Multivariate distributions and measures of dependenc
between random variablés

Jean-Marie Dufouf
McGill University

September 2017
Compiled: September 5, 2017, 15:32

*This work was supported by the William Dow Chair in Political Economy (McGilikgrsity), the Bank of Canada (Research Fellowship), the Toulouse
School of Economics (Pierre-de-Fermat Chair of excellence), thieetsitad Carlos 11l de Madrid (Banco Santander de Madrid Chairxoékence), a
Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexanderiiumboldt Foundation, Germany), the Canadian Network of Ceottescellence
[program onMathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research CoofhCihnada,
the Social Sciences and Humanities Research Council of Canadagdfortis de recherche sur la société et la culture (Québec).

Twilliam Dow Professor of Economics, McGill University, Centre interwensitaire de recherche en analyse des organisations (CIRANO),entteC
interuniversitaire de recherche en économie quantitative (CIREQ)ingladdress: Department of Economics, McGill University, Leacoakding, Room
414, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, @arfdel: (1) 514 398 6071; FAX: (1) 514 398 4800; e-mgjikan-marie.dufour@
mcgill.ca. Web pagehttp://www. jeanmariedufour.com



Contents

1.

2.

3.

4.

Random variables
Covariances and correlations

Alternative interpretations of covariances and correla-

tions
3.1. Difference between two correlated random variables . . . .

3.2. Polarizationidentity . . . ... ... ... ....

Covariance matrices



1. Random variables

1.1 In general, economic theory specifies exact relations betwestoauc vari-
ables. Even a superficial examination of economic data iteBdaiis not (almost
never) possible to find such relationships in actual data. ddsige have relations
of the form:

G=a-+pY+¢&

whereg; can be interpreted as a “random variable”.

1.2 Definition A random variablgr.v.) X is a variable whose behavior can be
described by a “probability law”. IK takes its values in the real numbers, the
probability law ofX can be described by a “distribution function”:

Fx(x) = P[X <]

1.3 If X is continuous, there is a “density functiof (x) such that

Fx(x):/_:fx(x) dx .

The mean and variance &fare given by:
~+00

Uy = E(X) :/ X dFx (X) (general case)

—00

= / +ooxfx (X) dx (continuous case)
V(X)=02 =E [(X - ux)z} = /+oo (X— Hy )*dFx (X) (general case)

= [ - PR x
E (continuous case)
=E(X?) — [E(X))°

1.4 It is easy to characterize relations between two non-random vesialand
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g(x,y) =0
or (in certain cases)

y="f(x).
How does one characterize the links or relations between randaables? The
behavior of a paifX,Y)’ is described by a joint distribution function:

F(X,Y) PIX<xY<y]
/ / (%, y)dxdy (continuous case.)

We call f(x,y) the joint density function of(X,Y). More generally, if we
considerk r.v/s Xq, X, ..., X«, their behavior can be described throughk-a
dimensional distribution function:

F X17X27 7X|() P[X].SXLXZSXZ)"')XKSXK]

X2
—/ / / (X1, X2, - - -, Xi) OXgdXz - - - dXy (continuous case)

wheref (xg, %o, ..., X) is the joint density function oKy, X, ... , X



2. Covariances and correlations

We often wish to have a simple measure of association betweeratwdom vari-
ablesX andY. The notions of “covariance” and “correlation” provide such mea
sures of association. L&t andY be twor.v.'s with meansu, and u, and finite
variancessy ando?. Belowa.s. means “almost surely” (with probability 1).

2.1 Definition The covariance betweétiandy is defined by

C(X,Y) = Oy = E[(X— py) (Y — piy)] -

2.2 Definition Supposer? > 0 andag? > 0. Then the correlation betweéhand
Y is defined by

p(X,Y) = pyy = Oxy/0Ox0y .
Whenao% = 0 or 3 = 0, we selp,, = 0.
2.3 Theorem The covariance and correlation betwéeandY satisfy the follow-
Ing properties:
(@) oxy =E(XY)—E(X)E(Y) ;
b) Oxy = Ovx , Pxy = Pyx ;
xx = 0%, Pxx =1;

&y < 0%0%; (Cauchy-Schwarz inequality

(

(©)
©
(

e) —1<pyy <1;

o)
oF:

(f) X andY are independent- oxy =0= py, =0;
(g) if 0% #0anda? #0,

Pay =1 | 3 two constants andb such that# 0 andY = aX +b a.s]

PROOF (a)
Oxy = E[(X—px) (Y —Hy)]
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= [XY—UXY—XHY+UXUY]
E(XY) — UxE(Y) = E(X) Hy + tUxHy

E(XY) — IJxIJY HxHy + HxHy

= E(XY)—E(X)E(Y) .

