=\sum_{j=0}^{\infty} \psi_{j} B^{j} .
$$

(2) The $\psi_{j}$ coefficients are obtained by solving the equation $\varphi(B) \psi(b)=\theta(B)$ :

$$
\begin{equation*}
\left(1-\sum_{k=1}^{p} \varphi_{k} B^{k}\right)\left(\sum_{j=0}^{\infty} \psi_{j} B^{j}\right)=1-\sum_{j=1}^{q} \theta_{j} B^{j} \tag{9}
\end{equation*}
$$

and comparing powers of $B$ 's on both sides. For examples, (below we define $\theta_{0}=-1$ )

$$
\begin{aligned}
& \psi_{0}=-\theta_{0}=1 \\
& \psi_{1}-\varphi_{1}=-\theta_{1} \\
& \psi_{2}-\varphi_{1} \psi_{1}-\varphi_{2}=-\theta_{2} \\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& \psi_{j}-\sum_{k=1}^{j} \varphi_{k} \psi_{j-k}=-\theta_{j}, \quad(j=0,1, \ldots, q)
\end{aligned}
$$

If we define $\psi_{j}=0$ for $j<0$ then the last line above can be rewritten as $\psi_{j}-$ $\sum_{k=1}^{p} \varphi_{k} \psi_{j-k}=-\theta_{j}$ for $j=0, \ldots, q$. For $j>q$, things get slightly trickier. The
advantage of this re-expression is that for $j>q$, we can also write $\psi_{j}-\sum_{k=1}^{p} \varphi_{k} \psi_{j-k}=$ 0 .

Thus, a convenient algorithm for solving for $\psi_{j}$ is that:
(i) define $\psi_{-p}=\psi_{-(p-1)}=\ldots=\psi_{-1}=0$,
(ii) for $j=0,1, \ldots, q$, recursively compute $\psi_{j}=-\theta_{j}+\sum_{k=1}^{p} \varphi_{k} \psi_{j-k}$,
(iii) for $j>q$, continue the recursion $\psi_{j}=\sum_{k=1}^{p} \varphi_{k} \psi_{j-k}$.
(c) Invertibility: If the ARMA process (7) is second-order stationary, then the process $\left\{X_{t}\right\}$ satisfies an equation of the form

$$
\sum_{j=0}^{\infty} \tilde{\phi}_{j} X_{t-j}=\tilde{\mu}+u_{t}
$$

iff the roots of the polynomial $\theta(B)$ are outside the unit circle. Further, when the representation above exists, we have

$$
\tilde{\phi}(B)=\theta(B)^{-1} \varphi(B), \quad \tilde{\mu}=\theta(B)^{-1} \bar{\mu}=\frac{\bar{\mu}}{1-\sum_{j=1}^{q} \theta_{j}}
$$

In particular, any stationary $A R(p)$ process is invertible. Note that invertibility is actually a separate concept from stationarity. In Box et al. (2008), a linear process $X_{t}=$ $\mu+\sum_{j=1}^{\infty} \psi_{j} a_{t-j}$ is invertible if $\sum_{j=0}^{\infty}\left|\pi_{j}\right|<\infty$, where $\pi(B)=\psi^{-1}(B)=1-\sum_{j=1}^{\infty} \pi_{j} B^{j}$.
(d) Autocovariances and autocorrelations: Suppose that
(i) the polynomial $\varphi(z)$ has is roots outside the unit circle and the process $X_{t}$ the unique stationary solution to $\varphi(B) X_{t}=\bar{u}+\theta(B) u_{t}$,
(ii) $E\left(X_{t-j} u_{t}\right)=0$ for all $j \geq 1$.

