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1. Fundamental concepts

1.1. Probability space

Definition 1.1 PROBABLITY SPACE. A probability space is a triplet (Ω , A , P) where

(1) Ω is the set of all possible results of an experiment;

(2) A is a class of subsets of Ω (called events) forming a σ−algebra, i.e.

(i) Ω ∈ A ,

(ii) A ∈ A ⇒ Ac ∈ A ,

(iii)
∞∪

j=1
A j ∈ A , for any sequence {A1, A2, ...} ⊆ A ;

(3) P : A → [0, 1] is a function which assigns to each event A ∈ A a number P(A) ∈ [0, 1], called

the probability of A and such that

(i) P(Ω) = 1,

(ii) if {A j}∞
j=1 is a sequence of disjoint events, then P(

∞∪
j=1

A j) =
∞
∑
j=1

P(A j) .

1.2. Real random variable

Definition 1.2 REAL RANDOM VARIABLE (HEURISTIC DEFINITION). A real random variable
X is a variable with real values whose behavior can be described by a probability distribution.

Usually, this probability distribution is described by a distribution function:

FX(x) = P[X ≤ x] . (1.1)

Definition 1.3 REAL RANDOM VARIABLE. A real random variable X is a function X : Ω → R

such that

X−1((−∞, x]) ≡ {ω ∈ Ω : X(ω) ≤ x} ∈ A , ∀x ∈ R .

X is a measurable function. The probability distribution of X is defined by

FX(x) = P[X−1((−∞, x])] . (1.2)

1.3. Stochastic process

Definition 1.4 REAL STOCHASTIC PROCESS. Let T be a non-empty set. A stochastic process on

T is a collection of random variables Xt : Ω → R such that a random variable Xt is associated with

each each element t ∈ T. This stochastic process is denoted by {Xt : t ∈ T} or more simply by Xt

when the definition of T is clear. If T = R (real numbers), {Xt : t ∈ T} is a continuous time process.

If T = Z (integers) or T ⊆ Z, Xt : t ∈ T} is discrete time process.
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The set T can be finite or infinite, but usually it is taken to be infinite. In the sequel, we shall be
mainly interested by processes for which T is a right-infinite interval of integers: i.e., T = (n0, ∞)
where n0 ∈ Z or n0 = −∞. We can also consider random variables which take their values in more
general spaces, i.e.

Xt : Ω → Ω0

where Ω0 is any non-empty set. Unless stated otherwise, we shall limit ourselves to the case where
Ω0 = R.

To observe a time series is equivalent to observing a realization of a process {Xt : t ∈ T} or a
portion of such a realization: given (Ω , A , P), ω ∈ Ω is drawn first, and then the variables Xt(ω),
t ∈ T, are associated with it. Each realization is determined in one shot by ω.

The probability law of a stochastic process {Xt : t ∈ T} with T ⊆ R can be described by spec-
ifying the joint distribution function of (Xt1 , . . . , Xtn) for each subset {t1, t2, . . . , tn} ⊆ T (where
n ≥ 1):

F(x1, . . . , xn; t1, . . . , tn) = P[Xt1 ≤ x1, ... , Xtn ≤ xn] . (1.3)

This follows from Kolmogorov’s theorem [see Brockwell and Davis (1991, Chapter 1)].

1.4. Lr spaces

Definition 1.5 Lr SPACE. Let r be a real number. Lr is the set of real random variables X defined

on (Ω , A , P) such that E[|X |r] < ∞.

The space Lr is always defined with respect to a probability space (Ω , A , P). L2 is the set of
random variables on (Ω , A , P) whose second moments are finite (square-integrable variables). A
stochastic process {Xt : t ∈ T} is in Lr iff Xt ∈ Lr, ∀t ∈ T, i.e.

E[|Xt |r] < ∞ , ∀t ∈ T . (1.4)

The properties of moments of random variables are summarized in Dufour (2016b).

2. Stationary processes

In general, the variables of a process {Xt : t ∈ T} are not identically distributed nor independent. In
particular, if we suppose that E(X2

t ) < ∞, we have:

E(Xt) = µ t , (2.1)

Cov(Xt1 , Xt2) = E[(Xt1 −µ t1
)(Xt2 −µ t2

)] = C(t1, t2) . (2.2)

The means, variances and covariances of the variables of the process depend on their position in
the series. The behavior of Xt can change with time. The function C : T×T → R is called the
covariance function of the process {Xt : t ∈ T}.

In this section, we will focus on the case where T is an right-infinite interval of integers.
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Assumption 2.1 PROCESS ON AN INTERVAL OF INTEGERS.

T = {t ∈ Z : t > n0} , where n0 ∈ Z∪{−∞} . (2.3)

Definition 2.1 STRICTLY STATIONARY PROCESS. A stochastic process {Xt : t ∈ T} is strictly

stationary (SS) iff the probability distribution of the vector (Xt1+k, Xt2+k, . . . , Xtn+k)
′ is identical with

the one of (Xt1 , Xt2 , . . . , Xtn)
′, for any finite subset {t1, t2, . . . , tn} ⊆ T and any integer k ≥ 0. To

indicate that {Xt : t ∈ T} is SS, we write {Xt : t ∈ T} ∼ SS or Xt ∼ SS.

Proposition 2.1 CHARACTERIZATION OF STRICT STATIONARITY FOR A PROCESS ON (n0,∞). If

the process {Xt : t ∈ T} is SS, then the probability distribution of the vector (Xt1+k, Xt2+k, . . . , Xtn+k)
′

is identical to the one of (Xt1 , Xt2 , . . . , Xtn)
′, for any finite subset {t1, t2, . . . , tn} and any integer

k > n0 −min{t1, . . . , tn}.

For processes on the integers Z, the above characterization can be formulated in a simpler way
as follows.

Proposition 2.2 CHARACTERIZATION OF STRICT STATIONARITY FOR A PROCESS ON THE IN-
TEGERS. A process {Xt : t ∈ Z} is SS iff the probability distribution of (Xt1+k, Xt2+k, . . . , Xtn+k)

′ is

identical with the probability distribution of (Xt1 , Xt2 , . . . , Xtn)
′, for any subset {t1, t2, . . . , tn} ⊆ Z

and any integer k.

Definition 2.2 SECOND-ORDER STATIONARY PROCESS. A stochastic process {Xt : t ∈ T} is

second-order stationary (S2) iff

(1) E(X2
t ) < ∞, ∀t ∈ T,

(2) E(Xs) = E(Xt), ∀s, t ∈ T,
(3) Cov(Xs, Xt) = Cov(Xs+k, Xt+k), ∀s, t ∈ T, ∀k ≥ 0 .

If {Xt : t ∈ T} is S2, we write {Xt : t ∈ T} ∼ S2 or Xt ∼ S2.

Remark 2.1 Instead of second-order stationary, one also says weakly stationary (WS).

Proposition 2.3 RELATION BETWEEN STRICT AND SECOND-ORDER STATIONARITY. If the

process {Xt : t ∈ T} is strictly stationary and E(X2
t ) < ∞ for any t ∈ T, then the process {Xt : t ∈ T}

is second-order stationary.

PROOF. Suppose E(X2
t ) < ∞, for any t ∈ T. If the process {Xt : t ∈ T} is SS, we have:

E(Xs) = E(Xt) , ∀s, t ∈ T , (2.4)

E(Xs Xt) = E(Xs+k Xt+k) , ∀s, t ∈ T, ∀k ≥ 0 . (2.5)

Since
Cov(Xs, Xt) = E(XsXt)−E(Xs)E(Xt) , (2.6)

3



we see that
Cov(Xs, Xt) = Cov(Xs+k, Xt+k) , ∀s, t ∈ T , ∀k ≥ 0 , (2.7)

so the conditions (2.4) - (2.7) are equivalent to the conditions (2.4) - (2.5). The mean of Xt is
constant, and the covariance between any two variables of the process only depends on the distance
between the variables, not their position in the series.

Proposition 2.4 EXISTENCE OF AN AUTOCOVARIANCE FUNCTION. If the process {Xt : t ∈ T}
is second-order stationary, then there exists a function γ : Z → R such that

Cov(Xs, Xt) = γ(t − s) , ∀s, t ∈ T. (2.8)

The function γ is called the autocovariance function of the process {Xt : t ∈ T}, and γk =: γ(k) the

lag-k autocovariance of the process {Xt : t ∈ T}.

PROOF. Let r ∈ T any element of T. Since the process {Xt : t ∈ T} is S2, we have, for any s, t ∈ T

such that s ≤ t,

Cov(Xr, Xr+t−s) = Cov(Xr+s−r, Xr+t−s+s−r)

= Cov(Xs, Xt) , if s ≥ r, (2.9)

Cov(Xs, Xt) = Cov(Xs+r−s, Xt+r−s) (2.10)

= Cov(Xr, Xr+t−s) , if s < r. (2.11)

Further, in the case where s > t, we have

Cov(Xs, Xt) = Cov(Xt , Xs) = Cov(Xr, Xr+s−t) . (2.12)

Thus
Cov(Xs, Xt) = Cov(Xr, Xr+|t−s|) = γ(t − s) . (2.13)

Proposition 2.5 PROPERTIES OF THE AUTOCOVARIANCE FUNCTION. Let {Xt : t ∈ T} be a

second-order stationary process. The autocovariance function γ(k) of the process {Xt : t ∈ T}
satisfies the following properties:

(1) γ(0) =V ar(Xt) ≥ 0 , ∀t ∈ T ;

(2) γ(k) = γ(−k) , ∀k ∈ Z (i.e., γ(k) is an even function of k);

(3) |γ(k)| ≤ γ(0) , ∀k ∈ Z ;
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(4) the function γ(k) is positive semi-definite, i.e.

