ADVANCED ECONOMETRIC THEORY EXERCISES 10 TESTS BASED ON LIKELIHOOD FUNCTIONS

Reference: Gouriéroux and Monfort (1995, Chapter 17)

- 1. Explain in an intuitive way the principles underlying the following tests: Wald test, Rao score test, likelihood ratio, Neyman's $C(\alpha)$, and Hausman test.
- 2. Let (Y_i, X_i) , i = 1, ..., n, be observations such that the conditional likelihood of $Y = (Y_1, ..., Y_n)$ given $X = (X_1, ..., X_n)'$ has the form:

$$L_n(\boldsymbol{\theta}) = \prod_{i=1}^n f(y_i \mid x_i, \boldsymbol{\theta})$$

where θ is a $p \times 1$ parameter vector. Further, suppose the regularity conditions of Property 7.17 of Gouriéroux and Monfort (1995, Chapter 7, Section 7.4) are satisfied. We consider an implicit hypothesis $H_0: g(\theta) = 0$, where $g(\theta)$ is an $r \times 1$ vector such that the matrix $\partial g/\partial \theta'$ has rank $r (1 \le r \le p)$.

- (a) Derive the asymptotic distribution (under H_0) of the Wald statistic for testing H_0 .
- (b) Show that this test is consistent.
- 3. Under the conditions of question 2,
 - (a) describe Rao's score statistic for testing H_0 , and show it is identical to the Lagrange multiplier statistic;
 - (b) derive the asymptotic distribution of the score statistic;
 - (c) show that the score statistic is asymptotically equivalent to the Wald statistic (under H_0);
 - (d) give a sufficient condition under which the score test is consistent.

S

- 4. Under the conditions of question 2, show that the Wald, Rao score and likelihood ratio statistics are asymptotically equivalent under H_0 .
- 5. Under the conditions of question 2, for an hypothesis of the type $H_0: \theta_1 = \theta_1^0$, where $\theta = (\theta'_1, \theta'_2)'$ and θ_i is a $p_i \times 1$ vector (i = 1, 2),
 - (a) describe Neyman's $C(\alpha)$ statistic for testing H_0 ;
 - (b) show that this statistic is asymptotically equivalent (under H_0) to the Wald statistic, and derive the asymptotic of the $C(\alpha)$ statistic under H_0 ;
 - (c) describe how a $C(\alpha)$ test can be implemented through an artificial regression.

Reference: Gouriéroux and Monfort (1995, Chapter 17).

References

GOURIÉROUX, C., AND A. MONFORT (1995): *Statistics and Econometric Models, Volumes One and Two*. Cambridge University Press, Cambridge, U.K., Translated by Quang Vuong.