Jean-Marie Dufour March 2010 Compiled: March 16, 2010

ADVANCED ECONOMETRIC THEORY EXERCISES 6

GENERAL ISSUES IN TESTING THEORY

- 1. Explain the following distinctions:
 - (a) significance test and specification test;
 - (b) simple hypothesis and composite hypothesis;
 - (c) identified test problem and non-identified test problem;
 - (d) type I error and type II error.
- 2. We suppose that a variable Y_t satisfies an equation of the form

$$Y_t = ae^{bt} + c + u_t, \quad t = 1, \dots, T$$

where a, b, c are unknown parameters and $u_1, ..., u_T$ are i.i.d. N $(0, \sigma^2)$ random variables.

- (a) Is this model identifiable? Why?
- (b) Decide which ones of the following hypotheses are identified:
 - i. a = 0;ii. b = 0;iii. c = 0;iv. a = b = 0;v. b = c = 0.
- (a) When is a test preferred to another test?
- (b) Show that there does not exist an *optimal* test, except in degenerated cases.

3. Consider the experiment of tossing a coin and let:

$$Y = \begin{cases} 1, \text{ if "tail" is observed} \\ 0, \text{ if "head" is observed} \end{cases}.$$

We define P[Y = 1] = p and we wish to test the null hypothesis $H_0 : p \ge \frac{1}{2}$. Find all the admissible tests of H_0 . Describe a non-admissible test.

4. Principles for comparing tests

- (a) Explain the difference between the Bayesian principle and Neyman's principle for selecting a test.
- (b) Explain what is a *risk diagram* for a test between two simple hypotheses.
- (c) What is a *Neyman test*?
- 5. State and prove the Neyman-Pearson theorem.
- 6. Consider the parametric model $(\Upsilon, (P_{\theta}; \theta \in \Theta))$ where Θ is an interval in \mathbb{R} .
 - (a) When is the family $(P_{\theta}; \theta \in \Theta)$ a monotone likelihood family?
 - (b) If (P_θ; θ ∈ Θ) a monotone likelihood family, give a uniformly most powerful test with level α for testing H₀ : θ ≤ θ₀ against H₁ : θ > θ₀.
- 7. Consider a one-parameter exponential model with densities

 $\ell(y; \theta) = C(\theta) h(y) \exp[Q(\theta) T(y)]$

where $Q(\theta)$ is a strictly increasing function of $\theta \in \mathbb{R}$.

- (a) Find a uniformly most powerful test at level α for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$.
- (b) Find a locally most powerful test at level α for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$. [If a differentiability condition is required, explain it.]
- (c) Give a uniformly most powerful test at level α for testing $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ against $H_1: \theta_1 < \theta < \theta_2$, where $\theta_1 < \theta_2$.