Multivariate distributions and measures of dependence between random variables*

Jean-Marie Dufour ${ }^{\dagger}$
McGill University

September 2017
Compiled: September 5, 2017, 15:31

[^0]
Contents

1. Random variables 1
2. Covariances and correlations 2
3. Alternative interpretations of covariances and correlations 4
3.1. Difference between two correlated random variables 5
3.2. Polarization identity . 8
4. Covariance matrices 8

1. Random variables

1.1 In general, economic theory specifies exact relations between economic variables. Even a superficial examination of economic data indicates it is not (almost never) possible to find such relationships in actual data. Instead, we have relations of the form:

$$
C_{t}=\alpha+\beta Y_{t}+\varepsilon_{t}
$$

where ε_{t} can be interpreted as a "random variable".
1.2 Definition A random variable (r.v.) X is a variable whose behavior can be described by a "probability law". If X takes its values in the real numbers, the probability law of X can be described by a "distribution function":

$$
F_{X}(x)=\mathrm{P}[X \leq x]
$$

1.3 If X is continuous, there is a "density function" $f_{X}(x)$ such that

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(x) d x
$$

The mean and variance of X are given by:

$$
\begin{array}{cc}
\mu_{X}=\mathrm{E}(X)=\int_{-\infty}^{+\infty} x d F_{X}(x) & \text { (general case) } \\
=\int_{-\infty}^{+\infty} x f_{X}(x) d x & \text { (continuous case) } \\
\mathrm{V}(X)=\sigma_{X}^{2}=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{-\infty}^{+\infty}\left(x-\mu_{X}\right)^{2} d F_{X}(x) \\
=\int_{-\infty}^{+\infty}\left(x-\mu_{X}\right)^{2} F_{X}(x) d x & \text { (general case) } \\
=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} & \text { (continuous case) }
\end{array}
$$

1.4 It is easy to characterize relations between two non-random variables x and y :

$$
g(x, y)=0
$$

or (in certain cases)

$$
y=f(x) .
$$

How does one characterize the links or relations between random variables? The behavior of a pair $(X, Y)^{\prime}$ is described by a joint distribution function:

$$
F(x, y)=\mathrm{P}[X \leq x, Y \leq y]
$$

$$
=\int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) d x d y \quad \text { (continuous case.) }
$$

We call $f(x, y)$ the joint density function of $(X, Y)^{\prime}$. More generally, if we consider k r.v.'s $X_{1}, X_{2}, \ldots, X_{k}$, their behavior can be described through a k-dimensional distribution function:

$$
\begin{aligned}
& \quad F\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathrm{P}\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{k} \leq x_{k}\right] \\
& =\int_{-\infty}^{x_{k}} \cdots \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f\left(x_{1}, x_{2}, \ldots, x_{k}\right) d x_{1} d x_{2} \cdots d x_{k}
\end{aligned}
$$

where $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is the joint density function of $X_{1}, X_{2}, \ldots, X_{k}$.

2. Covariances and correlations

We often wish to have a simple measure of association between two random variables X and Y. The notions of "covariance" and "correlation" provide such measures of association. Let X and Y be two r.v.'s with means μ_{X} and μ_{Y} and finite variances σ_{X}^{2} and σ_{Y}^{2}. Below a.s. means "almost surely" (with probability 1).
2.1 Definition The covariance between X and Y is defined by

$$
\mathrm{C}(X, Y) \equiv \sigma_{X Y} \equiv \mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

2.2 Definition Suppose $\sigma_{X}^{2}>0$ and $\sigma_{Y}^{2}>0$. Then the correlation between X and Y is defined by

$$
\rho(X, Y) \equiv \rho_{X Y} \equiv \sigma_{X Y} / \sigma_{X} \sigma_{Y}
$$

When $\sigma_{X}^{2}=0$ or $\sigma_{Y}^{2}=0$, we set $\rho_{X Y}=0$.
2.3 Theorem The covariance and correlation between X and Y satisfy the following properties:
(a) $\sigma_{X Y}=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$;
(b) $\sigma_{X Y}=\sigma_{Y X}, \rho_{X Y}=\rho_{Y X}$;
(c) $\sigma_{X X}=\sigma_{X}^{2}, \rho_{X X}=1$;
(d) $\sigma_{X Y}^{2} \leq \sigma_{X}^{2} \sigma_{Y}^{2}$;
(Cauchy-Schwarz inequality)
(e) $-1 \leq \rho_{X Y} \leq 1$;
(f) X and Y are independent $\Rightarrow \sigma_{X Y}=0 \Rightarrow \rho_{X Y}=0$;
(g) if $\sigma_{X}^{2} \neq 0$ and $\sigma_{Y}^{2} \neq 0$,

$$
\rho_{X Y}^{2}=1 \Leftrightarrow[\exists \text { two constants } a \text { and } b \text { such that } a \neq 0 \text { and } Y=a X+b \text { a.s. }]
$$