By the stationarity assumption, $E\left(X_{t}\right)=\mu$ for some $\mu$ and for all $t$. This $\mu$ satisfies

$$
\mu=E\left(X_{t}\right), \forall t \Longrightarrow \varphi(B) \mu=E\left[\varphi(B) X_{t}\right]=\bar{u} \Longrightarrow \mu=\frac{\bar{\mu}}{1-\sum_{j=1}^{p} \varphi_{j}}
$$

Now, let us define $Y_{t}=X_{t}-\mu$ so that $E\left(Y_{t}\right)=0$ and $\varphi(B) Y_{t}=\theta(B) u_{t}$. It follows that for $k>0$

$$
\begin{gathered}
Y_{t+k}=\sum_{j=1}^{p} \varphi_{j} Y_{t+k-j}+u_{t+k}-\sum_{j=1}^{q} \theta_{j} u_{t+k-j}, \\
\Longrightarrow E\left[Y_{t} Y_{t+k}\right]=\sum_{j=1}^{p} \varphi_{j} E\left[Y_{t} Y_{t+k-j}\right]+E\left[Y_{t} u_{t+k}\right]-\sum_{j=1}^{q} \theta_{j} E\left[Y_{t} u_{t+k-j}\right],
\end{gathered}
$$

which implies

$$
\begin{equation*}
\gamma(k)=\sum_{j=1}^{p} \varphi_{j} \gamma(k-j)-\sum_{j=1}^{q} \theta_{j} \gamma_{x u}(k-j) \tag{10}
\end{equation*}
$$

where

$$
\gamma_{x u}(k)=E\left(Y_{t} u_{t+k}\right)= \begin{cases}0 & \text { if } k \geq 1 \\ \sigma^{2} & \text { if } k=0\end{cases}
$$

and $\gamma_{x u}(k) \neq 0$ in general for $k \leq 0$. That is, for $1 \leq k \leq q$,

$$
\begin{aligned}
\gamma_{x u}(-k) & =E\left(Y_{t} u_{t-k}\right) \\
& =E\left[\left(\sum_{j=1}^{p} Y_{t-j}+u_{t}-\sum_{j=1}^{q} \theta_{j} u_{t-j}\right) u_{t-k}\right] \\
& =\sum_{j=1}^{p} \gamma_{x u}(-k+j)-\theta_{k} \sigma^{2}
\end{aligned}
$$

As $j$ in the last line above is strictly positive, $-k+j>-k$ so that $\gamma_{x u}$ can be computed backwards recursively. Once we have found $\gamma_{x u}$, we can solve (10) and

$$
\gamma(0)=\sum_{j=1}^{p} \varphi_{j} \gamma(j)+\sigma^{2}-\sum_{j=1}^{q} \theta_{j} \gamma_{x u}(-j)
$$

for $\gamma(0), \gamma(1), \ldots, \gamma(p)$ in terms of the ARMA coefficients. Then for $k>p, \gamma(k)$ can be computed using (10). Finally, the autocorrelation $\rho(0)$ is simply $\frac{\gamma(k)}{\gamma(0)}$.
(e) Partial autocorrelations: the partial autocorrelation of order $k$, denoted by $\phi(k)$, is computed as follows: first, we define

$$
\Phi(k) \equiv\left(\begin{array}{ccccc}
1 & \rho(1) & \ldots & \rho(k-2) & \rho(k-1)  \tag{11}\\
\rho(1) & 1 & \ldots & \rho(k-3) & \rho(k-2) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\rho(k-2) & \rho(k-3) & \ldots & 1 & \rho(1) \\
\rho(k-1) & \rho(k-2) & \ldots & \rho(1) & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
\rho(1) \\
\rho(2) \\
\vdots \\
\rho(k-1) \\
\rho(k)
\end{array}\right)
$$

Then, $\phi(k)$ is just the $k$-th entry of $\Phi(k)$.