N

∑
i=1

N

∑
j=1

aia jγ(ti − t j) ≥ 0, (2.14)

for any positive integer N and for all the vectors a = (a1, . . . , aN)′ ∈ R
N and τ = (t1, . . . , tN)′ ∈

T
N ;

(5) any N ×N matrix of the form

ΓN = [γ( j− i)]i, j=1, ...,N

=











γ(0) γ(1) γ(2) · · · γ(N −1)
γ(1) γ(0) γ(1) · · · γ(N −2)
...

...
...

...

γ(N −1) γ(N −2) γ(N −3) · · · γ(0)











(2.15)

is positive semi-definite.

Proposition 2.6 EXISTENCE OF AN AUTOCORRELATION FUNCTION. If the process {Xt : t ∈ T}
is second-order stationary, then there exists a function ρ : Z → [−1, 1] such that

ρ(t − s) = Corr(Xs, Xt) = γ(t − s)/γ(0) , ∀s, t ∈ T , (2.16)

where 0/0 ≡ 1. The function ρ is called the autocorrelation function of the process {Xt : t ∈ T}, and

ρk =: ρ(k) the lag-k autocorrelation of the process {Xt : t ∈ T}.

Proposition 2.7 PROPERTIES OF THE AUTOCORRELATION FUNCTION. Let {Xt : t ∈ T} be a

second-order stationary process. The autocorrelation function ρ(k) of the process {Xt : t ∈ T}
satisfies the following properties:

(1) ρ(0) = 1;

(2) ρ(k) = ρ(−k) , ∀k ∈ Z ;

(3) |ρ(k)| ≤ 1, ∀k ∈ Z ;

(4) the function ρ(k) is positive semi-definite, i.e.

N

∑
i=1

N

∑
j=1

aia jρ(ti − t j) ≥ 0 (2.17)

for any positive integer N and for all the vectors a = (a1, . . . , aN)′ ∈ R
N and τ = (t1, . . . , tN)′ ∈

T
N ;

5



(5) any N ×N matrix of the form

RN =
1
γ0

ΓN =











1 ρ(1) ρ(2) · · · ρ(N −1)
ρ(1) 1 ρ(1) · · · ρ(N −2)
...

...
...

...

ρ(N −1) ρ(N −2) ρ(N −3) · · · 1











(2.18)

is positive semi-definite, where γ(0) =V ar(Xt) .

Theorem 2.8 CHARACTERIZATION OF AUTOCOVARIANCE FUNCTIONS. An even function γ :
Z → R is positive semi-definite iff γ(.) is the autocovariance function of a second-order stationary

process {Xt : t ∈ Z}.

PROOF. See Brockwell and Davis (1991, Chapter 2).

Corollary 2.9 CHARACTERIZATION OF AUTOCORRELATION FUNCTIONS. An even function

ρ : Z → [−1, 1] is positive semi-definite iff ρ is the autocorrelation function of a second-order

stationary process {Xt : t ∈ Z}.

Definition 2.3 DETERMINISTIC PROCESS. Let {Xt : t ∈ T} be a stochastic process, T1 ⊆ T and

It = {Xs : s≤ t}. We say that the process {Xt : t ∈T} is deterministic on T1 iff there exists a collection

of functions {gt(It−1) : t ∈ T1} such that Xt = gt(It−1) with probability one, ∀t ∈ T1.

A deterministic process can be perfectly predicted form its own past (at points where it is deter-
ministic).

Proposition 2.10 CRITERION FOR A DETERMINISTIC PROCESS. Let {Xt : t ∈ T} be a second-

order stationary process, where T = {t ∈ Z : t > n0} and n0 ∈ Z∪{−∞}, and let γ(k) its autoco-

variance function. If there exists an integer N ≥ 1 such that the matrix ΓN is singular [where ΓN

is defined in Proposition 2.5], then the process {Xt : t ∈ T} is deterministic for t > n0 + N − 1. In

particular, if V ar(Xt) = γ(0) = 0, the process is deterministic for t ∈ T.

For a second-order indeterministic stationary process at any t ∈ T, all the matrices ΓN , N ≥ 1,
are invertible.

Definition 2.4 STATIONARITY OF ORDER m. Let m be a non-negative integer. A stochastic

process {Xt : t ∈ T} is stationary of order m iff

(1) E(|Xt |m) < ∞ ,∀t ∈ T ,

and

(2) E[Xm1
t1 X

m2
t2 · · · X

mn
tn ] = E[Xm1

t1+kX
m2
t2+k · · · X

mn

tn+k]

for any k ≥ 0, any subset {t1, . . . , tn} ∈ T
N and all the non-negative integers m1, . . . , mn such

that m1 +m2 + · · ·+mn ≤ m.
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If m = 1, the mean is constant, but not necessarily the other moments. If m = 2, the process is
second-order stationary.

Definition 2.5 ASYMPTOTIC STATIONARITY OF ORDER m. Let m a non-negative integer. A

stochastic process {Xt : t ∈ T} is asymptotically stationary of order m iff

(1) there exists an integer N such that (|Xt |m) < ∞ , for t ≥ N,
and

(2) lim
t1→∞

[

E

(

X
m1
t1 X

m2
t1+∆2

· · · X
mn

t1+∆n

)

−E

(

X
m1
t1+kX

m2
t1+∆2+k · · · X

mn

t1+∆n+k

)

]

= 0

for any k ≥ 0, t1 ∈ T, all the positive integers ∆2, ∆3, . . . , ∆n such that ∆2 < ∆3 < · · · < ∆n,and

all non-negative integers m1, . . . , mn such that m1 +m2 + · · ·+mn ≤ m .

3. Some important models

In this section, we will again assume that T is a right-infinite interval integers (Assumption 2.1):

T = {t ∈ Z : t > n0} , where n0 ∈ Z∪{−∞} . (3.1)

3.1. Noise models

Definition 3.1 SEQUENCE OF INDEPENDENT RANDOM VARIABLES. A process {Xt : t ∈ T} is

a sequence of independent random variables iff the variables Xt are mutually independent. This is

denoted by:

Xt : t ∈ T} ∼ IND or {Xt} ∼ IND . (3.2)

Further, we write:

{Xt : t ∈ T} ∼ IND(µ t) if E(Xt) = µ t , (3.3)

{Xt : t ∈ T} ∼ IND(µ t , σ2
t ) if E(Xt) = µ t and Var(Xt) = σ2

t .

Definition 3.2 RANDOM SAMPLE. A random sample is a sequence of independent and identically

distributed (i.i.d.) random variables. This is denoted by:

{Xt : t ∈ T} ∼ IID . (3.4)

A random sample is a SS process. If E(X2
t ) < ∞, for any t ∈ T, the process is S2. In this case,

we write
{Xt : t ∈ T} ∼ IID(µ, σ2) , if E(Xt) = µ and V(Xt) = σ2. (3.5)

Definition 3.3 WHITE NOISE. A white noise is a sequence of random variables in L2 with mean

zero, the same variance and mutually uncorrelated, i.e.

E(X2
t ) < ∞, ∀t ∈ T, (3.6)
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E(X2
t ) = σ2 , ∀t ∈ T , (3.7)

Cov(Xs, Xt) = 0 , if s 6= t . (3.8)

This is denoted by:

{Xt : t ∈ T} ∼ WN(0, σ2) or {Xt} ∼ WN(0, σ2) . (3.9)

Definition 3.4 HETEROSKEDASTIC WHITE NOISE. A heteroskedastic white noise is a sequence

of random variables in L2 with mean zero and mutually uncorrelated, i.e.

E(X2
t ) < ∞, ∀t ∈ T , (3.10)

E(Xt) = 0, ∀t ∈ T , (3.11)

Cov(Xt , Xs) = 0, if s 6= t , (3.12)

E(X2
t ) = σ2

t , ∀t ∈ T . (3.13)

This is denoted by:

{Xt : t ∈ Z} ∼ WN(0, σ2
t ) or {Xt} ∼ WN(0, σ2

t ) . (3.14)

Each one of these four models will be called a noise process.

3.2. Harmonic processes

Many time series exhibit apparent periodic behavior. This suggests one to use periodic functions to
describe them.

Definition 3.5 PERIODIC FUNCTION. A function f (t), t ∈ R, is periodic of period P on R iff

f (t +P) = f (t) , ∀t, (3.15)

and P is the lowest number such that (3.15) holds for all t. 1
P

is the frequency associated with the

function (number of cycles per unit of time).

Example 3.1 Sinus function:

sin(t) = sin(t +2π) = sin(t +2πk), ∀k ∈ Z. (3.16)

For the sinus function, the period is P = 2π and the frequency is f = 1/(2π).

Example 3.2 Cosine function:

cos(t) = cos(t +2π) = cos(t +2πk), ∀k ∈ Z. (3.17)

Example 3.3

sin(νt) = sin

[

ν
(

t +
2π
v

)]

= sin

[

ν
(

t +
2πk

v

)]

, ∀k ∈ Z. (3.18)
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Example 3.4

cos(νt) = cos

[

ν
(

t +
2π
v

)]

= cos

[

ν
(

t +
2πk

v

)]

, ∀k ∈ Z. (3.19)

For sin(νt) and cos(νt), the period is P = 2π/ν .

