March 2010
Compiled: February 10, 2014

ADVANCED ECONOMETRIC THEORY
 EXERCICES 11
 M-ESTIMATORS

1. (a) Define the notion of M-estimator.
(b) Explain the difference between " M-estimators" and "maximum likelihood estimators".
(a) Give regularity conditions under which an M-estimator converges almost surely to a constant.
(b) To what this constant corresponds?
(c) Give regularity conditions under which the M-estimator has a normal asymptotic distribution, and derive this distribution. Provide the asymptotic covariance matrix of the M-estimator.
2. Is is possible to establish the asymptotic distribution of the maximum likelihood estimator from the one of M-estimators? If so, explain how.
3. (a) Define what is a quasi-generalized M-estimator.
(b) Give a condition under which the distribution of a quasi-generalized M estimator does not depend on the asymptotic distribution of the first-step estimator $\left(\tilde{c}_{n}\right)$.
(c) What is the form of the covariance matrix of quasi-generalized M-estimators?
4. Consider the nonlinear regression model:

$$
\begin{aligned}
& Y_{i}=h\left(X_{i}, \beta_{0}\right)+u_{i}, \beta_{0} \in \mathscr{B} \\
& \mathrm{E}\left(u_{i} \mid X_{1}, \ldots, X_{n}\right)=0 \\
& \mathrm{E}\left(u_{i}^{2} \mid X_{1}, \ldots, X_{n}\right)=\omega^{2}\left(X_{i}, \beta_{0}\right)>0, \quad i=1, \ldots, n
\end{aligned}
$$

where
H1: the pairs $\left(Y_{i}, X_{i}\right), i=1, \ldots, n$ are independent and identically distributed;
$\mathrm{H} 2: \mathscr{B}$ is a compact set;
H3: $h(X, \beta)$ is a continuous function of β and

$$
\mathrm{E}\left[\left(Y_{i}-h\left(X_{i}, \beta\right)\right)^{2}\right]<\infty, \forall \beta \in \mathscr{B} ;
$$

H4: $\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-h\left(X_{i}, \beta\right)\right)^{2}$ converges almost surely and uniformly on \mathscr{B} to $\mathrm{E}\left[\left(Y_{i}-\right.\right.$ $\left.\left.h\left(X_{i}, \beta\right)\right)^{2}\right]$.
(a) When is the parameter β first-order identified? When is it second-order identified?
(b) If we suppose that β is first-order identified, show that the estimator $\hat{\beta}_{n}$ obtained by minimizing $\sum_{i=1}^{n}\left(Y_{i}-h\left(X_{i}, \beta\right)\right)^{2}$ (nonlinear least squares estimator) is consistent.
(c) If we suppose that β is first-order identified, give regularity conditions under which the asymptotic distribution of $\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right)$ is normal. Give the asymptotic covariance matrix of $\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right)$.
(d) Find an estimator of β whose asymptotic variance cannot be worse than the one of $\hat{\beta}_{n}$.

To answer 4 b and 4 c , you can use the general theory of M-estimators.
5. Exercise 8.3 in Gouriéroux and Monfort (1995, chap. 8).
6. Exercise 8.4 in Gouriéroux and Monfort (1995, chap. 8).

References

Gouriéroux, C., and A. Monfort (1995): Statistics and Econometric Models, Volumes One and Two. Cambridge University Press, Cambridge, U.K., Translated by Quang Vuong.