The $A R(1)$ process $X_{t}=0.5 X_{t-1}+u_{t}$
Write this as $\left(1-\varphi_{1}\right) X_{t}=\bar{u}+u_{t}$ where $\varphi_{1}=0.5$ and $\bar{u}=0$. Here, $u_{t} \sim N\left(0, \sigma^{2}\right)$ where $\sigma=1$.
(a) The process is stationary because $\varphi(z)=1-0.5 z$ has root $z=2$ which is outside the unit circle.
(b) The process is invertible, as is any other $A R(p)$ process for some finite $p$.
(c) (i) $E\left(X_{t}\right)=\frac{\bar{u}}{1-\varphi_{1}}=\frac{0}{1-0.5}=0$,
(ii) Using formulae (7.47) and (7.46) from Dufour (2008a), we have

$$
\begin{aligned}
& \gamma(0)=\operatorname{Var}\left(X_{t}\right)=\frac{\sigma^{2}}{1-\varphi_{1}^{2}}=\frac{1}{0.75}=\frac{4}{3} \\
& \gamma(k)=\varphi_{1}^{k} \gamma(0)=\frac{4}{2^{k} 3} .
\end{aligned}
$$

(iii) The autocorrelations are

$$
\rho(0)=1, \quad \rho(k)=\varphi_{1}^{k}=\frac{1}{2^{k}} .
$$

(d) We can plot $\rho(k)$ for $k=0, \ldots, 8$ :

(e) Write $M A(\infty)$ representation as $X_{t}=\psi(B) u_{t}$ where $\psi(B)=\varphi(B)^{-1}=\sum_{j=0}^{\infty} \psi_{j} B^{j}$. Because

$$
\frac{1}{1-\varphi_{1} B}=1+\varphi_{1} B+\varphi_{1}^{2} B^{2}+\varphi_{3}^{2} B^{3}+\varphi_{4}^{2} B^{4}+\cdots
$$

we have

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\varphi_{1}=0.5 ; \\
& \psi_{2}=\varphi_{1}^{2}=0.25 ; \\
& \psi_{3}=\varphi_{1}^{3}=0.125 ; \\
& \psi_{4}=\varphi_{1}^{4}=0.0625 .
\end{aligned}
$$

(f) With $\psi(z)=\frac{1}{1-\varphi_{1} z}$ as defined above, then

$$
\begin{aligned}
\gamma_{x}(z) & =\sigma^{2} \psi(z) \psi\left(z^{-1}\right) \\
& =\frac{\sigma^{2}}{\left(1-\varphi_{1} z\right)\left(1-\varphi_{1} z^{-1}\right)} \\
& =\frac{1}{(1-0.5 z)(1-0.5 / z)} \\
& =\frac{4 z}{(2-z)(2 z-1)} .
\end{aligned}
$$

(g) By Proposition 11.14 from Dufour (2008a), we have

$$
\begin{aligned}
f_{x}(\omega) & =\frac{\sigma^{2}}{2 \pi} \psi(\exp (i \omega)) \psi(\exp (-i \omega)) \\
& =\frac{\sigma^{2}}{2 \pi} \frac{1}{\left(1-\varphi_{1} \exp (i \omega)\right)\left(1-\varphi_{1} \exp (-i \omega)\right)} \\
& =\frac{1}{2 \pi[1-0.5 \exp (i \omega)][1-0.5 \exp (-i \omega)]} \\
& =\frac{2}{\pi(5-4 \cos (\omega))}
\end{aligned}
$$

Plotting it yields:

(h) Using the formula (11) four times, we get

$$
\phi(1)=\frac{1}{2}, \quad \phi(2)=\phi(3)=\phi(4)=0 .
$$

The $A R(1)$ process $X_{t}=10-0.75 X_{t-1}+u_{t}$
Write this as $\left(1-\varphi_{1}\right) X_{t}=\bar{u}+u_{t}$ where $\varphi_{1}=-0.75$ and $\bar{u}=10$. Here, $u_{t} \sim N\left(0, \sigma^{2}\right)$ where $\sigma=1$.
(a) The process is stationary because $\varphi(z)=1+0.75 z$ has root $z=-\frac{4}{3}$ which is outside the unit circle.
(b) The process is invertible, as is any other $A R(p)$ process for some finite $p$.
(c) (i) $E\left(X_{t}\right)=\frac{\bar{u}}{1-\varphi_{1}}=\frac{10}{1+0.75}=\frac{40}{7}$,
(ii) Using formulae (7.47) and (7.46) from Dufour (2008a), we have