Proof (a)

$$
\begin{aligned}
\sigma_{X Y} & =\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathrm{E}\left[X Y-\mu_{X} Y-X \mu_{Y}+\mu_{X} \mu_{Y}\right] \\
& =\mathrm{E}(X Y)-\mu_{X} \mathrm{E}(Y)-\mathrm{E}(X) \mu_{Y}+\mu_{X} \mu_{Y} \\
& =\mathrm{E}(X Y)-\mu_{X} \mu_{Y}-\mu_{X} \mu_{Y}+\mu_{X} \mu_{y} \\
& =\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)
\end{aligned}
$$

(b) et (c) are immediate. To get (d), we observe that

$$
\begin{gathered}
\mathrm{E}\left\{\left[Y-\mu_{Y}-\lambda\left(X-\mu_{X}\right)\right]^{2}\right\}=\mathrm{E}\left\{\left[\left(Y-\mu_{Y}\right)-\lambda\left(X-\mu_{X}\right)\right]^{2}\right\} \\
\mathrm{E} \mathrm{E}\left\{\left(Y-\mu_{Y}\right)^{2}-2 \lambda\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)+\lambda^{2}\left(X-\mu_{X}\right)^{2}\right\} \\
=\sigma_{Y}^{2}-2 \lambda \sigma_{X Y}+\lambda^{2} \sigma_{X}^{2} \geq 0
\end{gathered}
$$

for any arbitrary constant λ. In other words, the second-order polynomial $g(\lambda)=\sigma_{Y}^{2}-2 \lambda \sigma_{X Y}+$ $\lambda^{2} \sigma_{X}^{2}$ cannot take negative values. This can happen only if the equation

$$
\begin{equation*}
\lambda^{2} \sigma_{X}^{2}-2 \lambda \sigma_{X Y}+\sigma_{Y}^{2}=0 \tag{2.1}
\end{equation*}
$$

does not have two distinct real roots, i.e. the roots are either complex or identical. The roots of equation (2.1). are given by

$$
\lambda=\frac{2 \sigma_{X Y} \pm \sqrt{4 \sigma_{X Y}^{2}-4 \sigma_{X}^{2} \sigma_{Y}^{2}}}{2 \sigma_{X}^{2}}=\frac{\sigma_{X Y} \pm \sqrt{\sigma_{X Y}^{2}-\sigma_{X}^{2} \sigma_{Y}^{2}}}{\sigma_{X}^{2}}
$$

Distinct real roots are excluded when $\sigma_{X Y}^{2}-\sigma_{X}^{2} \sigma_{Y}^{2} \leq 0$, hence

$$
\sigma_{X Y}^{2} \leq \sigma_{X}^{2} \sigma_{Y}^{2}
$$

(e)

$$
\begin{aligned}
\sigma_{X Y}^{2} \leq \sigma_{X}^{2} \sigma_{Y}^{2} & \Rightarrow-\sigma_{X} \sigma_{Y} \leq \sigma_{X Y} \leq \sigma_{X} \sigma_{Y} \\
& \Rightarrow-1 \leq \rho_{X Y} \leq 1
\end{aligned}
$$

(f)

$$
\begin{aligned}
\sigma_{X Y} & =\mathrm{E}\left\{\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right\}=\mathrm{E}\left(X-\mu_{X}\right) \mathrm{E}\left(Y-\mu_{Y}\right) \\
& =\left[\mathrm{E}(X)-\mu_{X}\right]\left[\mathrm{E}(Y)-\mu_{Y}\right]=0, \\
\rho_{X Y} & =\sigma_{X Y} / \sigma_{X} \sigma_{Y}=0 .
\end{aligned}
$$

Note the reverse implication does not hold in general, i.e.,

$$
\rho_{X Y}=0 \neq>X \text { and } Y \text { are independent }
$$

(g) 1) Necessity of the condition. If $Y=a X+b$, then

$$
\mathrm{E}(Y)=a \mathrm{E}(X)+b=a \mu_{X}+b, \sigma_{Y}^{2}=a^{2} \sigma_{X}^{2},
$$

and

$$
\sigma_{X Y}=\mathrm{E}\left[\left(Y-\mu_{Y}\right)\left(X-\mu_{X}\right)\right]=\mathrm{E}\left[a\left(X-\mu_{X}\right)\left(X-\mu_{X}\right)\right]=a \sigma_{X}^{2} .
$$

Consequently,

$$
\rho_{X Y}^{2}=\frac{a^{2} \sigma_{X}^{4}}{a^{2} \sigma_{X}^{2} \sigma_{X}^{2}}=1 .
$$

