
R: An Econometrician’s Guide

Mirza Trokić

Department of Economics
McGill University

Montreal, QC, Canada
H3A 2T7

mirza.trokic@mail.mcgill.ca

Latest revision: October 13, 2011
Created: September 2011

1 INTRODUCTION
1 Introduction
R, or more appropriately the R programming language, is a very powerful platform used to
conduct a wide array of statistical analyses. It is light, fast, and most importantly, it is free.
This latter point has very importantly implications in terms of versatility and adaptability
- something we will talk about more when we discuss R packages.

Once opened, the interface of R may intimidate users who are used to nice point and click
interface of the Microsoft kind. There are no nice icons and the menu items do not offer
much in terms of usability. Nevertheless, this is precisely what one wants if one is looking
for efficiency - a property any serious econometrician does not take for granted.

1.1 R Syntax

Let us now turn to the console window and use R to perform some very basic functions. This
is done by interacting with the software at the command prompt >. Consider the following
command:

> 2+2

This produces the result:

[1] 4

The point of this exercise is to demonstrate how one interacts with R. In other words, the
user enters a command at the command prompt telling R what to do, then, R executes the
command and displays or stores the result. Having said this, it is important to notice that
R is a programming language and thus, it is only as intelligent as the user speaking said
language. Consider the following example. Suppose I want to compute the logarithm of 10
with base 10. If I execute the command:

> log(10)

This yields:

[1] 2.302585

The correct response however is 1. What happened? Surely for such an important piece
of software such an embarrassing mistake is not befitting! Well, the reason for the error is
that R did not make the mistake. The user did! By executing the log function log(10), R
understood this to mean take the natural logarithm of 10. And indeed, the answer above is
correct. However, because we wanted the logarithm with base 10, we should have specified
this in R through the following:

Mirza Trokic 1 R: An Econometrician’s Guide

1 INTRODUCTION

> log10(10)

This indeed does yield the answer we desired, namely:

[1] 1

As exemplified by the above, it is crucial to realize that in R, as in all other programming
languages, the output is only as good as the input! In fact, consider another very common
mistake. Suppose we define the variable x to be equal to two through the following command:

> x = 2
And suppose now we want to compute twice the value of x. If we were to follow the con-
vention we often use when writing down mathematical operations, we would be inclined to
execute the following:

> 2x

Unfortunately, this would yield the output:

Error: unexpected symbol in "2x"

This is because R does not understand what 2x means. Had we been a little more precise
and used the multiplication operator *, we would have obtained the correct response through
the following:

> 2*x
[1] 4

On a related note, it is important to keep in mind that mathematical operators are not all
executed with the same priority. For example, recall that exponentiation is executed be-
fore multiplication or division which are executed before addition or subtraction. Thus, if
we wanted to compute half the value of twice more the square of x, executing something like:

> 2+x∧2/2

would yield:

[1] 4

The answer we were looking for however is 3. The reason for the discrepancy is that we were
not careful with what we were executing. What we required was the following input:

Mirza Trokic 2 R: An Econometrician’s Guide

1 INTRODUCTION

> (2+x∧2)/2

which gives the desired answer:

[1] 3

1.2 R Scripts

We mentioned earlier that R is a very efficient software. One way this efficiency is manifested
is through something known in the programming community as a script. A script is a set
of instructions akin to what we were doing earlier which tells the software what to do. In
the simplest terms, this means that we can write as many instructions as we wish and tell
the computer to execute them in the order we wish without the need for live interaction.
For instance, say we wanted to obtain the results above at some later time without having
to write all of the functions from scratch. In this case, we can tell R to execute all of our
functions automatically by writing the script in any text editing program including the stan-
dard Windows notepad. Once written, the file should be saved with extension .r. Then,
the script can be executed. We will return to this at a later time.

1.3 The Question Mark

Whether you are a master programmer or just starting out today, your best friend in R is
the help() function! Suppose we know the exact name of a function in R that we need help
with. For instance, consider the log function. If we want to see what help R can offer on
this function, we execute the following command:

> help("log")

This takes us to a page which allows to browse all the information about the said function.
This includes information such as how the function should be invoked, what arguments it
takes, what outputs it prints, etc. Here, we can scroll through the information using the
“up” and “down” keys, and return to the console window by pressing the “q” key.

Suppose on the other hand that we are not sure what the exact name of the function is. In
this case, we can search for keywords instead. Let us search for the keyword “logarithm” via
the following command:

> help.search("logarithm")

The latter command brings us to a list of all functions in R that match this keyword. More-
over, note that the output is split into two columns. The first column displays the functions
associated with this keyword, while the second displays the description. More importantly,

Mirza Trokic 3 R: An Econometrician’s Guide

1 INTRODUCTION
take a closer look at the first column. Here, the output is organized as library::function,
or in our particular case, we have:

base::log
nlme::logDet

What this says is that our search has found two functions in R. The first is the function
log which belongs to the “base” package. The second function is the logDet function which
belongs to the “nlme” package. From here, we can press the “q” key to return to the main
console window and then proceed to read the help file on the log via the help function
discussed above.

Now, before proceeding to discuss packages, note that the functions help and help.search
can also be invoked via ? and ?? respectively. That is help("log") is the same as ?"log"
and invoking help.search("logarithm") is equivalent to executing ??"logarithm".

1.4 Packages

One of the things which makes R so powerful and versatile is its ability to use so called pack-
ages. Packages here can be thought of as sets of functions and scripts aimed at automating
operations which would otherwise be very difficult to perform if we had to write them out
every time we needed them. For example, suppose that what we want to obtain requires
invoking 10 different functions in a specific order, on a set of arguments. If we had to invoke
these 10 functions every time we needed this result we would quickly become very frustrated.
Instead, suppose we write a script which combines these 10 functions into a single function.
Then, all we have to do is invoke our one function and specify only the arguments. R then
takes care of the rest and we obtain our desired result.

A package then is a collection of functions and scripts aimed at performing specialized sta-
tistical analyses. For instance, there are packages that deal only with operations used in
time series. Others only deal with cross-sectional data. Yet others deal with graphing, etc.
All in all, there are thousands of packages available for use. They can all be downloaded and
they are all free. However, before one goes and downloads the first package one finds, it is of
importance to note that packages can be written by anyone, from Ph.D. students to promi-
nent world-class authors, and so it’s important to use packages which will do the job properly!

