Multivariate distributions and measures of dependence between random variables *

Jean-Marie Dufour[†] McGill University

September 2017 Compiled: September 5, 2017, 15:31

^{*}This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on *Mathematics of Information Technology and Complex Systems* (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).

[†] William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 414, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 6071; FAX: (1) 514 398 4800; e-mail: jean-marie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com

Contents

1.	1. Random variables	1
2.	2. Covariances and correlations	2
3.	3. Alternative interpretations of covariances and correlations	4
	3.1. Difference between two correlated random variables	. 5
	3.2. Polarization identity	. 8
4.	4. Covariance matrices	8

1. Random variables

1.1 In general, economic theory specifies exact relations between economic variables. Even a superficial examination of economic data indicates it is not (almost never) possible to find such relationships in actual data. Instead, we have relations of the form:

$$C_t = \alpha + \beta Y_t + \varepsilon_t$$

where ε_t can be interpreted as a "random variable".

1.2 Definition A random variable (r.v.) X is a variable whose behavior can be described by a "probability law". If X takes its values in the real numbers, the probability law of X can be described by a "distribution function":

$$F_X(x) = \mathsf{P}\left[X \le x\right]$$

1.3 If *X* is continuous, there is a "density function" $f_X(x)$ such that

$$F_X(x) = \int_{-\infty}^x f_X(x) \, dx \, .$$

The mean and variance of *X* are given by:

$$\mu_X = \mathsf{E}(X) = \int_{-\infty}^{+\infty} x \, dF_X(x) \qquad (\text{general case})$$

 $= \int_{-\infty}^{+\infty} x f_X(x) dx \qquad (\text{continuous case})$

$$\mathsf{V}(X) = \sigma_X^2 = \mathsf{E}\left[(X - \mu_X)^2\right] = \int_{-\infty}^{+\infty} (x - \mu_X)^2 dF_X(x) \qquad (\text{general case})$$

$$= \int_{-\infty}^{+\infty} (x - \mu_X)^2 F_X(x) dx \qquad \text{(continuous case)}$$
$$= \mathsf{E} \left(X^2 \right) - \left[\mathsf{E} \left(X \right) \right]^2$$

1.4 It is easy to characterize relations between two non-random variables x and y :

$$g(x, y) = 0$$

or (in certain cases)

$$y = f(x)$$
.

How does one characterize the links or relations between random variables? The behavior of a pair (X, Y)' is described by a joint distribution function:

$$F(x,y) = \mathsf{P}[X \le x, Y \le y]$$

$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) dx dy$$
 (continuous case.)

(Cauchy-Schwarz inequality)

We call f(x, y) the joint density function of (X, Y)'. More generally, if we consider k r.v.'s X_1, X_2, \ldots, X_k , their behavior can be described through a k-dimensional distribution function:

$$F(x_1, x_2, ..., x_k) = \mathsf{P}[X_1 \le x_1, X_2 \le x_2, ..., X_k \le x_k]$$

= $\int_{-\infty}^{x_k} \cdots \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f(x_1, x_2, ..., x_k) dx_1 dx_2 \cdots dx_k$ (continuous case)

where $f(x_1, x_2, ..., x_k)$ is the joint density function of $X_1, X_2, ..., X_k$.

2. Covariances and correlations

We often wish to have a simple measure of association between two random variables *X* and *Y*. The notions of "covariance" and "correlation" provide such measures of association. Let *X* and *Y* be two *r.v.*'s with means μ_X and μ_Y and finite variances σ_X^2 and σ_Y^2 . Below *a.s.* means "almost surely" (with probability 1).

2.1 Definition The covariance between X and Y is defined by

$$\mathsf{C}(X,Y) \equiv \sigma_{XY} \equiv \mathsf{E}\left[(X - \mu_X)(Y - \mu_Y)\right]$$

2.2 Definition Suppose $\sigma_X^2 > 0$ and $\sigma_Y^2 > 0$. Then the correlation between *X* and *Y* is defined by

$$\rho(X,Y) \equiv \rho_{XY} \equiv \sigma_{XY} / \sigma_X \sigma_Y$$
.

When $\sigma_X^2 = 0$ or $\sigma_Y^2 = 0$, we set $\rho_{XY} = 0$.

