Solution to Econ 763 Midterm (Winter 2017)

Jean-Marie Dufour* and Vinh Nguyen ${ }^{\dagger}$

2017-03-08

Question 1 [20 points]

(a) If a random variable has finite second moments, it has finite moments at all highest orders.
False. A Student's t-distribution with 3 degrees of freedom has a finite second moment but no moments of order 3 or above.
(b) Any stationary process of order 5 is also stationary of order 2 .

True. Suppose that $\left\{X_{t}\right\}_{t \in T}$ satisfies stationarity of order 5. That is,
(i) $E\left(\left|X_{t}\right|^{5}\right)<\infty$, for all $t \in T$;
(ii) $E\left[X_{t_{1}}^{m_{1}} \ldots X_{t_{n}}^{m_{n}}\right]=E\left[X_{t_{1}+k}^{m_{1}} \ldots X_{t_{n}+k}^{m_{n}}\right]$ for any $k \geq 0$, any subset $\left\{t_{1}, \ldots, t_{n}\right\} \in T^{n}$ and all non-negative integers m_{1}, \ldots, m_{n} s.t. $m_{1}+m_{2}+\cdots+m_{n} \leq 5$.

By Jensen's inequality and the convexity of the map $z \mapsto z^{5 / 2}$, we have

$$
\left[E\left(\left|X_{t}\right|^{2}\right)\right]^{5 / 2} \leq E\left[\left(\left|X_{t}\right|^{2}\right)^{5 / 2}\right]=E\left(\left|X_{t}\right|^{5}\right) \stackrel{(\mathrm{i})}{<} \infty
$$

implying that $E\left(\left|X_{t}\right|^{2}\right)<\infty$. Next, for any $k \geq 0$, any subset $\left\{t_{1}, \ldots, t_{n}\right\} \in T^{n}$ and all non-negative integers m_{1}, \ldots, m_{n} s.t. $m_{1}+m_{2}+\cdots+m_{n} \leq \mathbf{2}$, it is trivially true that $m_{1}+m_{2}+\cdots+m_{n} \leq \mathbf{5}$. Therefore, by (ii) above, we have $E\left[X_{t_{1}}^{m_{1}} \ldots X_{t_{n}}^{m_{n}}\right]=$ $E\left[X_{t_{1}+k}^{m_{1}} \ldots X_{t_{n}+k}^{m_{n}}\right]$.
(c) Any strictly stationary process is in L_{2}.

False. Suppose that $\left\{y_{t}\right\}_{t=1}^{\infty}$ is a sequence of i.i.d. random variables each of which follows a Student's t-distribution with 2 degrees of freedom. The i.i.d. assumption implies strict stationarity. Yet, each y_{t} does not possess a finite second moment.

[^0](d) The Wold theorem holds for finite-order moving average processes but not autoregressive processes.
False. The theorem holds for all second-order stationary processes which do include moving average processes and which do not exclude autoregressive processes.
(e) Non-invertible moving processes have no covariance generating function.

False. For example, take $X_{t}=u_{t}-2 u_{t-1}$ where $u_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$. Then, $\left\{X_{t}\right\}$ is not invertible but has covariance generating function $z \mapsto \sigma^{2}(1-2 z)\left(1-2 z^{-1}\right)$.

Question 2 [20 points]

Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:
(a) $\gamma(0)=\operatorname{Var}\left(X_{t}\right)$ and $\gamma(k)=\gamma(-k)$, for all $k \in \mathbb{Z}$;
(b) $|\gamma(k)| \leq \gamma(0), \forall k \in \mathbb{Z}$;
(c) the function $\gamma(k)$ is positive semi-definite.

Proof.
(a) By definition, we have $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\gamma(t-s)$ for all $s, t \in T$. By the second-order stationarity, the autocovariance function γ is well-defined. In particular,

$$
\gamma(0)=\operatorname{Cov}\left(X_{t}, X_{t}\right)=\operatorname{Var}\left(X_{t}\right)
$$

and (s below is any integer)

$$
\gamma(k)=\operatorname{Cov}\left(X_{s}, X_{s+k}\right)=\operatorname{Cov}\left(X_{s+k}, X_{s}\right)=\gamma(s-(s+k))=\gamma(-k)
$$