To see the list of packages which are already installed with R, we invoke the following com-
mand:

> library()

This brings up a page which lists all the packages installed in R and their description. Sup-
pose we are interested in the package called “stats”. To use this package we must loaded it

Mirza Trokic 4 R: An Econometrician’s Guide

1 INTRODUCTION
into the current R session. We do so as follows:

> library(stats)

Now that we have loaded the package what we are really after are the functions that come
bundled in it. To see what these functions are, we have to read the documentation of the
package. This is done as follows:

> library(help = "stats")

The above command produces a list of the functions and scripts in the package “stats” along
with short descriptions. Suppose that what we are seeking is a function which provide quan-
tiles and percentiles from the Normal distribution. It seems only natural to consider the
Normal script. Because we loaded the package to which this script belongs earlier, we can
read the documentation on it as follows:

> help("Normal")

Reading the said documentation, we see a section at the top titled “Usage”, which tells us
what functions can be invoked. The section immediately below this one, titled “Arguments”,
tells us what arguments need to be specified when we invoke the desired functions. Suppose
we are interested in the quantile which characterizes the right-most 2.5% of the standard
Normal distribution. What we want to use then is the qnorm function as follows:

> qnorm(.975)
[1] 1.959964

This answer should be very familiar. Suppose however that we require the same quantile
but from the Normal distribution with mean 1 and variance 2, or equivalently, the Normal
distribution with mean 1 and standard deviation

√
2. Consulting the documentation we

realize that this can be done as follows:

> qnormal(.975, mean = 1, sd = sqrt(2))
[1] 3.771808

Consider now that while browsing the for R functions and packages, we realize that the func-
tion we want is part of package which we do not have installed in R. Luckily, downloading
packages is a trivially easy task in R. Assuming that we have a working internet connection,
a package can be installed by invoking the following command:

> install.packages("nameofpackage")

Mirza Trokic 5 R: An Econometrician’s Guide

1 INTRODUCTION
As an example we will download the package called “fortunes”. This package is guaranteed
to eat away at your productivity, but it’s a must have for anyone looking for yet another
way to procrastinate! Without further delay, let’s download this time waster:

> install.packages("fortunes")

Once executed, R will ask you to choose a server from which you wish to download the
package. Here you want to choose the server which is closest to your physical location so as
to have the fastest download rate. Once the download is complete we will load the package
as follows:

> library("fortunes")

Now, a quick look at the documentation reveals that the package “fortunes” has only one
function, namely fortune. So let us invoke this function a few times and have some fun:

> fortune()

It is now clear what the function does. So anyone looking to waste some time while giving
the illusion to others that you are working, invoke the R fortunes function.

1.5 Setting Working Directory and Exiting R

It is often useful, not to mention cleaner to have a dedicated directory whenever working on
a particular project. This directory will serve to store your data files, your saved files, your
outputs, etc. Telling R what this directory is the subject of this section. Suppose we have
created a folder called “learningR” in the root directory “C:”. Then, setting said directory as
the working directory is done as follows:

> setwd("C:/learningR/")

That’s it. This directory is now stored into memory and any time R is opened it will be
working out of said directory. In this regard, suppose down the road we forget where our
files are stored and we wish to be reminded. This can be done as follows:

> getwd()
[1] "C:/learningR/"

Now that we have the basics of R, let us proceed to quit the program. This is done by
invoking the following command:

> q()

Mirza Trokic 6 R: An Econometrician’s Guide

2 DATA INPUT
Upon invoking the quit function, R will ask:

Save workspace image? [y/n/c]

Then, pressing “y”, “n”, or “c”, corresponds to “yes”, “n”, or “cancel”, respectively. If we press
“y” R will exit having saved our variables. Next time we open R those same variables will
be loaded automatically making the process very efficient.

2 Data Input
Entering data into R can be accomplished through several means. The most laborious of
these methods is entering each data point individually. The first step in this direction is
defining variables with a single point. In this regard, let us create the variables labelled “a”,
“b”, “c” which taking on the values 1,2, and 3, respectively as follows:

> a = 1
> b <- 2
> c = 3

The first thing to note above is that the operators = and <- are equivalent and so either
one can be used. The second point to realize is that when we define variables, R does not
display no output in the console. Does this mean that nothing happened? No! To see that
we did in fact succeed in creating said variables, proceed by typing the variable name at the
command prompt and executing:

> a
[1] 1
> b
[1] 2
> c
[1] 3

Another way to see that we did indeed succeed is to take a look at the list of all the variables
created. This is done through the so called ls function as follows:

> ls()
[1] "a" "b" "c"

2.1 Multiple Data Points

In the previous subsection we demonstrated how to create a variable with a single data point.
Here, we would like to extend this principle and create a variable with multiple data points.

Mirza Trokic 7 R: An Econometrician’s Guide

2 DATA INPUT
This is achieved with the “concatenation” function.

Table 1: Car Data

MPG EngineSize Horsepower Weight
1 25 1.80 140 2705
2 18 3.20 200 3560
3 20 2.80 172 3375
4 19 2.80 172 3405
5 22 3.50 208 3640
6 22 2.20 110 2880
7 19 3.80 170 3470
8 16 5.70 180 4105

Suppose we have data describing various characteristics of car models such as the mpg in
the city, engine size, horsepower, and weight, as summarized in Table 1. To enter the data
from into R we need to create five variables each containing eight data points. We do this
as follows:

> mpg = c(25, 18, 20, 19, 22, 22, 19, 16)
> es = c(1.8, 3.2, 2.8, 2.8, 3.5, 2.2, 3.8, 5.7)
> hp = c(140, 200, 172, 172, 208, 110, 170, 180)
> wt = c(2705, 3560, 3375, 3405, 3640, 2880, 3470, 4105)

Let’s take a look at our “mpg” variable and see what comes up.