2.3 Theorem The covariance and correlation between X and Y satisfy the following properties:

(a)
$$\sigma_{XY} = \mathsf{E}(XY) - \mathsf{E}(X)\mathsf{E}(Y)$$
;

(b)
$$\sigma_{XY} = \sigma_{YX}$$
, $\rho_{XY} = \rho_{YX}$;

(c)
$$\sigma_{XX} = \sigma_X^2$$
, $\rho_{XX} = 1$;

(d)
$$\sigma_{XY}^2 \leq \sigma_X^2 \sigma_Y^2$$
;

(e)
$$-1 \le \rho_{XY} \le 1$$
;

(f) X and Y are independent $\Rightarrow \sigma_{XY} = 0 \Rightarrow \rho_{XY} = 0$;

(g) if
$$\sigma_X^2 \neq 0$$
 and $\sigma_Y^2 \neq 0$,

$$\rho_{XY}^2 = 1 \Leftrightarrow [\exists \text{ two constants } a \text{ and } b \text{ such that } a \neq 0 \text{ and } Y = aX + b \text{ a.s.}]$$

PROOF (a)

$$\begin{aligned} \sigma_{XY} &= \mathsf{E}[(X - \mu_X) \, (Y - \mu_Y)] \\ &= \mathsf{E}[XY - \mu_X Y - X\mu_Y + \mu_X \mu_Y] \\ &= \mathsf{E}(XY) - \mu_X \mathsf{E}(Y) - \mathsf{E}(X) \, \mu_Y + \mu_X \mu_Y \\ &= \mathsf{E}(XY) - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_y \\ &= \mathsf{E}(XY) - \mathsf{E}(X) \mathsf{E}(Y) \; . \end{aligned}$$

(b) et (c) are immediate. To get (d), we observe that

$$\begin{split} \mathsf{E}\left\{\left[Y-\mu_{Y}-\lambda\left(X-\mu_{X}\right)\right]^{2}\right\} &= \mathsf{E}\left\{\left[(Y-\mu_{Y})-\lambda\left(X-\mu_{X}\right)\right]^{2}\right\} \\ &= \mathsf{E}\left\{\left(Y-\mu_{Y}\right)^{2}-2\lambda\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)+\lambda^{2}\left(X-\mu_{X}\right)^{2}\right\} \\ &= \sigma_{Y}^{2}-2\lambda\sigma_{XY}+\lambda^{2}\sigma_{X}^{2}\geq 0 \;. \end{split}$$

for any arbitrary constant λ . In other words, the second-order polynomial $g(\lambda) = \sigma_Y^2 - 2\lambda\sigma_{XY} + \lambda^2\sigma_X^2$ cannot take negative values. This can happen only if the equation

$$\lambda^2 \sigma_X^2 - 2\lambda \sigma_{XY} + \sigma_Y^2 = 0 \tag{2.1}$$

does not have two distinct real roots, i.e. the roots are either complex or identical. The roots of equation (2.1). are given by

$$\lambda = \frac{2\sigma_{XY} \pm \sqrt{4\sigma_{XY}^2 - 4\sigma_X^2 \sigma_Y^2}}{2\sigma_X^2} = \frac{\sigma_{XY} \pm \sqrt{\sigma_{XY}^2 - \sigma_X^2 \sigma_Y^2}}{\sigma_X^2} \,.$$

Distinct real roots are excluded when $\sigma_{XY}^2 - \sigma_X^2 \sigma_Y^2 \le 0$, hence

$$\sigma_{XY}^2 \leq \sigma_X^2 \sigma_Y^2$$
 .

(e)

$$\begin{aligned} \sigma_{XY}^2 &\leq \sigma_X^2 \sigma_Y^2 \quad \Rightarrow \quad -\sigma_X \sigma_Y \leq \sigma_{XY} \leq \sigma_X \sigma_Y \\ &\Rightarrow \quad -1 \leq \rho_{XY} \leq 1 \; . \end{aligned}$$

(f)

$$\begin{aligned} \sigma_{XY} &= \mathsf{E}\{(X - \mu_X)(Y - \mu_Y)\} = \mathsf{E}(X - \mu_X)\mathsf{E}(Y - \mu_Y) \\ &= [\mathsf{E}(X) - \mu_X][\mathsf{E}(Y) - \mu_Y] = 0, \\ \rho_{XY} &= \sigma_{XY} / \sigma_X \sigma_Y = 0. \end{aligned}$$