Example 3.5 GENERAL COSINE FUNCTION.

f (t) = C cos(νt +θ) = C[cos(νt)cos(θ)− sin(νt)sin(θ)]

= A cos(νt)+B sin(νt) (3.20)

where C ≥ 0 , A = C cos(θ) and B = −C sin θ . Further,

C =
√

A2 +B2 , tan(θ) = −B/A (if C 6= 0). (3.21)

In the above function, the different parameters have the following names:

C = amplitude ;

ν = angular frequency (radians/time unit) ;

P = 2π/ν = period ;

v̄ =
1
P

=
v

2π
= frequency (number of cycles per time unit) ;

θ = phase angle (usually 0 ≤ θ < 2π or −π/2 < θ ≤ π/2) .

Example 3.6

f (t) = C sin(νt +θ) = C cos(νt +θ −π/2)

= C [sin(νt)cos(θ)+ cos(νt)sin(θ)]

= A cos(νt)+B sin(νt) (3.22)

where

0 ≤ ν < 2π , (3.23)

A = C sin(θ) = C cos
(

θ − π
2

)

, (3.24)

B = C cos(θ) = −C sin
(

θ − π
2

)

. (3.25)

Consider the model

Xt = C cos(νt +θ)

= A cos(νt)+B sin(νt), t ∈ Z. (3.26)
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If A and B are constants,
E(Xt) = A cos(νt)+B sin(νt) , t ∈ Z, (3.27)

so the process Xt is non-stationary (since the mean is not constant). Suppose now that A and B are
random variables such that

E(A) = E(B) = 0, E(A2) = E(B2) = σ2, E(AB) = 0 . (3.28)

A and B do not depend on t but are fixed for each realization of the process [A = A(ω), B = B(ω)].
In this case,

E(Xt) = 0 , (3.29)

E(XsXt) = E(A2)cos(νs)cos(νt)+E(B2)sin(νs)sin(νt)

= σ2[cos(νs)cos(νt)+ sin(νs)sin(νt)]

= σ2 cos[ν(t − s)] . (3.30)

The process Xt is stationary of order 2 with the following autocovariance and autocorrelation func-
tions:

γX(k) = σ2 cos(νk) , (3.31)

ρX(k) = cos(νk) . (3.32)

If we add m cyclic processes of the form (3.26), we obtain a harmonic process of order m.

Definition 3.6 HARMONIC PROCESS OF ORDER m. We say the process {Xt : t ∈ T} is a harmonic

process of order m if it can written in the form

Xt =
m

∑
j=1

[A j cos(ν jt)+B j sin(ν jt)], ∀t ∈ T , (3.33)

where ν1, . . . , νm are distinct constants in the interval [0, 2π).

If A j, B j , j = 1, . . . , m, are random variables in L2 such that

E(A j) = E(B j) = 0 , j = 1, ... , m , (3.34)

E(A2
j) = E(B2

j) = σ2
j , j = 1, ... , m , (3.35)

E(A jAk) = E(B jBk) = 0, for j 6= k, (3.36)

E(A jBk) = 0, ∀ j, k , (3.37)

the harmonic process Xt is second-order stationary, with:

E(Xt) = 0 , (3.38)
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E(XsXt) =
m

∑
j=1

σ2
j cos[ν j(t − s)] , (3.39)

hence

γX(k) =
m

∑
j=1

σ2
j cos(ν jk) , (3.40)

ρX(k) =
m

∑
j=1

σ2
j cos(ν jk)/

m

∑
j=1

σ2
j . (3.41)

If we add a white noise ut to Xt in (3.33), we obtain again a second-order stationary process:

Xt =
m

∑
j=1

[A j cos(ν jt)+B j sin(ν jt)]+ut , t ∈ T , (3.42)

where the process {ut : t ∈ T} ∼ WN(0, σ2) is uncorrelated with A j, B j , j = 1, . . . , m. In this case,
E(Xt) = 0 and

γX(k) =
m

∑
j=1

σ2
j cos(ν jk)+σ2δ (k) (3.43)

where
δ (k) = 1 if k = 0

= 0 otherwise.
(3.44)

If a series can be described by an equation of the form (3.42), we can view it as a realization of a
second-order stationary process.

3.3. Linear processes

Many stochastic processes with dependence are obtained through transformations of noise pro-
cesses.

Definition 3.7 AUTOREGRESSIVE PROCESS. The process {Xt : t ∈T} is an autoregressive process

of order p if it satisfies an equation of the form

Xt = µ̄ +
p

∑
j=1

ϕ jXt− j +ut , ∀t ∈ T , (3.45)

where {ut : t ∈ Z} ∼ WN(0, σ2). In this case, we denote

{Xt : t ∈ T} ∼ AR(p) .

Usually, T = Z or T = Z+ (positive integers). If
p

∑
j=1

ϕ j 6= 1, we can define µ = µ̄/(1−
p

∑
j=1

ϕ j) and

11



write

X̃t =
p

∑
j=1

ϕ jX̃t− j +ut , ∀t ∈ T ,

where X̃t ≡ Xt −µ.

Definition 3.8 MOVING AVERAGE PROCESS. The process {Xt : t ∈ T} is a moving average

process of order q if it can written in the form

Xt = µ̄ +
q

∑
j=0

ψ jut− j , ∀t ∈ T, (3.46)

where {ut : t ∈ Z} ∼ WN(0, σ2). In this case, we denote

{Xt : t ∈ T} ∼ MA(q). (3.47)

Without loss of generality, we can set ψ0 = 1 and ψ j = −θ j, j = 1, . . . , q :

Xt = µ̄ +ut −
q

∑
j=1

θ jut− j , t ∈ T

or, equivalently,

X̃t = ut −
q

∑
j=1

θ jut− j

where X̃t ≡ Xt − µ̄.

Definition 3.9 AUTOREGRESSIVE-MOVING-AVERAGE PROCESS. The process {Xt : t ∈ T} is an

autoregressive-moving-average (ARMA) process of order (p, q) if it can be written in the form

Xt = µ̄ +
p

∑
j=1

ϕ jXt− j +ut −
q

∑
j=1

θ jut− j, ∀t ∈ T , (3.48)

where {ut : t ∈ Z} ∼ WN(0, σ2). In this case, we denote

{Xt : t ∈ T} ∼ ARMA(p, q) . (3.49)

If
p

∑
j=1

ϕ j 6= 1, we can also write

X̃t =
p

∑
j=1

ϕ jX̃t− j +ut −
q

∑
j=1

θ jut− j (3.50)

where X̃t = Xt −µ and µ = µ̄/(1−
p

∑
j=1

ϕ j) .
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Definition 3.10 MOVING AVERAGE PROCESS OF INFINITE ORDER. The process {Xt : t ∈ T} is a

moving-average process of infinite order if it can be written in the form

Xt = µ̄ +
+∞

∑
j=−∞

ψ jut− j , ∀t ∈ Z , (3.51)

where {ut : t ∈ Z} ∼ WN(0, σ2) . We also say that Xt is a weakly linear process. In this case, we

denote

{Xt : t ∈ T} ∼ MA(∞). (3.52)

In particular, if ψ j = 0 for j < 0, i.e.

Xt = µ̄ +
∞

∑
j=0

ψ jut− j , ∀t ∈ Z , (3.53)

we say that Xt is a causal function of ut (causal linear process).

Definition 3.11 AUTOREGRESSIVE PROCESS OF INFINITE ORDER. The process {Xt : t ∈ T} is

an autoregressive process of infinite order if it can be written in the form

Xt = µ̄ +
∞

∑
j=1

ϕ jXt− j +ut , t ∈ T , (3.54)

where {ut : t ∈ Z} ∼ WN(0, σ2) . In this case, we denote

{Xt : t ∈ T} ∼ AR(∞). (3.55)

Definition 3.12 Remark 3.1 We can generalize the notions defined above by assuming that {ut :
t ∈ Z} is a noise. Unless stated otherwise, we will suppose {ut} is a white noise.

QUESTIONS :

(1) Under which conditions are the processes defined above stationary (strictly or in Lr)?

(2) Under which conditions are the processes MA(∞) or AR(∞) well defined (convergent series)?

(3) What are the links between the different classes of processes defined above?

(4) When a process is stationary, what are its autocovariance and autocorrelation functions?

3.4. Integrated processes

Definition 3.13 RANDOM WALK. The process {Xt : t ∈ T} is a random walk if it satisfies an

equation of the form

Xt −Xt−1 = vt , ∀t ∈ T, (3.56)
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where {vt : t ∈ T} ∼ IID. To ensure that this process is well defined, we suppose that n0 6= −∞. If

n0 = −1, we can write

Xt = X0 +
t

∑
j=1

v j (3.57)

hence the name “integrated process”. If E(vt) = µ̄ or Med(vt) = µ̄ , one often writes

Xt −Xt−1 = µ̄ +ut (3.58)

where ut ≡ vt − µ̄ ∼ IID and E(ut) = 0 or Med(ut) = 0 (depending on whether E(ut) = 0 or

Med(ut) = 0). If µ̄ 6= 0, we say the the random walk has a drift.

Definition 3.14 WEAK RANDOM WALK. The process {Xt : t ∈ T} is a weak random walk if Xt

satisfies an equation of the form

Xt −Xt−1 = µ̄ +ut (3.59)

where {ut : t ∈ T} ∼ WN(0, σ2), {ut : t ∈ T} ∼ WN(0, σ2
t ), or {ut : t ∈ T} ∼ IND(0)] .