> mpg
[1] 25 18 20 19 22 22 19 16

What was created was an 1-by-8 vector labelled “mpg” containing the eight points we entered
earlier. The fact that our variables are vectors allows us to view, edit, or delete any range
of values we wish. For example, suppose we wish to know the value of the third data point
in the vector “es”. We can do this using square brackets as follows:

> es[3]
[1] 2.8

On the other hand, we can look at points three through 6 of the vector “hp” using the colon
notation like so:

Mirza Trokic 8 R: An Econometrician’s Guide

2 DATA INPUT
> hp[3:6]
[1] 172 172 208 110

Perhaps we want to look at every point except the fifth in the vector “mpg”. This can be
done as follows:

> mpg[-5]
[1] 25 18 20 19 22 19 16

Or more complicated still, perhaps we want to look at every point except the third and the
fifth. This can be done using the c() function as shown below:

> mpg[c(-3, -5)]
[1] 25 18 19 22 19 16

Before moving on let us take a look at how to edit points as well. If we we made a mistake
in entering the second point of the “mpg” vector by typing 18 instead of 19, we can easily
rectify this and verify that we made the correct change:

> mpg[2] = 19
> mpg
[1] 25 19 20 19 22 22 19 16

Finally, note that similar changes can be made on more than one data point using the con-
catenation operator.

2.2 Stacking Variables

Now that we’ve seen how to create variables into R, let’s take a look how to stack them.
Stacking variables allows us to combine two vectors for example into a matrix, or, to append
vectors to existing matrices thereby increasing their dimension.

The fist thing we need to notice here is that c() must not be used carelessly. For example, if
we take the four eight-by-one variables we created earlier and combine them using the con-
catenation function we do not obtain an 8-by-4 matrix, rather, we obtain a 32-by-1 vector
as can be seen from the following:

> combo = c(mpg, es, hp, wt)
[1] 25.0 18.0 20.0 19.0 22.0 22.0 19.0 16.0 1.8 3.2
[11] 2.8 2.8 3.5 2.2 3.8 5.7 140.0 200.0 172.0 172.0
[21] 208.0 110.0 170.0 180.0 2705.0 3560.0 3375.0 3405.0 3640.0 2880.0

Mirza Trokic 9 R: An Econometrician’s Guide

2 DATA INPUT
[31] 3470.0 4105.0

So why would anyone want to do this then? Well, as we will see later on in the course, we
can use indicator functions to extract the values we want from large vectors. This type of
analysis usually comes in handy when we deal with seasonality. But more on this at a later
time. It suffices to say that when a specific value of the indicator function is called, the value
we want is extracted. We now focus on creating such an indicator function. In essence, we
want a variable defined as follows:

> id = c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4)

[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

So, using the “id” variable, we can map the values from the “combo” variable as follows.
Whenever a 1 is called, we obtain the corresponding value in the “mpg” variable, when a 2 is
called, we get the corresponding value from the “es” variable, and so on. It goes without say
that this procedure is very inefficient for larger data sets. Luckily, R has a very convenient
solution through the rep() function. Consider the following:

> id = rep(c(1,2,3,4), each=8)
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

Obviously the two “id” sequences are identical. However, as long as we are on the subject
of sequences, let us look at the “seq()” function. The latter is used to create sequences of
various sorts. Suppose, we wanted to create a sequence of 1 to 4, by increments of 1. That
is, we want a sequence reading 1, 2, 3, 4. This can bedone as follows:

> s4 = seq(1,4, by = 1)
[1] 1 2 3 4

It is easy to see how this can be extended to various other combinations. Suppose for ex-
ample we wanted a sequence of 1 to 16 which moves in increments of three. This is done as
follows:

> s16.3 = seq(1,16, by = 3)
[1] 1 4 7 10 13 16

It is also important to note that we do not necessarily have to restrict ourselves to numbers
when creating variables or sequences. That is, suppose we don’t like a numerical way of iden-
tifying our variables, but we want to keep track of the names. This too can be done as follows:

> idnames = c(’mpg’, ’es’, ’hp’, ’wt’)

Mirza Trokic 10 R: An Econometrician’s Guide

2 DATA INPUT
[1] "mpg" "es" "hp" "wt"

Then, we can create a 1-by-32 vector of names as follows:

> idnames2 = rep(idnames, each = 8)

Also, a very important point here is that the argument “each” is essential. If it is omitted,
we will get something very different from what we had intended. To see this, note:

> idnames3 = rep(idnames, 8)
[1] "mpg" "es" "hp" "wt"
[5] "mpg" "es" "hp" "wt"
[9] "mpg" "es" "hp" "wt"
[13] "mpg" "es" "hp" "wt"
[17] "mpg" "es" "hp" "wt"
[21] "mpg" "es" "hp" "wt"
[25] "mpg" "es" "hp" "wt"
[29] "mpg" "es" "hp" "wt"

But looking at the above structure, we see that our original data is in precisely the above
form. The problem is, we have four 8-by-1 vectors and our data is in matrix form. So how
do we go about stacking our data to resemble Table 1 above? The answer lies in the “column
bind” function. The latter allows us to stack vectors horizontally. To see it in action, observe
the following:

> table = cbind(mpg, es, hp, wt)
> table

Executing the above expresses the data in the form of Table 1. In other words, the output is
no longer a vector, but an 8-by-4 matrix. As such, we should learn a few commands which
allow us access and manipulate various points of matrices. For example, if we want the
element found in row 3, column 4 of the matrix “table”, we issue the command:

> table[3,4]
wt
3375

On the other hand, suppose we want all of the points in the second column, that is, we want
to extract the values of the variable “es”. This can be done like this:

> table[,2]
[1] 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7

Mirza Trokic 11 R: An Econometrician’s Guide

2 DATA INPUT

Similarly, we can do something similar if we wanted to obtain all the values in row 7 as follows:

> table[7,]
mpg es hp wt
19.0 3.8 170.0 3470.0

And finally, if we want to find out the dimension of any variable, we use the dim() function
as folllows:

> dim(table)
[1] 8 4

Now, let us look at the row binding function rbind(). This function is analogous to the
cbind() function but instead of stacking variables horizontally, it stacks them vertically. Let
us repeat recreate the table above but with the variable names indicating the rows rather
than columns. This is done as follows:

> table2 = rbind(mpg, es, hp, wt)
table2

This type of operation is known as a transpose in mathematics and luckily, there is a very
quick way of doing it using the t(). Consider the above operation expressed as follows:

> table = cbind(mpg, es, hp, wt)
table
table = t(table)
table

Finally, note that all this time, we’ve been labelling our variables in a manner which may
confuse some. That is, we’ve been using the variable name as both the name and the argu-
ment. In this case, note that the naming occurs AFTER the action on the argument. Thus,
looking at the third command above, we see that the existing variable “table” is transposed
first, and then it is named “table” again. This type of naming scheme clearly overwrites
existing variables which have the same name.

