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1. Random variables

1.1 In general, economic theory specifies exact relations between economic vari-
ables. Even a superficial examination of economic data indicates it is not (almost
never) possible to find such relationships in actual data. Instead, we have relations
of the form:

Ct = α +βYt + ε t

whereε t can be interpreted as a “random variable”.

1.2 Definition A random variable(r.v.) X is a variable whose behavior can be
described by a “probability law”. IfX takes its values in the real numbers, the
probability law ofX can be described by a “distribution function”:

FX(x) = P [X ≤ x]

1.3 If X is continuous, there is a “density function”fX (x) such that

FX (x) =
∫ x

−∞
fX(x) dx .

The mean and variance ofX are given by:

µX = E(X) =
∫ +∞

−∞
x dFX (x) (general case)

=
∫ +∞

−∞
x fX (x) dx (continuous case)

V(X) = σ2
X = E

[

(X −µX)2
]

=
∫ +∞

−∞
(x−µX)2dFX (x) (general case)

=
∫ +∞

−∞
(x−µX)2FX (x)dx

(continuous case)
= E

(

X2
)

− [E(X)]2

1.4 It is easy to characterize relations between two non-random variablesx and
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y :
g(x, y) = 0

or (in certain cases)
y = f (x) .

How does one characterize the links or relations between random variables? The
behavior of a pair(X ,Y )′ is described by a joint distribution function:

F(x,y) = P [X ≤ x, Y ≤ y]

=
∫ y

−∞

∫ x

−∞
f (x, y)dxdy (continuous case.)

We call f (x, y) the joint density function of(X , Y )′. More generally, if we
considerk r.v.′s X1, X2, . . . , Xk, their behavior can be described through ak-
dimensional distribution function:

F (x1,x2, . . . , xk) = P [X1 ≤ x1,X2 ≤ x2, . . . , Xk ≤ xk]

=
∫ xk

−∞
· · ·

∫ x2

−∞

∫ x1

−∞
f (x1,x2, . . . , xk) dx1dx2 · · ·dxk (continuous case)

where f (x1,x2, . . . , xk) is the joint density function ofX1,X2, . . . , Xk.
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2. Covariances and correlations

We often wish to have a simple measure of association between two random vari-
ablesX andY . The notions of “covariance” and “correlation” provide such mea-
sures of association. LetX andY be twor.v.’s with meansµX andµY and finite
variancesσ2

X andσ2
Y . Belowa.s. means “almost surely” (with probability 1).

2.1 Definition The covariance betweenX andY is defined by

C(X ,Y ) ≡ σ XY ≡ E [(X −µX)(Y −µY )] .

2.2 Definition Supposeσ2
X > 0 andσ2

Y > 0. Then the correlation betweenX and
Y is defined by

ρ (X ,Y ) ≡ ρXY ≡ σ XY/σ XσY .

Whenσ2
X = 0 or σ2

Y = 0, we setρXY = 0.

2.3 TheoremThe covariance and correlation betweenX andY satisfy the follow-
ing properties:

(a) σ XY = E(XY )−E(X)E(Y ) ;

(b) σ XY = σY X , ρXY = ρY X ;

(c) σ XX = σ2
X , ρXX = 1 ;

(d) σ2
XY ≤ σ2

Xσ2
Y ; (Cauchy-Schwarz inequality)

(e) −1≤ ρXY ≤ 1 ;

(f) X andY are independent⇒ σ XY = 0⇒ ρXY = 0 ;

(g) if σ2
X 6= 0 andσ2

Y 6= 0 ,

ρ2
XY = 1⇔

[

∃ two constantsa andb such thata 6= 0 andY = aX +b a.s.
]

PROOF (a)

σ XY = E [(X −µX)(Y −µY )]
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= E [XY −µXY −XµY + µX µY ]

= E(XY )−µXE(Y )−E(X)µY + µX µY

= E(XY )−µX µY −µX µY + µX µy

= E(XY )−E(X)E(Y ) .