(b) et (c) are immediate. To get (d), we observe that
E{IY — by = A (X = o)l b = EL10Y = 1) = A (X = )P}
= E{(Y = py)? = 22 (X ) (Y = piy) + A% (X = )}
=02 —2A0oxy+A°0% >0.
for any arbitrary constant. In other words, the second-order polynonged ) =
— 2A Oxy +/\20>2< cannot take negative values. This can happen only if the

equation
A?0% —2A0xy +02 =0 (2.1)

does not have two distinct real roots, i.e. the roots are eithmpltax or identical.
The roots of equation (2.1). are given by

2 2 2 2 2 2

)\ =
2 2
20% g%

Distinct real roots are excluded whew, — 0402 < 0, hence
0%y < 0%07 .
(e)

0%y < 0%05 = —0x0y < Oxy < OxOy

()
Oxy = E{(X—pyx) (Y —ty)} =E(X =Ly E(Y — py)
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= [E(X) —px][E(Y) = py] =0,
Pxy = Oxy/0x0y =0.

Note the reverse implication does not hold in general,
pxy = 0#> X andY are independent
(g9) 1) Necessity of the condition. ¥ = aX + b, then
E(Y)=aE(X)+b=auy+b, 05 =a’0%,
and
oxv = E[(Y — Hy) (X — )] = E[a(X — piy) (X — piy)] = a0

Consequently,
a’oy

—:1_
242 42
a0 0%

PRy =
2) Sufficiency of the condition. 1p%, = 1, then
0%y — 0205 =0.
In this case, the equation
E{[(Y — 1y) = A (X = )} = 0F — 24 0y +A%0% =0

has one and only one root

o 20%y
- 20%

E{[(Yai—uv)—%(x—ux)r} =0

2
0%

A :ny/O')Z(,

so that



and
Oxy Oxy Oxy
P (Y—uy)—a—i(x—ux) =0] =P [Y=0—§X+ (“Y_a—g“x)] =1
We can thus write:
Y = aX + b with probability 1

wherea = oxy/o% andb = piy — 2% 1y .
y



3. Alternative interpretations of covariances and correlations

Highly correlated random variables tend to be “close”. This featan be expli-
cated in different ways:

1. by looking at the distribution of the differen¥e- X;

2. by looking at the difference of two variances (polarizatiomidg);

3. by looking at the linear regressionfon X;

4. through a “decoupling” representation of covariances and letioes.

3.1. Difference between two correlated random variables

First, we can look at the difference of two random varial{eandY. It is easy to
see that

E(Y =) = E{(I(Y = 1y) — (X— ] = (ty — 1)}

2
= E{ (1Y — 1) = (X = 1)) *} + (y — b1y)?
= 0%+ 0% —20%y + (Hy — Hy)?
= 0+ 0% —2PxyOxOy + (py — Hx)*. (3.1)
E[(Y — X)?] has three components: (1)variance component g2 + g%; (2) a
covariance component —20xy; (3) amean component (L, — Uy )?. Equation (3.1)
shows clearly thaE[(Y — X)?] tends to be large, when they have very different

means or variances.
Since|pyy| < 1, itis interesting to observe that

(0v = 0x)*+ (Hy — px)* <E[(Y = X)?] < (ov + 0x)* + (Hy — Hx)?,  (3.2)
and

E[(Y —X)?] < 05+ 0%+ (Hy — Hy)* < (Ov + 0x)*+ (Uy — Hy)?, if pxy >0,
(3.3)
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E[(Y —X)Z] > 0%2( + 0>2< + (Uy IJx) (oy — UX) + (Uy — Ux)za Iif pyy <0,

(3.4)
E[(Y —X)?] = 0% + 0% + (ky — Hx)?, if pxy =0. (3.5)
E[(Y — X)?] reaches its minimum value when, = 1, and its maximal value
whenpy, = —1:
E[(Y = X)) = (0v —0x)*+ (Hy — Hx)*,  if pyy =1, (3.6)
E[(Y = X)) = (0v +0x)°+ (Hy — Hx)*,  if pyy = —1. (3.7)

If 2 > 0, we can also write:

B 2 w2 2 B 2
(l—ﬂ> n (IJY Nx) < E[(Y ZX) ] < <1+ﬂ) I (NY le) _
Oy Oy Oy Oy Oy

(3.8)

