Compiled: March 30, 2010

Advanced econometric theory Exercises 9a Equality constraints

1. We consider a dynamic model of the form

$$y_t = \theta_0 y_{t-1} + \theta_1 x_t + \theta_2 x_{t-1} + u_t, \ t = 1, \dots, T.$$

We wish to test the hypothesis that this model can can be written as a non-dynamic regression model with AR(1) errors, *i.e.*

$$y_t - \theta_0 y_{t-1} = a (x_t - \theta_0 x_{t-1}) + u_t, \ t = 1, \dots, T.$$

Write the constraints entailed by the latter model:

- (a) in explicit form;
- (b) in implicit form;
- (c) in mixed form.

Using the definitions of these three types of formulation, explain your answers.

2. Consider the linear model:

$$y_i = x_i'\theta + u_i, i = 1, \dots, n$$

where x_i is a $p \times 1$ fixed vector such that the matrix $x = [x'_1, x'_2, \dots, x'_n]'$ has rank p, and the u_i are random disturbances such that

$$E(u_i) = 0, i = 1, ..., n$$

$$E(u_i u_i) = \sigma^2, if i = j$$

$$= 0, if i \neq j.$$

Further, we consider the following explicit linear constraints : $\exists a \in \mathbb{R}^q$ such that

$$\theta = Ha + h$$

where H is a $p \times q$ matrix with rank $q, 1 \leq q < p$, and h is a $q \times 1$ vector.

- (a) Express the above constraint in implicit form.
- (b) Show that the ordinary least squares (OLS) estimators of θ , based on explicit and implicit constraints, are identical.
- (c) Show that the constrained OLS estimator of θ is more precise (in the sense that that its covariance matrix is smaller) than the unconstrained OLS estimator of θ .
- (d) Let $\hat{\theta}^0$ and $\hat{\theta}$ be the constrained and unconstrained estimators of θ . Show that $\hat{\theta}^0$ and $\hat{\theta} \hat{\theta}^0$ are uncorrelated.
- 3. Let $L_n(\theta)$ be a likelihood function such that the maximum likelihood (ML) $\hat{\theta}_n$ strongly converges to θ_0 , and

$$\frac{1}{\sqrt{n}} \frac{\partial L_n}{\partial \theta} \left(\theta_0 \right) \xrightarrow[n \to \infty]{d} N \left[0, I_0 \right] ,$$

$$-\frac{1}{n}\frac{\partial^2 L_n}{\partial \theta} \left(\theta_0\right) \stackrel{p.s.}{\underset{n \to \infty}{\longrightarrow}} J_0,$$

where I_0 and J_0 are positive definitive matrices. Consider the mixed constraint:

$$g\left(\theta,a\right)=0$$
 for some $a\in\mathbb{R}^{q}$

where $g\left(\theta,a\right)$ is an $r\times 1$ vector, $\partial g/\partial \theta'$ has r, and $\partial g/\partial a'$ has rank q. Let $\hat{\theta}_{n}^{0}$ be the constrained ML estimator of θ .

- (a) Show that the random vector $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_n^0 \boldsymbol{\theta}_0\right)$ is asymptotically equivalent to a linear transformation of $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0\right)$.
- (b) Determine the asymptotic covariance matrix of $\sqrt{n} \left(\hat{\theta}_n^0 \theta_0 \right)$ when
 - (1) $g(\theta, a) = \theta h(a)$,
 - (2) $g(\theta, a) = g(\theta)$.

- (c) Show that $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}^{0}-\boldsymbol{\theta}_{0}\right)$ and $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}-\hat{\boldsymbol{\theta}}_{n}^{0}\right)$ are asymptotically uncorrelated when $I_{0}=J_{0}$.
- 4. Under the same conditions as in question 3, show that the estimator $\hat{\theta}_n^0$ obtained by minimizing $\left(\hat{\theta}_n \theta\right)' \tilde{J}_n \left(\hat{\theta}_n \theta\right)$ with respect to θ and a under the constraint $g\left(\theta, a\right) = 0$ is asymptotically equivalent to $\hat{\theta}_n^0$, when \tilde{J}_n converges (with probability one) to J_0 .