Note the reverse implication does not hold in general, *i.e.*,

$$\rho_{XY} = 0 \neq X$$
 and Y are independent

(g) 1) Necessity of the condition. If Y = aX + b, then

$$\mathsf{E}(Y) = a\mathsf{E}(X) + b = a\mu_X + b , \ \sigma_Y^2 = a^2\sigma_X^2 ,$$

and

$$\sigma_{XY} = \mathsf{E}\left[\left(Y - \mu_Y\right)\left(X - \mu_X\right)\right] = \mathsf{E}\left[a\left(X - \mu_X\right)\left(X - \mu_X\right)\right] = a\sigma_X^2 \ .$$

Consequently,

$$\rho_{XY}^2 = \frac{a^2 \sigma_X^4}{a^2 \sigma_X^2 \sigma_X^2} = 1 \; .$$

2) Sufficiency of the condition. If $\rho_{XY}^2 = 1$, then

$$\sigma_{XY}^2 - \sigma_X^2 \sigma_Y^2 = 0.$$

In this case, the equation

$$\mathsf{E}\left\{\left[\left(Y-\mu_{Y}\right)-\lambda\left(X-\mu_{X}\right)\right]^{2}\right\}=\sigma_{Y}^{2}-2\lambda\sigma_{XY}+\lambda^{2}\sigma_{X}^{2}=0$$

has one and only one root

$$\lambda = rac{2\sigma_{XY}}{2\sigma_X^2} = \sigma_{XY}/\sigma_X^2 \; ,$$

so that

$$\mathsf{E}\left\{\left[\left(Y\sigma_Y^2-\mu_Y\right)-\frac{\sigma_{XY}}{\sigma_X^2}\left(X-\mu_X\right)\right]^2\right\}=0$$

and

$$\mathsf{P}\left[(Y-\mu_Y)-\frac{\sigma_{XY}}{\sigma_X^2}\left(X-\mu_X\right)=0\right]=\mathsf{P}\left[Y=\frac{\sigma_{XY}}{\sigma_X^2}X+\left(\mu_Y-\frac{\sigma_{XY}}{\sigma_X^2}\mu_X\right)\right]=1$$

We can thus write:

$$Y = aX + b$$
 with probability 1

where $a = \sigma_{XY} / \sigma_X^2$ and $b = \mu_Y - \frac{\sigma_{XY}}{\sigma_y^2} \mu_X$.

3. Alternative interpretations of covariances and correlations

Highly correlated random variables tend to be "close". This feature can be explicated in different ways:

1. by looking at the distribution of the difference Y - X;

- 2. by looking at the difference of two variances (polarization identity);
- 3. by looking at the linear regression of Y on X;
- 4. through a "decoupling" representation of covariances and correlations.

3.1. Difference between two correlated random variables

First, we can look at the difference of two random variables X and Y. It is easy to see that

$$E[(Y-X)^{2}] = E\left\{\left([(Y-\mu_{Y})-(X-\mu_{X})]-(\mu_{Y}-\mu_{X})\right)^{2}\right\}$$

= $E\left\{\left([(Y-\mu_{Y})-(X-\mu_{X})]\right)^{2}\right\}+(\mu_{Y}-\mu_{X})^{2}$
= $\sigma_{Y}^{2}+\sigma_{X}^{2}-2\sigma_{XY}+(\mu_{Y}-\mu_{X})^{2}$
= $\sigma_{Y}^{2}+\sigma_{X}^{2}-2\rho_{XY}\sigma_{X}\sigma_{Y}+(\mu_{Y}-\mu_{X})^{2}.$ (3.1)

 $E[(Y-X)^2]$ has three components: (1) a variance component $\sigma_Y^2 + \sigma_X^2$; (2) a covariance component $-2\sigma_{XY}$; (3) a mean component $(\mu_Y - \mu_X)^2$. Equation (3.1) shows clearly that $E[(Y-X)^2]$ tends to be large, when they have very different means or variances.