2) Sufficiency of the condition. If $\rho_{X Y}^{2}=1$, then

$$
\sigma_{X Y}^{2}-\sigma_{X}^{2} \sigma_{Y}^{2}=0
$$

In this case, the equation

$$
\mathrm{E}\left\{\left[\left(Y-\mu_{Y}\right)-\lambda\left(X-\mu_{X}\right)\right]^{2}\right\}=\sigma_{Y}^{2}-2 \lambda \sigma_{X Y}+\lambda^{2} \sigma_{X}^{2}=0
$$

has one and only one root

$$
\lambda=\frac{2 \sigma_{X Y}}{2 \sigma_{X}^{2}}=\sigma_{X Y} / \sigma_{X}^{2},
$$

so that

$$
\mathrm{E}\left\{\left[\left(Y \sigma_{Y}^{2}-\mu_{Y}\right)-\frac{\sigma_{X Y}}{\sigma_{X}^{2}}\left(X-\mu_{X}\right)\right]^{2}\right\}=0
$$

and

$$
\mathrm{P}\left[\left(Y-\mu_{Y}\right)-\frac{\sigma_{X Y}}{\sigma_{X}^{2}}\left(X-\mu_{X}\right)=0\right]=\mathrm{P}\left[Y=\frac{\sigma_{X Y}}{\sigma_{X}^{2}} X+\left(\mu_{Y}-\frac{\sigma_{X Y}}{\sigma_{X}^{2}} \mu_{X}\right)\right]=1
$$

We can thus write:

$$
Y=a X+b \text { with probability } 1
$$

where $a=\sigma_{X Y} / \sigma_{X}^{2}$ and $b=\mu_{Y}-\frac{\sigma_{X Y}}{\sigma_{y}^{2}} \mu_{X}$.

3. Alternative interpretations of covariances and correlations

Highly correlated random variables tend to be "close". This feature can be explicated in different ways:

1. by looking at the distribution of the difference $Y-X$;
2. by looking at the difference of two variances (polarization identity);
3. by looking at the linear regression of Y on X;
4. through a "decoupling" representation of covariances and correlations.

3.1. Difference between two correlated random variables

First, we can look at the difference of two random variables X and Y. It is easy to see that

$$
\begin{align*}
E\left[(Y-X)^{2}\right] & =E\left\{\left(\left[\left(Y-\mu_{Y}\right)-\left(X-\mu_{X}\right)\right]-\left(\mu_{Y}-\mu_{X}\right)\right)^{2}\right\} \\
& =E\left\{\left(\left[\left(Y-\mu_{Y}\right)-\left(X-\mu_{X}\right)\right]\right)^{2}\right\}+\left(\mu_{Y}-\mu_{X}\right)^{2} \\
& =\sigma_{Y}^{2}+\sigma_{X}^{2}-2 \sigma_{X Y}+\left(\mu_{Y}-\mu_{X}\right)^{2} \\
& =\sigma_{Y}^{2}+\sigma_{X}^{2}-2 \rho_{X Y} \sigma_{X} \sigma_{Y}+\left(\mu_{Y}-\mu_{X}\right)^{2} . \tag{3.1}
\end{align*}
$$

$E\left[(Y-X)^{2}\right]$ has three components: (1) a variance component $\sigma_{Y}^{2}+\sigma_{X}^{2}$; (2) a covariance component $-2 \sigma_{X Y}$; (3) a mean component $\left(\mu_{Y}-\mu_{X}\right)^{2}$. Equation (3.1) shows clearly that $E\left[(Y-X)^{2}\right]$ tends to be large, when they have very different means or variances.

Since $\left|\rho_{X Y}\right| \leq 1$, it is interesting to observe that

$$
\begin{equation*}
\left(\sigma_{Y}-\sigma_{X}\right)^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2} \leq E\left[(Y-X)^{2}\right] \leq\left(\sigma_{Y}+\sigma_{X}\right)^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{gather*}
E\left[(Y-X)^{2}\right] \leq \sigma_{Y}^{2}+\sigma_{X}^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2} \leq\left(\sigma_{Y}+\sigma_{X}\right)^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \text { if } \rho_{X Y} \geq 0, \tag{3.3}\\
E\left[(Y-X)^{2}\right] \geq \sigma_{Y}^{2}+\sigma_{X}^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2} \geq\left(\sigma_{Y}-\sigma_{X}\right)^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \text { if } \rho_{X Y} \leq 0, \tag{3.4}\\
E\left[(Y-X)^{2}\right]=\sigma_{Y}^{2}+\sigma_{X}^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \text { if } \rho_{X Y}=0 . \tag{3.5}
\end{gather*}
$$

$E\left[(Y-X)^{2}\right]$ reaches its minimum value when $\rho_{X Y}=1$, and its maximal value when $\rho_{X Y}=-1$:

$$
\begin{gather*}
E\left[(Y-X)^{2}\right]=\left(\sigma_{Y}-\sigma_{X}\right)^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \quad \text { if } \rho_{X Y}=1, \tag{3.6}\\
E\left[(Y-X)^{2}\right]=\left(\sigma_{Y}+\sigma_{X}\right)^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \quad \text { if } \rho_{X Y}=-1 \tag{3.7}
\end{gather*}
$$

