Jean-Marie Dufour March 2010 Compiled: March 31, 2010

ADVANCED ECONOMETRIC THEORY EXERCICES 10

M-ESTIMATORS

- 1. (a) Define the notion of M-estimator.
 - (b) Explain the difference between "M-estimators" and "maximum likelihood estimators".
 - (a) Give regularity conditions under which an M-estimator converges almost surely to a constant.
 - (b) To what this constant corresponds?
 - (c) Give regularity conditions under which the M-estimator has a normal asymptotic distribution, and derive this distribution. Provide the asymptotic covariance matrix of the M-estimator.
- 2. Is is possible to establish the asymptotic distribution of the maximum likelihood estimator from the one of M-estimators? If so, explain how.
- 3. (a) Define what is a quasi-generalized M-estimator.
 - (b) Give a condition under which the distribution of a quasi-generalized M-estimator does not depend on the asymptotic distribution of the first-step estimator (\tilde{c}_n) .
 - (c) What is the form of the covariance matrix of quasi-generalized M-estimators?
- 4. Consider the nonlinear regression model:

$$Y_i = h(X_i, \beta_0) + u_i, \beta_0 \in \mathcal{B}$$

 $\mathsf{E}(u_i \mid X_1, \dots, X_n) = 0$
 $\mathsf{E}(u_i^2 \mid X_1, \dots, X_n) = \omega^2(X_i, \beta_0) > 0, \quad i = 1, \dots, n$

where

H1: the pairs (Y_i, X_i) , $i = 1, \ldots, n$ are independent and identically distributed;

H2: \mathcal{B} is a compact set;

H3: $h(X, \beta)$ is a continuous function of β and

$$\mathsf{E}\left[\left(Y_{i}-h\left(X_{i},\,\beta\right)\right)^{2}\right]<\infty\,,\;\forall\beta\in\mathcal{B}\,;$$

H4: $\frac{1}{n} \sum_{i=1}^{n} (Y_i - h(X_i, \beta))^2$ converges almost surely and uniformly on \mathcal{B} to $\mathbb{E}[(Y_i - h(X_i, \beta))^2]$.

- (a) When is the parameter β first-order identified? When is it second-order identified?
- (b) If we suppose that β is first-order identified, show that the estimator $\hat{\beta}_n$ obtained by minimizing $\sum_{i=1}^n \left(Y_i h\left(X_i,\,\beta\right)\right)^2$ (nonlinear least squares estimator) is consistent.
- (c) If we suppose that β is first-order identified, give regularity conditions under which the asymptotic distribution of $\sqrt{n}(\hat{\beta}_n \beta_0)$ is normal. Give the asymptotic covariance matrix of $\sqrt{n}(\hat{\beta}_n \beta_0)$.
- (d) Find an estimator of β whose asymptotic variance cannot be worse than the one of $\hat{\beta}_n$.

To answer 4b and 4c, you can use the general theory of M-estimators.

- 5. Exercise 8.3 in Gouriéroux and Monfort (1995, chap. 8).
- 6. Exercise 8.4 in Gouriéroux and Monfort (1995, chap. 8).

References

GOURIÉROUX, C., AND A. MONFORT (1995): Statistics and Econometric Models, Volumes One and Two. Cambridge University Press, Cambridge, U.K.