$$
\begin{aligned}
& \gamma(0)=\operatorname{Var}\left(X_{t}\right)=\frac{\sigma^{2}}{1-\varphi_{1}^{2}}=\frac{16}{7} \\
& \gamma(k)=\varphi_{1}^{k} \gamma(0)=\frac{(-3)^{k} 16}{4^{k} 7}
\end{aligned}
$$

(iii) The autocorrelations are

$$
\rho(0)=1, \quad \rho(k)=\varphi_{1}^{k}=\frac{(-3)^{k}}{4^{k}}
$$

(d) We can plot $\rho(k)$ for $k=0, \ldots, 8$ :

(e) Write $M A(\infty)$ representation as $X_{t}=\psi(B) u_{t}$ where $\psi(B)=\varphi(B)^{-1}=\sum_{j=0}^{\infty} \psi_{j} B^{j}$. Because

$$
\frac{1}{1-\varphi_{1} B}=1+\varphi_{1} B+\varphi_{1}^{2} B^{2}+\varphi_{3}^{2} B^{3}+\varphi_{4}^{2} B^{4}+\cdots
$$

we have

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\varphi_{1}=\frac{-3}{4} \\
& \psi_{2}=\varphi_{1}^{2}=\frac{9}{16} \\
& \psi_{3}=\varphi_{1}^{3}=\frac{-27}{64} \\
& \psi_{4}=\varphi_{1}^{4}=\frac{81}{256}
\end{aligned}
$$

(f) With $\psi(z)=\frac{1}{1-\varphi_{1} z}$ as defined above, then

$$
\begin{aligned}
\gamma_{x}(z) & =\sigma^{2} \psi(z) \psi\left(z^{-1}\right) \\
& =\frac{\sigma^{2}}{\left(1-\varphi_{1} z\right)\left(1-\varphi_{1} z^{-1}\right)} \\
& =\frac{16 z}{12+25 z+12 z^{2}} .
\end{aligned}
$$

(g) By Proposition 11.14 from Dufour (2008a), we have

$$
\begin{aligned}
f_{x}(\omega) & =\frac{\sigma^{2}}{2 \pi} \psi(\exp (i \omega)) \psi(\exp (-i \omega)) \\
& =\frac{\sigma^{2}}{2 \pi} \frac{1}{\left(1-\varphi_{1} \exp (i \omega)\right)\left(1-\varphi_{1} \exp (-i \omega)\right)} \\
& =\frac{1}{2 \pi[1+0.75 \exp (i \omega)][1+0.75 \exp (-i \omega)]} \\
& =\frac{1}{\pi(3.125+3 \cos (\omega))}
\end{aligned}
$$

Plotting it yields:

(h) Using the formula (11) four times, we get

$$
\phi(1)=-\frac{3}{4}, \quad \phi(2)=\phi(3)=\phi(4)=0 .
$$

The $A R(2)$ process $X_{t}=10+\frac{7}{10} X_{t-1}-\frac{1}{5} X_{t-2}+u_{t}$
Write this as

$$
\left(1-\varphi_{1} B-\varphi_{2} B^{2}\right) X_{t}=\bar{\mu}+u_{t}, \quad \varphi_{1}=\frac{7}{10}, \quad \varphi_{2}=\frac{-1}{5} .
$$