If $\sigma_{Y}^{2}>0$, we can also write:

$$
\begin{equation*}
\left(1-\frac{\sigma_{X}}{\sigma_{Y}}\right)^{2}+\left(\frac{\mu_{Y}-\mu_{X}}{\sigma_{Y}}\right)^{2} \leq \frac{E\left[(Y-X)^{2}\right]}{\sigma_{Y}^{2}} \leq\left(1+\frac{\sigma_{X}}{\sigma_{Y}}\right)^{2}+\left(\frac{\mu_{Y}-\mu_{X}}{\sigma_{Y}}\right)^{2} . \tag{3.8}
\end{equation*}
$$

The inequalities (3.2) - (3.5) also entail similar properties for $X+Y$:

$$
\begin{gather*}
\left(\sigma_{X}-\sigma_{Y}\right)^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2} \leq E\left[(X+Y)^{2}\right] \leq\left(\sigma_{X}+\sigma_{Y}\right)^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2} \tag{3.9}\\
E\left[(X+Y)^{2}\right] \leq \sigma_{X}^{2}+\sigma_{Y}^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2} \leq\left(\sigma_{Y}+\sigma_{X}\right)^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2}, \text { if } \rho_{X Y} \leq 0, \tag{3.10}
\end{gather*}
$$

$$
\begin{gather*}
E\left[(X+Y)^{2}\right] \geq \sigma_{X}^{2}+\sigma_{Y}^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2} \geq\left(\sigma_{X}-\sigma_{Y}\right)^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2}, \text { if } \rho_{X Y} \geq 0, \tag{3.11}\\
E\left[(Y+X)^{2}\right]=\sigma_{X}^{2}+\sigma_{Y}^{2}+\left(\mu_{X}+\mu_{Y}\right)^{2}, \text { if } \rho_{X Y}=0 \tag{3.12}
\end{gather*}
$$

From (3.1), it is also easy to see that

$$
\begin{equation*}
E\left[\left(\frac{Y}{\sigma_{Y}}-\frac{X}{\sigma_{X}}\right)^{2}\right]=2\left(1-\rho_{X Y}\right)+\left(\frac{\mu_{Y}}{\sigma_{Y}}-\frac{\mu_{X}}{\sigma_{X}}\right)^{2} . \tag{3.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tilde{X}=\frac{X-\mu_{X}}{\sigma_{X}}, \quad \tilde{Y}=\frac{Y-\mu_{Y}}{\sigma_{Y}}, \quad \rho(\tilde{X}, \tilde{Y})=\rho(X, Y)=\rho_{X Y}, \tag{3.14}
\end{equation*}
$$

where we set $\tilde{X}=0$ if $\sigma_{X}=0$, and $\tilde{Y}=0$ if $\sigma_{Y}=0$. We then have:

$$
\begin{equation*}
E(\tilde{X})=E(\tilde{Y})=0, \quad \mathrm{~V}(\tilde{X})=\mathrm{V}(\tilde{Y})=1, \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[(\tilde{Y}-\tilde{X})^{2}\right]=2\left(1-\rho_{X Y}\right) . \tag{3.16}
\end{equation*}
$$

Since

$$
\begin{equation*}
X=\mu_{X}+\sigma_{X} \tilde{X}, \quad Y=\mu_{Y}+\sigma_{Y} \tilde{Y} \tag{3.17}
\end{equation*}
$$

we get

$$
\begin{align*}
E\left[(Y-X)^{2}\right] & =E\left\{\left[\left(\mu_{Y}+\sigma_{Y} \tilde{Y}\right)-\left(\mu_{X}+\sigma_{X} \tilde{X}\right)\right]^{2}\right\} \\
& =E\left\{\left[\left(\sigma_{Y} \tilde{Y}-\sigma_{X} \tilde{X}\right)+\left(\mu_{Y}-\mu_{X}\right)\right]^{2}\right\} \\
& =E\left\{\left[\left(\sigma_{Y} \tilde{Y}-\sigma_{X} \tilde{X}\right)+\left(\mu_{Y}-\mu_{X}\right)\right]^{2}\right\} \\
& =E\left[\left(\sigma_{Y} \tilde{Y}-\sigma_{X} \tilde{X}\right)^{2}\right]+\left(\mu_{Y}-\mu_{X}\right)^{2} \tag{3.18}
\end{align*}
$$