(b) That $|\gamma(k)| \leq \gamma(0)$ is a consequence of the Cauchy-Schwarz inequality. We provide here a direct proof for completeness. With a fixed $k \in \mathbb{Z}$ and any $z \in \mathbb{R}$, we have

$$
0 \leq \operatorname{Var}\left(X_{s}-z X_{s+k}\right)=\operatorname{Var}\left(X_{s}\right)-2 z \operatorname{Cov}\left(X_{s}, X_{s+k}\right)+z^{2} \operatorname{Var}\left(X_{s+k}\right)
$$

The rightmost expression above is a quadratic polynomial in z so it is nonnegative for all real z iff the discriminant is nonpositive:

$$
0 \leq\left[-2 \operatorname{Cov}\left(X_{s}, X_{s+k}\right)\right]^{2}-4 \operatorname{Var}\left(X_{s}\right) \operatorname{Var}\left(X_{s+k}\right) \Longleftrightarrow \gamma(k)^{2} \leq \gamma(0)^{2}
$$

from which $|\gamma(k)| \leq|\gamma(0)|=\gamma(0)$ follows immediately.
(c) We have to show that: for any positive integer N and for all vectors $a=\left(a_{1}, \ldots, a_{N}\right)^{\prime} \in$ \mathbb{R}^{N} and $\tau=\left(t_{1}, \ldots, t_{N}\right)^{\prime} \in T^{N}$, it holds that $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} \gamma\left(t_{i}-t_{j}\right) \geq 0$. This follows by considering $Z \equiv a_{1} X_{t_{1}}+\cdots a_{N} X_{t_{N}}$. We have

$$
\begin{gathered}
0 \leq \operatorname{Var}(Z)=\operatorname{Cov}(Z, Z)=\operatorname{Cov}\left(\sum_{i=1}^{N} a_{i} X_{t_{i}}, \sum_{j=1}^{N} a_{j} X_{t_{j}}\right) \\
=\sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{Cov}\left(a_{i} X_{t_{i}}, a_{j} X_{t_{j}}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} \operatorname{Cov}\left(X_{t_{i}}, X_{t_{j}}\right)=\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} \gamma\left(t_{i}-t_{j}\right) .
\end{gathered}
$$

Question 3 [60 points]

Consider the following models:

$$
\begin{equation*}
X_{t}=10+u_{t}-0.75 u_{t-1}+0.125 u_{t-2} \tag{1}
\end{equation*}
$$

where $\left\{u_{t}: t \in \mathbb{Z}\right\}$ is an i.i.d. $N(0,1)$ sequence. Answer the following questions.
(a) Is this model stationary? Why?

Answer. Stationarity is automatic for all finite-order MA processes.
(b) In this model invertible? Why?

Answer. Write the process in (1) as

$$
X_{t}=\mu+u_{t}-\theta_{1} u_{t-1}-\theta_{2} u_{t-2}, \quad \mu=10, \quad \theta_{1}=\frac{3}{4}, \quad \theta_{2}=-\frac{1}{8} .
$$

This MA(2) process is invertible because $\theta(z)=1-\theta_{1} z-\theta_{2} z^{2}$ has 2 roots: 2 and 4 , which are both outside the unit circle.
(c) Compute:
i. $E\left(X_{t}\right)$;
ii. $\gamma(k), k=1, \ldots, 8$;
iii. $\rho(k), k=1, \ldots, 8$.

Answer. We have:
i. $E\left(X_{t}\right)=\mu=10$.
ii. We have

$$
\begin{aligned}
& \gamma(0)=\operatorname{Var}\left(X_{t}\right)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)=\frac{101}{64} \\
& \gamma(1)=\sigma^{2}\left(-\theta_{1}+\theta_{1} \theta_{2}\right)=\frac{-27}{32} \\
& \gamma(2)=\sigma^{2}\left(-\theta_{2}\right)=\frac{1}{8} \\
& \gamma(3)=\gamma(4)=\cdots=\gamma(8)=0
\end{aligned}
$$

iii. It follows that

$$
\begin{aligned}
\rho(0) & =1 \\
\rho(1) & =\frac{\gamma(1)}{\gamma(0)}=-\frac{54}{101} \\
\rho(2) & =\frac{\gamma(2)}{\gamma(0)}=\frac{8}{101} \\
\rho(3) & =\rho(4)=\cdots=\rho(8)=0
\end{aligned}
$$

(d) $\operatorname{Graph} \rho(k), k=1, \ldots, 8$.

Answer.