(b) et (c) are immediate. To get (d), we observe that

E

{

[Y −µY −λ (X −µX)]2
}

= E

{

[(Y −µY )−λ (X −µX)]2
}

= E

{

(Y −µY )2−2λ (X −µX)(Y −µY )+λ 2(X −µX)2
}

= σ2
Y −2λσ XY +λ 2σ2

X ≥ 0 .

for any arbitrary constantλ . In other words, the second-order polynomialg(λ ) =

σ2
Y − 2λσ XY + λ 2σ2

X cannot take negative values. This can happen only if the
equation

λ 2σ2
X −2λσ XY +σ2

Y = 0 (2.1)

does not have two distinct real roots, i.e. the roots are either complex or identical.
The roots of equation (2.1). are given by

λ =
2σ XY ±

√

4σ2
XY −4σ2

Xσ2
Y

2σ2
X

=
σ XY ±

√

σ2
XY −σ2

Xσ2
Y

σ2
X

.

Distinct real roots are excluded whenσ2
XY −σ2

Xσ2
Y ≤ 0, hence

σ2
XY ≤ σ2

Xσ2
Y .

(e)

σ2
XY ≤ σ2

Xσ2
Y ⇒ −σ XσY ≤ σ XY ≤ σ XσY

⇒ −1≤ ρXY ≤ 1 .

(f)

σ XY = E{(X −µX)(Y −µY )} = E(X −µX)E(Y −µY )
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= [E(X)−µX ] [E(Y )−µY ] = 0,

ρXY = σ XY

/

σ XσY = 0.

Note the reverse implication does not hold in general,i.e.,

ρXY = 0 6=> X andY are independent

(g) 1) Necessity of the condition. IfY = aX +b, then

E(Y ) = aE(X)+b = aµX +b , σ2
Y = a2σ2

X ,

and

σ XY = E [(Y −µY )(X −µX)] = E [a(X −µX)(X −µX)] = aσ2
X .

Consequently,

ρ2
XY =

a2σ4
X

a2σ2
Xσ2

X

= 1 .

2) Sufficiency of the condition. Ifρ2
XY = 1, then

σ2
XY −σ2

Xσ2
Y = 0.

In this case, the equation

E

{

[(Y −µY )−λ (X −µX)]2
}

= σ2
Y −2λσ XY +λ 2σ2

X = 0

has one and only one root

λ =
2σ XY

2σ2
X

= σ XY/σ2
X ,

so that

E

{

[

(

Y σ2
Y −µY

)

−
σ XY

σ2
X

(X −µX)

]2
}

= 0
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and

P

[

(Y −µY )−
σ XY

σ2
X

(X −µX) = 0

]

= P

[

Y =
σ XY

σ2
X

X +

(

µY −
σ XY

σ2
X

µX

)]

= 1

We can thus write:
Y = aX +b with probability 1

wherea = σ XY/σ2
X andb = µY −

σXY
σ2

y
µX .
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3. Alternative interpretations of covariances and correlations

Highly correlated random variables tend to be “close”. This feature can be expli-
cated in different ways:

1. by looking at the distribution of the differenceY −X ;

2. by looking at the difference of two variances (polarization identity);

3. by looking at the linear regression ofY on X ;

4. through a “decoupling” representation of covariances and correlations.

3.1. Difference between two correlated random variables

First, we can look at the difference of two random variablesX andY. It is easy to
see that

E[(Y −X)2] = E
{

(

[(Y −µY )− (X −µX)]− (µY −µX)
)2

}

= E
{

(

[(Y −µY )− (X −µX)]
)2

}

+(µY −µX)2

= σ2
Y +σ2

X −2σ XY +(µY −µX)2

= σ2
Y +σ2

X −2ρXY σ XσY +(µY −µX)2 . (3.1)

E[(Y − X)2] has three components: (1) avariance component σ2
Y + σ2

X ; (2) a
covariance component −2σ XY ; (3) amean component (µY −µX)2. Equation (3.1)
shows clearly thatE[(Y −X)2] tends to be large, when they have very different
means or variances.