hence

$$
\begin{align*}
E\left[(Y-X)^{2}\right] & =\sigma_{Y}^{2} E\left[\left(\tilde{Y}-\frac{\sigma_{X}}{\sigma_{Y}} \tilde{X}\right)^{2}\right]+\left(\mu_{Y}-\mu_{X}\right)^{2} \\
& =\sigma_{Y}^{2}\left[1+\left(\frac{\sigma_{X}}{\sigma_{Y}}\right)^{2}-2\left(\frac{\sigma_{X}}{\sigma_{Y}}\right) \rho_{X Y}\right]+\left(\mu_{Y}-\mu_{X}\right)^{2}, \quad \text { if } \sigma_{Y} \neq 0 \tag{3.19}
\end{align*}
$$

and

$$
\begin{equation*}
E\left[(Y-X)^{2}\right]=\sigma_{X}^{2}+\left(\mu_{Y}-\mu_{X}\right)^{2}, \quad \text { if } \sigma_{Y}=0 \tag{3.20}
\end{equation*}
$$

If the variances of X and Y are the same, i.e.

$$
\begin{equation*}
\sigma_{Y}^{2}=\sigma_{X}^{2} \tag{3.21}
\end{equation*}
$$

we have:

$$
\begin{align*}
E\left[(Y-X)^{2}\right] & =2 \sigma_{Y}^{2}\left(1-\rho_{X Y}\right)+\left(\mu_{Y}-\mu_{X}\right)^{2} \\
& =2 \sigma_{X}^{2}\left(1-\rho_{X Y}\right)+\left(\mu_{Y}-\mu_{X}\right)^{2} . \tag{3.22}
\end{align*}
$$

If the means and variances of X and Y are the same, i.e.

$$
\begin{equation*}
\mu_{Y}=\mu_{X} \text { and } \sigma_{Y}^{2}=\sigma_{X}^{2} \tag{3.23}
\end{equation*}
$$

we have:

$$
\begin{equation*}
E\left[(Y-X)^{2}\right]=2 \sigma_{Y}^{2}\left(1-\rho_{X Y}\right)=2 \sigma_{X}^{2}\left(1-\rho_{X Y}\right) \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq E\left[(Y-X)^{2}\right] \leq 4 \sigma_{X}^{2} \tag{3.25}
\end{equation*}
$$

so that

$$
\begin{equation*}
E\left[(Y-X)^{2}\right]=0 \text { and } \mathrm{P}[Y=X]=1, \text { if } \rho_{X Y}=1, \tag{3.26}
\end{equation*}
$$

and, using Chebyshev's inequality,

$$
\begin{align*}
& \mathrm{P}[|Y-X|>c] \leq \frac{E\left[(Y-X)^{2}\right]}{c^{2}}=\frac{2 \sigma_{X}^{2}\left(1-\rho_{X Y}\right)}{c^{2}} \text { for any } c>0, \tag{3.27}\\
& \mathrm{P}\left[|Y-X|>c \sigma_{X}\right] \leq \frac{E\left[(Y-X)^{2}\right]}{\sigma_{X}^{2} c^{2}}=\frac{2\left(1-\rho_{X Y}\right)}{c^{2}} \text { for any } c>0 . \tag{3.28}
\end{align*}
$$

If $\mu_{Y}=\mu_{X}$ and $\sigma_{Y}^{2}=\sigma_{X}^{2}>0$, we also have:

$$
\begin{gather*}
E\left[(Y-X)^{2}\right]=0 \Leftrightarrow \rho_{X Y}=1, \tag{3.29}\\
E\left[(Y-X)^{2}\right]=2 \sigma_{X}^{2} \Leftrightarrow \rho_{X Y}=0, \tag{3.30}\\
E\left[(Y-X)^{2}\right]=4 \sigma_{X}^{2} \Leftrightarrow \rho_{X Y}=-1 . \tag{3.31}
\end{gather*}
$$

Since

$$
\begin{equation*}
\sigma_{Y}(\tilde{Y}-\tilde{X})=Y-\mu_{Y}-\frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)=Y-\left(\mu_{Y}+\frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}\right)-\frac{\sigma_{Y}}{\sigma_{X}} X, \tag{3.32}
\end{equation*}
$$

the linear function

$$
\begin{equation*}
L_{0}(X)=\left(\mu_{Y}+\frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}\right)+\frac{\sigma_{Y}}{\sigma_{X}} X \tag{3.33}
\end{equation*}
$$

can be viewed as a "forecast" of Y based on X such that

$$
\begin{equation*}
E\left[\left(Y-L_{0}(X)\right)^{2}\right]=\sigma_{Y}^{2} E\left[(\tilde{Y}-\tilde{X})^{2}\right]=2 \sigma_{Y}^{2}\left(1-\rho_{X Y}\right) \tag{3.34}
\end{equation*}
$$