2.3 Basic Matrix Operations

The matrix() function allows one to create a matrix of any dimension and fill it with what-
ever data we please. Consider first the idea of creating an empty matrix of dimension 8-by-4.

> mat = matrix(nrow = 8, ncol =4)
> mat

Mirza Trokic 12 R: An Econometrician’s Guide

2 DATA INPUT
As can be seen by executing the above, the matrix we created is precisely an 8-by-4 matrix
of empty values which R labels as“NA”. We can now proceed to fill in the values by using one
of the methods of element manipulation discussed earlier. But recall that our fist attempt
at using the concatenation operator on the 4 variables found in Table 1 produced a 32-by-1
vector. Well, we can now transform that vector into a matrix of conformable size as follows.
Because we have 32 elements, we can create an 8-by-4 matrix from it as follows.

> combo = c(mpg, es, hp, wt)
> mat = matrix(combo, nrow = 8, ncols = 4)
> mat

Thus, we see that we obtain the data in the form of Table 1, although there are no column
names. This can be fixed using the colnames() function like thus:

> colnames(mat) = idnames
> mat

Now, let us proceed to look at some very useful matrix operations. We will start by creating
the identity matrix. The easiest way to do this in R is to use the diag() function which is
typically used to create diagonal matrices. Consider the identity matrix of size 6 for example:

> ID = diag(6)
> ID

The above command may be used in several other ways as well. For example, it can create
a matrix whose diagonal elements can be anything we want, and any dimension we want,
not necessarily squared. Consider a diagonal matrix of dimension 5 elements of which take
on the value 3.4 for instance.

> D = diag(3.4, 5)
> D

Or, consider a matrix of dimension 6-by-8 whose diagonal elements of the first block take on
some value, say 4.1. This is done as follows:

> D = diag(4.1, 6, 8)
> D

Suppose now that I want my diagonal elements to take on some vector of values, not just
one repeating number. Let’s use some notation we used so far. Suppose I want a diagonal
matrix of dimension 5 whose diagonal elements are the values of the sequence running from
1 to 10 in increments of 2. We can accomplish the task as follows:

Mirza Trokic 13 R: An Econometrician’s Guide

2 DATA INPUT

> s = seq(1,10,2)
> D = diag(seq,5,5)
> D

And finally, the diag() function can be used to extract the diagonal elements of some ma-
trix. This in turn creates a vector of the diagonal elements. So, let us recover the diagonal
elements of the matrix above as follows:

> d = diag(D)
[1] 1 3 5 7 9

Now, suppose I want to multiply two matrices together. Unlike what you may think, using
the multiplication operator * naively will NOT give you the correct answer. This is because
the latter is used for element by element multiplication, whereas matrix multiplication has
its own syntax. Let’s take a look at an example.

Consider two matrices A and B as follows:

A =

�
1 0 −2
0 −3 1

�
B =

0 3
−2 −1
0 4

The product AB is the following:

�
1 0 −2
0 −3 1

�
×

0 3
−2 −1
0 4

 =

�
0 −5
−6 −7

�

Thus, consider doing the same in R. We begin by creating the two matrices as follows:

> A = c(1, 0, 0, 3, -2, 1)
> A = matrix(A, 2, 3)
> A
> B = c(0, -2, 0, 3, -1, 4)
> B = matrix(B, 3, 2)
> B

If we were now to naively issue the * operator in order to multiply the two matrices above,
we would get an error. This is because matrix multiplication is done through the following
syntax:

Mirza Trokic 14 R: An Econometrician’s Guide

2 DATA INPUT
> C = A%*%B
> C

This indeed does give us the correct answer. However, suppose now that I want the inverse
of this matrix. This can be done using the solve command as follows:

> Cinv = solve(C)
> Cinv

Notice that the above is written in decimals, but the numbers look relatively nice. This
indicates that they may be nicely expressed as fractions. How would we do this. Well,
fractions(), the function which converts floating points into fractions is located in the
“MASS” package. We loaded it as follows:

> library(MASS)

Now, we proceed to express our matrix in fractions as follows:

> Cinv = fractions(Cinv)
> Cinv

Finally, let’s at look at how to compute the determinant and eigenvalues and eigenvectors
of a matrix by computing it for the matrix “C” above. Consider first the determinant com-
putation:

> det(C)
[1] -30

And now, let’s compute the eigenvalues and eigenvectors like so:

> eigen(C)

We see that executing the above command gives us both the eigenvalues and the vectors
associated with them.

2.4 Combining, Importing, and Exporting Data

Now that we have created some data, let us look at a very useful R construction, the “data
frame”. This is something very similar to the matrix of data we created earlier, but much
more versatile. In fact, imagine the data frame as a vault in which you can place any data of
both numerical and string types, as long as they are conformable. Moreover, a data frame is
never operated on, but rather, one simply draws what one needs from it and then proceeds
to manipulate the data on the extracted data. Thus, a data frame can be considered as a

Mirza Trokic 15 R: An Econometrician’s Guide

2 DATA INPUT
vault from which one draws information, and it serves as an archive of the data.

For example, recall that we created a matrix of the car data by combining our four variables.
But now, let us package those same four variables into a data frame as follows:

> dtfrm = data.frame(MPG = mpg, ES = es, HP = hp, WT = wt)
> dtfrm

Now, the first thing to notice is that the variables MPG, ES, HP, and WT are NOT in the
variables list. To see this, just issue the ls() command. This is because the latter variables
are in the archive so to speak and they are not meant to be manipulated, but rather used.
So, let us for example use the variable MPG in the data frame to create a new variable which
is twice its value. This is done using the $ operator as follows:

> mpgx2 = 2*dtfrm$MPG

So what’s the big deal? We could have done the same thing with a matrix and vector con-
structions. True, but the importance lies in the fact a data frame can contain vectors of
strings in addition to numbers, so long as they correspond to the same data and are con-
formable. So our data is in a different container and it is NOT a matrix! In fact, if we had
a vector of size 8 consisting of string values, we would be able to add that as well. This is
also relevant because most data one finds or uses usually comes in a data frame container.