The inequalities (3.2) - (3.5) also entail similar propertiesX{or Y:
(Ox — Ov)*+ (U + Hy)? <E[(X+Y)?] < (0x+0v)°+ (Ux + Hy)*,  (3.9)
E[(X+Y)?] < 0%+ 0%+ (Uy + Hy)® < (Oy +0x)*+ (Ux + Hy)?, if pyy <O,

(3.10)
E[(X+Y)?] > 0% 4 0%+ (Uy + Uy)* > (Ox — 0v)*+ (Ux + Hy)?, if pxy >0,
(3.11)
E[(Y +X)?] = 0% + 0% + (Hx + Hy)?, if pxy =0. (3.12)
From (3.1), it is also easy to see that
Y X)) By Hx\’
Let
~ X—= ~ Y= ~ o~
X = uX’ Y = UYa p<X7Y) :p(an):pXYa (314)



where we seX = 0 if oy = 0, andY = 0 if oy = 0. We then have:

~

EXX)=E(Y)=0, V(X)=V(Y)=1, (3.15)
and o
E[(Y = X)?] = 2(1~ pxy)- (3.16)
Since
X =py+0oxX, Y=pu,+0oyY, (3.17)
we get
E[(Y-X)?] = E{[(UYTUY?)N_ (Hx+0x>~()]z}
= E{[(UYY_GX%)‘F(IJY—IJX)]Z}
= E{[(GIY_G§X)+(HY_HX) 2}
= E[(avY — oxX)?] + (Hy — Hx)* (3.18)
hence

E[(Y—X)?] = ofE

2
o .
= 0§ |1+ (—X> —2 <—X> Pxy | + (Hy — Hy)?,  if ov(3.09)
Y Oy
and
E[(Y —X)q = g%+ (uy — Uy)?, if oy =0. (3.20)
If the variances oK andY are the same, i.e.

0% = 0%, (3.21)

we have:

= 205%(1—Pyy) + (Ky — Hx)?. (3.22)



If the means and variances ¥fandY are the same, i.e.

2 _ 2
My = Hy andoy = 0%,

we have:
E[(Y —X)?] = 20% (1— pyy) = 20% (1 — Pxy)
and
0<E[(Y —X)% < 40%
So that

E[(Y -X)]]=0andPlY =X] =1, if pyy, =1,
and, using Chebyshev’s inequality,
E[(Y — X)?] _ 20% (1— pyy)

PIlY = X|>¢| < 2 = foranyc >0,
E[(Y -—X)?] 2(1-
P[lY —X| > coyx] < KO'ZCZ)]: ( 2pXY> for anyc > 0.
X

If uy, = Uy ando? = o > 0, we also have:
E[(Y —X)?] = 0 pyy = 1,
E[(Y — X)?] = 20% © pyy = O,
E[(Y — X)?] = 40% & py = 1.
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can be viewed as a “forecast” ¥fbased orX such that

E[(Y —Lo(X))?] = 0ZE[(Y — X) = 203 (1— pyy). (3.34)
It is then of interest to note that

E[(Y —Lo(X))?] <E[(Y — ty)?] = 0% & pyy > 05, (3.35)
with

E[(Y — Lo(X))2] < E[(Y — py)?] = 0% & pyy > 0.5 (3.36)

whena? > 0. ThusLy(X) provides a “better forecast” of than the mean of,
whenpy, > 0.5. If p,, < 0.5 anda? > 0, the opposite holdE[(Y — Lo(X))?] >
o

11



s2. Polarization identity

Since
VIX+Y)=V(X)+V(Y)+2C(X,Y), (3.37)
VIX=Y)=V(X)+V(Y)—-2C(X,Y), (3.38)
it is easy to see that
C(X,Y) :%[V(X +Y)—-V(X-Y)]. (3.39)

(3.39) is sometimes called the “polarization identity”. Ferth

IVX+Y)=V(X-Y) 1 [a§w 0>2<Y]

B Ox Oy OxOy

X, Y) =
p( ’ ) 4 Ox Oy 4

(3.40)

OnX+Y andX —Y, it also interesting to observe that
CX+Y,X=Y)=[V(X)=V(Y)]+[C(Y,X)—C(X,Y)] =V (X) =V (Y) (3.41)
SO
C((X+Y)/2,X=Y)=C(X+Y,X-Y)=0, ifV(X)=V(Y). (342

This holds irrespective of the covariance between betweandY. In particular,
if the vector(X,Y) is multinormalX +Y andX —Y are independent whan(X) =
V(Y).
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4. Covariance matrices
Consider novkr.v.’s X;,Xo, ..., Xk such that

E(X) = ), i=1,...,k,
C(Xi,Xj) = 0ij, i,j :1,...,k.
We often wish to compute the mean and variance of a linear catbm of

X]_,...,Xk:
K aX = arXo+apXo+ -+ aX .