It is then of interest to note that

$$
\begin{equation*}
E\left[\left(Y-L_{0}(X)\right)^{2}\right] \leq E\left[\left(Y-\mu_{Y}\right)^{2}\right]=\sigma_{Y}^{2} \Leftrightarrow \rho_{X Y} \geq 0.5, \tag{3.35}
\end{equation*}
$$

with

$$
\begin{equation*}
E\left[\left(Y-L_{0}(X)\right)^{2}\right]<E\left[\left(Y-\mu_{Y}\right)^{2}\right]=\sigma_{Y}^{2} \Leftrightarrow \rho_{X Y}>0.5 \tag{3.36}
\end{equation*}
$$

when $\sigma_{Y}^{2}>0$. Thus $L_{0}(X)$ provides a "better forecast" of Y than the mean of Y, when $\rho_{X Y}>0.5$. If $\rho_{X Y}<0.5$ and $\sigma_{Y}^{2}>0$, the opposite holds: $E\left[\left(Y-L_{0}(X)\right)^{2}\right]>\sigma_{Y}^{2}$.

3.2. Polarization identity

Since

$$
\begin{align*}
& V(X+Y)=V(X)+V(Y)+2 C(X, Y), \tag{3.37}\\
& V(X-Y)=V(X)+V(Y)-2 C(X, Y), \tag{3.38}
\end{align*}
$$

it is easy to see that

$$
\begin{equation*}
C(X, Y)=\frac{1}{4}[V(X+Y)-V(X-Y)] . \tag{3.39}
\end{equation*}
$$

(3.39) is sometimes called the "polarization identity". Further,

$$
\begin{equation*}
\rho(X, Y)=\frac{1}{4} \frac{V(X+Y)-V(X-Y)}{\sigma_{X} \sigma_{Y}}=\frac{1}{4}\left[\frac{\sigma_{X+Y}^{2}}{\sigma_{X} \sigma_{Y}}-\frac{\sigma_{X-Y}^{2}}{\sigma_{X} \sigma_{Y}}\right] . \tag{3.40}
\end{equation*}
$$

On $X+Y$ and $X-Y$, it also interesting to observe that

$$
\begin{equation*}
C(X+Y, X-Y)=[V(X)-V(Y)]+[C(Y, X)-C(X, Y)]=V(X)-V(Y) \tag{3.41}
\end{equation*}
$$

so

$$
\begin{equation*}
C((X+Y) / 2, X-Y)=C(X+Y, X-Y)=0, \quad \text { if } V(X)=V(Y) . \tag{3.42}
\end{equation*}
$$

This holds irrespective of the covariance between between X and Y. In particular, if the vector (X, Y) is multinormal $X+Y$ and $X-Y$ are independent when $V(X)=V(Y)$.

4. Covariance matrices

Consider now kr.v.'s $X_{1}, X_{2}, \ldots, X_{k}$ such that

$$
\begin{aligned}
\mathrm{E}\left(X_{i}\right) & =\mu_{i}, i=1, \ldots, k \\
\mathrm{C}\left(X_{i}, X_{j}\right) & =\sigma_{i j}, i, j=1, \ldots, k
\end{aligned}
$$

We often wish to compute the mean and variance of a linear combination of X_{1}, \ldots, X_{k} :

$$
\Sigma_{i=1}^{k} a_{i} X_{i}=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{k} X_{k} .
$$

It is easily verified that

$$
\mathrm{E}\left[\Sigma_{i=1}^{k} a_{i} X_{i}\right]=\Sigma_{i=1}^{k} a_{i} \mu_{i}
$$

and

$$
\begin{aligned}
\mathrm{V}\left[\Sigma_{i=1}^{k} a_{i} X_{i}\right] & =\mathrm{E}\left\{\left[\Sigma_{i=1}^{k} a_{i}\left(X_{i}-\mu_{i}\right)\right]\left[\Sigma_{j=1}^{k} a_{j}\left(X_{j}-\mu_{j}\right)\right]\right\} \\
& =\Sigma_{i=1}^{k} \Sigma_{j=1}^{k} a_{i} a_{j} \sigma_{i j} .
\end{aligned}
$$

Since such formulae may often become cumbersome, it will be convenient to use vector and matrix notation

We define a random vector \mathbf{X} and its mean value $\mathrm{E}(\mathbf{X})$ by:

$$
\mathbf{X}=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right) \quad, \mathrm{E}(\mathbf{X})=\left(\begin{array}{c}
\mathrm{E}\left(X_{1}\right) \\
\vdots \\
\mathrm{E}\left(X_{k}\right)
\end{array}\right)=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{k}
\end{array}\right) \equiv \mu_{X}
$$