Definition 3.15 INTEGRATED PROCESS. The process {Xt : t ∈ T} is integrated of order d if it can

be written in the form

(1−B)dXt = Zt , ∀t ∈ T, (3.60)

where {Zt : t ∈ T} is a stationary process (usually stationary of order 2) and d is a non-negative

integer (d = 0, 1, 2, ...). In particular, if {Zt : t ∈ T} is an ARMA(p, q) stationary process, {Xt : t ∈
T} is an ARIMA(p, d, q) process: {Xt : t ∈ T} ∼ ARIMA(p, d, q). We note

B Xt = Xt−1 , (3.61)

(1−B)Xt = Xt −Xt−1 , (3.62)

(1−B)2Xt = (1−B)(1−B)Xt = (1−B)(Xt −Xt−1) (3.63)

= Xt −2Xt−1 +Xt−2, (3.64)

(1−B)dXt = (1−B)(1−B)d−1Xt , d = 1, 2, ... (3.65)

where (1−B)0 = 1.

3.5. Deterministic trends

Definition 3.16 DETERMINISTIC TREND. The process {Xt : t ∈ T} follows a deterministic trend if

it can be written in the form

Xt = f (t)+Zt , ∀t ∈ T, (3.66)

where f (t) is a deterministic function of time and {Zt : t ∈ T} is a noise or a stationary process.

Example 3.7 Important cases of deterministic trend:

Xt = β 0 +β 1t +ut , (3.67)
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Xt =
k

∑
j=0

β jt
j +ut , (3.68)

where {ut : t ∈ T} ∼ WN(0, σ2) .

4. Transformations of stationary processes

Theorem 4.1 ABSOLUTE MOMENT SUMMABILITY CRITERION FOR CONVERGENCE OF A LIN-
EAR TRANSFORMATION OF A STOCHASTIC PROCESS. Let {Xt : t ∈ Z} be a stochastic process on

the integers, r ≥ 1 and {a j : j ∈ Z} a sequence of real numbers. If

∞

∑
j=−∞

|a j|E(|Xt− j|r)1/r < ∞ (4.1)

then, for any t, the random series
∞
∑

j=−∞
a jXt− j converges absolutely a.s. and in mean of order r to a

random variable Yt such that E(|Yt |r) < ∞ .

PROOF. See Dufour (2016a).

Theorem 4.2 ABSOLUTE SUMMABILITY CRITERION FOR CONVERGENCE OF A LINEAR

TRANSFORMATION OF A WEAKLY STATIONARY PROCESS. Let {Xt : t ∈ Z} be a second-order

stationary process and {a j : j ∈ Z} an sequence of real numbers absolutely convergent sequence of

real numbers, i.e.
∞

∑
j=−∞

|a j| < ∞ . (4.2)

Then the random series
∞
∑

j=−∞
a jXt− j converges absolutely a.s. and in mean of order 2 to a random

variable Yt ∈ L2, ∀t, and the process {Yt : t ∈ Z} is second-order stationary with autocovariance

function

γY (k) =
∞

∑
i=−∞

∞

∑
j=−∞

aia jγX(k− i+ j) . (4.3)

PROOF. See Gouriéroux and Monfort (1997, Property 5.6).

Theorem 4.3 NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE OF LINEAR FIL-
TERS OF ARBITRARY WEAKLY STATIONARY PROCESSES. The series

∞
∑

j=−∞
a jXt− j converges ab-
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solutely a.s. for any second-order stationary process {Xt : t ∈ Z} iff

∞

∑
j=−∞

|a j| < ∞ . (4.4)

5. Infinite order moving averages

We study here random series of the form

∞

∑
j=o

ψ jut− j, t ∈ Z (5.1)

and
∞

∑
j=−∞

ψ jut− j, t ∈ Z (5.2)

where {ut : t ∈ Z} ∼ WN(0, σ2) .

5.1. Convergence conditions

Theorem 5.1 MEAN SQUARE CONVERGENCE OF AN INFINITE MOVING AVERAGE. Let {ψ j

: j ∈ Z} be a sequence of fixed real constants and {ut : t ∈ Z} ∼ WN(0, σ2).

(1) If
∞
∑
j=1

ψ2
j < ∞,

∞
∑
j=1

ψ jut− j converges in q.m. to a random variable XUt in L2.

(2) If
0
∑

j=−∞
ψ2

j < ∞,
0
∑

j=−∞
ψ jut− j converges in q.m. to a random variable XLt in L2.

(3) If
∞
∑

j=−∞
ψ2

j < ∞,
∞
∑

j=−∞
ψ jut− j converges in q.m. to a random variable Xt in L2, and

n

∑
j=−n

ψ jut− j
2−→

n→∞
Xt .

PROOF. Suppose
∞
∑
j=0

ψ2
j < ∞. We can write

∞

∑
j=1

ψ jut− j =
∞

∑
j=1

Yj(t) ,
0

∑
j=−∞

ψ jut− j =
0

∑
j=−∞

Yj(t) (5.3)

where Yj(t) ≡ ψ jut− j,

E
[

Yj(t)
2]= ψ2

j E(u2
t− j) = ψ2

j σ2 < ∞, for t ∈ Z,
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and the variables Yj(t), t ∈ Z, are orthogonal. If
∞
∑
j=1

ψ2
j < ∞, the series

∞
∑
j=1

Yj(t) converges in q.m. to

a random variable XUt such that E
[

X2
Ut

]

< ∞, i.e.

n

∑
j=1

Yj(t)
2→

n→∞
XUt ≡

∞

∑
j=1

ψ jut− j ; (5.4)

see Dufour (2016a, Section on “Series of orthogonal variables”). By a similar argument, if
0
∑

j=−∞
ψ2

j < ∞, the series
0
∑

j=−∞
Yj(t) converges in q.m. to a random variable XUt such that E

[

X2
Lt

]

< ∞,

i.e.
0

∑
j=−m

Yj(t)
2→

m→∞
XLt ≡

0

∑
j=−∞

ψ jut− j . (5.5)

Finally, if
∞
∑

j=−∞
ψ2

j < ∞, we must have
∞
∑
j=1

ψ2
j < ∞ and

0
∑

j=−∞
ψ2

j < ∞, hence

n

∑
j=−m

Yj(t) =
0

∑
j=−m

Yj(t) +
n

∑
j=1

Yj(t)
2→

m→∞
n→∞

XLt +XUt ≡ Xt ≡
∞

∑
j=−∞

ψ jut− j (5.6)

where, by the cr-inequality [see Dufour (2016b)],

E
[

X2
t

]

= E
[

(XLt +XUt)
2]≤ 2{E

[

X2
Lt

]

+E
[

X2
Ut

]

} < ∞ . (5.7)

The random variable Xt is denoted:

Xt ≡
∞

∑
j=−∞

ψ jut− j . (5.8)

The last statement on the convergence of
n

∑
j=−n

ψ jut− j follows from the definition of mean-square

convergence of
∞
∑

j=−∞
ψ jut− j .

Corollary 5.2 ALMOST SURE CONVERGENCE OF AN INFINITE MOVING AVERAGE. Let {ψ j

: j ∈ Z} be a sequence of fixed real constants, and {ut : t ∈ Z} ∼ WN(0, σ2).

(1) If
∞
∑
j=1

|ψ j| < ∞,
∞
∑
j=1

ψ jut− j converges a.s. and in q.m. to a random variable XUt in L2.

(2) If
0
∑

j=−∞
|ψ j| < ∞,

0
∑

j=−∞
ψ jut− j converges a.s. and in q.m. to a random variable XLt in L2.

(3) If
∞
∑

j=−∞
|ψ j| < ∞,

∞
∑

j=−∞
ψ jut− j converges a.s. and in q.m. to a random variable Xt in L2,
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n

∑
j=−n

ψ jut− j
a.s.−→

n→∞
Xt and

n

∑
j=−n

ψ jut− j
2−→

n→∞
Xt .

PROOF. This result from Theorem 5.1 and the observation that

∞

∑
j=−∞

|ψ j| < ∞ ⇒
∞

∑
j=−∞

ψ2
j < ∞ . (5.9)

Theorem 5.3 ALMOST SURE CONVERGENCE OF AN INFINITE MOVING AVERAGE OF INDEPEN-
DENT VARIABLES. Let {ψ j : j ∈ Z} be a sequence of fixed real constants, and {ut : t ∈ Z} ∼
IID(0, σ2).

(1) If
∞
∑
j=1

ψ2
j < ∞,

∞
∑
j=1

ψ jut− j converges a.s. and in q.m. to a random variable XUt in L2.

(2) If
0
∑

j=−∞
ψ2

j < ∞,
0
∑

j=−∞
ψ jut− j converges a.s. and in q.m. to a random variable XLt in L2.

(3) If
∞
∑

j=−∞
ψ2

j < ∞,
∞
∑

j=−∞
ψ jut− j converges a.s. and in q.m. to a random variable Xt in L2,

n

∑
j=−n

ψ jut− j
a.s.−→

n→∞
Xt and

n

∑
j=−n

ψ jut− j
2−→

n→∞
Xt .

PROOF. This result from Theorem 5.1 and by applying results on the convergence of series of
independent variables [Dufour (2016a, Section on “Series of independent variables”)].