As before, $u_{t} \sim N\left(0, \sigma^{2}\right)$ with $\sigma=1$.
(a) Stationarity holds because $1-\varphi_{1} z-\varphi_{2} z^{2}$ have 2 complex roots that both are outside the unit circle.
(b) Invertibility is immediate because this is an $A R(2)$ process.
(c) Using the formulas (7.49-51) from Dufour (2008a), we have:
(i) $\frac{\bar{\mu}}{1-\varphi_{1}-\varphi_{2}}=20$;
(iii)

$$
\begin{aligned}
& \rho(0)=1 ; \\
& \rho(1)=\frac{\varphi_{1}}{1-\varphi_{2}}=\frac{7}{12}, \\
& \rho(2)=\frac{\varphi_{1}^{2}+\varphi_{2}\left(1-\varphi_{2}\right)}{1-\varphi_{2}}=\frac{5}{24}, \\
& \rho(3)=\varphi_{1} \rho(2)+\varphi_{2} \rho(1)=\frac{7}{240}, \\
& \rho(4)=\varphi_{1} \rho(3)+\varphi_{2} \rho(2)=\frac{-17}{800}, \\
& \rho(5)=\varphi_{1} \rho(4)+\varphi_{2} \rho(3)=\frac{-497}{24000}, \\
& \rho(6)=\varphi_{1} \rho(5)+\varphi_{2} \rho(4)=\frac{-2459}{240000}, \\
& \rho(7)=\varphi_{1} \rho(6)+\varphi_{2} \rho(5)=\frac{-7273}{2400000}, \\
& \rho(8)=\varphi_{1} \rho(7)+\varphi_{2} \rho(6)=\frac{-577}{8000000}
\end{aligned}
$$

In general, for $k \geq 3$, we have $\rho(k)=\varphi_{1} \rho(k-1)+\varphi_{2} \rho(k-2)$ and for $k<0$, $\rho(k)=\rho(-k)$.
(ii) Using formula (7.42) from Dufour (2008a), we have

$$
\gamma(0)=\frac{\sigma^{2}}{1-\varphi_{1} \rho(1)-\varphi_{2} \rho(2)}=\frac{30}{19} .
$$

For general $k$, we can easily compute $\gamma(k)=\rho(k) \gamma(0)$ where $\rho(k)$ is given above.
(d) Plotting $\rho(k)$ for $k=0, \ldots, 8$ yields

(e) We have

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\varphi_{1}=\frac{7}{10} \\
& \psi_{2}=\varphi_{1}^{2}+\varphi_{2}=\frac{29}{100} \\
& \psi_{3}=\varphi_{1} \psi_{2}+\varphi_{2} \psi_{1}=\frac{63}{1000} \\
& \psi_{4}=\varphi_{1} \psi_{3}+\varphi_{2} \psi_{2}=\frac{-139}{10000} .
\end{aligned}
$$

(f) The autocovariance function is

$$
\gamma_{x}(z)=\sigma^{2} \psi(z) \psi\left(z^{-1}\right)
$$

where $\psi(z)=\varphi(z)^{-1}$. In our particular case, the algebra simplifies to

$$
\gamma_{x}(z)=\frac{100 z^{2}}{\left(10-7 z+2 z^{2}\right)\left(2-7 z+10 z^{2}\right)} .
$$

(g)

$$
f_{x}(\omega)=\frac{\sigma^{2}}{2 \pi\left[1-\varphi_{1} \exp (i w)-\varphi_{2} \exp (2 i w)\right]\left[1-\varphi_{1} \exp (-i w)-\varphi_{2} \exp (-2 i w)\right]}
$$


(h)

$$
\phi(1)=\frac{7}{12}, \quad \phi(2)=\frac{7}{10}, \quad \phi(3)=\phi(4)=0 .
$$

The $M A(2)$ process $X_{t}=10+u_{t}-0.75 u_{t-1}+0.125 u_{t-2}$
Write this as

$$
X_{t}=\mu+u_{t}-\theta_{1} u_{t-1}-\theta_{2} u_{t-2}, \quad \mu=10, \quad \theta_{1}=\frac{3}{4}, \quad \theta_{2}=-\frac{1}{8} .
$$