Since|ρXY | ≤ 1, it is interesting to observe that

(σY −σ X)2+(µY −µX)2 ≤ E[(Y −X)2] ≤ (σY +σ X)2+(µY −µX)2 , (3.2)

and

E[(Y −X)2] ≤ σ2
Y +σ2

X +(µY −µX)2 ≤ (σY +σ X)2+(µY −µX)2 , if ρXY ≥ 0,

(3.3)
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E[(Y −X)2] ≥ σ2
Y +σ2

X +(µY −µX)2 ≥ (σY −σ X)2+(µY −µX)2 , if ρXY ≤ 0,

(3.4)
E[(Y −X)2] = σ2

Y +σ2
X +(µY −µX)2 , if ρXY = 0. (3.5)

E[(Y −X)2] reaches its minimum value whenρXY = 1, and its maximal value
whenρXY = −1:

E[(Y −X)2] = (σY −σ X)2+(µY −µX)2 , if ρXY = 1, (3.6)

E[(Y −X)2] = (σY +σ X)2+(µY −µX)2 , if ρXY = −1. (3.7)

If σ2
Y > 0, we can also write:

(

1−
σ X

σY

)2

+

(

µY −µX

σY

)2

≤
E[(Y −X)2]

σ2
Y

≤

(

1+
σ X

σY

)2

+

(

µY −µX

σY

)2

.

(3.8)
The inequalities (3.2) - (3.5) also entail similar properties forX +Y :

(σ X −σY )2+(µX + µY )2 ≤ E[(X +Y )2] ≤ (σ X +σY )2+(µX + µY )2 , (3.9)

E[(X +Y )2] ≤ σ2
X +σ2

Y +(µX + µY )2 ≤ (σY +σ X)2+(µX + µY )2 , if ρXY ≤ 0,

(3.10)
E[(X +Y )2] ≥ σ2

X +σ2
Y +(µX + µY )2 ≥ (σ X −σY )2+(µX + µY )2 , if ρXY ≥ 0,

(3.11)
E[(Y +X)2] = σ2

X +σ2
Y +(µX + µY )2 , if ρXY = 0. (3.12)

From (3.1), it is also easy to see that

E

[

(

Y
σY

−
X

σ X

)2
]

= 2(1−ρXY )+

(

µY

σY
−

µX

σ X

)2

. (3.13)

Let

X̃ =
X −µX

σ X
, Ỹ =

Y −µY

σY
, ρ

(

X̃ , Ỹ
)

= ρ (X ,Y ) = ρXY , (3.14)
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where we set̃X = 0 if σ X = 0, andỸ = 0 if σY = 0. We then have:

E(X̃) = E(Ỹ ) = 0, V(X̃) = V(Ỹ ) = 1, (3.15)

and
E[(Ỹ − X̃)2] = 2(1−ρXY) . (3.16)

Since
X = µX +σ X X̃ , Y = µY +σYỸ , (3.17)

we get

E[(Y −X)2] = E
{

[(µY +σYỸ )− (µX +σ X X̃)]2
}

= E
{

[(σYỸ −σ X X̃)+(µY −µX)]2
}

= E
{

[(σYỸ −σ X X̃)+(µY −µX)]2
}

= E[(σYỸ −σ X X̃)2]+ (µY −µX)2 (3.18)

hence

E[(Y −X)2] = σ2
Y E

[

(

Ỹ −
σ X

σY
X̃

)2
]

+(µY −µX)2

= σ2
Y

[

1+

(

σ X

σY

)2

−2

(

σ X

σY

)

ρXY

]

+(µY −µX)2 , if σY 6= 0,(3.19)

and
E[(Y −X)2] = σ2

X +(µY −µX)2 , if σY = 0. (3.20)

If the variances ofX andY are the same, i.e.

σ2
Y = σ2

X , (3.21)

we have:

E[(Y −X)2] = 2σ2
Y (1−ρXY )+(µY −µX)2

= 2σ2
X(1−ρXY)+(µY −µX)2 . (3.22)

9



If the means and variances ofX andY are the same, i.e.