Similarly, we define a random matrix M and its mean value $\mathrm{E}(M)$ by:

$$
M=\left[\begin{array}{cccc}
X_{11} & X_{12} & \ldots & X_{1 n} \\
X_{21} & X_{22} & \ldots & X_{2 n} \\
\vdots & \vdots & & \vdots \\
X_{m 1} & X_{m 2} & \ldots & X_{m n}
\end{array}\right], \mathrm{E}(M)=\left[\begin{array}{cccc}
\mathrm{E}\left(X_{11}\right) & \mathrm{E}\left(X_{12}\right) & \ldots & \mathrm{E}\left(X_{1 n}\right) \\
\mathrm{E}\left(X_{21}\right) & \mathrm{E}\left(X_{22}\right) & \ldots & \mathrm{E}\left(X_{2 n}\right) \\
\vdots & \vdots & & \vdots \\
\mathrm{E}\left(X_{m 1}\right) & \mathrm{E}\left(X_{m 2}\right) & \ldots & \mathrm{E}\left(X_{m n}\right)
\end{array}\right]
$$

where the $X_{i j}$ are r.v.'s. To a random vector \mathbf{X}, we can associate a covariance matrix $\vee(\mathbf{X})$:

$$
\begin{aligned}
\mathrm{V}(\mathbf{X}) & =\mathrm{E}\left\{[\mathbf{X}-\mathrm{E}(\mathbf{X})][\mathbf{X}-\mathrm{E}(\mathbf{X})]^{\prime}\right\}=\mathrm{E}\left\{\left[\mathbf{X}-\mu_{X}\right]\left[\mathbf{X}-\mu_{X}\right]^{\prime}\right\} \\
& =\mathrm{E}\left\{\left[\begin{array}{cccc}
\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \ldots & \left(X_{1}-\mu_{1}\right)\left(X_{k}-\mu_{k}\right) \\
\vdots & \vdots & \vdots \\
\left(X_{k}-\mu_{k}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{k}-\mu_{k}\right)\left(X_{2}-\mu_{2}\right) & \ldots & \left(X_{k}-\mu_{k}\right)\left(X_{k}-\mu_{k}\right)
\end{array}\right]\right\} \\
& =\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \ldots & \sigma_{1 k} \\
\vdots & \vdots & \vdots \\
\sigma_{k 1} & \sigma_{k 2} & \ldots & \sigma_{k k}
\end{array}\right]=\Sigma .
\end{aligned}
$$

If $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)^{\prime}$, we see that:

$$
\Sigma_{i=1}^{k} a_{i} X_{i}=\mathbf{a}^{\prime} \mathbf{X}
$$

Basic properties of $\mathrm{E}(\mathbf{X})$ and $\mathrm{V}(\mathbf{X})$ are summarized by the following proposition.
4.1 Proposition Let $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ a $k \times 1$ random vector, α a scalar, a and \mathbf{b} fixed $k \times 1$ vectors, and A a fixed $g \times k$ matrix. Then, provided the moments considered are finite, we have the following properties:
(a) $\mathrm{E}(\mathbf{X}+\mathbf{a})=\mathrm{E}(\mathbf{X})+\mathbf{a}$;
(b) $\mathrm{E}(\alpha \mathbf{X})=\alpha \mathrm{E}(\mathbf{X})$;
(c) $\mathrm{E}\left(\mathbf{a}^{\prime} \mathbf{X}\right)=\mathbf{a}^{\prime} \mathrm{E}(\mathbf{X}), \mathrm{E}(A \mathbf{X})=A \mathrm{E}(\mathbf{X})$;
(d) $\mathrm{V}(\mathbf{X}+\mathbf{a})=\mathrm{V}(\mathbf{X})$;
(e) $\vee(\alpha \mathbf{X})=\alpha^{2} \vee(\mathbf{X})$;
(f) $\vee\left(\mathbf{a}^{\prime} \mathbf{X}\right)=\mathbf{a}^{\prime} \vee(\mathbf{X}) \mathbf{a}, \vee(A \mathbf{X})=A \vee(\mathbf{X}) A^{\prime}$;
(g) $\mathrm{C}\left(\mathbf{a}^{\prime} \mathbf{X}, \mathbf{b}^{\prime} \mathbf{X}\right)=\mathbf{a}^{\prime} \vee(\mathbf{X}) \mathbf{b}=\mathbf{b}^{\prime} \vee(\mathbf{X}) \mathbf{a}$.
4.2 Theorem Let $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ be a random vector with covariance matrix $\vee(\mathbf{X})=\Sigma$. Then we have the following properties:
(a) $\Sigma^{\prime}=\Sigma$;
(b) Σ is a positive semidefinite matrix;
(c) $0 \leq|\Sigma| \leq \sigma_{1}^{2} \sigma_{2}^{2} \ldots \sigma_{k}^{2}$ where $\sigma_{i}^{2}=\mathrm{V}\left(X_{i}\right), i=1, \ldots, k$;
(d) $|\Sigma|=0 \Leftrightarrow$ there is at least one linear relation between the r.v.'s X_{1}, \ldots, X_{k}, i.e., we can find constants a_{1}, \ldots, a_{k}, b not all equal to zero such that $a_{1} X_{1}+\cdots+a_{k} X_{k}=b$ with probability 1 ;
(e) $\operatorname{rank}(\Sigma)=r<k \Leftrightarrow \mathbf{X}$ can be expressed in the form