Since $|\rho_{XY}| \le 1$, it is interesting to observe that

$$(\sigma_Y - \sigma_X)^2 + (\mu_Y - \mu_X)^2 \le E[(Y - X)^2] \le (\sigma_Y + \sigma_X)^2 + (\mu_Y - \mu_X)^2,$$
(3.2)

and

$$E[(Y-X)^2] \le \sigma_Y^2 + \sigma_X^2 + (\mu_Y - \mu_X)^2 \le (\sigma_Y + \sigma_X)^2 + (\mu_Y - \mu_X)^2, \text{ if } \rho_{XY} \ge 0,$$
(3.3)

$$E[(Y-X)^{2}] \ge \sigma_{Y}^{2} + \sigma_{X}^{2} + (\mu_{Y} - \mu_{X})^{2} \ge (\sigma_{Y} - \sigma_{X})^{2} + (\mu_{Y} - \mu_{X})^{2}, \text{ if } \rho_{XY} \le 0,$$
(3.4)

$$E[(Y-X)^2] = \sigma_Y^2 + \sigma_X^2 + (\mu_Y - \mu_X)^2, \text{ if } \rho_{XY} = 0.$$
(3.5)

 $E[(Y-X)^2]$ reaches its minimum value when $\rho_{XY} = 1$, and its maximal value when $\rho_{XY} = -1$:

$$E[(Y-X)^2] = (\sigma_Y - \sigma_X)^2 + (\mu_Y - \mu_X)^2, \quad \text{if } \rho_{XY} = 1,$$
(3.6)

$$E[(Y-X)^2] = (\sigma_Y + \sigma_X)^2 + (\mu_Y - \mu_X)^2, \quad \text{if } \rho_{XY} = -1.$$
(3.7)

If $\sigma_Y^2 > 0$, we can also write:

$$\left(1 - \frac{\sigma_X}{\sigma_Y}\right)^2 + \left(\frac{\mu_Y - \mu_X}{\sigma_Y}\right)^2 \le \frac{E[(Y - X)^2]}{\sigma_Y^2} \le \left(1 + \frac{\sigma_X}{\sigma_Y}\right)^2 + \left(\frac{\mu_Y - \mu_X}{\sigma_Y}\right)^2.$$
(3.8)

The inequalities (3.2) - (3.5) also entail similar properties for X + Y:

$$(\sigma_X - \sigma_Y)^2 + (\mu_X + \mu_Y)^2 \le E[(X + Y)^2] \le (\sigma_X + \sigma_Y)^2 + (\mu_X + \mu_Y)^2,$$
(3.9)

$$E[(X+Y)^2] \le \sigma_X^2 + \sigma_Y^2 + (\mu_X + \mu_Y)^2 \le (\sigma_Y + \sigma_X)^2 + (\mu_X + \mu_Y)^2, \text{ if } \rho_{XY} \le 0,$$
(3.10)

$$E[(X+Y)^2] \ge \sigma_X^2 + \sigma_Y^2 + (\mu_X + \mu_Y)^2 \ge (\sigma_X - \sigma_Y)^2 + (\mu_X + \mu_Y)^2, \text{ if } \rho_{XY} \ge 0, \qquad (3.11)$$

$$E[(Y+X)^2] = \sigma_X^2 + \sigma_Y^2 + (\mu_X + \mu_Y)^2, \text{ if } \rho_{XY} = 0.$$
(3.12)

From (3.1), it is also easy to see that

$$E\left[\left(\frac{Y}{\sigma_Y} - \frac{X}{\sigma_X}\right)^2\right] = 2(1 - \rho_{XY}) + \left(\frac{\mu_Y}{\sigma_Y} - \frac{\mu_X}{\sigma_X}\right)^2.$$
(3.13)

Let

$$\tilde{X} = \frac{X - \mu_X}{\sigma_X}, \quad \tilde{Y} = \frac{Y - \mu_Y}{\sigma_Y}, \quad \rho\left(\tilde{X}, \tilde{Y}\right) = \rho\left(X, Y\right) = \rho_{XY}, \quad (3.14)$$

where we set $\tilde{X} = 0$ if $\sigma_X = 0$, and $\tilde{Y} = 0$ if $\sigma_Y = 0$. We then have:

$$E(\tilde{X}) = E(\tilde{Y}) = 0, \quad V(\tilde{X}) = V(\tilde{Y}) = 1,$$
 (3.15)

and

$$E[(\tilde{Y} - \tilde{X})^2] = 2(1 - \rho_{XY}). \tag{3.16}$$

Since

$$X = \mu_X + \sigma_X \tilde{X}, \quad Y = \mu_Y + \sigma_Y \tilde{Y}, \qquad (3.17)$$

we get

$$E[(Y - X)^{2}] = E \{ [(\mu_{Y} + \sigma_{Y}\tilde{Y}) - (\mu_{X} + \sigma_{X}\tilde{X})]^{2} \}$$

