Compiled: April 5, 2010

ADVANCED ECONOMETRIC THEORY EXERCISES 12

METHODS OF MOMENTS

- 1. a) Explain the method of asymptotic least squares.
 - b) Under appropriate regularity conditions, describe the asymptotic distribution of the asymptotic least squares estimator.
- 2. Let Y_1, \ldots, Y_n a sample of i.i.d. observations from the exponential family

$$f(y, \theta) = C(\theta) h(y) \exp[Q(\theta) T(y)].$$

Describe how one could use the method of asymptotic least squares to estimate θ .

3. We have repeated observations Y_{ik} , $i=1,\ldots,n,\,k=1,\ldots,K$ of qualitative dichotomic variables, under K different conditions $x_k=(x_{k1},\ldots,x_{kp})$, $k=1,\ldots,K$, with $K\geq p$. These observations are independent such that

$$P[Y_{ik} = 1] = \frac{1}{1 + \exp(-x_k \theta)} \equiv p_k(\theta) ,$$

$$P[Y_{ik} = 0] = 1 - p_k(\theta) ,$$

where $\theta = (\theta_1, \ldots, \theta_p)'$ is a parameter of dimension p.

- a) Write the likelihood function associated with this sample and show that it belongs to the exponential family.
- b) Describe the method of Berkson to estimate θ . Can the Berkson estimator be viewed as an asymptotic least squares estimator? Explain why.
- 4. Exercise 9.3 in Gouriéroux and Monfort (1995, Cahpter 9).

5. Let the linear model

$$Y_i = \sum_{i=1}^k X_{ik} b_{0k} + u_i, i = 1, \dots, n$$

where $b_0 = (b_{01}, \dots, b_{0k})'$ is vector of fixed parameters and the vectors

$$(u_i, X_{i1}, \dots, X_{ik}, Z_{i1}, \dots, Z_{iH})', i = 1, \dots, n$$

are independent with finite second moments. Further, the variables $Z_i = (Z_{i1}, \ldots, Z_{iH})'$ represent instrumental variables such that

$$E(u_i \mid Z_i) = 0, V(u_i \mid Z_i) = \sigma_0^2, i = 1, ..., n.$$

- a) Describe the instrumental variable estimator $b_{IV}(A)$ of b_0 based on ZA, where A is a selection matrix and $Z' = [Z_1, \ldots, Z_n]$.
- b) Find the asymptotic distribution of $b_{IV}\left(A\right)$. (If necessary, add the required regularity conditions.)
- c) Show that an optimal choice for A is obtained by taking

$$A^* = E(Z'Z)^{-1} E(Z'X)$$
.

- 6. a) Describe the generalized method of moments.
 - b) Describe how an optimal generalized method of moments estimator can be obtained.

Reference: Gouriéroux and Monfort (1995, Chapter 9).

References

GOURIÉROUX, C., AND A. MONFORT (1995): Statistics and Econometric Models, Volumes One and Two. Cambridge University Press, Cambridge, U.K.