Jean-Marie Dufour March 10, 2008

McGill University ECN 467 Econ 467D2: Econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

- 30 points 1. Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:
 - (a) $\gamma(0) = Var(X_t)$ et $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$;
 - (b) $|\gamma(k)| \leq \gamma(0)$, $\forall k \in \mathbb{Z}$;
 - (c) the function $\gamma(k)$ is positive semi-definite.
- 40 points 2. Consider the following models:

$$X_t = 10 + 0.7 X_{t-1} - 0.2 X_{t-2} + u_t \tag{0.1}$$

where $\{u_t : t \in \mathbb{Z}\}\$ is an *i.i.d.* N(0, 1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$; ii. $\gamma(k)$, k = 1, ..., 8;
 - iii. $\rho(k), k = 1, 2, \dots, 8$.
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .

- (f) Compute the first four partial autocorrelations of X_t .
- 30 points 3. Let X_1, X_2, \ldots, X_T be a time series.
 - (a) Define:
 - i. the sample autocorrelations for this series;
 - ii. the partial autocorrelations for this series.
 - (b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
 - i. under the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.);
 - ii. under the hypothesis that the process follows a moving average of finite order.
 - (c) Describe how you would identify the process described in equation (0.1) in question 2.