= $E \{ [(\sigma_{Y}\tilde{Y} - \sigma_{X}\tilde{X}) + (\mu_{Y} - \mu_{X})]^{2} \}$
= $E \{ [(\sigma_{Y}\tilde{Y} - \sigma_{X}\tilde{X}) + (\mu_{Y} - \mu_{X})]^{2} \}$
= $E[(\sigma_{Y}\tilde{Y} - \sigma_{X}\tilde{X})^{2}] + (\mu_{Y} - \mu_{X})^{2}$ (3.18)

hence

$$E[(Y-X)^{2}] = \sigma_{Y}^{2}E\left[\left(\tilde{Y}-\frac{\sigma_{X}}{\sigma_{Y}}\tilde{X}\right)^{2}\right] + (\mu_{Y}-\mu_{X})^{2}$$
$$= \sigma_{Y}^{2}\left[1+\left(\frac{\sigma_{X}}{\sigma_{Y}}\right)^{2}-2\left(\frac{\sigma_{X}}{\sigma_{Y}}\right)\rho_{XY}\right] + (\mu_{Y}-\mu_{X})^{2}, \quad \text{if } \sigma_{Y} \neq 0, \quad (3.19)$$

and

$$E[(Y-X)^2] = \sigma_X^2 + (\mu_Y - \mu_X)^2, \quad \text{if } \sigma_Y = 0.$$
(3.20)

If the variances of *X* and *Y* are the same, i.e.

$$\sigma_Y^2 = \sigma_X^2, \tag{3.21}$$

we have:

$$E[(Y-X)^{2}] = 2\sigma_{Y}^{2}(1-\rho_{XY}) + (\mu_{Y}-\mu_{X})^{2}$$

= $2\sigma_{X}^{2}(1-\rho_{XY}) + (\mu_{Y}-\mu_{X})^{2}.$ (3.22)

If the means and variances of *X* and *Y* are the same, i.e.

$$\mu_Y = \mu_X \text{ and } \sigma_Y^2 = \sigma_X^2, \qquad (3.23)$$

we have:

$$E[(Y-X)^2] = 2\sigma_Y^2 (1-\rho_{XY}) = 2\sigma_X^2 (1-\rho_{XY})$$
(3.24)

and

$$0 \le E[(Y - X)^2] \le 4\sigma_X^2 \tag{3.25}$$

so that

$$E[(Y-X)^2] = 0$$
 and $P[Y=X] = 1$, if $\rho_{XY} = 1$, (3.26)

and, using Chebyshev's inequality,

$$\mathsf{P}[|Y-X| > c] \le \frac{E[(Y-X)^2]}{c^2} = \frac{2\sigma_X^2 \left(1 - \rho_{XY}\right)}{c^2} \text{ for any } c > 0, \qquad (3.27)$$

$$\mathsf{P}[|Y-X| > c\sigma_X] \le \frac{E[(Y-X)^2]}{\sigma_X^2 c^2} = \frac{2(1-\rho_{XY})}{c^2} \text{ for any } c > 0.$$
(3.28)

If $\mu_Y = \mu_X$ and $\sigma_Y^2 = \sigma_X^2 > 0$, we also have:

$$E[(Y-X)^2] = 0 \Leftrightarrow \rho_{XY} = 1, \qquad (3.29)$$

$$E[(Y-X)^2] = 2\sigma_X^2 \Leftrightarrow \rho_{XY} = 0, \qquad (3.30)$$

$$E[(Y-X)^2] = 4\sigma_X^2 \Leftrightarrow \rho_{XY} = -1.$$
(3.31)

Since

$$\sigma_Y(\tilde{Y} - \tilde{X}) = Y - \mu_Y - \frac{\sigma_Y}{\sigma_X}(X - \mu_X) = Y - \left(\mu_Y + \frac{\sigma_Y}{\sigma_X}\mu_X\right) - \frac{\sigma_Y}{\sigma_X}X, \qquad (3.32)$$

the linear function

$$L_0(X) = \left(\mu_Y + \frac{\sigma_Y}{\sigma_X}\mu_X\right) + \frac{\sigma_Y}{\sigma_X}X$$
(3.33)

can be viewed as a "forecast" of Y based on X such that

$$E[(Y - L_0(X))^2] = \sigma_Y^2 E[(\tilde{Y} - \tilde{X})^2] = 2\sigma_Y^2 (1 - \rho_{XY}).$$
(3.34)

