Jean-Marie Dufour February 18, 2009

McGill University ECN 706 Special topics in econometrics Mid-term exam

No documentation allowed Time allowed: 2 hours

30 points 1. Provide brief answers to the following questions (maximum of 1 page per question).

- (a) Explain the difference between the "level" of a test and its "size".
- (b) Explain the difference between the "level" of a confidence set and its "size".
- (c) Discuss the link between tests and confidence sets: how confidence sets can be derived from tests, and vice-versa.
- (d) Explain what the Bahadur-Savage theorem entails for testing in nonparametric models.
- (e) Suppose we wish to test the hypothesis

$$H_0: X_1, \ldots, X_n$$
 are independent random variables
each with a distribution symmetric about zero. (1)

What condition should this test satisfy to have level 0.05.

35 points 2. Consider the standard simultaneous equations model:

$$y = Y\beta + X_1\gamma + u, \qquad (2)$$

$$Y = X_1 \Pi_1 + X_2 \Pi_2 + V, (3)$$

where y and Y are $T \times 1$ and $T \times G$ matrices of endogenous variables, X_1 and X_2 are $T \times k_1$ and $T \times k_2$ matrices of exogenous variables, β and γ are $G \times 1$ and $k_1 \times 1$ vectors of unknown coefficients, Π_1 and Π_2 are $k_1 \times G$ and $k_2 \times G$ matrices of

unknown coefficients, $u = (u_1, \ldots, u_T)'$ is a $T \times 1$ vector of structural disturbances, and $V = [V_1, \ldots, V_T]'$ is a $T \times G$ matrix of reduced-form disturbances,

$$X = [X_1, X_2]$$
 is a full-column rank $T \times k$ matrix (4)

where $k = k_1 + k_2$. and

$$u \text{ and } X \text{ are independent;}$$
 (5)

$$u \sim N \left[0, \, \sigma_u^2 \, I_T \right] \,. \tag{6}$$

- (a) When is the parameter β identified? Explain your answer.
- (b) When is the parameter β weakly identified? Explain your answer.
- (c) Suppose we wish to test the hypothesis

$$H_0(\beta_0): \beta = \beta_0. \tag{7}$$

- i. Describe the standard Wald-type test for $H_0(\beta_0)$ based on two-stage-least-least squares, and describe its properties.
- ii. Describe an identification-robust procedure for testing $H_0(\beta_0)$.
- iii. Discuss the properties of the latter procedure if the model for Y is in fact

$$Y = X_1 \Pi_1 + X_2 \Pi_2 + X_3 \Pi_3 + V \tag{8}$$

where X_3 is a $T \times k_3$ matrix of fixed explanatory variables.

20 points 3. Consider the following simplified equilibrium model:

$$D_t = \alpha + 2p_t + u_{1t},$$

$$S_t = c + u_{2t},$$

$$Q_t = D_t = S_t , t = 1, \dots, T$$

where D_t is the demand for a product, S_t the supply for the same product, and Q_t the quantity produced and sold. We suppose that the vectors $(u_{1t}, u_{2t})', t = 1, ..., T$, are independent and $N[0, I_2]$.

- (a) Find the reduced form of this model.
- (b) For which parameters is the vector $Q = (Q_1, \ldots, Q_T)'$ exogenous? Justify your answer.
- (c) For which parameters is the vector $p = (p_1, \ldots, p_T)'$ exogenous? Justify your answer.

- (d) Are the variables Q_t and p_t simultaneous?
- 15 points 4. Describe the main statistical problems as decision problems.
 - (a) Explain the difference between a *nonrandomized* decision rule and a *randomized* decision rule.
 - (b) Define the risk function for each one of these two types of rule.
 - (c) When is a decision rule *admissible*?