5.2. Mean, variance and covariances

Let

Sn(t) =
n

∑
j=−n

ψ jut− j . (5.10)

By Theorem 5.1, we have:

Sn(t)
2−→

n→∞
Xt (5.11)

where Xt ∈ L2, hence [using Dufour (2016a, Section on “Convergence of functions of random
variables”)]

E(Xt) = lim
n→∞

E[Sn(t)] = 0 , (5.12)

V(Xt) = E(X2
t ) = lim

n→∞
E[Sn(t)

2] = lim
n→∞

n

∑
j=−n

ψ2
jσ

2 = σ2
∞

∑
j=−∞

ψ2
j , (5.13)
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Cov(Xt , Xt+k) = E(Xt Xt+k) = lim
n→∞

E

[(

n

∑
i=−n

ψ iut−i

)(

n

∑
j=−n

ψ jut+k− j

)]

= lim
n→∞

n

∑
i=−n

n

∑
j=−n

ψ iψ jE(ut−iut+k− j)

=















lim
n→∞

n−k

∑
i=−n

ψ iψ i+kσ2 = σ2
∞
∑

i=−∞
ψ iψ i+k, if k ≥ 1,

lim
n→∞

n

∑
j=−n

ψ jψ j+|k|σ2 = σ2
∞
∑

j=−∞
ψ jψ j+|k| , if k ≤−1,

(5.14)

since t − i = t + k− j ⇒ j = i+ k and i = j− k. For any k ∈ Z, we can write

Cov(Xt , Xt+k) = σ2
∞

∑
j=−∞

ψ jψ j+|k| , (5.15)

Corr(Xt , Xt+k) =
∞

∑
j=−∞

ψ jψ j+|k|/
∞

∑
j=−∞

ψ2
j . (5.16)

The series
∞
∑

j=−∞
ψ jψ j+k converges absolutely, for

∣

∣

∣

∣

∣

∞

∑
j=−∞

ψ jψ j+k

∣

∣

∣

∣

∣

≤
∞

∑
j=−∞

∣

∣ψ jψ j+k

∣

∣≤
[

∞

∑
j=−∞

ψ2
j

]
1
2
[

∞

∑
j=−∞

ψ2
j+k

]
1
2

< ∞ . (5.17)

If Xt = µ +Xt = µ +
+∞
∑

j=−∞
ψ jut− j , then

E(Xt) = µ , Cov(Xt , Xt+k) = Cov(Xt , Xt+k) . (5.18)

In the case of a causal MA(∞) process causal, we have

Xt = µ +
∞

∑
j=0

ψ jut− j (5.19)

where {ut : t ∈ Z} ∼ WN(0, σ2) ,

Cov(Xt , Xt+k) = σ2
∞

∑
j=0

ψ jψ j+|k| , (5.20)

Corr(Xt , Xt+k) =
∞

∑
j=0

ψ jψ j+|k|/
∞

∑
j=0

ψ2
j . (5.21)
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5.3. Stationarity

The process

Xt = µ +
∞

∑
j=−∞

ψ jut− j , t ∈ Z, (5.22)

where {ut : t ∈ Z} ∼ WN(0, σ2) and
∞
∑

j=−∞
ψ2

j < ∞ , is second-order stationary, for E(Xt) and

Cov(Xt , Xt+k) do not depend on t. If we suppose that {ut : t ∈ Z} ∼ IID, with E|ut | < ∞ and
∞
∑

j=−∞
ψ2

j < ∞, the process is strictly stationary.

5.4. Operational notation

We can denote the process MA(∞)

Xt = µ +ψ(B)ut = µ +

(

∞

∑
j=−∞

ψ jB
j

)

ut (5.23)

where ψ(B) =
∞
∑

j=−∞
ψ jB

j and B jut = ut− j .

6. Finite order moving averages

The MA(q) process can be written

Xt = µ +ut −
q

∑
j=1

θ jut− j (6.1)

where θ(B) = 1−θ 1B−·· ·−θ qBq . This process is a special case of the MA(∞) process with

ψ0 = 1 , ψ j = −θ j , for 1 ≤ j ≤ q ,

ψ j = 0 , for j < 0 or j > q. (6.2)

This process is clearly second-order stationary, with

E(Xt) = µ , (6.3)

V(Xt) = σ2

(

1+
q

∑
j=1

θ 2
j

)

, (6.4)

γ(k) ≡ Cov(Xt , Xt+k) = σ2
∞

∑
j=−∞

ψ jψ j+|k| . (6.5)
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On defining θ 0 ≡−1, we then see that

γ(k) = σ2
q−k

∑
j=0

θ jθ j+k

= σ2

[

−θ k +
q−k

∑
j=1

θ jθ j+k

]

(6.6)

= σ2[−θ k +θ 1θ k+1 + ...+θ q−kθ q] , for 1 ≤ k ≤ q, (6.7)

γ(k) = 0 , for k ≥ q+1,

γ(−k) = γ(k) , for k < 0 . (6.8)

The autocorrelation function of Xt is thus

ρ(k) =

(

−θ k +
q−k

∑
j=1

θ jθ j+k

)

/

(

1+
q

∑
j=1

θ 2
j

)

, for 1 ≤ k ≤ q

= 0 , for k ≥ q+1

(6.9)

The autocorrelations are zero for k ≥ q+1.
For q = 1,

ρ(k) = −θ 1/(1+θ 2
1), if k = 1 ,

= 0 , if k ≥ 2,
(6.10)

hence |ρ(1)| ≤ 0.5 . For q = 2 ,

ρ(k) = (−θ 1 +θ 1θ 2)/(1+θ 2
1 +θ 2

2) , if k = 1 ,

= −θ 2/(1+θ 2
1 +θ 2

2) , if k = 2 ,
= 0 , if k ≥ 3 ,

(6.11)

hence |ρ(2)| ≤ 0.5 .
For any MA(q) process,

ρ(q) = −θ q/(1+θ 2
1 + ...+θ 2

q) , (6.12)

hence |ρ(q)| ≤ 0.5 .
There are general constraints on the autocorrelations of an MA(q) process:

|ρ(k)| ≤ cos(π/{[q/k]+2}) (6.13)
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where [x] is the largest integer less than or equal to x. From the latter formula, we see:

for q = 1 , |ρ(1)| ≤ cos(π/3) = 0.5,
for q = 2 , |ρ(1)| ≤ cos(π/4) = 0.7071,

|ρ(2)| ≤ cos(π/3) = 0.5,
for q = 3 , |ρ(1)| ≤ cos(π/5) = 0.809,

|ρ(2)| ≤ cos(π/3) = 0.5,
|ρ(3)| ≤ cos(π/3) = 0.5.

(6.14)

See Chanda (1962), and Kendall, Stuart, and Ord (1983, p. 519).

7. Autoregressive processes

Consider a process {Xt : t ∈ Z} which satisfies the equation:

Xt = µ̄ +
p

∑
j=1

ϕ jXt− j +ut , ∀t ∈ Z, (7.1)

where {ut : t ∈ Z} ∼ WN(0, σ2) . In symbolic notation,

ϕ(B)Xt = µ̄ +ut , t ∈ Z, (7.2)

where ϕ(B) = 1−ϕ1B−·· ·−ϕ pBp .

7.1. Stationarity

Consider the process AR(1)
Xt = ϕ1Xt−1 +ut , ϕ1 6= 0. (7.3)

If Xt is S2 ,
E(Xt) = ϕ1E(Xt−1) = ϕ1E(Xt) (7.4)

hence E(Xt) = 0 . By successive substitutions,

Xt = ϕ1[ϕ1Xt−2 +ut−1]+ut

= ut +ϕ1ut−1 +ϕ2
1Xt−2

=
N−1

∑
j=0

ϕ j
1ut− j +ϕN

1 Xt−N . (7.5)

If we suppose that Xt is S2 with E(X2
t ) 6= 0, we see that

E





(

Xt −
N−1

∑
j=0

ϕ j
1ut− j

)2


= ϕ2N
1 E(X2

t−N) = ϕ2N
1 E(X2

t ) →
N→∞

0 ⇔ |ϕ1| < 1. (7.6)
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The series
∞
∑
j=0

ϕ j
1ut− j converges in q.m. to

Xt =
∞

∑
j=0

ϕ j
1ut− j ≡ (1−ϕ1B)−1ut =

1
1−ϕ1B

ut (7.7)

where

(1−ϕ1B)−1 =
∞

∑
j=0

ϕ j
1B j . (7.8)

Since
∞

∑
j=0

E|ϕ j
1ut− j| ≤ σ

∞

∑
j=0

|ϕ1| j =
σ

1−|ϕ1|
< ∞ (7.9)

when |ϕ1| < 1, the convergence is also a.s. The process Xt =
∞
∑
j=0

ϕ j
1ut− j is S2.

When |ϕ1| < 1, the difference equation

(1−ϕ1B)Xt = ut (7.10)

has a unique stationary solution which can be written

Xt =
∞

∑
j=0

ϕ j
1ut− j = (1−ϕ1B)−1ut . (7.11)

The latter is thus a causal MA(∞) process.
This condition is sufficient (but non necessary) for the existence of a unique stationary solution.

The stationarity condition is often expressed by saying that the polynomial ϕ(z) = 1−ϕ1z has all
its roots outside the unit circle |z| = 1:

1−ϕ1z∗ = 0 ⇔ z∗ =
1

ϕ1
(7.12)

where |z∗| = 1/|ϕ1| > 1 . In this case, we also have E(Xt−kut) = 0, ∀k ≥ 1. The same conclusion
holds if we consider the general process

Xt = µ̄ +ϕ1Xt−1 +ut . (7.13)

For the AR(p) process,

Xt = µ̄ +
p

∑
j=1

ϕ jXt− j +ut (7.14)

or
ϕ(B)Xt = µ̄ +ut , (7.15)
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the stationarity condition is the following:

if the polynomial ϕ(z) = 1−ϕ1z−·· ·−ϕ pzp has all its roots outside the unit circle,
the equation (7.14) has one and only one weakly stationary solution.