(a) Stationarity is automatic for all finite-order $M A$ processes.
(b) This $M A(2)$ process is invertible because $\theta(z)=1-\theta_{1} z-\theta_{2} z^{2}$ has 2 roots 2 and 4 that both are outside the unit circle.
(c) We have:
(i) $E\left(X_{t}\right)=\mu=10$,
(ii) We have

$$
\begin{aligned}
& \gamma(0)=\operatorname{Var}\left(X_{t}\right)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)=\frac{101}{64} \\
& \gamma(1)=\sigma^{2}\left(-\theta_{1}+\theta_{1} \theta_{2}\right)=\frac{-27}{32} \\
& \gamma(2)=\sigma^{2}\left(-\theta_{2}\right)=\frac{1}{8} \\
& \gamma(3)=\gamma(4)=\cdots=\gamma(8)=0
\end{aligned}
$$

(iii) It follows that

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\gamma(1)}{\gamma(0)}=-\frac{54}{101}, \\
& \rho(2)=\frac{\gamma(2)}{\gamma(0)}=\frac{8}{101}, \\
& \rho(3)=\rho(4)=\cdots=\rho(8)=0 .
\end{aligned}
$$

(d) Plotting $\rho(k)$ for $k=0, \ldots, 8$ yields

(e) We have

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=-\theta_{1}=-\frac{3}{4} \\
& \psi_{2}=-\theta_{2}=\frac{1}{8} \\
& \psi_{3}=0 \\
& \psi_{4}=0
\end{aligned}
$$

(f) The autocovariance generating function is

$$
\begin{aligned}
\gamma_{x}(z) & =\sigma^{2} \psi(z) \psi(1 / z) \\
& =\sigma^{2}\left(1-\theta_{1} z-\theta_{2} z^{2}\right)\left(1-\theta_{1} / z-\theta_{2} / z^{2}\right) \\
& =\frac{\left(8-6 z+z^{2}\right)\left(1-6 z+8 z^{2}\right)}{64 z^{2}}
\end{aligned}
$$

(g) The spectral density is

$$
\begin{aligned}
f_{x}(\omega) & =\frac{\sigma^{2}}{2 \pi} \psi\left(e^{i \omega}\right) \psi\left(e^{-i \omega}\right) \\
& =\frac{101-108 \cos (\omega)+16 \cos (2 \omega)}{128 \pi}
\end{aligned}
$$


(h) We have

$$
\phi(1)=-\frac{54}{101}, \quad \phi(2)=-\frac{68}{235}, \quad \phi(3)=-\frac{792}{5177}, \quad \phi(4)=-\frac{208}{2631} .
$$

The $\operatorname{ARMA}(1,1)$ process $X_{t}=0.5 X_{t-1}+u_{t}-0.25 u_{t-1}$
Write this as

$$
\left(1-\varphi_{1} B\right) X_{t}=\bar{u}+\left(1-\theta_{1} B\right) u_{t}
$$

where $\bar{u}=0, \varphi_{1}=0.5, \theta_{1}=0.25$ and $u_{t} \sim N\left(0, \sigma^{2}\right)$ with $\sigma^{2}=1$.
(a) Stationary: yes because $1-\varphi_{1} z$ has a single root outside the unit circle.
(b) Invertible: yes because $1-\theta_{1} z$ has a single root outside the unit circle.
(c) We have:
(i) $E\left(X_{t}\right)=\frac{\bar{\mu}}{1-\varphi_{1}}=0$,
(ii) We use formulas (8.39)-(8.41) from Dufour (2008a):