Suppose then we have some data we wish to use. How do we import it? This is perhaps one
of the most useful operations in R and should be committed to memory. Let us begin by
noting that most data is either in its raw “.dat” or “.txt” form, and usually comes with vari-
able headers. For example, consider the following set of data taken from the net, describing
some quarterly, log-transformed time series from the German economy starting from 1960.

The above data is located in our working directory under the name “e1.dat”. Let us therefore
attempt to load it into R. The first thing to notice is that this data is nicely ordered into
columns and has column headers, or variable names. So, the appropriate command to load
the data will be:

> e1 = read.table("e1.dat", header = TRUE)

Issuing the above command creates a data frame using the original data. Thus, it is not
a matrix and so, any manipulations on the data need to be done on constructions we take
henceforth.

A related concept of course is data exportation. This is done in an analogous, but reverse
manner. Let us suppose that we have some object in R that we wish to save; perhaps a data

Mirza Trokic 16 R: An Econometrician’s Guide

2 DATA INPUT

Table 2: German Time Series

invest income cons
1 5.19 6.11 6.03
2 5.19 6.14 6.04
3 5.22 6.18 6.07
4 5.26 6.20 6.10
5 5.35 6.23 6.13
...

...
...

...
90 6.71 7.87 7.71
91 6.72 7.87 7.72
92 6.72 7.88 7.73

frame, a matrix, a vector, etc. This can be done as follows:

> write.table("object", "nameoffile.txt", col.names = TRUE)

Suppose we name our file “rdata.txt” and the object we save is data frame “dtfrm”. Then,
our command will look like this:

> write.table("dtfrm", "rdata.txt", col.names = TRUE)

So where is this file? Well, if you recall, last time we defined our working directory using
the setwd() command. So, our file is located in our working directory, which, if we needed
a reminder, could be displayed with the getwd() command.

It is crucial to note that when exporting data with the write.table() command, the object
we save is a data frame. So, if had saved the matrix “A” we created earlier using the above
method, it would no longer be a matrix when we load it via the read.table() command.
So how do we save and load variables themselves? This is done with the save() and load()
functions.

The save() command takes the following syntax:

> save(var1, var2, var3, etc.., file = "nameoffile.rda")

Let us use the above to save the variables “idnames”, “A”, and “dtfrm” into a file called
“rdata.rda”. This is done as follows:

> save(idnames, A, dtfrm, file = "rdata.rda")

Mirza Trokic 17 R: An Econometrician’s Guide

3 PLOTTING

Now, let us proceed to delete those same variables from our current R session. This is done
using the rm() command like this:

> rm(idnames, A, dtfrm)

But let’s suppose we now want to use those same variables again. We can load them from
our saved file as follows:

> load("rdata.rda")

Again, recall that all files are saved to and loaded from the working directory.

3 Plotting
One of the things R is renown for is plotting capabilities. It is arguably one of the most
powerful plotting platforms in existence today! In this section we will cover some of these
capabilities in pragmatic detail.

In the previous section we briefly loaded the German investment data “e1.dat”. This data
comes from Lutkepohl’s jMULTi website under the data section for his book New Introduc-
tion the Multiple Time Series Analysis. If the data is already loaded into R we can proceed
to the next paragraph. However, if it’s not, let’s load it first:

> e1 = read.table("e1.dat", header = TRUE)

Now, using the function is.data.frame(), one can verify that the element “e1” is indeed a
data frame. This means we can use variables using the $ operator. However, before doing
so, let’s take a look at what variable were actually loaded using the names command.

> names(e1)
["invest" "income" "cons"]

Thus, we have three variables under the above headings. Let’s look at a primitive plot of how
the data variables behave in relation to each other. In other words, let’s look at a scatter
plot. We’ll start first by comparing “invest” and “income”.

> plot(e1$invest, e1$income, xlab = "Investment", ylab = "Income", main
= "German Investment Data", sub = "Income vs. Investment")

As can be seen, the first 2 arguments are the variables on the x and y axes respectively, while
the last two arguments are the labels we wish to impose on the respective axes. However,

Mirza Trokic 18 R: An Econometrician’s Guide

3 PLOTTING
suppose, we wanted to determine the inverse relationship. One way is to switch the first two
arguments, but another way is as follows:

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment")

3.1 Working With Symbols

By default, R prints plots using circles as points. This can be changed however, and some-
times it’s necessary to do so. Different points are represented by numbers running from 1 to
255 so there is a large variety. The argument which needs to be specified in the plot function
is “pch”. Let’s look at some examples.

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = 2)

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = 3)

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = 12)

But suppose now that I only wish to isolate a few points and represent them by different
points for easy identification. In this case, I can create a vector the size of my data set with
each number representing a “pch” we would like to use. For concreteness, suppose we want to
isolate points 10, 20, and 30 and we want to represent these three points with three different
symbols, leaving all other points unchanged. A quick application of the dim() function tells
us that each of our variables has 92 points. So consider the following:

> threep = rep(1,92)
> threep[c(50,60,70)] = c(2,3,12)
> threep
[1] 1
[26] 1 2
[51] 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch = threep)

3.2 Working With Colours

Color can be a very important aspect of graphs so it merits our attention. Colour is acti-
vated via the “col” argument. Its functionality is identical to that of “pch”. Thus, we repesent

Mirza Trokic 19 R: An Econometrician’s Guide

3 PLOTTING
colours using numbers or vectors of numbers. Let’s see some examples.

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = threep,
col = 3)

, Or, if we want to represent our three points in red, consider:

> threec = rep(1,92)
> threep[c(50,60,70)] = rep(2,3)
> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch = threep,
col = threec)

Or, if you’ve been eating Skittles all day and want to see the rainbow, try this:

> rnbw = c(1:92)
> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch = threep,
col = rnbw)

3.3 Working With Sizes

Another very important argument is “cex”. Its function determines the size of points and its
usage is identical to “pch” or “col”. As a quick example, let’s enlarge our three points.

