Jean-Marie Dufour September 2011 Compiled: January 28, 2014

ADVANCED ECONOMETRIC THEORY EXERCISES 5

UNBIASED ESTIMATION

Reference: Gouriéroux and Monfort (1995, Chapter 6)

- 1. Identification and unbiased estimation. Demonstrate the following relationship between identifiability and unbiased estimation: if a function $g(\theta)$ of a parameter θ is not identifiable, then there is no unbiased estimator of $g(\theta)$.
- 2. **Regular model**. When is a dominated parametric model *regular*?
- 3. Fréchet-Darmois-Cramér-Rao inequality
 - (a) State the Fréchet-Darmois-Cramér-Rao inequality.
 - (b) Prove the Fréchet-Darmois-Cramér-Rao inequality.
- 4. Lehmann-Scheffé theorem. State and demonstrate the Lehmann-Scheffé theorem.
- 5. **Properties of best unbiased estimators**. Let $T^*(Y)$ be an optimal unbiased estimator of $g(\theta)$ and let T(Y) be any other unbiased estimator of $g(\theta)$. [The risk function is (matrix) quadratic risk.]
 - (a) Show that $T^*(Y)$ and $T(Y) T^*(Y)$ are uncorrelated.
 - (b) Show that the best optimal estimator is unique.
- 6. Least squares as best unbiased estimators. Consider the classical linear model

$$y = X\beta + u$$

where X is a fixed matrix of dimension $n \times k$ such that $1 \leq \text{rang } (X) = k < n$ and $u \sim N[0, \sigma^2 I_n]$.

- (a) Show that $\hat{\beta} = (X'X)^{-1}X'y$ and $s^2 = \hat{u}'\hat{u}/(n-k)$, where $\hat{u} = y X\hat{\beta}$, are sufficient statistics for the parameter vector $(\beta', \sigma^2)'$.
- (b) Show that $\hat{\beta}$ and s^2 are optimal among all unbiased estimators of β and σ^2 (according to matrix quadratic risk).

References

GOURIÉROUX, C., AND A. MONFORT (1995): *Statistics and Econometric Models, Volumes One and Two*. Cambridge University Press, Cambridge, U.K., Translated by Quang Vuong.