$$
\begin{aligned}
& \gamma(0)=\left(1-2 \varphi_{1} \theta_{1}+\theta_{1}^{2}\right) \frac{\sigma^{2}}{1-\varphi_{1}^{2}}=\frac{13}{12}, \\
& \gamma(1)=\left(1-\theta_{1} \varphi_{1}\right)\left(\varphi_{1}-\theta_{1}\right) \frac{\sigma^{2}}{1-\varphi_{1}^{2}}=\frac{7}{24},
\end{aligned}
$$

and $\gamma(k)=\varphi_{1} \gamma(k-1)=\varphi_{1}^{k-1} \gamma(1)$ for $k \geq 2$.
(iii) We have

$$
\begin{aligned}
& \rho(0)=1, \\
& \rho(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{1-2 \varphi_{1} \theta_{1}+\theta_{1}^{2}}{\left(1-\theta_{1} \varphi_{1}\right)\left(\varphi_{1}-\theta_{1}\right)}=\frac{7}{26}
\end{aligned}
$$

and $\rho(k)=\varphi_{1} \rho(k-1)=\varphi_{1}^{k-1} \rho(1)$ for $k \geq 2$.
(d) Plotting $\rho(0), \ldots, \rho(8)$ yields

(e) We have

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\varphi_{1}-\theta_{1}=\frac{1}{4} \\
& \psi_{2}=\varphi_{1} \psi_{1}=\frac{1}{8} \\
& \psi_{3}=\varphi_{1} \psi_{2}=\frac{1}{16} \\
& \psi_{4}=\varphi_{1} \psi_{3}=\frac{1}{32} .
\end{aligned}
$$

(f)

$$
\gamma_{x}(z)=\sigma^{2} \frac{\theta(z) \theta\left(z^{-1}\right)}{\varphi(z) \varphi\left(z^{-1}\right)}=\frac{4-17 z+4 z^{2}}{8-20 z+8 z^{2}}
$$

(g)

$$
f_{x}(\omega)=\frac{\sigma^{2}}{2 \pi} \frac{\theta[\exp (i \omega)] \theta[\exp (-i \omega)]}{\varphi[\exp (i \omega)] \varphi[\exp (-i \omega)]}=\frac{17-8 \cos (\omega)}{2 \pi(20-16 \cos (\omega))}
$$


(h) Straightforward computation yields:

$$
\begin{aligned}
\phi(1) & =\frac{7}{26} \\
\phi(2) & =\frac{14}{209} \\
\phi(3) & =\frac{56}{3345} \\
\phi(4) & =\frac{224}{53521}
\end{aligned}
$$

The $\operatorname{ARMA}(1,1)$ process $X_{t}=0.5 X_{t-1}+u_{t}-0.5 u_{t-1}$
This is the white noise process in disguise. So it is stationary and invertible. $\gamma(0)=1$ and $\gamma(k)=0$ for $k \neq 0$. Similarly, $\rho(0)=1$ and $\rho(k)=0$ for $k \neq 0$. Plotting $\rho(0), \ldots, \rho(8)$ is trivial:


We have $\psi_{0}=1$ and $\psi_{k}=0$ for $k \geq 1$. The autocovariance generating function is just $\gamma_{x}(z)=1$ whereas the spectral density is the constant $f_{x}(\omega)=\frac{1}{2 \pi}$. Plotting the latter is trivial as well:


Finally, $\phi(1)=\cdots=\phi(4)=0$ because the white noise can be seen as an $A R(0)$ process.

## References

George Box, Gwilym Jenkins, and Gregory Reinsel. Time Series Analysis Forecasting and Control. John Wiley \& Sons, Hoboken, NJ, USA, 2008.

Jean-Marie Dufour. Introduction to Stochastic Processes. Lecture notes, McGill University, 2008a.

Jean-Marie Dufour. Notions of Asymptotic Theory. Lecture notes, McGill University, 2008b.


[^0]:    *Department of Economics, McGill University. Email: jean-marie.dufour@mcgill.ca
    ${ }^{\dagger}$ Department of Economics, McGill University. Email: vinh.nguyen3@mail.mcgill.ca