µY = µX andσ2
Y = σ2

X , (3.23)

we have:
E[(Y −X)2] = 2σ2

Y (1−ρXY) = 2σ2
X (1−ρXY) (3.24)

and
0≤ E[(Y −X)2] ≤ 4σ2

X (3.25)

so that
E[(Y −X)2] = 0 andP[Y = X ] = 1, if ρXY = 1, (3.26)

and, using Chebyshev’s inequality,

P[|Y −X | > c] ≤
E[(Y −X)2]

c2
=

2σ2
X (1−ρXY )

c2
for anyc > 0, (3.27)

P [|Y −X | > cσ X ] ≤
E[(Y −X)2]

σ2
X c2

=
2(1−ρXY )

c2
for anyc > 0. (3.28)

If µY = µX andσ2
Y = σ2

X > 0, we also have:

E[(Y −X)2] = 0⇔ ρXY = 1, (3.29)

E[(Y −X)2] = 2σ2
X ⇔ ρXY = 0, (3.30)

E[(Y −X)2] = 4σ2
X ⇔ ρXY = −1. (3.31)

Since

σY (Ỹ − X̃) = Y −µY −
σY

σ X
(X −µX) = Y −

(

µY +
σY

σ X
µX

)

−
σY

σ X
X , (3.32)

the linear function

L0(X) =

(

µY +
σY

σ X
µX

)

+
σY

σ X
X (3.33)
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can be viewed as a “forecast” ofY based onX such that

E[(Y −L0(X))2] = σ2
Y E[(Ỹ − X̃)2] = 2σ2

Y (1−ρXY ) . (3.34)

It is then of interest to note that

E[(Y −L0(X))2] ≤ E[(Y −µY )2] = σ2
Y ⇔ ρXY ≥ 0.5, (3.35)

with
E[(Y −L0(X))2] < E[(Y −µY )2] = σ2

Y ⇔ ρXY > 0.5 (3.36)

whenσ2
Y > 0. ThusL0(X) provides a “better forecast” ofY than the mean ofY ,

whenρXY > 0.5. If ρXY < 0.5 andσ2
Y > 0, the opposite holds:E[(Y −L0(X))2] >

σ2
Y .
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3.2. Polarization identity
Since

V (X +Y ) = V (X)+V (Y )+2C(X , Y ) , (3.37)

V (X −Y ) = V (X)+V (Y )−2C(X , Y ) , (3.38)

it is easy to see that

C(X , Y ) =
1
4
[V (X +Y )−V (X −Y )] . (3.39)

(3.39) is sometimes called the “polarization identity”. Further,

ρ (X ,Y ) =
1
4

V (X +Y )−V (X −Y )

σ X σY
=

1
4

[

σ2
X+Y

σ X σY
−

σ2
X−Y

σ X σY

]

. (3.40)

On X +Y andX −Y , it also interesting to observe that

C(X +Y, X −Y ) = [V (X)−V (Y )]+[C(Y, X)−C(X , Y )] = V (X)−V (Y ) (3.41)

so

C
(

(X +Y )/2, X −Y
)

= C(X +Y, X −Y ) = 0, if V (X) = V (Y ) . (3.42)

This holds irrespective of the covariance between betweenX andY. In particular,
if the vector(X ,Y ) is multinormalX +Y andX −Y are independent whenV (X) =

V (Y ).
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4. Covariance matrices

Consider nowk r.v.´s X1,X2, . . . , Xk such that

E(Xi) = µ i , i = 1, . . . , k ,

C(Xi,X j) = σ i j , i, j = 1, . . . , k .

We often wish to compute the mean and variance of a linear combination of
X1, . . . , Xk :

Σ k
i=1aiXi = a1X1+a2X2+ · · ·+akXk .

It is easily verified that
E

[

Σ k
i=1aiXi

]

= Σ k
i=1aiµ i

and

V
[

Σ k
i=1aiXi

]

= E
{[

Σ k
i=1ai (Xi−µ i)

][

Σ k
j=1a j

(

X j −µ j

)]}

= Σ k
i=1Σ k

j=1aia jσ i j .

Since such formulae may often become cumbersome, it will be convenient to use
vector and matrix notation

We define a random vectorX and its mean valueE(X) by:

X =





X1
...

Xk



 , E(X) =





E(X1)
...

E(Xk)



 =





µ1
...

µk



 ≡ µX .

Similarly, we define a random matrixM and its mean valueE(M) by:

M =











X11 X12 . . . X1n

X21 X22 . . . X2n
... ... ...

Xm1 Xm2 . . . Xmn











, E(M) =











E(X11) E(X12) . . . E(X1n)

E(X21) E(X22) . . . E(X2n)
... ... ...