It is then of interest to note that

$$E[(Y - L_0(X))^2] \le E[(Y - \mu_Y)^2] = \sigma_Y^2 \Leftrightarrow \rho_{XY} \ge 0.5, \qquad (3.35)$$

with

$$E[(Y - L_0(X))^2] < E[(Y - \mu_Y)^2] = \sigma_Y^2 \Leftrightarrow \rho_{XY} > 0.5$$
(3.36)

when $\sigma_Y^2 > 0$. Thus $L_0(X)$ provides a "better forecast" of *Y* than the mean of *Y*, when $\rho_{XY} > 0.5$. If $\rho_{XY} < 0.5$ and $\sigma_Y^2 > 0$, the opposite holds: $E[(Y - L_0(X))^2] > \sigma_Y^2$.

3.2. Polarization identity

Since

$$V(X+Y) = V(X) + V(Y) + 2C(X,Y), \qquad (3.37)$$

$$V(X - Y) = V(X) + V(Y) - 2C(X, Y), \qquad (3.38)$$

it is easy to see that

$$C(X,Y) = \frac{1}{4} [V(X+Y) - V(X-Y)].$$
(3.39)

(3.39) is sometimes called the "polarization identity". Further,

$$\rho(X,Y) = \frac{1}{4} \frac{V(X+Y) - V(X-Y)}{\sigma_X \,\sigma_Y} = \frac{1}{4} \left[\frac{\sigma_{X+Y}^2}{\sigma_X \,\sigma_Y} - \frac{\sigma_{X-Y}^2}{\sigma_X \,\sigma_Y} \right].$$
(3.40)

On X + Y and X - Y, it also interesting to observe that

$$C(X+Y, X-Y) = [V(X) - V(Y)] + [C(Y, X) - C(X, Y)] = V(X) - V(Y)$$
(3.41)

so

$$C((X+Y)/2, X-Y) = C(X+Y, X-Y) = 0, \text{ if } V(X) = V(Y).$$
 (3.42)

This holds irrespective of the covariance between between X and Y. In particular, if the vector (X, Y) is multinormal X + Y and X - Y are independent when V(X) = V(Y).

4. Covariance matrices

Consider now kr.v. 's X_1, X_2, \ldots, X_k such that

$$E(X_i) = \mu_i, \ i = 1,...,k, C(X_i, X_j) = \sigma_{ij}, \ i, j = 1,...,k.$$

We often wish to compute the mean and variance of a linear combination of X_1, \ldots, X_k :

$$\Sigma_{i=1}^k a_i X_i = a_1 X_1 + a_2 X_2 + \dots + a_k X_k .$$

It is easily verified that

$$\mathsf{E}\left[\boldsymbol{\Sigma}_{i=1}^{k}a_{i}\boldsymbol{X}_{i}\right] = \boldsymbol{\Sigma}_{i=1}^{k}a_{i}\boldsymbol{\mu}_{i}$$

and

$$\mathsf{V}\left[\Sigma_{i=1}^{k}a_{i}X_{i}\right] = \mathsf{E}\left\{\left[\Sigma_{i=1}^{k}a_{i}\left(X_{i}-\mu_{i}\right)\right]\left[\Sigma_{j=1}^{k}a_{j}\left(X_{j}-\mu_{j}\right)\right]\right\}$$
$$= \Sigma_{i=1}^{k}\Sigma_{j=1}^{k}a_{i}a_{j}\sigma_{ij}.$$

Since such formulae may often become cumbersome, it will be convenient to use vector and matrix notation

We define a random vector **X** and its mean value $E(\mathbf{X})$ by:

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix} , \ \mathsf{E}(\mathbf{X}) = \begin{pmatrix} \mathsf{E}(X_1) \\ \vdots \\ \mathsf{E}(X_k) \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_k \end{pmatrix} \equiv \mu_X .$$