(e) Find the coefficients of $u_{t}, u_{t-1}, u_{t-2}, u_{t-3}$, and u_{t-4} in the moving average representation of X_{t}.

Answer. This is trivial for an MA(2) process: the coefficients of $u_{t}, u_{t-1}, u_{t-2}, u_{t-3}$, and u_{t-4}, respectively, are $1,-\frac{3}{4}, \frac{1}{8}, 0$, and 0 .
(f) Find the autocovariance generating function of X_{t}.

Answer. The autocovariance generating function is

$$
\gamma_{x}(z)=1^{2} \theta(z) \theta(1 / z)=\frac{\left(8-6 z+z^{2}\right)\left(1-6 z+8 z^{2}\right)}{64 z^{2}}
$$

(g) Find and graph the spectral density of X_{t}.

Answer. The spectral density is

$$
f_{x}(\omega)=\frac{1^{2}}{2 \pi} \theta\left(e^{i \omega}\right) \theta\left(e^{-i \omega}\right)=\frac{101-108 \cos (\omega)+16 \cos (2 \omega)}{128 \pi}
$$

which we can graph as

(h) Compute the first two partial autocorrelations of X_{t}.

Answer. Let $\phi(k)$ denote the partial autocorrelation of order k. Then,

$$
\begin{aligned}
\phi(1) & =1^{-1} \rho(1)=-\frac{54}{101} \\
\binom{\cdots}{\phi(2)} & =\left(\begin{array}{cc}
1 & \rho(1) \\
\rho(1) & 1
\end{array}\right)^{-1}\binom{\rho(1)}{\rho(2)}=\binom{\ldots}{-\frac{68}{235}} .
\end{aligned}
$$

(i) If $X_{10}=1$ and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{10}, X_{11}, X_{12}, and X_{13} based on X_{10} (only)? If so, compute these.

Answer. The best linear forecast of X_{10} is trivially 1 itself. The best linear forecast for X_{11} based on X_{10} is

$$
\begin{aligned}
P_{L}\left(X_{11} \mid X_{10}\right) & =\left(E\left(X_{11}\right)-E\left(X_{10}\right) \rho(1)\right)+\rho(1) X_{10} \\
& =\left(10+10 \frac{54}{101}\right)-\frac{54}{101} 1=\frac{1496}{101}=14.8119 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
P_{L}\left(X_{12} \mid X_{10}\right) & =\left(E\left(X_{12}\right)-E\left(X_{10}\right) \rho(2)\right)+\rho(2) X_{10} \\
& =\left(10-10 \frac{8}{101}\right)+\frac{8}{101} 1=\frac{938}{101}=9.28713, \\
P_{L}\left(X_{13} \mid X_{10}\right) & =\left(E\left(X_{13}\right)-E\left(X_{10}\right) \rho(3)\right)+\rho(3) X_{10}=(10-10 \times 0)+0 \times 1=10 .
\end{aligned}
$$

(j) If $X_{10}=1, u_{10}=2, u_{9}=1, u_{8}=0.99, u_{7}=1.2$, and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{11}, X_{12}, X_{13} based on the history of the process up to X_{10} ? If so, compute these.

Answer. Let Ω_{t} be the information set that is available at period 10. Then, because

$$
\begin{aligned}
& X_{11}=10+u_{11}-0.75 u_{10}+0.125 u_{9} \\
& X_{12}=10+u_{12}-0.75 u_{11}+0.125 u_{10} \\
& X_{13}=10+u_{13}-0.75 u_{12}+0.125 u_{11}
\end{aligned}
$$

we have

$$
\begin{aligned}
P_{10} X_{11} & =10+E\left(u_{11} \mid \Omega_{10}\right)-0.75 E\left(u_{10} \mid \Omega_{10}\right)+0.125 E\left(u_{9} \mid \Omega_{10}\right) \\
& =10+0-0.75 \times u_{10}+0.125 \times u_{9}=8.625 \\
P_{10} X_{12} & =10+0-0.75 \times 0+0.125 \times u_{10}=10.25 \\
P_{10} X_{13} & =10+0-0.75 \times 0+0.125 \times 0=10
\end{aligned}
$$

References

[^0]: *Department of Economics, McGill University. Email: jean-marie.dufour@mcgill.ca
 ${ }^{\dagger}$ Department of Economics, McGill University. Email: vinh.nguyen3@mail.mcgill.ca