It is easily verified that
E [Zikzlaixi] = Zai;
and
V[Eax] = E{[ =18 (X~ u.>] a3y (X — )] }
Since such formulae may often become cumbersome, it will be oogweto use

vector and matrix notation
We define a random vectof and its mean valug (X) by:

X1 E(X1) My
X=1 : , E(X) = s =| i | =ux.
X E (%) Hy
Similarly, we define a random matrM and its mean valug (M) by:
[ Xy Xio ... Xin | [ E(X11) E(X12) ... E(Xtn) |
M — X21 X22 ce X2n ’ E (M) _ E (>:(21) E(>:<22) ... E (>:<2n)
Xml sz an | E(Xm1) E(Xm2) -~ E(Xm)

where theXi j arer.v.’s. To a random vectoX, we can associate a covariance

13



matrix V (X) :

V(X) =E{[X=EX)] X =E(X)]'} = E{[X — py] [X — piy]'}
{{(Xllll)(xllll) (X —Hq) Ko —H3) - (Xlﬂl)(xkﬂk)]}
—E

(K= Hi) (K= Hy) (K=t (Ko — a) oo (K= Hye) (K= 1y)
{011 O12 ... Ulk]
= : : : =
Ok1 Ok2 ... Okk

If a=(ay,...,a)’, we see that:
Sk aX=aX.

Basic properties o (X) andV (X) are summarized by the following proposi-
tion.

4.1 PropositionLet X = (Xy, ..., Xk)’ ak x 1 random vectora a scalara and
b fixedk x 1 vectors, andA a fixedg x k matrix. Then, provided the moments
considered are finite, we have the following properties:

(a) E(X+a) =E(X)+a;

(b) E(aX) = aE(X) ;
(c) E(aX) =dE(X), E(AX)=AE(X) ;
(d) V(X+a) =V(X);
(e) V(aX)=a?V(X)
(Hh V(@X)=aV(X)a, V(AX)=AV(X)A’;
(g) C(a@X,b’X)=aV(X)b=b'V(X)a.
.2 TheoremLet X = (Xy,..., X¢)' be a random vector with covariance matrix

4
V (X) = 2. Then we have the following properties:
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(a) =

(b) 2 is a positive semidefinite matrix;

(c) 0< |Z| < 0%03...02 wherea? =V (X)), i=1,...,k;
(

d) |>| = 0 < there is at least one linear relation betweenthés Xy, ..., X,
I.e., we can find constangs, . .., ax, b not all equal to zero such thatX; +
.-+ ayXy = b with probability 1;

(e) rankX) =r < k< X can be expressed in the form
X=BY +cC

whereY is a random vector of dimensiarnwhose covariance matrix Ig, B
Is ak x r matrix of rankr, andc is ak x 1 constant vector.

4.3 Remark We call the determinanf | the generalized variance of X.

4.4 Definition If we consider two random vectob$; and X, with dimensions
ki x 1 andky x 1 respectively, the covariance matrix betwéarandX, is defined

by:
C(X1,X) = E{[X1—E(X1)][X2—E(X2)]'} .

The following proposition summarizes some basic propertié€s(Xf;, X»).

4.5 Proposition Let X, and X, two random vectors of dimensioiks x 1 and
ko x 1 respectively. Then, provided the moments considered are fieiteawe the
following properties:

(@) C(X1,X2) =E[X1X5 —E(Xy) E(Xz)’ :

(b) C(X1,X2) = C (X2, X1)';

(€) C(X1,X1) =V (X1), C(Xz,X2) =V (Xz);

(d) if a andb are fixed vectors of dimensioks x 1 andk, x 1 respectively,

C(X1+a,Xo+b)=C(Xg,X3) ;
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(e) if a andf are two scalar constants,
C (0%, pX2) = aPC (X0, Xz)
(f) if aandb are fixedk; x 1 andk, x 1 vectors,
C(aXy,b'Xy) =aC(Xq,X2)b;

(g) if A andB are fixed matrices matrices with dimensiansx ky andgy x kz
respectively,

C (AX1,BX5) = AC(X1,X)B':
(h) if ky = ko andX3 is ak x 1 random vector,
C(X1+X2,X3) = C(X1,X3) +C(X2,X3) ;
(1) if ke = ko,

V(X1+Xz2) = V(X1)+V(Xz)+C (X1, X2) +C (X2, Xq) ,
V(X]_—Xz) = V(X1)+V(X2)—C(X1,X2)—C(Xz,Xl) .
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