Similarly, we define a random matrix *M* and its mean value E(M) by:

$$M = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & & \vdots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix}, \ \mathsf{E}(M) = \begin{bmatrix} \mathsf{E}(X_{11}) & \mathsf{E}(X_{12}) & \dots & \mathsf{E}(X_{1n}) \\ \mathsf{E}(X_{21}) & \mathsf{E}(X_{22}) & \dots & \mathsf{E}(X_{2n}) \\ \vdots & \vdots & & \vdots \\ \mathsf{E}(X_{m1}) & \mathsf{E}(X_{m2}) & \dots & \mathsf{E}(X_{mn}) \end{bmatrix}$$

where the X_{ij} are *r.v.* 's. To a random vector **X**, we can associate a covariance matrix V(**X**) :

$$V(\mathbf{X}) = \mathsf{E}\left\{ \begin{bmatrix} \mathbf{X} - \mathsf{E}(\mathbf{X}) \end{bmatrix} \begin{bmatrix} \mathbf{X} - \mathsf{E}(\mathbf{X}) \end{bmatrix}' \right\} = \mathsf{E}\left\{ \begin{bmatrix} \mathbf{X} - \mu_X \end{bmatrix} \begin{bmatrix} \mathbf{X} - \mu_X \end{bmatrix}' \right\}$$
$$= \mathsf{E}\left\{ \begin{bmatrix} (X_1 - \mu_1) (X_1 - \mu_1) & (X_1 - \mu_1) (X_2 - \mu_2) & \dots & (X_1 - \mu_1) (X_k - \mu_k) \\ \vdots & \vdots & \vdots \\ (X_k - \mu_k) (X_1 - \mu_1) & (X_k - \mu_k) (X_2 - \mu_2) & \dots & (X_k - \mu_k) (X_k - \mu_k) \end{bmatrix} \right\}$$
$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1k} \\ \vdots & \vdots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \dots & \sigma_{kk} \end{bmatrix} = \boldsymbol{\Sigma}.$$

If $\mathbf{a} = (a_1, \ldots, a_k)'$, we see that:

$$\Sigma_{i=1}^k a_i X_i = \mathbf{a}' \mathbf{X}$$
.

Basic properties of E(X) and V(X) are summarized by the following proposition.

4.1 Proposition Let $\mathbf{X} = (X_1, ..., X_k)'$ a $k \times 1$ random vector, α a scalar, **a** and **b** fixed $k \times 1$ vectors, and *A* a fixed $g \times k$ matrix. Then, provided the moments considered are finite, we have the following properties:

- (a) $\mathsf{E}(\mathbf{X} + \mathbf{a}) = \mathsf{E}(\mathbf{X}) + \mathbf{a}$;
- (b) $\mathsf{E}(\alpha \mathbf{X}) = \alpha \mathsf{E}(\mathbf{X})$;

- (c) $\mathsf{E}(\mathbf{a}'\mathbf{X}) = \mathbf{a}'\mathsf{E}(\mathbf{X})$, $\mathsf{E}(A\mathbf{X}) = A\mathsf{E}(\mathbf{X})$;
- (d) $V(\mathbf{X} + \mathbf{a}) = V(\mathbf{X})$;
- (e) $V(\alpha \mathbf{X}) = \alpha^2 V(\mathbf{X})$;
- (f) $V(\mathbf{a}'\mathbf{X}) = \mathbf{a}'V(\mathbf{X})\mathbf{a}$, $V(A\mathbf{X}) = AV(\mathbf{X})A'$;
- $(g) \ \mathsf{C}(\mathbf{a}'\mathbf{X},\mathbf{b}'\mathbf{X}) = \mathbf{a}'\mathsf{V}(\mathbf{X})\mathbf{b} = \mathbf{b}'\mathsf{V}(\mathbf{X})\mathbf{a} .$

4.2 Theorem Let $\mathbf{X} = (X_1, \dots, X_k)'$ be a random vector with covariance matrix $V(\mathbf{X}) = \Sigma$. Then we have the following properties:

- (a) $\Sigma' = \Sigma$;
- (b) Σ is a positive semidefinite matrix;
- (c) $0 \leq |\Sigma| \leq \sigma_1^2 \sigma_2^2 \dots \sigma_k^2$ where $\sigma_i^2 = V(X_i), i = 1, \dots, k$;
- (d) $|\Sigma| = 0 \Leftrightarrow$ there is at least one linear relation between the r.v. 's X_1, \ldots, X_k , i.e., we can find constants a_1, \ldots, a_k , b not all equal to zero such that $a_1X_1 + \cdots + a_kX_k = b$ with probability 1;
- (e) $rank(\Sigma) = r < k \Leftrightarrow \mathbf{X}$ can be expressed in the form

$$\mathbf{X} = B\mathbf{Y} + \mathbf{c}$$

where **Y** is a random vector of dimension *r* whose covariance matrix is I_r , *B* is a $k \times r$ matrix of rank *r*, and **c** is a $k \times 1$ constant vector.