(7.16)

ϕ(z) is a polynomial of order p with no root equal to zero. It can be written in the form

ϕ(z) = (1−G1z)(1−G2z)...(1−Gpz) , (7.17)

so the roots of ϕ(z) are
z∗1 = 1/G1, . . . , z∗p = 1/Gp , (7.18)

and the stationarity condition have the equivalent form:

|G j| < 1, j = 1, . . . , p. (7.19)

The stationary solution can be written

Xt = ϕ(B)−1µ̄ +ϕ(B)−1ut = µ +ϕ(B)−1ut (7.20)

where

µ = µ̄/

(

1−
p

∑
j=1

ϕ j

)

, (7.21)

ϕ(B)−1 =
p

Π
j=1

(1−G jB)−1 =
p

Π
j=1

(

∞

∑
k=0

Gk
jB

k

)

=
p

∑
j=1

K j

1−G jB
(7.22)

and K1, . . . , Kp are constants (expansion in partial fractions). Consequently,

Xt = µ +
p

∑
j=1

(

K j

1−G jB

)

ut

= µ +
∞

∑
k=0

ψkut−k = µ +ψ(B)ut (7.23)

where ψk =
p

∑
j=1

K jG
k
j . Thus

E(Xt− jut) = 0, ∀ j ≥ 1. (7.24)

For the process AR(1) and AR(2), the stationarity conditions can be written as follows.

(a) AR(1) – For (1−ϕ1B)Xt = µ̄ +ut ,
|ϕ1| < 1 (7.25)
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(b) AR(2) – For (1−ϕ1B−ϕ2B2)Xt = µ̄ +ut ,

ϕ2 +ϕ1 < 1 (7.26)

ϕ2 −ϕ1 < 1 (7.27)

−1 < ϕ2 < 1 (7.28)

7.2. Mean, variance and autocovariances

Suppose:

a) the autoregressive process Xt is second-order stationary with
p

∑
j=1

ϕ j 6= 1

and
b) E(Xt− jut) = 0 , ∀ j ≥ 1 ,

(7.29)

i.e., we assume that Xt is a weakly stationary solution of the equation (7.14) such that E(Xt− jut) = 0,
∀ j ≥ 1.

By the stationarity assumption, we have: E(Xt) = µ, ∀t, hence

µ = µ̄ +
p

∑
j=1

ϕ jµ (7.30)

and

E(Xt) = µ = µ̄/

(

1−
p

∑
j=1

ϕ j

)

. (7.31)

For stationarity to hold, it is necessary that
p

∑
j=1

ϕ j 6= 1. Let us rewrite the process in the form

X̃t =
p

∑
j=1

ϕ jX̃t− j +ut (7.32)

where X̃t = Xt −µ , E(X̃t) = 0 . Then, for k ≥ 0,

X̃t+k =
p

∑
j=1

ϕ jX̃t+k− j +ut+k , (7.33)

E(X̃t+k X̃t) =
p

∑
j=1

ϕ jE(X̃t+k− jX̃t)+E(ut+kX̃t) , (7.34)

γ(k) =
p

∑
j=1

ϕ jγ(k− j)+E(ut+k X̃t) , (7.35)
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where
E(ut+k X̃t) = σ2, if k = 0,

= 0 , if k ≥ 1.
(7.36)

Thus

ρ(k) =
p

∑
j=1

ϕ jρ(k− j), k ≥ 1. (7.37)

These formulae are called the “Yule-Walker equations”. If we know ρ(0), . . . , ρ(p− 1), we can
easily compute ρ(k) for k ≥ p+1. We can also write the Yule-Walker equations in the form:

ϕ(B)ρ(k) = 0, for k ≥ 1, (7.38)

where B jρ(k) ≡ ρ(k− j) . To obtain ρ(1), . . . , ρ(p−1) for p > 1, it is sufficient to solve the linear
equation system:

ρ(1) = ϕ1 +ϕ2ρ(1)+ · · ·+ϕ pρ(p−1)

ρ(2) = ϕ1ρ(1)+ϕ2 + · · ·+ϕ pρ(p−2)

...

ρ(p−1) = ϕ1ρ(p−2)+ϕ2ρ(p−3)+ · · ·+ϕ pρ(1) (7.39)

where we use the identity ρ(− j) = ρ( j). The other autocorrelations may then be obtained by
recurrence:

ρ(k) =
p

∑
j=1

ϕ jρ(k− j), k ≥ p . (7.40)

To compute γ(0) =V ar(Xt), we solve the equation

γ(0) =
p

∑
j=1

ϕ jγ(− j)+E(ut X̃t)

=
p

∑
j=1

ϕ jγ( j)+σ2 (7.41)

hence, using γ( j) = ρ( j)γ(0),

γ(0)

[

1−
p

∑
j=1

ϕ jρ( j)

]

= σ2 (7.42)

and

γ(0) =
σ2

1−
p

∑
j=1

ϕ jρ ( j)
. (7.43)
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7.3. Special cases

1. AR(1) – If
X̃t = ϕ1X̃t−1 +ut (7.44)

we have:

ρ(1) = ϕ1 , (7.45)

ρ(k) = ϕ1ρ(k−1) , for k ≥ 1 , (7.46)

ρ(2) = ϕ1ρ(1) = ϕ2
1 , (7.47)

ρ(k) = ϕk
1, k ≥ 1 , (7.48)

γ(0) = Var(Xt) =
σ2

1−ϕ2
1

. (7.49)

These is no constraint on ρ(1), but there are constraints on ρ(k) for k ≥ 2.

2. AR(2) – If
Xt = ϕ1X̃t−1 +ϕ2X̃t−2 +ut , (7.50)

we have:

ρ(1) = ϕ1 +ϕ2ρ(1) , (7.51)

ρ(1) =
ϕ1

1−ϕ2
, (7.52)

ρ(2) =
ϕ2

1

1−ϕ2
+ϕ2 =

ϕ2
1 +ϕ2 (1−ϕ2)

1−ϕ2
, (7.53)

ρ(k) = ϕ1ρ(k−1)+ϕ2ρ(k−2), for k ≥ 2 . (7.54)

Constraints on ρ(1) and ρ(2) are entailed by the stationarity of the AR(2) model:

|ρ(1)| < 1, |ρ(2)| < 1 , (7.55)

ρ(1)2 <
1
2
[1+ρ(2)] ; (7.56)

see Box and Jenkins (1976, p. 61).

7.4. Explicit form for the autocorrelations

The autocorrelations of an AR(p) process satisfy the equation

ρ(k) =
p

∑
j=1

ϕ jρ(k− j), k ≥ 1, (7.57)
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where ρ(0) = 1 and ρ(−k) = ρ(k) , or equivalently

ϕ(B)ρ(k) = 0 , k ≥ 1. (7.58)

The autocorrelations can be obtained by solving the homogeneous difference equation (7.57).
The polynomial ϕ(z) has m distinct non-zero roots z∗1, . . . , z∗m (where 1 ≤ m ≤ p) with multi-

plicities p1, . . . , pm (where
m

∑
j=1

p j = p), so that ϕ(z) can be written

ϕ(z) = (1−G1z)p1(1−G2z)p2 · · ·(1−Gmz)pm (7.59)

where G j = 1/z∗j , j = 1, . . . , m. The roots are real or complex numbers. If z∗j is a complex (non real)
root, its conjugate z̄∗j is also a root. Consequently, the solutions of equation (7.57) have the general
form

ρ(k) =
m

∑
j=1

(

p j−1

∑
ℓ=0

A jℓk
ℓ

)

Gk
j, k ≥ 1, (7.60)

where the A jℓ are (possibly complex) constants which can be determined from the values p autocor-
relations. We can easily find ρ(1), . . . , ρ(p) from the Yule-Walker equations.

If we write G j = r je
iθ j , where i =

√
−1 while r j and θ j are real numbers (r j > 0),we see that

ρ(k) =
m

∑
j=1

(

p j−1

∑
ℓ=0

A jℓ kℓ

)

rk
je

iθ jk

=
m

∑
j=1

(

p j−1

∑
ℓ=0

A jℓ kℓ

)

rk
j [cos(θ jk)+ i sin(θ jk)]

=
m

∑
j=1

(

p j−1

∑
ℓ=0

A jℓ kℓ

)

rk
j cos(θ jk). (7.61)

By stationarity, 0 < |G j| = r j < 1 so that ρ(k) → 0 when k → ∞. The autocorrelations decrease at
an exponential rate with oscillations.

7.5. MA(∞) representation of an AR(p) process

We have seen that a weakly stationary process which satisfies the equation

ϕ(B)X̃t = ut (7.62)

where ϕ(B) = 1−ϕ1B−·· ·−ϕ pBp, can be written as

X̃t = ψ(B)ut (7.63)
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with

ψ(B) = ϕ(B)−1 =
∞

∑
j=0

ψ jB
j (7.64)

To compute the coefficients ψ j, it is sufficient to note that

ϕ(B)ψ(B) = 1. (7.65)

Setting ψ j = 0 for j < 0, we see that

(

1−
p

∑
k=1

ϕkBk

)(

∞

∑
j=−∞

ψ jB
j

)

=
∞

∑
j=−∞

ψ j

(

B j −
p

∑
k=1

ϕkB j+k

)

=
∞

∑
j=−∞

(

ψ j −
p

∑
k=1

ϕkψ j−k

)

B j =
∞

∑
j=−∞

ψ̃ j B j = 1. (7.66)

Thus ψ̃ j = 1, if j = 0, and ψ̃ j = 0, if j 6= 0. Consequently,

ϕ(B)ψ j = ψ j −
p

∑
k=1

ϕkψ j−k = 1 , if j = 0

= 0 , if j 6= 0,
(7.67)

where Bkψ j ≡ ψ j−k . Since ψ j = 0 for j < 0 , we see that:

ψ0 = 1 ,

ψ j =
p

∑
k=1

ϕkψ j−k , for j ≥ 1. (7.68)

More explicitly,

ψ0 = 1 ,

ψ1 = ϕ1ψ0 = ϕ1 ,

ψ2 = ϕ1ψ1 +ϕ2ψ0 = ϕ2
1 +ϕ2 ,

ψ3 = ϕ1ψ2 +ϕ2ψ1 +ϕ3 = ϕ3
1 +2 ϕ2ϕ1 +ϕ3 ,

...