$$
\mathbf{X}=B \mathbf{Y}+\mathbf{c}
$$

where \mathbf{Y} is a random vector of dimension r whose covariance matrix is I_{r}, B is a $k \times r$ matrix of rank r, and \mathbf{c} is a $k \times 1$ constant vector.
4.3 Remark We call the determinant $|\Sigma|$ the generalized variance of \mathbf{X}.
4.4 Definition If we consider two random vectors \mathbf{X}_{1} and \mathbf{X}_{2} with dimensions $k_{1} \times 1$ and $k_{2} \times 1$ respectively, the covariance matrix between \mathbf{X}_{1} and \mathbf{X}_{2} is defined by:

$$
\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathrm{E}\left\{\left[\mathbf{x}_{1}-\mathrm{E}\left(\mathbf{X}_{1}\right)\right]\left[\mathbf{X}_{2}-\mathrm{E}\left(\mathbf{X}_{2}\right)\right]^{\prime}\right\}
$$

The following proposition summarizes some basic properties of $\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$.
4.5 Proposition Let \mathbf{X}_{1} and \mathbf{X}_{2} two random vectors of dimensions $k_{1} \times 1$ and $k_{2} \times 1$ respectively. Then, provided the moments considered are finite we have the following properties:
(a) $\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathrm{E}\left[\mathbf{X}_{1} \mathbf{X}_{2}^{\prime}\right]-\mathrm{E}\left(\mathbf{X}_{1}\right) \mathrm{E}\left(\mathbf{X}_{2}\right)^{\prime}$;
(b) $\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathrm{C}\left(\mathbf{X}_{2}, \mathbf{X}_{1}\right)^{\prime}$;
(c) $\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{1}\right)=\mathrm{V}\left(\mathbf{X}_{1}\right), \mathrm{C}\left(\mathbf{X}_{2}, \mathbf{X}_{2}\right)=\mathrm{V}\left(\mathbf{X}_{2}\right)$;
(d) if \mathbf{a} and \mathbf{b} are fixed vectors of dimensions $k_{1} \times 1$ and $k_{2} \times 1$ respectively,

$$
\mathrm{C}\left(\mathbf{X}_{1}+\mathbf{a}, \mathbf{X}_{2}+\mathbf{b}\right)=\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) ;
$$

(e) if α and β are two scalar constants,

$$
\mathrm{C}\left(\alpha \mathbf{X}_{1}, \beta \mathbf{X}_{2}\right)=\alpha \beta \mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) ;
$$

(f) if \mathbf{a} and \mathbf{b} are fixed $k_{1} \times 1$ and $k_{2} \times 1$ vectors,

$$
\mathrm{C}\left(\mathbf{a}^{\prime} \mathbf{X}_{1}, \mathbf{b}^{\prime} \mathbf{X}_{2}\right)=\mathbf{a}^{\prime} \mathrm{C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) \mathbf{b} ;
$$

(g) if A and B are fixed matrices matrices with dimensions $g_{1} \times k_{1}$ and $g_{2} \times k_{2}$ respectively,

$$
\mathrm{C}\left(A \mathbf{X}_{1}, B \mathbf{X}_{2}\right)=\mathbf{A C}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) \mathbf{B}^{\prime} ;
$$

(h) if $k_{1}=k_{2}$ and \mathbf{X}_{3} is a $k \times 1$ random vector,

$$
\mathrm{C}\left(\mathbf{X}_{1}+\mathbf{X}_{2}, \mathbf{X}_{3}\right)=\mathrm{C}\left(\mathbf{X}_{1}, \mathbf{x}_{3}\right)+\mathrm{C}\left(\mathbf{X}_{2}, \mathbf{X}_{3}\right) ;
$$

(i) if $k_{1}=k_{2}$,

$$
\begin{aligned}
\mathrm{V}\left(\mathbf{X}_{1}+\mathbf{X}_{2}\right) & =\mathrm{V}\left(\mathbf{x}_{1}\right)+\mathrm{V}\left(\mathbf{X}_{2}\right)+\mathrm{C}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+\mathrm{C}\left(\mathbf{x}_{2}, \mathbf{X}_{1}\right), \\
\mathrm{V}\left(\mathbf{x}_{1}-\mathbf{X}_{2}\right) & =\mathrm{V}\left(\mathbf{x}_{1}\right)+\mathrm{V}\left(\mathbf{X}_{2}\right)-\mathrm{C}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-\mathrm{C}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) .
\end{aligned}
$$

[^0]: *This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).
 \dagger William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 414, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514398 6071; FAX: (1) 5143984800 ; e-mail: jean-marie.dufour@mcgill.ca. Web page: http://www. jeanmariedufour com