4.3 Remark We call the determinant $|\Sigma|$ the generalized variance of **X**.

4.4 Definition If we consider two random vectors \mathbf{X}_1 and \mathbf{X}_2 with dimensions $k_1 \times 1$ and $k_2 \times 1$ respectively, the covariance matrix between \mathbf{X}_1 and \mathbf{X}_2 is defined by:

$$C(\mathbf{X}_{1}, \mathbf{X}_{2}) = E\{[\mathbf{X}_{1} - E(\mathbf{X}_{1})] [\mathbf{X}_{2} - E(\mathbf{X}_{2})]'\}$$

The following proposition summarizes some basic properties of $C(\mathbf{X}_1, \mathbf{X}_2)$.

4.5 Proposition Let X_1 and X_2 two random vectors of dimensions $k_1 \times 1$ and $k_2 \times 1$ respectively. Then, provided the moments considered are finite we have the following properties:

(a)
$$C(\mathbf{X}_1, \mathbf{X}_2) = E[\mathbf{X}_1 \mathbf{X}_2'] - E(\mathbf{X}_1) E(\mathbf{X}_2)';$$

- (b) $C(\mathbf{X}_1, \mathbf{X}_2) = C(\mathbf{X}_2, \mathbf{X}_1)'$;
- (c) $\mathsf{C}(\mathbf{X}_1,\mathbf{X}_1) = \mathsf{V}(\mathbf{X}_1)$, $\mathsf{C}(\mathbf{X}_2,\mathbf{X}_2) = \mathsf{V}(\mathbf{X}_2)$;

(d) if **a** and **b** are fixed vectors of dimensions $k_1 \times 1$ and $k_2 \times 1$ respectively,

$$\mathsf{C}\left(\mathbf{X}_{1}+\mathbf{a},\mathbf{X}_{2}+\mathbf{b}\right)=\mathsf{C}\left(\mathbf{X}_{1},\mathbf{X}_{2}\right);$$

(e) if α and β are two scalar constants,

$$\mathsf{C}(\alpha \mathbf{X}_1, \beta \mathbf{X}_2) = \alpha \beta \mathsf{C}(\mathbf{X}_1, \mathbf{X}_2) ;$$

(f) if **a** and **b** are fixed $k_1 \times 1$ and $k_2 \times 1$ vectors,

$$\mathsf{C}(\mathbf{a}'\mathbf{X}_1,\mathbf{b}'\mathbf{X}_2) = \mathbf{a}'\mathsf{C}(\mathbf{X}_1,\mathbf{X}_2)\mathbf{b};$$

(g) if A and B are fixed matrices matrices with dimensions $g_1 \times k_1$ and $g_2 \times k_2$ respectively,

$$\mathsf{C}(A\mathbf{X}_1, B\mathbf{X}_2) = \mathsf{A}\mathsf{C}(\mathbf{X}_1, \mathbf{X}_2) \mathbf{B}';$$

(*h*) if $k_1 = k_2$ and \mathbf{X}_3 is a $k \times 1$ random vector,

$$C(X_1 + X_2, X_3) = C(X_1, X_3) + C(X_2, X_3);$$

(*i*) if $k_1 = k_2$,

$$\begin{array}{lll} \mathsf{V}(\mathbf{X}_1 + \mathbf{X}_2) &=& \mathsf{V}(\mathbf{X}_1) + \mathsf{V}(\mathbf{X}_2) + \mathsf{C}(\mathbf{X}_1, \mathbf{X}_2) + \mathsf{C}(\mathbf{X}_2, \mathbf{X}_1) \ , \\ \mathsf{V}(\mathbf{X}_1 - \mathbf{X}_2) &=& \mathsf{V}(\mathbf{X}_1) + \mathsf{V}(\mathbf{X}_2) - \mathsf{C}(\mathbf{X}_1, \mathbf{X}_2) - \mathsf{C}(\mathbf{X}_2, \mathbf{X}_1) \ . \end{array}$$