E(Xm1) E(Xm2) . . . E(Xmn)











where theXi j are r.v.´s. To a random vectorX, we can associate a covariance
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matrixV (X) :

V (X) = E
{

[X−E(X)] [X−E(X)]′
}

= E
{

[X−µX ] [X−µX ]′
}

= E











(X1−µ1)(X1−µ1) (X1−µ1)(X2−µ2) . . . (X1−µ1)(Xk −µk)
... ... ...

(Xk −µk)(X1−µ1) (Xk −µk)(X2−µ2) . . . (Xk −µk)(Xk −µk)











=





σ11 σ12 . . . σ1k
... ... ...

σ k1 σ k2 . . . σ kk



 = Σ .

If a = (a1, . . . ,ak)
′, we see that:

Σ k
i=1aiXi = a′X .

Basic properties ofE(X) andV (X) are summarized by the following proposi-
tion.

4.1 PropositionLet X = (X1, . . . , Xk)
′ a k × 1 random vector,α a scalar,a and

b fixed k×1 vectors, andA a fixedg× k matrix. Then, provided the moments
considered are finite, we have the following properties:

(a) E(X +a) = E(X)+a ;

(b) E(αX) = αE(X) ;

(c) E(a′X) = a′E(X) , E(AX) = AE(X) ;

(d) V (X +a) = V (X) ;

(e) V (αX) = α2V (X) ;

(f) V (a′X) = a′V (X)a , V (AX) = AV (X)A′ ;

(g) C(a′X, b′X) = a′V (X)b = b′
V (X)a .

4.2 TheoremLet X = (X1, . . . , Xk)
′ be a random vector with covariance matrix

V (X) = Σ . Then we have the following properties:
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(a) Σ ′ = Σ ;

(b) Σ is a positive semidefinite matrix;

(c) 0≤ |Σ | ≤ σ2
1σ2

2 . . .σ2
k whereσ2

i = V (Xi) , i = 1, . . . , k ;

(d) |Σ | = 0 ⇔ there is at least one linear relation between ther.v.́ s X1, . . . , Xk,
i.e., we can find constantsa1, . . . , ak, b not all equal to zero such thata1X1 +

· · ·+akXk = b with probability 1;

(e) rank(Σ) = r < k ⇔ X can be expressed in the form

X = BY +c

whereY is a random vector of dimensionr whose covariance matrix isIr,B
is ak× r matrix of rankr, andc is ak×1 constant vector.

4.3 Remark We call the determinant|Σ | thegeneralized variance of X.

4.4 Definition If we consider two random vectorsX1 and X2 with dimensions
k1×1 andk2×1 respectively, the covariance matrix betweenX1 andX2 is defined
by:

C(X1,X2) = E
{

[X1−E(X1)] [X2−E(X2)]
′} .

The following proposition summarizes some basic properties ofC(X1,X2).

4.5 PropositionLet X1 and X2 two random vectors of dimensionsk1 × 1 and
k2×1 respectively. Then, provided the moments considered are finite we have the
following properties:

(a) C(X1,X2) = E [X1X′
2]−E(X1)E(X2)

′ ;

(b) C(X1,X2) = C(X2,X1)
′ ;

(c) C(X1,X1) = V (X1) , C(X2,X2) = V (X2) ;

(d) if a andb are fixed vectors of dimensionsk1×1 andk2×1 respectively,

C(X1+a,X2+b) = C(X1,X2) ;
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(e) if α andβ are two scalar constants,

C(αX1,βX2) = αβC(X1,X2) ;

(f) if a andb are fixedk1×1 andk2×1 vectors,

C(a′X1,b′X2) = a′C(X1,X2)b ;

(g) if A andB are fixed matrices matrices with dimensionsg1× k1 andg2× k2

respectively,
C(AX1,BX2) = AC(X1,X2)B′ ;

(h) if k1 = k2 andX3 is ak×1 random vector,

C(X1+X2,X3) = C(X1,X3)+C(X2,X3) ;

(i) if k1 = k2,

V (X1+X2) = V (X1)+V (X2)+C(X1,X2)+C(X2,X1) ,

V (X1−X2) = V (X1)+V (X2)−C(X1,X2)−C(X2,X1) .
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