> threes = rep(1,92)
> threes[c(50,60,70)] = rep(2,3)
> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch = threep,
col = threec, cex = threes)

And to close, consider a very fun example:

> library(MASS
> rnbws = abs(mvrnorm(92,1,1))
> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch = threep,
col = rnbw, cex = rnbws)

What we did above was as follows. First, we loaded the “MASS” package. This is because we
want to use the function mvrnorm() to simulate points from the Guassian (Normal) distri-
bution with mean 1 and standard deviation 1. This is so that we can get a random collection

Mirza Trokic 20 R: An Econometrician’s Guide

3 PLOTTING
of points which we can then use as the basis for our sizes. Finally we use this vector and
create a plot whose points are random, following the aforementioned distribution.

To close this section, let’s briefly take a look at the size, or length in this case, of the axes.
Using the parameters “xlim” and “ylim” we can adjust the limits of our axes. So, as an
example, we will limit the x-axis to the interval [750,2250] and the y-axis to the interval
[350,650]. This yields the following:

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = threep,
col = rnbw, cex = rnbws, xlim = c(750,2250), ylim = c(350,650))

3.4 Superimposing Lines

Sometimes it is necessary or useful to superimpose lines on the original graph in order to in-
dicate the presence of something of importance. For example, suppose that for some reason,
the number 500 on the y-axis is of importance. In this case, we can create a horizontal line
on this axis crossing 500 at the origin. Consider the following code:

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", cex = 1.5)

Now that we have our graph, let’s plot the horizontal line.

> lines(x = e1$income, y = rep(500,92))

Or, if we wanted a horizontal line at 1000, the following code will suffice.

> lines(y = e1$invest, x = rep(1000,92))

However, as important as such lines may be, a far more important superimposition in practice
is that indicating a smoothed fit for the set of points. This is achieved through a combination
of functions which should be studied using the help functions.

The smoothing method we will use is called LOESS smoothing function and we can see it
on our graph using the following sequence of commands:

> m.loess = loess(invest income, data = e1)
> fit = fitted(m.loess)
> lines(e1$income, fit, col = 2, lwd = 2, lty = 3)

So what did we do? First fitted a LOESS model to the relationship between investement
and income. Secondly, we extracted the set of fitted points from this model. This is in a

Mirza Trokic 21 R: An Econometrician’s Guide

3 PLOTTING
sense the regression line form a non-linear regression model. Finally, we superimposed this
fitted line on our original scatter plot. However, a picture tells a thousand words so to speak
and our graph is no different. Moreover, using the “col” argument in the lines() function
we were able to change the colour of the smoothing curve, while using “lwd” and “lty” we
were able to change the width and style of the line respectively.

3.5 Saving Plots

Now that we know how to create plots. Let’s take a look at how to save them. The method
of saving plots is a multi step process in R. First, we need to issue the jpeg() function and
specify the name of the file we wish to save our plot to. Let’s do that now.

> jpeg("savedplot.jpeg")

Next, we create our plots using the methods covered in the previous subsections. However,
this time, when we issue the plot() commands, no output will be shown. This is because
the plots will be directly written to the file we specified. So, let’s recreate our plot with the
smoothing line.

> plot(y = e1$invest, x = e1$income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", cex = 1.5)

> lines(e1$income, fit, col = 2, lwd = 2, lty = 3)

Once we are satisfied, we can turn off the “save-to-jpeg” environment by issuing the following
command:

> dev.off()

Now, as before, issuing plot() commands will produce the plot on the screen.

3.6 Plot Annotations

Now, learning a few more tricks of the trade, let’s put what we’ve learned together into a
very nice example. What we want to do here is to draw points from the Gaussian density,
plot those points, and then draw the theoretical density of the latter distribution on top of
those points to show that they do indeed fall on the said curve. Finally, we want to annotate
the graph with textual and mathematical expressions.

Our first task here is the simulate a large number of points from the standard normal distri-
bution. We saw earlier that this can be done using the mvrnorm() function from the “MASS”
package.

> xgauss = mvrnorm(100,0,1)

Mirza Trokic 22 R: An Econometrician’s Guide

3 PLOTTING

Now that we have obtained the drawings, it’s time to convert these drawings into the values
of the density that correspond to them. This can be done by making use of the dnorm() func-
tion from the “stats” package we looked a few lessons ago. This function takes the vector of
inputs and yields the vector of values of the density that corresponds to this vector of inputs.

> ygauss = dnorm(xgauss)

We now have the points we wanted to simulate. Now, let’s use the curve() function to
plot the theoretical curve from the standard normal density. Adding of course some titles,
colours, and adjustements, this can be done as follows:

> curve(dnorm, from = -3, to = 3, col = 24728, lwd = 3, main = "Standard
Normal Density", ylab = expression(phi(x)), xlab = expression(x))
Next, let’s see how our points compare to this graphic. To superimpose our points we will
use something very similar to the lines() function we used earlier. We will use the the
points function.

> points(xgauss, ygauss, col = 2)

Next, let’s add some lines for the mean and standard deviation.

> lines(rep(0,100),seq(0,3.96,0.04), lwd = 2, col = 4)
> lines(rep(-1,100),seq(0,3.96,0.04), lwd = 2, lty = 3, col = 3)
> lines(rep(1,100),seq(0,3.96,0.04), lwd = 2, lty = 3, col = 3)

Now, let’s annotate our graph to make it look very pretty. Let’s start with the mathematical
expression for the standard normal density. This is achieved using the “expression” argument.

> text(-2.75,0.2, expression(f(x) == frac(1, sigma ~~
sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}),
adj = 0, cex = 1.25)}

Next, add the annotations for the mean and standard deviation.

> text(0,.15, expression(mu), cex = 1.25)
> text(.5,.15, expression(+sigma), cex = 1.25)
> text(.5,-.15, expression(-sigma), cex = 1.25)

And finally, if we really wanted to see what distribution our sample takes on, we can add
tick marks to each of the axes using the rugs() function as follows:

> rug(xgauss)
> rug(ygauss), side = 2

Mirza Trokic 23 R: An Econometrician’s Guide

4 DATA EXPLORATION

At the end, when we see how pretty our graph looks, we can see that our effort was not in
vain! Nedless to say, the possibilities of making pretty graphs is endless in R, so have fun!

