Compiled: October 23, 2011

ECONOMETRIC THEORY EXERCISES 9

MAXIMUM LIKELIHOOD METHOD

Reference: Gouriéroux and Monfort (1995, Chapter)

1. Consider the density function

$$\ell(y_1, \ldots, y_n; \theta) = \frac{1}{(2\pi)^{n/2}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (y_i - \theta)^2 \right\}.$$

- (a) By modifying this density on a set of zero Lebesgue measure, show it is possible to make the maximum likelihood estimator equal to $\sum_{i=1}^{n} y_i^4$.
- (b) Is it possible to preclude this type of manipulation? If so, how?
- 2. In maximum likelihood problems, show that:
 - (a) the maximum likelihood estimator may not exist;
 - (b) multiple maximum likelihood estimators may exist.
- 3. Let $\ell(y; \theta)$, $\theta \in \Theta$, be a likelihood function such that
 - (a) Θ is a convex set and
 - (b) $\log [\ell(y; \theta)]$ is a strictly concave function of θ .

Show that the maximum likelihood estimator of θ is unique (if it does exist).

- 4. What happens to the maximum likelihood estimator when the model is reparameterized? Justify your answer.
- 5. Let $(\mathscr{Y}, \mathscr{P})$ where $\mathscr{P} = (P_{\theta} = \ell(y; \theta) \cdot \mu, \ \theta \in \Theta)$, a dominated parametric model, and S(y) a sufficient statistic for θ .

- (a) If $\lambda = g(\theta)$ is a one-to-one function (bijection) of θ and if the maximum likelihood estimator $\hat{\theta}(y)$ of θ is unique, how are the maximum likelihood estimators of λ and θ related? Justify your answer.
- (b) What happens when the maximum likelihood estimator of θ is not unique?
- (c) Is the estimator $\hat{\theta}(y)$ a function of S(y)? Justify your answer.
- 6. Consider the equilibrium model:

$$q_t = ap_t + b + u_t,$$

$$S_t = \alpha p_t + \beta x_t + v_t,$$

$$q_t = S_t,$$

where q_t is the quantity demanded, p_t is the price, S_t is quantity supplied, x_t is an exogenous variable, and the vectors $(u_t, v_t)'$, t = 1, ..., n are independent with the same distribution

$$N\left[\left(\begin{array}{c}0\\0\end{array}\right),\left(\begin{array}{cc}\sigma_u^2&\sigma_{uv}\\\sigma_{uv}&\sigma_v^2\end{array}\right)\right].$$

- (a) Find the reduced form of this model.
- (b) How are the parameters of this reduced form related to the structural form? Is this model underidentified, just identified, or overidentified?
- (c) Find the maximum likelihood estimators of the reduced-form coefficients.
- (d) Find the maximum likelihood estimators of the structural-form coefficients.
- 7. Give regularity conditions under which a sequence of maximum likelihood estimators converges almost surely to the true parameter value.
- 8. Consider the following assumptions:

H1: the variables Y_1, \ldots, Y_n are independent and follow the same distribution with density $f(y; \theta), \theta \in \Theta \subseteq \mathbb{R}^p$;

H2: the interior of Θ is non-empty, and θ_0 belongs to the interior of Θ ;

H3: the true unknown value θ_0 is identifiable;

H4: the log-likelihood

$$L_n(y; \theta) = \sum_{i=1}^n \log [f(y_i; \theta)]$$
 is continuous in θ ;

H5: $\mathsf{E}_{\theta_0}[\log f(Y_i; \theta)]$ is finite;

- H6: the log-likelihood is such that $\frac{1}{n}L_n(y;\theta)$ converges almost surely to $\mathsf{E}_{\theta_0}[\log(Y_i;\theta)]$ uniformly in $\theta \in \Theta$;
- H7: the log-likelihood is twice continuously differentiable in open neighborhood of θ_0 ;
- H8: $I_1(\theta_0) = \mathsf{E}_{\theta_0} \left[-\frac{\partial^2 \log f(Y;\theta)}{\partial \theta \, \partial \theta'} \right]$ is finite and invertible.
- If $\hat{\theta}_n$ is consistent sequence of local maxima, show that the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta_0)$ is $N[0, I_1(\theta_0)^{-1}]$.
- 9. Let Y_1, \ldots, Y_n be a sample of independent identically distributed random variables with distribution $N\left[\mu, \sigma^2\right]$ where $\mu \neq 0$ and $\sigma > 0$. Find the asymptotic distribution of the maximum likelihood estimator of $\gamma = 1/\mu$.
- 10. Let Y_1, \ldots, Y_n be a random sample of independent random variables from the exponential distribution with density:

$$f(y; \theta) = e^{-(y-\theta)} 1_{y \ge \theta}.$$

- (a) Which regularity condition is not satisfied in this problem?
- (b) How does $\sqrt{n}(\hat{\theta}_n \theta_0)$ behave for large n?
- (c) Provide the asymptotic distribution of $\hat{\theta}_n$.

References

GOURIÉROUX, C., AND A. MONFORT (1995): Statistics and Econometric Models, Volumes One and Two. Cambridge University Press, Cambridge, U.K., Translated by Quang Vuong.