ψ p =
p

∑
k=1

ϕkψ j−k ,

ψ j =
p

∑
k=1

ϕkψ j−k, j ≥ p+1 . (7.69)

Under the stationarity condition i.e., the roots of ϕ(z) = 0 are outside the unit circle], the coefficients
ψ j decline at an exponential rate as j → ∞, possibly with oscillations.
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Given the representation

X̃t = ψ(B)ut =
∞

∑
j=0

ψ jut− j , (7.70)

we can easily compute the autocovariances and autocorrelations of Xt :

Cov(Xt , Xt+k) = σ2
∞

∑
j=0

ψ jψ j+|k| , (7.71)

Corr(Xt , Xt+k) =

(

∞

∑
j=0

ψ jψ j+|k|

)

/

(

∞

∑
j=0

ψ2
j

)

. (7.72)

However, this has the drawback of requiring one to compute limits of series.

7.6. Partial autocorrelations

The Yule-Walker equations allow one to determine the autocorrelations from the coefficients
ϕ1, . . . , ϕ p. In the same way we can determine ϕ1, . . . , ϕ p from the autocorrelations

ρ(k) =
p

∑
j=1

ϕ jρ(k− j), k = 1, 2, 3, ... (7.73)

Taking into account the fact that ρ(0) = 1 and ρ(−k) = ρ(k), we see that











1 ρ (1) ρ (2) . . . ρ (p−1)
ρ (1) 1 ρ (1) . . . ρ (p−2)

...
...

...
...

ρ (p−1) ρ (p−2) ρ (p−3) . . . 1





















ϕ1
ϕ2
...

ϕ p











=











ρ (1)
ρ (2)

...
ρ (p)











(7.74)

or, equivalently,
R(p) ϕ̄(p) = ρ̄(p) (7.75)

where

R(p) =











1 ρ (1) ρ (2) . . . ρ (p−1)
ρ (1) 1 ρ (1) . . . ρ (p−2)

...
...

...
...

ρ (p−1) ρ (p−2) ρ (p−3) . . . 1











, (7.76)

ρ̄(p) =











ρ (1)
ρ (2)

...
ρ (p)











, ϕ̄(p) =











ϕ1
ϕ2
...

ϕ p











. (7.77)
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Consider now the sequence of equations

R(k) ϕ̄(k) = ρ̄(k), k = 1, 2, 3, ... (7.78)

where

R(k) =











1 ρ (1) ρ (2) . . . ρ (k−1)
ρ (1) 1 ρ (1) . . . ρ (k−2)

...
...

...
...

ρ (k−1) ρ (k−2) ρ (k−3) . . . 1











, (7.79)

ρ̄(k) =











ρ (1)
ρ (2)

...
ρ (k)











, ϕ̄(k) =











ϕ(1 |k)
ϕ(2 |k)

...
ϕ(k |k)











, k = 1, 2, 3, ... (7.80)

so that we can solve for ϕ̄(k):
ϕ̄(k) = R(k)−1 ϕ̄(k) . (7.81)

[If σ2 > 0, we can show that R(k)−1 exists, ∀k ≥ 1]. On using (7.75), we see easily that:

ϕk(k) = 0 for k ≥ p+1 . (7.82)

The coefficients ϕkk are called the lag- k partial autocorrelations.
In particular,

ϕ1( |1) = ρ(1), (7.83)

ϕ2(2 |2) =

∣

∣

∣

∣

1 ρ(1)
ρ(1) ρ(2)

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ(1)
ρ(1) 1

∣

∣

∣

∣

=
ρ(2)−ρ(1)2

1−ρ(1)2 , (7.84)

ϕ3(3 |3) =

∣

∣

∣

∣

∣

∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣

∣

∣

∣

∣

∣

. (7.85)

The partial autocorrelations may be computed using the following recursive formulae:

ϕ(k +1 |k +1) =

ρ (k +1)−
k

∑
j=1

ϕ( j |k)ρ (k +1− j)

1−
k

∑
j=1

ϕ( j |k)ρ ( j)

, (7.86)
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ϕ( j |k +1) = ϕ( j |k)−ϕ(k +1 |k +1)ϕ(k +1− j |k) , j = 1, 2, . . . , k. (7.87)

Given ρ(1), . . . , ρ(k + 1) and ϕ1(k), . . . , ϕk(k), we can compute ϕ j(k + 1) , j = 1, . . . , k + 1. The
expressions (7.86) - (7.87) are called the Durbin-Levinson formulae; see Durbin (1960) and Box and
Jenkins (1976, pp. 82-84).

8. Mixed processes

Consider a process {Xt : t ∈ Z} which satisfies the equation:

Xt = µ̄ +
p

∑
j=1

ϕ j Xt− j +ut −
q

∑
j=1

θ j ut− j (8.1)

where {ut : t ∈ Z} ∼ WN(0, σ2) . Using operational notation, this can written

ϕ(B)Xt = µ̄ +θ(B)ut . (8.2)

8.1. Stationarity conditions

If the polynomial ϕ(z) = 1−ϕ1z−·· ·−ϕ pzp has all its roots outside the unit circle, the equation
(8.1) has one and only one weakly stationary solution, which can be written:

Xt = µ +
θ (B)

ϕ (B)
ut = µ +

∞

∑
j=0

ψ jut− j (8.3)

where

µ = µ̄/ϕ(B) = µ̄/(1−
p

∑
j=1

ϕ j) , (8.4)

θ (B)

ϕ (B)
≡ ψ(B) =

∞

∑
j=0

ψ jB
j . (8.5)

The coefficients ψ j are obtained by solving the equation

ϕ(B)ψ(B) = θ(B). (8.6)

In this case, we also have:
E(Xt− j ut) = 0, ∀ j ≥ 1. (8.7)

The ψ j coefficients may be computed in the following way (setting θ 0 = −1):

(

1−
p

∑
k=1

ϕkBk

)(

∞

∑
j=0

ψ jB
j

)

= 1−
q

∑
j=1

θ jB
j = −

q

∑
j=1

θ jB
j (8.8)
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hence
ϕ(B)ψ j = −θ j for j = 0, 1, . . . , q

= 0 for j ≥ q+1,
(8.9)

where ψ j = 0, for j < 0 . Consequently,

ψ j =
p

∑
k=1

ϕkψ j−k −θ j, for j = 0, 1, . . . , q

=
p

∑
k=1

ϕkψ j−k , for j ≥ q+1,
(8.10)

and

ψ0 = 1 ,

ψ1 = ϕ1ψ0 −θ 1 = ϕ1 −θ 1 ,

ψ2 = ϕ1ψ1 +ϕ2ψ0 −θ 2 = ϕ1ψ1 +ϕ2 −θ 2 = ϕ2
1 −ϕ1θ 1 +ϕ2 −θ 2 ,

...

ψ j =
p

∑
k=1

ϕkψ j−k, j ≥ q+1 . (8.11)

The ψ j coefficients behave like the autocorrelations of an AR(p) process, except for the initial
coefficients ψ1, . . . , ψq.

8.2. Autocovariances and autocorrelations

Suppose:

a) the process Xt is second-order stationary with
p

∑
j=1

ϕ j 6= 1 ;

b) E(Xt− jut) = 0 , ∀ j ≥ 1 .
(8.12)

By the stationarity assumption,
E(Xt) = µ, ∀t, (8.13)

hence

µ = µ̄ +
p

∑
j=1

ϕ jµ (8.14)

and

E(Xt) = µ = µ̄/

(

1−
p

∑
j=1

ϕ j

)

. (8.15)
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The mean is the same as in the case of a pure AR(p) process. The MA(q) component of the model
has no effect on the mean. Let us now rewrite the process in the form

X̃t =
p

∑
j=1

ϕ jX̃t− j +ut −
q

∑
j=1

θ jut− j (8.16)

where X̃t = Xt −µ . Consequently,

X̃t+k =
p

∑
j=1

ϕ jX̃t+k− j +ut+k −
q

∑
j=1

θ jut+k− j , (8.17)

E(X̃t X̃t+k) =
p

∑
j=1

ϕ jE(X̃t X̃t+k− j)+E(X̃tut+k)−
q

∑
j=1

θ jE(X̃tut+k− j) , (8.18)

γ(k) =
p

∑
j=1

ϕ jγ(k− j)+ γxu(k)−
q

∑
j=1

θ jγxu(k− j) , (8.19)

where
γxu(k) = E(X̃tut+k) = 0 , if k ≥ 1 ,

6= 0 , if k ≤ 0 ,
γxu(0) = E(X̃tut) = σ2.

(8.20)

For k ≥ q+1,

γ(k) =
p

∑
j=1

ϕ jγ(k− j) , (8.21)

ρ(k) =
p

∑
j=1

ϕ jρ(k− j) . (8.22)

The variance is given by

γ(0) =
p

∑
j=1

ϕ jγ( j)+σ2 −
q

∑
j=1

θ jγxu(− j) , (8.23)

hence

γ(0) =

[

σ2 −
q

∑
j=1

θ jγxu(− j)

]

/

[

1−
p

∑
j=1

ϕ jρ( j)

]

. (8.24)

In operational notation, the autocovariances satisfy the equation

ϕ(B)γ(k) = θ(B)γxu(k) , k ≥ 0, (8.25)

where γ(−k) = γ(k) , B jγ(k) ≡ γ(k− j) and B jγxu(k) ≡ γxu(k− j) . In particular,

ϕ(B)γ(k) = 0 , for k ≥ q+1, (8.26)
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ϕ(B)ρ(k) = 0 , for k ≥ q+1. (8.27)

To compute the autocovariances, we can solve the equations (8.19) for k = 0, 1, . . . , p, and then
apply (8.21). The autocorrelations of an process ARMA(p, q) process behave like those of an
AR(p) process, except that initial values are modified.