The material covered so far should be enough for a basic understanding of the plot() func-
tion and related concepts. Due to the fact that plotting in R is a vast area of expertise,
additional concepts shall be covered as they arise throughout the remaining material.

4 Data Exploration
In this brief section, and before delving into more serious matters of linear regression, let’s
take a look at some primitive means of data analysis. To start, let’s load the data set we
looked at earlier on car makes and specifications. This data set is located in the “MASS”
library. If it’s not loaded, load it now, and then proceed to load a data set called “Cars93”
as follows.

> data("Cars93")

Now that the data has been loaded, let’s look at some facts whcih characterize it. Start with
the function str(). This should give us a very primitive overview of what the variables are,
their structure, size, etc.

> str(Cars93)

The above tells us that our data is contained in a data frame, it has 93 observations, 27 vari-
ables, and then proceeds to tell us what those variables are and the type of data contained
in them. Here, “Factor” means that the data is a cateogrical indicator, “Num” indicates it’s
numerical, therefore floating point, and “Int” implies that the data is an integer, therefore
whole numbers.

We can also view the first and last 6 entries of this data table using the head() and tail()
functions respectively.

> head(Cars93)
> tail(Cars93)

Yet a more detailed description is obtained using the summary() command, which, in ad-
dition to descriptors we’ve seen so far, also yields descriptive statistics for numerical and
integer-based variables.

Mirza Trokic 24 R: An Econometrician’s Guide

5 LINEAR REGRESSION
> summary(Cars93)

Here on forth we will need to access the variables in this data set. As we’ve seen so far,
we’ve been doing this using the $ operator. For example, if we want to “MPG.city” variable,
we would obtain it via the command:

> Cars93$MPG.city

As this can get very tedious very quickly, we’re going to introduce a new command called
attach(). This command will attach the data set “Cars93” directly into the R search tree
so that we can access variables directly by their names. Consider:

> attach(Cars93)
> MPG.city

A word of caution here. It is very important that when using the attach() command that
there are no variables with conflicting names. That is, if we had attached the “Cars93” and
wanted to use the variable “MPG.city” that was NOT in the “Cars93” data.frame, we would
not get it. We would get the variable “MPG.city”, but the one in the “Cars93” data frame.
Thus, it is very important to name variables appropriately. Moreover, when done using the
data, it should be detached in a similar fashion using the detach() command.

5 Linear Regression
The linear regression model is the foundation of modern econometrics. As such, learning
how to work with it is of the utmost importance. Its typical form in most of the literature
is presented as the following vector expression:

y = Xβ + �

Above, y and � are nx1 vectors, X is an nxk matrix, while β is a kx1 vector. Moreover, y is
the regressand vector, or the endogenous variable, whereas as X is the matrix of regressors,
or the matrix of exogenous variables. Furthermore, as is typical in this context, we assume
that the error terms which constitute the � vecotr, are independent of the regressors and
are IID with mean zero and variance σ2. Mathematically, this implies the following two
conditions:

E(�|X) = 0

V (�|X) = σ2I

The most widely used estimator of regression coefficients from the above model is known
as the “ordinary least squares” (OLS) estimator, usually denoted β̂ is provided below for
reference.

Mirza Trokic 25 R: An Econometrician’s Guide

5 LINEAR REGRESSION

β̂ = (XTX)−1XTy (1)

From the above, note the following two very important quantities. The fitted values, which
we denoted as ŷ = Xβ̂ and the vector of residuals, �̂ = y − ŷ.

5.1 Classical Linear Model

We will begin our journey by looking at a model which will analyse subscriptions to major
academic journals in Economics. In particular, we will look at the relationship between the
number of subscriptions to Economics journals at US libraries as a function of subscription
prices. To begin, we must first download the data set. It is found in the package “AER”. We
must first download it and then load it.

> install.packages("AER")
> library(AER)

Now that we have loaded the package, let us load the data set “Journals”.

> data(Journals)

Let us now briefly look at the data set to see what it contains. To see the variables contained
in the data frame, we issue the following command:

> names(Journals)

We can get more insight issuing the summary() command. Consider:

> summary(Journals)

Because we are interested in looking at the subscriptions as a function of price, let us there-
fore create a data set which will extract these two variables.

> journals = Journals[, c("subs", "price")]

Moreover, to get a sense for the price per quality of a journal, we will create such a mea-
sure by looking at subscription price per citations of the journal. Here, “citations” is the
total number of times the journal is cited in academic works. Clearly then, the number of
citations is an indicator of the quality of the journal. Consequently, a lower price / citation
ratio indicates that one is paying less for higher quality journals. Thus create the following
variable:

Mirza Trokic 26 R: An Econometrician’s Guide

5 LINEAR REGRESSION
> journals$citeprice = Journals$price / Journals$citations

Now, before proceeding any further, it is time to see first hand why studying your data
BEFORE doing any major analysis is absolutely essential! Start by plotting “citeprice” vs.
“subs”.

> plot(journals$citeprice,journals$subs)

It is difficult to see what the relationship looks like. However, a little reflection will show
that the pattern is really a decaying exponential curve. To see this, consider:

> par(new=TRUE)
> curve(exp(-x), from = 0, to = 50)

What this implies is that if we had naively run a linear regression model on “subs” on
“citeprice”, we would have severely misspecified the model as exp(−x) is clearly far from
linear. However, given that we know what curve the data follows, it is an easy matter to
linearize the model by transforming the data using the logarithmic function. Thus, consider
the transformed variables:

y = e−x

log(y) = e−log(x)

= −x

It is clear then that the the two variables which do yield a linear relationship are log(y) and
log(x). To see this then, consider the plot of the transformed variables.

> plot(log(journals$citeprice), log(journals$subs))

Clearly the data points look far more linear after the transformation. Given this new insight,
let us proceed to fit a linear regression model of the form:

log(subs)t = β0 + β1log(citeprice)t

The main function which deals with regressions and model fitting is the lm() function, which
stands for “linear model”. We start by first attaching the data set “journals” so that we can
call variables up without referring to their data.frame.