Example 8.1 Consider the ARMA(1, 1) model:

Xt = µ̄ +ϕ1Xt−1 +ut −θ 1ut−1 , |ϕ1| < 1 (8.28)

X̃t −ϕ1 X̃t−1 = ut −θ 1ut−1 (8.29)

where X̃t = Xt −µ . We have

γ(0) = ϕ1γ(1)+ γxu(0)−θ 1γxu(−1), (8.30)

γ(1) = ϕ1γ(0)+ γxu(1)−θ 1γxu(0) (8.31)

and

γxu(1) = 0, (8.32)

γxu(0) = σ2, (8.33)

γxu(−1) = E(X̃tut−1) = ϕ1E(X̃t−1ut−1)+E(utut−1)−θ 1E(u2
t−1)

= ϕ1γxu(0)−θ 1σ2 = (ϕ1 −θ 1)σ2 (8.34)

Thus,

γ(0) = ϕ1γ(1)+σ2 −θ 1(ϕ1 −θ 1)σ2

= ϕ1γ(1)+ [1−θ 1(ϕ1 −θ 1)]σ2, (8.35)

γ(1) = ϕ1γ(0)−θ 1σ2

= ϕ1{ϕ1γ(1)+ [1−θ 1(ϕ1 −θ 1)]σ2}−θ 1σ2 , (8.36)

hence

γ(1) = {ϕ1[1−θ 1(ϕ1 −θ 1)]−θ 1}σ2/(1−ϕ2
1)

= {ϕ1 −θ 1ϕ2
1 +ϕ1θ 2

1 −θ 1}σ2/(1−ϕ2
1)

= (1−θ 1ϕ1)(ϕ1 −θ 1)σ2/(1−ϕ2
1) . (8.37)

Similarly,

γ(0) = ϕ1γ(1)+ [1−θ 1(ϕ1 −θ 1)]σ2

= ϕ1
(1−θ 1ϕ1)(ϕ1 −θ 1)σ2

1−ϕ2
1

+[1−θ 1(ϕ1 −θ 1)]σ2
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=
σ2

1−ϕ2
1

{ϕ1(1−θ 1ϕ1)(ϕ1 −θ 1)+(1−ϕ2
1)[1−θ 1(ϕ1 −θ 1)]}

=
σ2

1−ϕ2
1

{ϕ2
1 −θ 1ϕ3

1 +ϕ2
1θ 2

1 −ϕ1θ 1 +1−ϕ2
1 −θ 1ϕ1 +θ 1ϕ3

1 +θ 2
1 −ϕ2

1θ 2
1}

=
σ2

1−ϕ2
1

{1−2 ϕ1θ 1 +θ 2
1} . (8.38)

Thus,

γ(0) = (1−2 ϕ1θ 1 +θ 2
1)σ2/(1−ϕ2

1) , (8.39)

γ(1) = (1−θ 1ϕ1)(ϕ1 −θ 1)σ2/(1−ϕ2
1) , (8.40)

γ(k) = ϕ1γ(k−1), for k ≥ 2 . (8.41)

9. Invertibility

A second-order stationary AR(p) process in MA(∞) form. Similarly, any second-order stationary
ARMA(p, q) process can also be expressed as MA(∞) process. By analogy, it is natural to ask the
question: can an MA(q) or ARMA(p, q) process be represented in a autoregressive form?

Consider the MA(1) process

Xt = ut −θ 1ut−1, t ∈ Z , (9.1)

where {ut : t ∈ Z} ∼ WN(0, σ2) and σ2 > 0 . We see easily that

ut = Xt +θ 1ut−1

= Xt +θ 1(Xt−1 +θ 1ut−2)

= Xt +θ 1Xt−1 +θ 2
1ut−2

=
n

∑
j=0

θ j
1Xt− j +θ n+1

1 ut−n−1 (9.2)

and

E





(

n

∑
j=0

θ j
1Xt− j −ut

)2


= E

[

(

θ n+1
1 ut−n−1

)2
]

= θ 2(n+1)
1 σ2 →

n→∞
0 (9.3)

provided |θ 1| < 1. Consequently, the series
n

∑
j=0

θ j
1Xt− j converges in q.m. to ut if |θ 1| < 1. In other

words, when |θ 1| < 1, we can write

∞

∑
j=0

θ j
1Xt− j = ut , t ∈ Z , (9.4)
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or
(1−θ 1B)−1Xt = ut , t ∈ Z (9.5)

where (1− θ 1B)−1 =
∞
∑
j=0

θ j
1B j. The condition |θ 1| < 1 is equivalent to having the roots of the

equation 1−θ 1z = 0 outside the unit circle. If θ 1 = 1,

Xt = ut −ut−1 (9.6)

and the series

(1−θ 1B)−1Xt =
∞

∑
j=0

θ j
1Xt− j =

∞

∑
j=0

Xt− j (9.7)

does not converge, for E(X2
t− j) does not converge to 0 as j → ∞. Similarly, if θ 1 = −1,

Xt = ut +ut−1 (9.8)

and the series

(1−θ 1B)−1Xt =
∞

∑
j=0

(−1) jXt− j (9.9)

does not converge either. These models are not invertible.

Theorem 9.1 INVERTIBILITY CONDITION FOR A MA PROCESS. Let {Xt : t ∈ Z) be a second-

order stationary process such that

Xt = µ +θ(B)ut (9.10)

where θ(B) = 1−θ 1B−·· ·−θ qBq. Then the process Xt satisfies an equation of the form

∞

∑
j=0

φ̄ jXt− j = µ̄ +ut (9.11)

iff the roots of the polynomial θ(z) are outside the unit circle. Further, when the representation

(9.11) exists, we have:

φ̄(B) = θ(B)−1, µ̄ = θ(B)−1µ = µ /
(

1−
q

∑
j=1

θ j

)

. (9.12)

Corollary 9.2 INVERTIBILITY CONDITON FOR AN ARMA PROCESS. Let {Xt : t ∈ Z} be a

second-order stationary ARMA process that satisfies the equation

ϕ(B)Xt = µ̄ +θ(B)ut (9.13)

where ϕ(B) = 1−ϕ1B−·· ·−ϕ pBp and θ(B) = 1−θ 1B−·· ·−θ qBq. Then the process Xt satisfies

an equation of the form
∞

∑
j=0

φ̄ jXt− j =
=
µ +ut (9.14)
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iff the roots du polynomial θ(z) are outside the unit circle. Further, when the representation (9.14)

exists, we have:

φ̄(B) = θ(B)−1ϕ(B) ,
=
µ = θ(B)−1µ̄ = µ /

(

1−
q

∑
j=1

θ j

)

. (9.15)

10. Wold representation

We have seen that all second-order ARMA processes can be written in a causal MA(∞) form. This
property indeed holds for all second-order stationary processes.

Theorem 10.1 WOLD REPRESENTATION OF WEAKLY STATIONARY PROCESSES. Let {Xt , t ∈Z}
be a second-order stationary process such that E(Xt) = µ . Then Xt can be written in the form

Xt = µ +
∞

∑
j=0

ψ jut− j + vt (10.1)

where {ut : t ∈ Z} ∼ WN(0, σ2) ,
∞
∑
j=0

ψ2
j < ∞ , E(utXt− j) = 0, ∀ j ≥ 1, and {vt : t ∈ Z} is a

deterministic process such that E(vt) = 0 and E(usvt) = 0, ∀s, t. Further, if σ2 > 0, the sequences

{ψ j} and {ut} are unique, and

ut = X̃t −P(X̃t |X̃t−1, X̃t−2, ...) (10.2)

where X̃t = Xt −µ.

PROOF. See Anderson (1971, Section 7.6.3, pp. 420-421) and Hannan (1970, Chapter III, Section
2, Theorem 2, pp. 136-137).

If E(u2
t ) > 0 in Wold representation, we say the process Xt is regular. vt is called the determin-

istic component of the process while
∞
∑
j=0

ψ jut− j is its indeterministic component. When vt = 0, ∀t,

the process Xt is said to be strictly indeterministic.

Corollary 10.2 FORWARD WOLD REPRESENTATION OF WEAKLY STATIONARY PROCESSES.

Let {Xt : t ∈ Z} be second-order a stationary process such that E(Xt) = µ . Then Xt can be written

in the form

Xt = µ +
∞

∑
j=0

ψ̄ jūt+ j + v̄t (10.3)

where {ūt : t ∈ Z} ∼ WN(0, σ̄2) ,
∞
∑
j=0

ψ̄2
j < ∞ , E(ūtXt+ j) = 0 , ∀ j ≥ 1, and {v̄t : t ∈ Z} is a

deterministic (with respect to v̄t+1, v̄t+2 , ... ) such that E(v̄t) = 0 and E(ūsv̄t) = 0, ∀s, t. Further, if
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σ̄2 > 0, the sequences {ψ̄ j} and {ūt} are uniquely defined, and

ūt = X̃t −P(X̃t |X̃t+1, X̃t+2, ...) (10.4)

where X̃t = Xt −µ .

PROOF. The result follows on applying Wold theorem to the process Yt ≡ X−t which is also second-
order stationary.
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