> attach(journals)

Next, let us fit the linear regression in question as follows:

Mirza Trokic 27 R: An Econometrician’s Guide

5 LINEAR REGRESSION
> journals.lm = lm(log(subs) � log(citeprice))

Let us now add the regression line to our existing plot using the abline() function. The
latter function extracting the coefficients from the estimated model and superimposing the
corresponding regression line in one shot. Consider:

> abline(journals.lm)

Here, it should be noted that, although we have only specified one regressor, namely “citeprice”,
it is implied that there is a constant term involved. It is important to keep this in mind
whenever performing linear regressions in R.

The element “journals.lm” is very important here and contains much useful information. To
see what is located in it, let us do some snooping.

> names(journals.lm)
> summary(journals.lm)

This last input is very important. It yields the essential information from the regression.
That is, the coefficient estimates, the t statistics, the p-values, and some other very impor-
tant information. Two of these are particularly important. The first is the interpretation of
the p-values presented. Here, the p-value corresponds to the null hypothesis that the value of
the coefficient is equal to zero. In our particular case, the fact that p-values are very close to
zero means that we reject the null hypothesis at higher significance levels. That is, whenever
the p-value is less than the level we specify, we reject the null hypothesis. Because we do
reject the null hypothesis in our case, we say that the coefficient estimates are significant.
That is, they are significantly different from zero!

The second important aspect we need to analyse here are the standard errors of coefficient
estimates. These are particularly important when we desire to obtain confidence intervals of
the OLS estimator. The latter are obtained by noting the following relationship:

Pr{tα/2 ≤
β̂ − β

σ̂β̂

≤ t1−α/2} = 1− α (2)

We note here that the fraction in the middle of (2) above is distributed as a t-distribution
with (n−#regressors) degrees of freedom, where n is the sample size. As a result, tα/2 and
t1−α/2 are the α/2 and 1 − α/2 quantiles of the t distribution, and alpha is the level corre-
sponding to the significance level. In this light, we note that the standard errors required
to compute the above are indeed given in the summary of the model we just estimated, and
are the square roots of the diagonal elements of the covariance matrix of β̂. The latter is,
recall, given by the following:

Mirza Trokic 28 R: An Econometrician’s Guide

5 LINEAR REGRESSION

V {β̂} = σ̂2
�̂ (X

TX)−1

We can indeed compute the confidence interval manually by manipulating the matrix of
regressors, the vector of residuals, and the vector of coefficients, the latter two quantities
being extracted from our estimate model as follows:

> resid(journals.lm)
> coef(journals.lm)

Or, R can do the dirty work for us, and we can obtain the confidence interval of the OLS
coefficients automatically by issuing the following command:

> confint(journals.lm, level = 91.2345%)

Here the level is any value we wish and corresponds to α in the theoretical derivation of the
confidence interval we derived above.

As long as we are on the subject of confidence intervals, let us also discuss prediction. That
is, now that we have our model estimated, we can actually put it to good use and do some
prediction with it. However, before doing so, we must make sure that we distinguish between
“mean prediction” and “individual prediction”.

Mean prediction is the following derivation given the basic assumptions of the classical linear
model.

y∗mean = E{y|X} = Xβ̂ + E{�̂}
= Xβ̂

Individual prediction however is the following statement

y∗individual = Xβ̂ + �̂

The difference between the two can be shown to be the variance of the predicted values.
The former has a smaller variance than the latter and hence, the former yields a narrower
prediction band than the latter. To see this, consider

V {y∗mean} = V {Xβ̂}
= V {Py}

Mirza Trokic 29 R: An Econometrician’s Guide

5 LINEAR REGRESSION
The above holds true because the fitted values are Py. Analogously, we have the following:

V {y∗individual} = V {Xβ̂}+ V {X�̂}
= V {Py}+ V {My}

Again, the above holds because the residuals are My and the fact that the fitted values and
residuals are uncorrelated. Moreover, the fact that the variances of the fitted values and
residuals are positive semidefinite, it holds that the variances of the data points predicted
using the individual method have wider confidence bands than those of the points predicted
using the mean method.

Now that we have this distinction, we can generate mean predicted values for y by first
specifying the vector of x values we wish to correspond to our prediction. For example, if we
wanted to predict y for the 61 values of x ranging from -6 to 6 by increments of 0.2. Note
that this example gives the prediction for y for values of x which are NOT in the original
set of data points. In fact, it extends the data points beyond the minimum and maximum
value of “log(citeprice)”. All in all, we can do this as follows:

> x = seq(-6,6,.2)
> predc = predict(journals.lm, data.frame(citeprice = exp(x)), interval

= "confidence")

On the other hand, if we wanted the wider prediction corresponding to the individual pre-
diction method, we would issue the following command:

> predp = predict(journals.lm, data.frame(citeprice = exp(x)), interval
= "prediction")

A very important thing to note here is the “data.frame()” argument used above. Note that
we have used “citeprice” and NOT log(citeprice). This is because the variable of interest is
“citeprice”, even though when we ran our regression, we had used the transformed variable,
log(citeprice). Thus, R is aware that we had used a transformation. As a result, when we
specify our “data.frame()” argument, we specify it in terms of the base variable of interest
“citeprice”. However, note that citeprice = exp(x) really implies that log(citeprice) = x and
so our scales are not different.

Note also that if we issue the command to view the above variables, we would note that they
have three columns. The first, called “fit”, is the OLS fitted value which we know as Py,
corresponding to the values of x we chose for prediction. The other two columns are “lwr”
and “upr”, corresponding to the lower and upper confidence interval values for our prediction,
respectively.

Mirza Trokic 30 R: An Econometrician’s Guide

5 LINEAR REGRESSION
> predc
> predp

Finally, to see all this in graphical form, where it is easier to visualize the impact of predic-
tion, consider issuing the following commands:

> plot(log(citeprice),log(subs), xlim=c(-6,6))
> abline(journals.lm)
> lines(x, predc[,2], col = 2, lty = 2)
> lines(x, predc[,3], col = 2, lty = 2)
> lines(x, predp[,2], col = 4, lty = 2)
> lines(x, predp[,3], col = 4, lty = 2)

Mirza Trokic 31 R: An Econometrician’s Guide

